江苏省徐州市第一中学2019_2020学年高二数学下学期第三次检测试题
江苏省徐州市2019-2020学年高二下学期期中抽测试题 数学(含答案)

17.(本小题满分 10 分)
ቤተ መጻሕፍቲ ባይዱ
(1)已知 f(x)=x2+2,请用导数的定义证明:f'(x)=2x;
(2)用公式法求下列函数的导数:①y=lnx+cosx;②y=
。
18.(本小题满分 12 分) 若 1+ i 是关于 x 的实系数方程 x2+bx+c=0 的一个复数根。 (1)求 b,c 的值; (2)在复数范围内求出该方程的另一个根。
法国数学家棣莫弗结合复数的三⻆表示发现并证明了这样一个关系:
如果 z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),那么 z1z2=r1r2[cosθ1+θ2)+isin(θ1+θ2)],这也称
为棣莫弗定理。结合以上定理计算:
(结
果表示为 a+bi,a,b∈ R 的形式)。
2019~2020 学年度第二学期期中考试 高二年级数学试题
注意事项: 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共 6 ⻚,包含单选题(第 1 题~第 8 题)、多选题(第 9 题~第 12 题)、填空题(第 13 题~ 第 16 题)、解答题(第 17~第 22 题)。本卷满分 150 分,考试时间为 120 分钟。考试结束后,请 将答题卡交回。 2.答题前,请您务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试卷及答题 卡的规定位置。 3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效。作答必须用 0.5 毫米黑色墨水的签字笔。请注意字体工整,笔迹清楚。 4.如需作图,须用 2B 铅笔绘、写清楚,线条符号等须加黑加粗。 5.请保持答题卡卡面清洁,不要折叠、破损。一律不准使用胶带纸修正液、可擦洗的圆珠笔。 一、单选题:本题共 8 小题,每小题 5 分,共 40 分,在每小题给出的四个选项中,有且只有一 个选项是符合题目要求的。 1.复平面内,复数 z=-3+4i 对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.函数 f(x)=x2-sinx 在区间[0,π]上的平均变化率为 A.1 B.2 C.π2 D.π 3.若复数 z 满足(1+2i)z=-3+4i(i 是虚数单位),则|z|为
江苏省徐州市2019-2020学年中考第三次质量检测数学试题含解析

江苏省徐州市2019-2020学年中考第三次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的几何体,上下部分均为圆柱体,其左视图是( )A .B .C .D .2.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个3.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .404.22) 的相反数是( )A .2B .﹣2C .4D 25.下列各式计算正确的是( )A .(b+2a )(2a ﹣b )=b 2﹣4a 2B .2a 3+a 3=3a 6C .a 3•a=a 4D .(﹣a 2b )3=a 6b 3 6.一个圆锥的底面半径为52,母线长为6,则此圆锥的侧面展开图的圆心角是( ) A .180° B .150°C .120°D .90° 7.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab8.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为()A.30°B.35°C.40°D.50°9.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A.5元,2元B.2元,5元C.4.5元,1.5元D.5.5元,2.5元10.若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,则()A.m<﹣1 B.m>1 C.m>﹣1 D.m<111.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A .(32,0)B .(2,0)C .(52,0)D .(3,0)12.在⊙O 中,已知半径为5,弦AB 的长为8,则圆心O 到AB 的距离为( )A .3B .4C .5D .6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.国家游泳中心“水立方”是奥运会标志性建筑之一,其工程占地面积约为62800m 2,将62800用科学记数法表示为_____.14.如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AC 与BD 相交于点E ,AC=BC ,DE=3,AD=5,则⊙O 的半径为___________.15.因式分解:3222x x y xy +=﹣__________.16.分解因式: 22a b ab b -+=_________.17.如图,已知AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠1=50°,则∠2的度数为_______.18.不解方程,判断方程2x 2+3x ﹣2=0的根的情况是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?20.(6分)如图,在平面直角坐标系中,二次函数y =﹣x 2+bx+c 的图象与坐标轴交于A ,B ,C 三点,其中点B 的坐标为(1,0),点C 的坐标为(0,4);点D 的坐标为(0,2),点P 为二次函数图象上的动点.(1)求二次函数的表达式;(2)当点P 位于第二象限内二次函数的图象上时,连接AD ,AP ,以AD ,AP 为邻边作平行四边形APED ,设平行四边形APED 的面积为S ,求S 的最大值;(3)在y 轴上是否存在点F ,使∠PDF 与∠ADO 互余?若存在,直接写出点P 的横坐标;若不存在,请说明理由.21.(6分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg )分成五组(A :39.5~46.5;B :46.5~53.5;C :53.5~60.5;D :60.5~67.5;E :67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg 至53kg 的学生大约有多少名.22.(8分)(1)计算:2201801()(1)4sin60(π1)2-------o (2)化简:221a 4a 2a 1a 2a 1a 1---÷++++ 23.(8分)如图,己知AB 是的直径,C 为圆上一点,D 是的中点,于H ,垂足为H ,连交弦于E ,交于F ,联结. (1)求证:. (2)若,求的长.24.(10分)如图,将平行四边形ABCD 纸片沿EF 折叠,使点C 与点A 重合,点D 落在点G 处.(1)连接CF ,求证:四边形AECF 是菱形;(2)若E 为BC 中点,BC =26,tan ∠B =125,求EF 的长.25.(10分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离” (1)求抛物线y =x 2﹣2x+3与x 轴的“亲近距离”;(2)在探究问题:求抛物线y =x 2﹣2x+3与直线y =x ﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x 轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.(3)若抛物线y =x 2﹣2x+3与抛物线y =214x +c 的“亲近距离”为23,求c 的值. 26.(12分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等. (1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x 台,这100台家电的销售利润为Y 元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种? (3)实际进货时,厂家对电冰箱出厂价下调K (0<K <150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.27.(12分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C .考点:简单组合体的三视图.2.D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D .3.B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B .考点:规律型:图形变化类.4.A【解析】分析:根据只有符号不同的两个数是互为相反数解答即可.详解:2-的相反数是2,即2. 故选A.点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.5.C【解析】各项计算得到结果,即可作出判断.解:A、原式=4a2﹣b2,不符合题意;B、原式=3a3,不符合题意;C、原式=a4,符合题意;D、原式=﹣a6b3,不符合题意,故选C.6.B【解析】【分析】【详解】解:5622180nππ⨯=,解得n=150°.故选B.考点:弧长的计算.7.B【解析】【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.8.A【解析】【分析】根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解【详解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC =AC′,即△ACC′为等腰三角形,∴∠CAC′=180°﹣2∠C′CA =30°.故选A .【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键9.A【解析】【分析】可设1本笔记本的单价为x 元,1支笔的单价为y 元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可.【详解】设1本笔记本的单价为x 元,1支笔的单价为y 元,依题意有:322013x y x y +=-⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 故1本笔记本的单价为5元,1支笔的单价为2元.故选A .【点睛】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组.10.C【解析】【分析】将关于x 的一元二次方程化成标准形式,然后利用Δ>0,即得m 的取值范围.【详解】因为方程是关于x 的一元二次方程方程,所以可得220x x m +-=,Δ=4+4m > 0,解得m>﹣1,故选D.【点睛】本题熟练掌握一元二次方程的基本概念是本题的解题关键.11.C【解析】【分析】过点B 作BD ⊥x 轴于点D ,易证△ACO ≌△BCD (AAS ),从而可求出B 的坐标,进而可求出反比例函数的解析式,根据解析式与A 的坐标即可得知平移的单位长度,从而求出C 的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDC AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,将B(3,1)代入y=kx,∴k=3,∴y=3x,∴把y=2代入y=3x,∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.12.A【解析】解:作OC⊥AB于C,连结OA,如图.∵OC⊥AB,∴AC=BC=12AB=12×8=1.在Rt△AOC中,OA=5,∴OC=2222543OA AC-=-=,即圆心O到AB的距离为2.故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.6.28×1.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】62800用科学记数法表示为6.28×1.故答案为6.28×1.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.15 2【解析】【分析】如图,作辅助线CF;证明CF⊥AB(垂径定理的推论);证明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的长,即可解决问题.【详解】如图,连接CO并延长,交AB于点F;∵AC=BC ,∴CF ⊥AB (垂径定理的推论);∵BD 是⊙O 的直径,∴AD ⊥AB ;设⊙O 的半径为r ;∴AD ∥OC ,△ADE ∽△COE ,∴AD :CO=DE :OE ,而DE=3,AD=5,OE=r-3,CO=r ,∴5:r=3:(r-3),解得:r=152, 故答案为152. 【点睛】该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断.15.()2x x y -【解析】【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy yx x y =-+=-, 故答案为:()2x x y -【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.16.【解析】先提取公因式b ,再利用完全平方公式进行二次分解.解答:解:a 1b-1ab+b ,=b (a 1-1a+1),…(提取公因式)=b (a-1)1.…(完全平方公式)17.65°【解析】因为AB ∥CD ,所以∠BEF=180°-∠1=130°,因为EG 平分∠BEF ,所以∠BEG=65°,因为AB ∥CD ,所以∠2=∠BEG=65°.18.有两个不相等的实数根.【解析】分析:先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.详解:∵a=2,b=3,c=−2,∴24916250b ac =-=+=>V ,∴一元二次方程有两个不相等的实数根.故答案为有两个不相等的实数根.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x 米2, 根据题意得:4600022000x -﹣46000220001.5x-= 4 解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x 米,根据题意得,(20﹣3x )(8﹣2x )=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.20.(1) y=﹣x2﹣3x+4;(2)当74t=-时,S有最大值814;(3)点P的横坐标为﹣2或1或52-或.【解析】【分析】(1)将B10C04(,)、(,)代入2y x bx c=-++,列方程组求出b、c的值即可;(2)连接PD,作PG yP轴交AD于点G,求出直线AD的解析式为y x2=+,设()2,34P t t t--+4t0(﹣<<),则1,22G t t⎛⎫+⎪⎝⎭,2217342224PG t t t t t=--+--=--+,2217812241484244APD D AS S PG x x t t t⎛⎫==⨯⋅-=--+=-++⎪⎝⎭V,当74t=-时,S有最大值814;(3)过点P作PH y⊥轴,设()2,34P t t t--+,则PH x=,2234232HD x x x x=--+-=--+,根据PDH DAOV V∽,列出关于x的方程,解之即可.【详解】解:(1)将B10(,)、C04(,)代入y x2bx c++=﹣,1043,4b ccb c-++=⎧⎨=⎩∴=-=,∴二次函数的表达式234y x x=--+;(2)连接PD,作PG yP轴交AD于点G,如图所示.在234y x x =--+中,令y =0,得x14x21=﹣,=,A 40∴(﹣,).D 02Q (,),∴直线AD 的解析式为y x 2=+. 设()2,34P t t t --+4t 0(﹣<<),则1,22G t t ⎛⎫+ ⎪⎝⎭, ∴2217342224PG t t t t t =--+--=--+, ∴2217812241484244APD D A S S PG x x t t t ⎛⎫==⨯⋅-=--+=-++ ⎪⎝⎭V . 404t 0Q ﹣<,﹣<<,∴当74t =-时,S 有最大值814. (3)过点P 作PH y ⊥轴,设()2,34P t t t --+,则PH x =,2234232HD x x x x =--+-=--+,PDF ADO 90DAO ADO 90∠∠∠∠+︒+︒Q =,=,PDF DAO ∠∠∴=,PDH DAO V V ∽,∴ PH DO 21DH AO 42∴===,即2||1232x x x =--+ 2322||x x x --+=,当点P 在y 轴右侧时,x 0>,2322x x x --+=,或()2322x x x ---+=,12533533,22x x -+--==(舍去)或1x 2=﹣(舍去),2x 1= 当点P 在y 轴左侧时,x <0,2322x x x --+=-,或()2322x x x ---+=-,12x 2x 1=﹣,=(舍去),或15332x -+=(舍去),25332x --= 综上所述,存在点F ,使PDF ∠与ADO ∠互余点P 的横坐标为2﹣或1或533-+或533--. 【点睛】本题是二次函数,熟练掌握相似三角形的判定与性质、平行四边形的性质以及二次函数图象的性质等是解题的关键.21.576名【解析】试题分析:根据统计图可以求得本次调查的人数和体重落在B 组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg 至53kg 的学生大约有多少名.试题解析:本次调查的学生有:32÷16%=200(名),体重在B 组的学生有:200﹣16﹣48﹣40﹣32=64(名),补全的条形统计图如右图所示,我校初三年级体重介于47kg 至53kg 的学生大约有:1800×64200=576(名), 答:我校初三年级体重介于47kg 至53kg 的学生大约有576名.22.(1)223-;(2)-1;【解析】【分析】(1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题;(2)根据分式的除法和减法可以解答本题.【详解】(1)2201801()(1)460(1)2sin o π-------34141=--⨯- =41231---=2-23.(2)2214a 21211a a a a a ---÷++++ =()()222111(1)2a a a a a a +-+-⋅++- =1211a a a +-++ =121a a --+ =()11a a -++=-1【点睛】本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法.23.(1)证明见解析;(2)【解析】【分析】(1)由题意推出再结合,可得△BHE ~△BCO. (2)结合△BHE ~△BCO ,推出带入数值即可. 【详解】(1)证明:∵为圆的半径,是的中点,∴,,∵,∴,∴,∴,∵,∴,∴,又∵,∴∽.(2)∵∽,∴,∵,,∴得,解得,∴.【点睛】本题考查的知识点是圆与相似三角形,解题的关键是熟练的掌握圆与相似三角形.24.(1)证明见解析;(2)EF=1.【解析】【分析】(1)如图1,利用折叠性质得EA=EC,∠1=∠2,再证明∠1=∠3得到AE=AF,则可判断四边形AECF 为平行四边形,从而得到四边形AECF为菱形;(2)作EH⊥AB于H,如图,利用四边形AECF为菱形得到AE=AF=CE=13,则判断四边形ABEF为平行四边形得到EF=AB,根据等腰三角形的性质得AH=BH,再在Rt△BEH中利用tanB=EHBH=125可计算出BH=5,从而得到EF=AB=2BH=1.【详解】(1)证明:如图1,∵平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,∴EA=EC,∠1=∠2,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=CE,而AF∥CE,∴四边形AECF为平行四边形,∵EA=EC,∴四边形AECF为菱形;(2)解:作EH⊥AB于H,如图,∵E为BC中点,BC=26,∴BE=EC=13,∵四边形AECF为菱形,∴AE=AF=CE=13,∴AF=BE,∴四边形ABEF为平行四边形,∴EF=AB,∵EA=EB,EH⊥AB,∴AH=BH,在Rt△BEH中,tanB=EHBH=125,设EH=12x,BH=5x,则BE=13x,∴13x=13,解得x=1,∴BH=5,∴AB=2BH=1,∴EF=1.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了平行四边形的性质、菱形的判定与性质.25.(1)2;(2)不同意他的看法,理由详见解析;(3)c =1.【解析】【分析】(1)把y=x 2﹣2x+3配成顶点式得到抛物线上的点到x 轴的最短距离,然后根据题意解决问题;(2)如图,P 点为抛物线y=x 2﹣2x+3任意一点,作PQ ∥y 轴交直线y=x ﹣1于Q ,设P(t ,t 2﹣2t+3),则Q(t ,t ﹣1),则PQ=t 2﹣2t+3﹣(t ﹣1),然后利用二次函数的性质得到抛物线y=x 2﹣2x+3与直线y=x ﹣1的“亲近距离”,然后对他的看法进行判断;(3)M 点为抛物线y=x 2﹣2x+3任意一点,作MN ∥y 轴交抛物线214y x c =+于N ,设M(t ,t 2﹣2t+3),则N(t ,14t 2+c),与(2)方法一样得到MN 的最小值为53﹣c ,从而得到抛物线y=x 2﹣2x+3与抛物线214y x c =+的“亲近距离”,所以5233c =﹣,然后解方程即可. 【详解】(1)∵y=x 2﹣2x+3=(x ﹣1)2+2,∴抛物线上的点到x 轴的最短距离为2,∴抛物线y=x 2﹣2x+3与x 轴的“亲近距离”为:2;(2)不同意他的看法.理由如下:如图,P 点为抛物线y=x 2﹣2x+3任意一点,作PQ ∥y 轴交直线y=x ﹣1于Q ,设P(t ,t 2﹣2t+3),则Q(t ,t ﹣1),∴PQ=t 2﹣2t+3﹣(t ﹣1)=t 2﹣3t+4=(t ﹣32)2+74, 当t=32时,PQ 有最小值,最小值为74, ∴抛物线y=x 2﹣2x+3与直线y=x ﹣1的“亲近距离”为74, 而过抛物线的顶点向x 轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,∴不同意他的看法;(3)M 点为抛物线y=x 2﹣2x+3任意一点,作MN ∥y 轴交抛物线214y x c =+于N ,设M(t ,t 2﹣2t+3),则N(t ,14t 2+c), ∴MN=t 2﹣2t+3﹣(14t 2+c)=34t 2﹣2t+3﹣c=34(t ﹣43)2+53﹣c , 当t=43时,MN 有最小值,最小值为53﹣c , ∴抛物线y=x 2﹣2x+3与抛物线214y x c =+的“亲近距离”为53﹣c , ∴5233c =﹣, ∴c=1.【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键.26.(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;(3)当100<k <150时,购进电冰箱38台,空调62台,总利润最大;当0<k <100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y 1恒为20000元.【解析】【分析】(1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x 的范围,代入即可得出结论;(3)建立y 1=(k ﹣100)x+20000,分三种情况讨论即可.【详解】(1)设每台空调的进价为m 元,则每台电冰箱的进价(m+300)元,由题意得,90007200300m m=+,∴m=1200,经检验,m=1200是原分式方程的解,也符合题意,∴m+300=1500元,答:每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)由题意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,∵10020000162001002xx-+≥⎧⎨-≤⎩,∴3313≤x≤38,∵x为正整数,∴x=34,35,36,37,38,即:共有5种方案;(3)设厂家对电冰箱出厂价下调k(0<k<150)元后,这100台家电的销售总利润为y1元,∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,当100<k<150时,y1随x的最大而增大,∴x=38时,y1取得最大值,即:购进电冰箱38台,空调62台,总利润最大,当0<k<100时,y1随x的最大而减小,∴x=34时,y1取得最大值,即:购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元.【点睛】本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键.27.(1)甲80件,乙20件;(2)x≤90【解析】【分析】(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.【详解】解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据题意得30x+20(100﹣x)=2800,解得x=80,则100﹣x=20,答:甲种奖品购买了80件,乙种奖品购买了20件;(2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据题意得:30x+20(100﹣x)≤2900,解得:x≤90,【点睛】本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.。
江苏省徐州市2019-2020学年第三次中考模拟考试数学试卷含解析

江苏省徐州市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A.485cm B.245cm C.125cm D.105cm2.- 14的绝对值是()A.-4 B.14C.4 D.0.43.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E∠=o,90C o∠=,45A∠=o,30D∠=o,则12∠+∠等于()A.150o B.180o C.210o D.270o4.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°5.下列代数运算正确的是()A.(x+1)2=x2+1 B.(x3)2=x5C.(2x)2=2x2D.x3•x2=x56.气象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是()A.本市明天将有85%的地区下雨B.本市明天将有85%的时间下雨C.本市明天下雨的可能性比较大D.本市明天肯定下雨7.下列各曲线中表示y是x的函数的是()A.B.C.D.8.计算(x-2)(x+5)的结果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-109.下列运算中,计算结果正确的是()A.a2•a3=a6B.a2+a3=a5C.(a2)3=a6D.a12÷a6=a210.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2 11.下列图形中,是中心对称但不是轴对称图形的为()A.B.C.D.12.6的绝对值是()A.6 B.﹣6 C.16D.16二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为.14.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是__ .15.关于x的方程2230-+=有两个不相等的实数根,那么m的取值范围是__________.mx x16.抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为_____.17.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= .18.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程. 20.(6分)某市旅游部门统计了今年“五•一”放假期间该市A、B、C、D四个旅游景区的旅游人数,并绘制出如图所示的条形统计图和扇形统计图,根据图中的信息解答下列问题:(1)求今年“五•一”放假期间该市这四个景点共接待游客的总人数;(2)扇形统计图中景点A所对应的圆心角的度数是多少,请直接补全条形统计图;(3)根据预测,明年“五•一”放假期间将有90万游客选择到该市的这四个景点旅游,请你估计有多少人会选择去景点D旅游?21.(6分)已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.求BC的长;求证:PB是⊙O的切线.22.(8分)如图,在Rt△ABC中,∠C=90°,O、D分别为AB、AC上的点,经过A、D两点的⊙O分别交于AB、AC于点E、F,且BC与⊙O相切于点D.(1)求证:;(2)当AC=2,CD=1时,求⊙O的面积.23.(8分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(m,n)(m<0,n>0),E点在边BC上,F点在边OA上.将矩形OABC沿EF折叠,点B正好与点O重合,双曲线过点E.(1) 若m=-8,n =4,直接写出E、F的坐标;(2) 若直线EF的解析式为,求k的值;(3) 若双曲线过EF 的中点,直接写出tan ∠EFO 的值.24.(10分)AB 为⊙O 直径,C 为⊙O 上的一点,过点C 的切线与AB 的延长线相交于点D ,CA =CD . (1)连接BC ,求证:BC =OB ;(2)E 是»AB 中点,连接CE ,BE ,若BE =2,求CE 的长.25.(10分)某商店老板准备购买A 、B 两种型号的足球共100只,已知A 型号足球进价每只40元,B 型号足球进价每只60元.(1)若该店老板共花费了5200元,那么A 、B 型号足球各进了多少只;(2)若B 型号足球数量不少于A 型号足球数量的23,那么进多少只A 型号足球,可以让该老板所用的进货款最少?26.(12分)如图,已知AB AD =,AC AE =,BAD CAE ∠=∠.求证:BC DE =.27.(12分)向阳中学校园内有一条林萌道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC 的高为10米,灯柱BC 与灯杆AB 的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE 的长为13.3米,从D 、E 两处测得路灯A 的仰角分别为α和45°,且tanα=1.求灯杆AB 的长度.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题解析:∵菱形ABCD 的对角线86AC cm BD cm ==,,114322AC BD OA AC cm OB BD cm ∴⊥====,,,根据勾股定理,5AB cm ===,设菱形的高为h , 则菱形的面积12AB h AC BD =⋅=⋅, 即15862h =⨯⨯, 解得24.5h = 即菱形的高为245cm . 故选B .2.B【解析】【分析】直接用绝对值的意义求解.【详解】 −14的绝对值是14. 故选B .【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键.3.C【解析】【分析】根据三角形的内角和定理和三角形外角性质进行解答即可.【详解】如图:1D DOA ∠∠∠=+Q ,2E EPB ∠∠∠=+,DOA COP ∠∠=Q ,EPB CPO ∠∠=,∴12D E COP CPO ∠∠∠∠∠∠+=+++=D E 180C ∠∠∠++-o=309018090210++-=o o o o o ,故选C .【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.4.B【解析】试题分析:∵∠B=60°,将△ABC 沿射线BC 的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C 重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C 是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°故选B .考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定5.D【解析】【分析】分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可.【详解】解:A. (x+1)2=x 2+2x+1,故A 错误;B. (x 3)2=x 6,故B 错误;C. (2x)2=4x2,故C错误.D. x3•x2=x5,故D正确.故本题选D.【点睛】本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键. 6.C【解析】试题解析:根据概率表示某事情发生的可能性的大小,分析可得:A、明天降水的可能性为85%,并不是有85%的地区降水,错误;B、本市明天将有85%的时间降水,错误;C、明天降水的可能性为90%,说明明天降水的可能性比较大,正确;D、明天肯定下雨,错误.故选C.考点:概率的意义.7.D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.8.C【解析】【分析】根据多项式乘以多项式的法则进行计算即可.【详解】故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.9.C【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选:C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.10.A【解析】试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是y=(x ﹣1)2+2,故选A.考点:二次函数图象与几何变换.11.C【解析】试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误. 故选C.考点:中心对称图形;轴对称图形.12.A【解析】试题分析:1是正数,绝对值是它本身1.故选A.考点:绝对值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.65°【解析】【分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【详解】根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.14.①②④.【解析】①△ODB与△OCA的面积相等;正确,由于A、B在同一反比例函数图象上,则两三角形面积相等,都为.②四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化.③PA与PB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PA=PB.④当点A是PC的中点时,点B一定是PD的中点.正确,当点A是PC的中点时,k=2,则此时点B也一定是PD的中点.故一定正确的是①②④15.13m<且0m≠【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<13且m≠1,故答案为:m<13且m≠1.点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.16.1【解析】【分析】由抛物线y=x2-2x+m与x轴只有一个交点可知,对应的一元二次方程x2-2x+m=2,根的判别式△=b2-4ac=2,由此即可得到关于m的方程,解方程即可求得m的值.【详解】解:∵抛物线y=x2﹣2x+m与x轴只有一个交点,∴△=2,∴b2﹣4ac=22﹣4×1×m=2;∴m=1.故答案为1.【点睛】本题考查了抛物线与x轴的交点问题,注:①抛物线与x轴有两个交点,则△>2;②抛物线与x轴无交点,则△<2;③抛物线与x轴有一个交点,则△=2.17.a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.【解析】【分析】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.【详解】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.18.36或.【解析】【详解】(3)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=12DC=8,由AE=3,AB=36,得BE=3.由翻折的性质,得B′E=BE=3,∴EG=AG﹣AE=8﹣3=5,∴,∴B′H=GH﹣B′G=36﹣33=4,∴(3)当DB′=CD时,则DB′=36(易知点F在BC上且不与点C、B重合);(3)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F 与点C 重合,不符合题意,舍去. 综上所述,DB′的长为36或45.故答案为36或45.考点:3.翻折变换(折叠问题);3.分类讨论.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米. 【解析】 【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;()2用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升,304000.170.+⨯=即加满油时,油量为70升.(2)设()0y kx b k =+≠,把点()0,70,()400,30坐标分别代入得70b =,0.1k =-, ∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米. 【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.20.(1)60人;(2)144°,补全图形见解析;(3)15万人. 【解析】 【分析】(1)用B 景点人数除以其所占百分比可得;(2)用360°乘以A 景点人数所占比例即可,根据各景点人数之和等于总人数求得C 的人数即可补全条形图;(3)用总人数乘以样本中D 景点人数所占比例 【详解】(1)今年“五•一”放假期间该市这四个景点共接待游客的总人数为18÷30%=60万人;(2)扇形统计图中景点A所对应的圆心角的度数是360°×=144°,C景点人数为60﹣(24+18+10)=8万人,补全图形如下:(3)估计选择去景点D旅游的人数为90×=15(万人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(1)BC=2;(2)见解析【解析】试题分析:(1)连接OB,根据已知条件判定△OBC的等边三角形,则BC=OC=2;(2)欲证明PB是⊙O的切线,只需证得OB⊥PB即可.(1)解:如图,连接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等边三角形,∴BC=OC.又OC=2,∴BC=2;(2)证明:由(1)知,△OBC的等边三角形,则∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半径,∴PB是⊙O的切线.考点:切线的判定.22.(1)证明见解析;(2).【解析】【分析】(1)连接OD,由BC为圆O的切线,得到OD垂直于BC,再由AC垂直于BC,得到OD与AC平行,利用两直线平行得到一对内错角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到AD为角平分线,利用相等的圆周角所对的弧相等即可得证;(2)连接ED,在直角三角形ACD中,由AC与CD的长,利用勾股定理求出AD的长,由(1)得出的两个圆周角相等,及一对直角相等得到三角形ACD与三角形ADE相似,由相似得比例求出AE的长,进而求出圆的半径,即可求出圆的面积.【详解】证明:连接OD,∵BC为圆O的切线,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,则;(2)解:连接ED,在Rt△ACD中,AC=2,CD=1,根据勾股定理得:AD=,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即AD2=AC•AE,∴AE=,即圆的半径为,则圆的面积为.【点睛】此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及勾股定理,熟练掌握相关性质是解本题的关键.23.(1)E(-3,4)、F(-5,0);(2);(3).【解析】【分析】(1) 连接OE,BF,根据题意可知:设则根据勾股定理可得:即解得:即可求出点E的坐标,同理求出点F的坐标.(2) 连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE,证明△BGE≌△OGF,证明四边形OEBF为菱形,令y=0,则,解得,根据菱形的性质得OF=OE=BE=BF=令y=n,则,解得则CE=,在Rt△COE中,根据勾股定理列出方程,即可求出点E的坐标,即可求出k的值;(3) 设EB=EO=x,则CE=-m-x,在Rt△COE中,根据勾股定理得到(-m-x)2+n2=x2,解得,求出点E()、F(),根据中点公式得到EF的中点为(),将E()、()代入中,得,得m2=2n2即可求出tan∠EFO=.【详解】解:(1)如图:连接OE,BF,E(-3,4)、F(-5,0)(2) 连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE可证:△BGE≌△OGF(ASA)∴BE=OF∴四边形OEBF为菱形令y=0,则,解得,∴OF=OE=BE=BF=令y=n,则,解得∴CE=在Rt△COE中,,解得∴E()∴(3) 设EB=EO=x,则CE=-m-x,在Rt△COE中,(-m-x)2+n2=x2,解得∴E()、F()∴EF的中点为()将E()、()代入中,得,得m2=2n2∴tan∠EFO=【点睛】考查矩形的折叠与性质,勾股定理,一次函数的图象与性质,待定系数法求反比例函数解析式,锐角三角函数等,综合性比较强,难度较大.24.(2)见解析;(2)2+3.【解析】【分析】(2)连接OC,根据圆周角定理、切线的性质得到∠ACO=∠DCB,根据CA=CD得到∠CAD=∠D,证明∠COB=∠CBO,根据等角对等边证明;(2)连接AE,过点B作BF⊥CE于点F,根据勾股定理计算即可.【详解】(2)证明:连接OC,∵AB为⊙O直径,∴∠ACB=90°,∵CD为⊙O切线∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)连接AE,过点B作BF⊥CE于点F,∵E是AB中点,∴¼¼AE BE=,∴AE=BE=2.∵AB为⊙O直径,∴∠AEB=90°.∴∠ECB=∠BAE=45°,22AB=,∴122CB AB==.∴CF=BF=2.∴3EF=∴13CE=+【点睛】本题考查的是切线的性质、圆周角定理、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.25.(1)A型足球进了40个,B型足球进了60个;(2)当x=60时,y最小=4800元.【解析】【分析】(1)设A型足球x个,则B型足球(100-x)个,根据该店老板共花费了5200元列方程求解即可;(2)设进货款为y元,根据题意列出函数关系式,根据B型号足球数量不少于A型号足球数量的23求出x的取值范围,然后根据一次函数的性质求解即可. 【详解】解:(1)设A型足球x个,则B型足球(100-x)个, ∴ 40x +60(100-x)=5200 ,解得:x=40 ,∴100-x=100-40=60个,答:A 型足球进了40个,B 型足球进了60个. (2)设A 型足球x 个,则B 型足球(100-x )个, 100-x≥23x , 解得:x≤60 ,设进货款为y 元,则y=40x+60(100-x)=-20x+6000 , ∵k=-20,∴y 随x 的增大而减小, ∴当x=60时,y 最小=4800元. 【点睛】本题考查了一元一次方程的应用,一次函数的应用,仔细审题,找出解决问题所需的数量关系是解答本题的关键.26.证明见解析. 【解析】 【分析】根据等式的基本性质可得BAC DAE ∠=∠,然后利用SAS 即可证出ABC ADE ∆≅∆,从而证出结论. 【详解】证明:BAD CAE ∠=∠Q ,BAD DAC CAE DAC ∴∠+∠=∠+∠,即BAC DAE ∠=∠, 在ABC ∆和ADE ∆中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ()ABC ADE SAS ∴∆≅∆,BC DE ∴=.【点睛】此题考查的是全等三角形的判定及性质,掌握利用SAS 判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.27.灯杆AB 的长度为2.3米. 【解析】 【分析】过点A 作AF ⊥CE ,交CE 于点F ,过点B 作BG ⊥AF ,交AF 于点G ,则FG=BC=2.设AF=x 知EF=AF=x 、DF=AF tan ADF ∠=6x,由DE=13.3求得x=11.4,据此知AG=AF ﹣GF=1.4,再求得∠ABG=∠ABC ﹣∠CBG=30°可得AB=2AG=2.3.【详解】过点A 作AF ⊥CE ,交CE 于点F ,过点B 作BG ⊥AF ,交AF 于点G ,则FG=BC=2.由题意得:∠ADE=α,∠E=45°. 设AF=x .∵∠E=45°,∴EF=AF=x . 在Rt △ADF 中,∵tan ∠ADF=AF DF ,∴DF=AF tan ADF =6x. ∵DE=13.3,∴x+6x=13.3,∴x=11.4,∴AG=AF ﹣GF=11.4﹣2=1.4. ∵∠ABC=120°,∴∠ABG=∠ABC ﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3. 答:灯杆AB 的长度为2.3米. 【点睛】本题主要考查解直角三角形﹣仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.。
2019徐州市高三第三次调研数学试卷及答案

徐州市2019年高三第三次质量检测数学试卷徐州市2019年高三第三次质量检测数学附加题徐州市2019年高三年级第三次调研考试数学Ⅰ答案及评分标准一、填空题:1. 1i - 2.(4,3,7)-- 3.0 4.50 5.16 6.137.502 8.23 910.10 11.32π12.4y =或4091640x y --= 13.3π 14. [)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦二、解答题:15. (1)1cos(2)1cos(2)133()sin 2222x x f x x π2π--+-=++………………………………2分 11(sin 2cos2)2x x =+-)14x π-+,………………………………4分当2242x k ππ-=π+,即3,8x k k π=π+∈Z 时,……………………………………6分()f x1.………………………………………………………………8分 (2)由222242k x k ππππ--π+≤≤,即3,88k x k k πππ-π+∈Z ≤≤,又因为0x π≤≤,所以所求()f x 的增区间为3[0,],[,π]88π7π.……………………14分16.(1)连接EC ,交BF 于点O ,取AC 中点P ,连接,PO PD ,可得PO ∥AE ,且12PO AE =,而DF ∥AE ,且12DF AE =,所以DF ∥PO , 且DF PO =,所以四边形DPOF 为平行四边形,所以FO ∥PD ,即BF ∥PD ,又PD ⊂平面ACD ,BF ⊄平面ACD ,所以BF ∥平面ACD .……………………………………………8分(2)二面角A EF C --为直二面角,且AE EF ⊥,所以AE ⊥平面BCFE , 又BC ⊂平面BCFE ,所以AE BC ⊥,又BC BE ⊥,BE AE E =,所以BC ⊥平面AEB ,所以BC 是三棱锥C ABE -的高,同理可证CF 是四棱锥C AEFD -的高,……………………………………………10分B C F D E A OP所以多面体ADFCBE 的体积111110222(12)2232323C ABE C AEFD V V V --=+=⨯⨯⨯⨯+⨯+⨯⨯=.………………14分17. (1)连接RA ,由题意得,RA RP =,4RP RB +=,所以42RA RB AB +=>=,…………………………………………………………2分由椭圆定义得,点R 的轨迹方程是22143x y +=.……………………………………4分(2)设M 00(,)x y ,则00(,)N x y --,,QM QN 的斜率分别为,QM QN k k , 则002QM y k x =-,002NQ y k x =+,………………………………………………………6分 所以直线QM 的方程为00(2)2y y x x =--,直线QN 的方程00(2)2y y x x =-+,…8分 令(2)x t t =≠,则001200(2),(2)22y y y t y t x x =-=--+,……………………………10分 又因为00(,)x y 在椭圆2200143x y +=,所以2200334y x =-, 所以222022********(3)(2)34(2)(2)444x t y y y t t x x --⋅=-==----,其中t 为常数.……14分 18.(1)因为29y x=,所以229y x '=-,所以过点P 的切线方程为222()99y x t t t -=--,即22499y x t t=-+,…………2分令0x =,得49y t=,令0y =,得2x t =.所以切线与x 轴交点(2,0)E t ,切线与y 轴交点4(0,)9F t .………………………4分①当21,41,912,33t tt ⎧⎪⎪⎪⎨⎪⎪⎪⎩≤≤≤≤即4192t ≤≤时,切线左下方的区域为一直角三角形, 所以144()2299f t t t =⨯⨯=.…………………………………………………………6分②当21,41,912,33t tt ⎧⎪>⎪⎪⎨⎪⎪⎪⎩≤≤≤ 即1223t <≤时,切线左下方的区域为一直角梯形, 22144241()()12999t t f t t t t --=+⋅=,……………………………………………………8分 ③当21,41,912,33t tt ⎧⎪⎪⎪>⎨⎪⎪⎪⎩≤≤≤即1439t <≤时,切线左下方的区域为一直角梯形, 所以221499()(2)12224t t f t t t t -=+⋅=-.综上229142,,439441(),,9924112,.923t t t f t t t t t ⎧-<⎪⎪⎪=⎨⎪-⎪<⎪⎩≤≤≤≤……………………………………………………10分(2)当1439t <≤时, 29()24f t t t =- 29444()4999t =--+<,……………………………12分当1223t <≤时, 241()9t f t t -=21144(2)999t =--+<,………………………………14分所以max 49S =.…………………………………………………………………………16分19.(1)由2()ln f x x a x =-,得22()x a f x x-'=,………………………………………2分由1()g x x a ='()g x =(1)(1)f g ''=,即222aa a --=,故2a =,或12a =.………………………………………………4分 所以当2a =时,2()2ln f x x x =-,1()2g x x =当12a =时,21()ln 2f x x x =-,()2g x x =-6分(2)当1a >时,21()()()2ln 2h x f x g x x x x =-=--212(1)(1)'()22x xh x xx x-+=--+=1)=-⎣⎦,………………………………………8分由0x>,得4(1)2xx+>,故当(0,1)x∈时,()0h x'<,()h x递减,当(1,)x∈+∞时,()0h x'>,()h x递增,所以函数()h x的最小值为13(1)12ln1122h=--+=.…………………10分(3)12a=,21()ln2f x x x=-,()2g x x=当11[,)42x∈时,21()ln2f x x x=-,2141'()2022xf x xx x-=-=<,()f x在1142⎡⎤⎢⎥⎣⎦,上为减函数,111()()ln20242f x f=+>≥,………………………12分当11[,)42x∈时,()2g x x=-'()20g x=>,()g x在1142⎡⎤⎢⎥⎣⎦,上为增函数,1()()12g x g=≤,且1()()04g x g=≥.……14分要使不等式()()f x mg x⋅≥在11,42x⎡⎤∈⎢⎥⎣⎦上恒成立,当14x=时,m为任意实数;当11(,]42x∈时,()()f xmg x≤,而min1()()21()()2ff xg x g⎡⎤=⎢⎥⎣⎦.所以(2ln(4e)4m≤.……………………………………………………………16分20.⑴由条件知:11-=nnqaa,12q<<,01>a,所以数列{}n a是递减数列,若有k a,m a,n a()k m n<<成等差数列,则中项不可能是ka(最大),也不可能是na(最小),………………………………2分若 k n k m n k m q q a a a --+=⇔+=122,(*)由221m k q q -<≤, 11>+-k h q ,知(* )式不成立,故k a ,m a ,n a 不可能成等差数列. ………………………………………………4分⑵(i)方法一: ⎥⎦⎤⎢⎣⎡++-=--=----++45)21()1(21121121q q a q q qa a a a k k k k k ,……6分 由)1,41(45)21(2∈++-q 知, 121k k k k k a a a a a ++---<<<, 且>>>--++++3221k k k k k a a a a a … ,………………………………………………8分所以121+++=--k k k k a a a a ,即0122=-+q q ,所以12-=q ,………………………………………………………………………10分方法二:设12k k k m a a a a ++--=,则21m k q q q ---=,…………………………………6分 由211,14q q ⎛⎫--∈ ⎪⎝⎭知1m k -=,即1m k =+, ……………………………………8分 以下同方法一. …………………………………………………………………………10分 (ii) nb n 1=,………………………………………………………………………………12分 方法一:nS n 131211++++= , )131211()31211()211(1nT n +++++++++++= nn n n n n )1(3221--++-+-+= )1433221()131211(nn n n -++++-++++= )]11()411()311()211[(nnS n -++-+-+--= )]13121()1[(nn nS n +++---= )]131211([nn nS n ++++--= n n S n nS +-=(1)n n S n =+-,所以2011201120122011T S =-.…………………………………………………16分 方法二:11111312111++=++++++=+n S n n S n n 所以 1(1)(1)1n n n S n S ++-+=,所以1(1)1n n n n S nS S ++-=+,12112+=-S S S ,123223+=-S S S ,… …1)1(1+=-++n n n S nS S n ,累加得n T S S n n n +=-++11)1(,所以1(1)1(1)(1)()1n n n n n T n S n n S n n S b n +=+--=+-=++--1(1)()11n n S n n =++--+ (1)n n S n =+-, 所以2011201120122011T S =-. ……………………………………………………16分徐州市2011届高三年级第三次调研考试数学Ⅱ(附加题)答案及评分标准21.【选做题】A .选修4-1:几何证明选讲(1)因为EF ∥CB ,所以BCE FED ∠=∠,又BAD BCD ∠=∠,所以BAD FED ∠=∠,又EFD EFD ∠=∠,所以△DEF ∽△EFA .……………………………………6分(2)由(1)得,EF FD FA EF=,2EF FA FD =⋅. 因为FG 是切线,所以2FG FD FA =⋅,所以1EF FG ==.…………………10分B .选修4—2:矩阵与变换(1)1005⎡⎤=⎢⎥⎣⎦M .………………………………………………………………………2分 设(,)x y ''是所求曲线上的任一点,1005x x y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦,所以,5,x x y y '=⎧⎨'=⎩所以,1,5x x y y '=⎧⎪⎨'=⎪⎩代入4101x y -=得,421x y ''-=, 所以所求曲线的方程为124=-y x .……………………………………………4分(2)矩阵M 的特征多项式10()(1)(5)005f λλλλλ-==--=-, 所以M 的特征值为5,121==λλ.………………………………………………6分当11=λ时,由111λ=M αα,得特征向量110⎡⎤=⎢⎥⎣⎦α; 当52=λ时,由222λ=M αα,得特征向量201⎡⎤=⎢⎥⎣⎦α.………………………10分 C .选修4-4:坐标系与参数方程(1)228150x y y +-+=.…………………………………………………………4分(2)当34απ=时,得(2,1)Q -,点Q 到1C, 所以PQ1.………………………………………………10分D .选修4—5:不等式选讲 由2()a b a bf x a+--≥,对任意的,a b ∈R ,且0a ≠恒成立, 而223a b a ba b a b a a +--++-=≤,()3f x ≥,即113x x -++≥, 解得32x -≤,或32x ≥,所以x 的范围为33,22x x x ⎧⎫-⎨⎬⎩⎭≤或≥. …………10分 22.(1)以1,,CA CB CC 分别为x y z ,,因为3AC =,4BC =,14AA =,所以(300)A ,,, (0,4,0)B ,(000)C ,,,1(0,0,4)C =,所以1(3,0,4)AC =-,因为AD AB λ=,所以点(33,4,0)D λλ-+,所以(33,4,0)CD λλ=-+,因为异面直线1AC 与CD 所成角的余弦值为925,所以19|cos ,|25AC CD <>==,解得12λ=.……………4分 (2)由(1)得1(044)B ,,,因为 D 是AB 的中点,所以3(20)2D ,,, 所以3(20)2CD =,,,1(044)CB =,,,平面11CBB C 的法向量 1n (1,0,0)=, 设平面1DB C 的一个法向量2000(,,)x y z =n ,则1n ,2n 的夹角(或其补角)的大小就是二面角1D CB B --的大小, 由2210,0,CD CB ⎧⋅=⎪⎨⋅=⎪⎩n n 得0000320,2440,x y y z ⎧+=⎪⎨⎪+=⎩令04x =,则03y =-,03z =,所以2n (4,3,3)=-,121212cos ||||⋅<>===⋅,n n n n n n 所以二面角1D B C B --…………………………………10分 23.(1)要想组成的三位数能被3整除,把0,1,2,3,…,9这十个自然数中分为三组:0,3,6,9;1,4,7;2,5,8.若每组中各取一个数,含0,共有1112332236=C C C A 种;若每组中各取一个数不含0,共有11133333=162C C C A 种;若从每组中各取三个数,共有322233223=30A +C A A 种.所以组成的三位数能被3整除,共有36+162+30=228种.………………………6分(2)随机变量ξ的取值为0,1,2,ξ的分布列为:所以ξ的数学期望为77130121515155E ξ=⨯+⨯+⨯=.……………………………10分。
2019-2020学年徐州市高二下学期期中数学试卷(文科)(含答案解析)

2019-2020学年徐州市高二下学期期中数学试卷(文科)一、单空题(本大题共14小题,共70.0分)1.已知全集U=R,集合A={x|−1≤x≤1},B={x|x2−2x≥0},则A∩B=______ ,A∪(∁U B)=______ .2.已知z为复数,若|z1+2i |=2√5,则|(1+i)z|=______.3.13.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,假设应该是.4.不等式lg(x+1)≤0的解集是______ .5.已知复数z=(3+i)2(i为虚数单位),则|z|=________.6.下面是按照一定规律画出的一列“树型”图:设第n个图有a n个树枝,则a n+1与a n(n≥2)之间的关系是______ .7.若集合A1,A2,…,A n满足A1∪A2∪…∪A n=A,则称A1,A2,…,A n为集合A的一种拆分.已知:①当A1∪A2={a1,a2,a3}时,有33种拆分;②当A1∪A2∪A3={a1,a2,a3,a4}时,有74种拆分;③当A1∪A2∪A3∪A4={a1,a2,a3,a4,a5}时,有155种拆分;……由以上结论,推测出一般结论:当A1∪A2∪…∪A n={a1,a2,a3,…,a n+1}时,有 ____ 种拆分.8.复数.(为虚数单位)的虚部是___________。
9.下列命题中,真命题的序号有______ .(写出所有真命题的序号)①当x>0且x≠1时,有lnx+1lnx≥2;②函数f(x)=lg(ax+1)的定义域是{x|x>−1a};③函数f(x)=e−x x2在x=2处取得极大值;④若sin(α+β)=12,sin(α−β)=13,则tanαcotβ=5.10.已知复数z=2−i(i是虚数单位),则|z|=______.11.已知a、b是两个命题,如果a是b的充分条件,那么¬a是¬b的______ 条件.(填“充分条件”、或“必要条件”、或“充要条件”)12.我国古代数学名著《张邱建算经》有“分钱问题”:今有与人钱,初一人与三钱,次一人与四钱,次一人与五钱,以次与之,转多一钱,与讫,还敛聚与均分之,人得一百钱,问人几何?意思是:将钱分给若干人,第一人给3钱,第二人给4钱,第三人给5钱,以此类推,每人比前一人多给1钱,分完后,再把钱收回平均分给各人,结果每人分得100钱,问有多少人?则题中的人数是______.13..14.把正整数按一定的规则排成了如图所示的三角形数表.设是位于这个三角形数表中从上往下数第行、从左往右数第个数,如.若,则.二、解答题(本大题共6小题,共90.0分)15.已知关于t的方程t2+(2+i)t+2xy+(x−y)i=0(x,y∈R).(1)当方程有实数根时,求点(x,y)的轨迹方程;(2)求方程的实数根的取值范围.16.已知集合A={x|2−a≤x≤2+a}(a≥0),B={x|(x−1)(x−4)≥0}.(1)当a=2时,求A∪(∁R B);(2)若A∩B=⌀,求实数a的取值范围.17.(本小题满分10分)已知.命题:函数的定义域为实数集,命题:函数的值域为正实数集的子集.若“”是真命题,且“”是假命题,求实数的取值范围.18.等差数列14,11,8,…,此等差数列前多少项和最大?为什么?19.已知椭圆C:x2a2+y2b2=1(a>b>0)过点A(2,0),B(0,1)两点.(1)求椭C的方程及离心率;(2)设直线l不经过椭圆C上的点B,且与椭圆C交于两点P,Q,若直线BP与直线BQ的斜率之和为2.求证,直线l过定点.20.若任意直线l过点F(0,1),且与函数f(x)=14x2的图象C于两个不同的点A,B过点A,BC,两切线交于点M(Ⅰ)证明:点M纵坐标是一个定值,并求出这个定值;(Ⅱ)若不等式f(x)≥g(x),g(x)=alnx(a>0),求实数a取值范围;(Ⅲ)求证:2ln222+2ln332+2ln442+⋯+2lnn2≤n−1e,(其中e自然对数的底数,n≥2,n∈N).【答案与解析】1.答案:[−1,0];[−1.2)解析:解:∵集U=R,集合A={x|−1≤x≤1}=[−1,1],B={x|x2−2x≥0}=(−∞,0]∪[2,+∞)∴∁U B=(0,2),∴A∩B=[−1,0],A∪(∁U B)=[−1.2)故答案为:[−1,0],),[−1.2)求出集合B中不等式的解集,求出A与B的交集,再求出集合B的补集,即可求出所求.此题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.2.答案:2√2解析:解:设z=a+bi,|z1+2i|=|a+bi1+2i |=|(a+bi)(1−2i)(1+2i)(1−2i)|=|a+2b+(b−2a)i5|=√(a+2b)2+(b−2a)25=2√55∴√5(a2+b2)=2√5∴a2+b2=4|(1+i)z|=|(1+i)(a+bi)|=|a−b+(a+b)i|=√(a+b)2+(a−b)2=√2(a2+b2)=2√2故答案为:2√2设出复数的代数形式,进行复数的除法运算,整理出复数的模长,根据复数的模长得到a,b之间的关系,把要求的模长整理出来,根据模长运算公式得到结果.本题看出复数的模长公式,本题解题的关键是整理出字母a.b之间的关系,本题是一个基础题.3.答案:三角形的内角都大于60°解析:考点:反证法分析:根据命题:“三角形三个内角至少有一个不大于60°”的否定为“三个内角都大于60°”,得到答案.解:根据用反证法证明数学命题的方法和步骤,先把要证的结论进行否定,得到要证的结论的反面,因为“三角形的内角中至少有一个不大于60°,表示的意思是要么一个内角、要么二个内角、要么三个内角都不大于60°,那么它的否定意思是“没有一个内角不大于60°′,即”三角形三个内角都大于60°.故答案应填:三角形的三个内角都大于60°.4.答案:(−1,0]解析:本题主要考查对数不等式的问题.这里要注意对数函数的单调性问题,即当底数大于1时单调递增,当底数大于0小于1时单调递减.还要注意一些特殊值,log a1=0,log a a=1.根据对数函数单调性可知,lg(x+1)≤0=1,可得0<x+1≤1,从而得x的取值范围.解:由lg(x+1)≤0,得0<x+1≤1∴−1<x≤0.故答案为:(−1,0].5.答案:10解析:∵z=(3+i)2,∴|z|=32+12=10.6.答案:a n+1−a n=n2+1解析:解:由题意,图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,a n+1−a n=n2+1故答案为:a n+1−a n=n2+1根据所给图形的规律,图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,即可得到结论.本题考查推理,考查学生分析解决问题的能力,考查数列知识,属于中档题.7.答案:(2n−1)n+1解析:因为当有两个集合时,33=(4−1)2+1=(22−1)2+1;当有三个集合时,74=(8−1)3+1=(23−1)3+1;当有四个集合时,155=(16−1)4+1=(24−1)4+1;由此可以归纳当有n 个集合时,有(2n −1)n+1种拆分. 8.答案:1解析:试题分析:,则其虚部为1.考点:复数的概念 点评:复数的实部位a ,虚部为b 。
江苏省徐州市2019-2020学年高二下学期期中考试数学试卷

2019—2020学年度第二学期期中学情调研试题高二数学一、单项选择题:本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若函数2)(x x f =,则)(x f 在1=x 处的导数为( ▲ ) A .x 2 B . 2 C .3 D .4 2.设复数z 满足i z i 2)1(=+(其中i 为虚数单位),则=z ( ▲ ) A .21B .22C .2D .23.下列求导运算正确的是( ▲ )A . 2'(2)2x x = B .xxe e =)'(C .xx 1)(ln -=' D .211)1(x x x +='+4.已知函数93)(23-++=x ax x x f 在3-=x 处取得极值,则实数a 的值为( ▲ )A .2B .3C .4D .55.已知函数)(x f y =的图象如图所示,则 其导函数)('x f y =的图象可能是( ▲ )A .B .C .D .6.已知函数)1('2)(2xf x x f +=,则=)0('f ( ▲ )A .4-B .4C .2-D .27.若函数x xx f ln 3)(+=在区间)2,(+m m 上是单调减函数,则实数m 的取值范围是( ▲ )A .]0,(-∞B .),1[+∞C .)1,0(D .]1,0[8.设)(x f 是定义在R 上的奇函数,0)2(=f ,当0>x 时,有0)()(2<-'xx f x f x 恒成立, 则0)(>xx f 的解集为( ▲ ) A .),0()0,2(+∞- B .)2,0()0,2( -C .),2()2,(+∞--∞D .)2,0()2,( --∞二、多项选择题:本大题共4小题,每小题5分,共计20分.每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,不选或有选错的得0分. 9.已知不等式a e x x≥-)2(对任意的R x ∈恒成立, 则满足条件的整数a 的可能值为( ▲ )A .4- B.3- C .2- D .1- 10.已知函数2431)(3+-=x x x f ,下列说法中正确的有( ▲ ) A . 函数)(x f 的极大值为322,极小值为310-B . 当[]4,3∈x 时,函数)(x f 的最大值为322,最小值为310-C . 函数)(x f 的单调减区间为[]2,2-D . 曲线)(x f y =在点)2,0(处的切线方程为24+-=x yy =f (x )(第5题图)11.若函数xx f y ln )(=在),1(+∞上单调递减,则称)(x f 为M 函数. 下列函数中为M 函数的是( ▲ )A .1)(=x fB .x x f =)(C .xx f 1)(= D .2)(x x f =12.设函数x x x f ln )(=,xx f x g )()('=,给定下列命题,其中是正确命题的是( ▲ ) A .不等式0)(>x g 的解集为),1(+∞eB .函数)(x g 在),0(e 单调递增,在),(+∞e 单调递减C .当021>>x x 时,)()()(2212221x f x f x x m ->-恒成立,则1≥m D .若函数2)()(ax x f x F -=有两个极值点,则实数)21,0(∈a三、填空题:本大题共4小题,每小题5分,(第15题第一空2分,第二空3分)共计20分. 13.函数x x y ln 212-=的单调递减区间为 ▲ . 14.若函数4)(23+-=ax x x f 在区间]2,0[上不单调,则实数a 的取值范围为 ▲ .15.已知函数x x f =)(,x a x g ln )(=(R a ∈),若曲线)(x f y =与曲线)(x g y =相交,且在交点处有相同的切线,则=a ▲ ,切线的方程为 ▲ (直线的方程写成一般式).16.已知函数 , 若函数()f x 有四个不同的零点,则m 的取值范围为 ▲()3213221(0)3236(0){x x x m x x m x f x +++-≤+->=四、解答题:本大题共6小题,共计70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知复数i m m m z )2()2(-+-=,其中i 为虚数单位.若z 满足下列条件,求实数m 的值: (1)z 为实数; (2)z 为纯虚数;(3)z 在复平面内对应的点在直线x y =上.18.(本小题满分12分)已知函数xe x xf ⋅=)(. (1)求函数)(x f 的单调区间;(2)求函数)(x f 在]1,2[-上的最大值和最小值.已知函数312)2(2131)(23+++-=ax x a x x f (R a ∈). (1)若函数)(x f 在2=x 处取得极小值1,求实数a 的值;(2)讨论函数)(x f 的单调性.20.(本小题满分12分)如图,已知海岛A 与海岸公路BC 的距离AB 为km 50,B ,C 间的距离为km 350, 从A 到C ,需要先乘船至海岸公路BC 上的登陆点D ,船速为h km /25,再乘汽车至C , 车速为h km /50.设θ=∠BAD .(1)用θ表示从海岛A 到C 所用的时间)(θf ,并写出θ的取值范围; (2)登陆点D 应选在何处,能使从A 到C 所用的时间最少?已知函数x mx x x f ln 2)(2+-= (R m ∈).(1)若)(x f 在其定义域内单调递增,求实数m 的取值范围; (2)若54<<m ,且)(x f 有两个极值点21,x x ,其中21x x <, 求)()(21x f x f -的取值范围. 22.(本小题满分12分)已知函数)(3)(3R a ax x x f ∈-=,()ln g x x =. (1)若0a >,求函数()f x 在[1,2]上的最小值;(2)若不等式()|f x |()g x ≥在[1,2]上恒成立 求实数a 的取值范围.2019—2020学年度第二学期期中学情调研试题高二数学(参考答案)一、单项选择题1.B 2.C 3.B 4.D 5.A 6.A 7.D 8.B二、多项选择题9.AB 10.ACD 11.AC 12.ACD三、填空题13.()1,0或写成(]1,0 14.()3,015.2e ,022=+-e ey x 16.511(,)612四、解答题17.解:(1)2=m ……………3分(2)0=m ……………6分 (3)1=m 或2=m …………10分18.解:(1)函数)(x f 的定义域为R'()(1)x x x f x e xe x e =+=+ ………………2分由'()0f x >得1x >-,由'()0f x <得1x <-∴函数)(x f 的增区间为(1,)-+∞,减区间为(,1)-∞- ………………6分 (2) '()(1)xxxf x e xe x e =+=+令0)(='x f 得1-=x列表如下:由上表可知 函数)(x f 在]1,2[-上的最大值为e f =)1(最小值为ef 1)1(-=- ………………12分19.解:(1)∵)(x f 在2=x 时的极小值是1∴1)2(=f ,即13142)2(21231)2(23=+++-=a a f , 解得1=a ………………2分当1=a 时,3122331)(23++-=x x x x f ,则)2)(1(23)(2--=+-='x x x x x f 令0)(='x f ,解得2,1==x x列表如下:………………4分 (2))2)((2)2()(2--=++-='x a x a x a x x f )(R x ∈ 令0)(='x f ,解得2,==x a x①当2=a 时,有0)(≥'x f ,函数)(x f 在),(+∞-∞上单调递增 ………………6分 ②当2<a 时,列表如下:8分 ③当2>a 时,列表如下:………10分 综上:①当2=a 时,函数)(x f 在),(+∞-∞上单调递增②当2<a 时,函数)(x f 在),(a -∞,),2(+∞上单调递增,在)2,(a 上单调递减 ③当2>a 时,函数)(x f 在)2,(-∞,),(+∞a 上单调递增,在),2(a 上单调递减……………12分20.解:(1)在Rt ABD ∆中,50AB =,BAD θ∠=∴50AD =,50tan BD θ=∴50tan CD θ=∴22sin ()tan 2550cos cos AD CD f θθθθθ-=+=+=+………………4分又tan BAC ∠=∴3BAC π∠=∴θ的取值范围是0,3π⎡⎤⎢⎥⎣⎦ ………………6分(2)22cos cos (2sin )(sin )2sin 1'()cos cos f θθθθθθθθ-----==由'()0f θ=得1sin 2θ=又[0,]3πθ∈ ∴6πθ=………………8分∴当06πθ<<时,'()0f θ<;当63ππθ<<时,'()0f θ>∴当6πθ=时,()f θ有极小值,即最小值 ………………10分此时50tan6BD π==答:登陆点D 与Bkm 时,从A 到C 所用的时间最少.……12分 21.解:(1)()f x 的定义域为(0,)+∞∵()f x 在(0,)+∞上单调递增∴2'()20f x x m x=-+≥在(0,)+∞上恒成立即22m x≤+在(0,)+∞上恒成立 ………………2分又224x x +≥=(当且仅当1x =时等号成立)∴4m ≤ ………………4分(2)2222'()2x mx f x x m x x-+=-+=∵()f x 有两个极值点12,x x∴12,x x 为方程2220x mx -+=的两个不相等的实数根由韦达定理得 122mx x += 121x x ⋅= ∵120x x << ∴1201x x <<<又121112()2()(4,5)m x x x x =+=+∈解得1112x << ………………6分 ∴2212111222()()(2ln )(2ln )f x f x x mx x x mx x -=-+--+2212121212222112()2(ln ln )2()()()2(ln ln )x x x x x x x x x x x x =-+--+-=-+-2112114ln x x x =-+ ………………8分 设221()4ln g x x x x =-+(112x <<),则0)1(2)12(2422)(3223243<--=+--=+--='x x x x x x x x x g ∴()g x 在1(,1)2上为减函数 ………………10分又11115()44ln 4ln 22424g =-+=-, (1)1100g =-+= ∴150()4ln 24g x <<- 即12()()f x f x -的取值范围为1504ln 24⎛⎫- ⎪⎝⎭, ………………12分22.解:(1))0)()((333)(2>+-=-='a a x a x a x x f ,]2,1[∈x令0)(='x f ,解得a x =(舍负), ………2分①当1≤a 时,即10≤<a 时,0)(>'x f 恒成立,)(x f 在[1,2]上单调递增,所以a f f 31)1(min -==, ………3分②当21<<a 时,即41<<a 时,)(x f 在),1[a 上单调递减,在]2,(a 上单调递增,所以a a a f f 2)(min -==, ………4分③当2≥a 时,即4≥a 时,0)(<'x f 恒成立,)(x f 在[1,2]上单调递减,所以a f f 68)2(min -==, ………5分综上所述:⎪⎩⎪⎨⎧≥-<<-≤<-=4,6841,210,31a a a a a a a f 最小值………………6分(2)[].0)(2,1恒成立时,当≥∈x g x数学试卷 第 页(共6页) 11 所以 ()()f x g x ≥|| ()()()()f x g x f x g x ⇔≥≤-或……8分① 由()()f x g x ≥在[1,2]上恒成立得33ln x ax x -≥2ln 3x a x x∴≤-……… 设()h x =2ln x x x-则3221ln 2ln 1()2x x x h x x x x -+-'=-= 3210,ln 0()0x x h x '-≥≥∴≥()h x ∴在[1,2]上单调递增min ()(1)1h x h ∴==13≤∴a 13a ∴≤ ……………………………………………………………………10分 ② 由()-()f x g x ≤在[1,2]上恒成立得33ln x ax x -≤-2ln 3+x a x x∴≥ 设()u x =2ln x x x+则3'221ln 21ln ()2x x x u x x x x -+-=+= []0ln 1,022,13>->∈x x x 时, 0)(>'∴x u()u x ∴在[1,2]上单调递增max ln 2()(2)42u x u ∴==+ 22ln 43+≥∴a 62ln 34+≥∴a 综上,所求 a 的取值范围为:⎪⎭⎫⎢⎣⎡+∞+⋃⎥⎦⎤ ⎝⎛∞,62ln 3431-,……………………12分。
江苏省徐州市第一中学2019-2020学年高二数学下学期开学考试收心检测试题 (含解析)

,所以对应的点为 ,即为 H 点
故 D 正确
故选:AB
【点睛】本题考查的是复数的运算及复数的几何意义,较简单.
10.某学生想在物理、化学、生物、政治、历史、地理、技术这七门课程中选三门作为选考
科目,下列说法错误的是( )
A. 若任意选择三门课程,选法总数 为 A73
B. 若物理和化学至少选一门,选法总数为 C12C52
1 i 1.已知 a bi (a,b R) 是 1 i 的共轭复数,则 a b ( )
1
1
A. 1
B. 2
C. 2
D. 1
【答案】A 【解析】 【分析】
1 i 先利用复数的除法运算法则求出 1 i 的值,再利用共轭复数的定义求出 a+bi,从而确定
a,b 的值,求出 a+b.
1 i 【详解】 1 i
),用最小二乘法近似得到回归直线方程为
yˆ 0.85x 85.71 ,则下列结论中不正确的是( ) A. y 与 x 具有正线性相关关系
x, y
B. 回归直线过样本的中心点 C. 若该中学某高中女生身高增加 1cm,则其体重约增加 0.85kg
D. 若该中学某高中女生身高为 160cm,则可断定其体重必为 50.29kg.
100 所以 EX 0.9a 0.2 0.8a 0.1 0.7a 0.1 a 0.38 1.1a 0.2 1.2a 0.02 0.956a
故选:D 【点睛】本题考查的是随机变量的分布列及期望,文字语言较多,仔细审题是解题的关键. 二、多项选择题:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符 合题目要求,全部选对得 5 分,部分选对得 3 分,有选错的得 0 分. 9.下列说法中不正确的是( )
江苏省徐州市2019-2020学年中考第三次适应性考试数学试题含解析

江苏省徐州市2019-2020学年中考第三次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°2.已知反比例函数y=8kx的图象位于第一、第三象限,则k的取值范围是()A.k>8 B.k≥8C.k≤8D.k<83.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多③有15的人每周使用手机支付的次数在35~42次④每周使用手机支付不超过21次的有15人其中正确的是()A.①②B.②③C.③④D.④4.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=15.如图,将△OAB 绕O 点逆时针旋转60°得到△OCD ,若OA =4,∠AOB =35°,则下列结论错误的是( )A .∠BDO =60°B .∠BOC =25° C .OC =4D .BD =46.下列关于事件发生可能性的表述,正确的是( )A .事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B .体育彩票的中奖率为10%,则买100张彩票必有10张中奖C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .掷两枚硬币,朝上的一面是一正面一反面的概率为137.一元二次方程x 2﹣5x ﹣6=0的根是( )A .x 1=1,x 2=6B .x 1=2,x 2=3C .x 1=1,x 2=﹣6D .x 1=﹣1,x 2=6 8.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =26°,则∠OBC 的度数为( )A .54°B .64°C .74°D .26°9.如图,ABC ∆中,6AB =,4BC =,将ABC ∆绕点A 逆时针旋转得到AEF ∆,使得//BC AF ,延长BC 交AE 于点D ,则线段CD 的长为( )A .4B .5C .6D .7A .B .C .D . 11.如果关于x 的方程x 2﹣k x+1=0有实数根,那么k 的取值范围是( )A .k >0B .k≥0C .k >4D .k≥412.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解34x x -= .14.如图△ABC 中,AB=AC=8,∠BAC=30°,现将△ABC 绕点A 逆时针旋转30°得到△ACD ,延长AD 、BC 交于点E ,则DE 的长是_____.15.11201842-⎛⎫+- ⎪⎝⎭=_____. 16.已知二次函数21y ax bx c =++与一次函数()20y kx m k =+≠的图象相交于点()2,4A -,()8,2.B 如图所示,则能使12y y >成立的x 的取值范围是______.17.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (32,0),B (0,2),则点B 2018的坐标为_____.18.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第n根图形需要____________根火柴.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?20.(6分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.21.(6分)先化简,再求值:22144(1)1a aa a a-+-÷--,其中a是方程a(a+1)=0的解.22.(8分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过点D 作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接DC,若BC=4,求弧DC与弦DC所围成的图形的面积.23.(8分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.24.(10分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度为(0,b),且a、b满足4的速度沿着O﹣C﹣B﹣A﹣O的线路移动.a=,b=,点B的坐标为;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.25.(10分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD、CD.(1)求证:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.26.(12分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?27.(12分)解不等式:3x﹣1>2(x﹣1),并把它的解集在数轴上表示出来.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.2.A【解析】【分析】本题考查反比例函数的图象和性质,由k-8>0即可解得答案.【详解】∵反比例函数y=8kx的图象位于第一、第三象限,∴k-8>0,解得k>8,故选A.【点睛】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分限,y随x的增大而增大.3.B【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.【详解】解:①这栋居民楼共有居民3+10+15+22+30+25+20=125人,此结论错误;②每周使用手机支付次数为28~35次的人数最多,此结论正确;③每周使用手机支付的次数在35~42次所占比例为2511255,此结论正确;④每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:B.【点睛】此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据4.B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.5.D【解析】【分析】由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.【详解】解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.故选D.本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.6.C【解析】【分析】根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可.【详解】解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误.B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.D. 掷两枚硬币,朝上的一面是一正面一反面的概率为12,故错误.故选:C.【点睛】考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比.7.D【解析】【分析】本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.【详解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故选D.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.8.B【解析】【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.∵四边形ABCD 为菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA),∴AO =CO ,∵AB =BC ,∴BO ⊥AC ,∴∠BOC =90°,∵∠DAC =26°,∴∠BCA =∠DAC =26°,∴∠OBC =90°﹣26°=64°.故选B .【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.9.B【解析】【分析】先利用已知证明BAC BDA :△△,从而得出BA BC BD BA=,求出BD 的长度,最后利用CD BD BC =-求解即可.【详解】 //AF BC QFAD ADB ∴∠=∠BAC FAD ∠=∠QBAC ADB ∴∠=∠B B ∠∠=QBAC BDA ∴V :VBA BC BD BA∴= 64∴=945CD BD BC ∴=-=-=故选:B .【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键.10.C【解析】【分析】分别根据反比例函数系数k 的几何意义以及三角形面积求法以及梯形面积求法得出即可:【详解】A 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy=1.B 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy 3=.C 、如图,过点M 作MA ⊥x 轴于点A ,过点N 作NB ⊥x 轴于点B ,根据反比例函数系数k 的几何意义,S △OAM =S △OAM =13xy 22=,从而阴影部分面积和为梯形MABN 的面积:()113242+⨯=. D 、根据M ,N 点的坐标以及三角形面积求法得出,阴影部分面积为:11632⨯⨯=. 综上所述,阴影部分面积最大的是C .故选C .11.D【解析】 【分析】由被开方数非负结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】∵关于x 的方程x 2k 有实数根,∴20=()4110k k ≥⎧⎪⎨∆-⨯⨯≥⎪⎩, 解得:k≥1.故选D .【点睛】12.C【解析】看到的棱用实线体现.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此, 先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-.14.4【解析】【分析】过点C 作CH AE ⊥于H ,根据三角形的性质及三角形内角和定理可计算ACB 75∠=︒再由旋转可得,CAD BAC 30∠∠==︒,根据三角形外角和性质计算E 45∠=︒,根据含30︒角的直角三角形的三边关系得CH 和AH 的长度,进而得到DH 的长度,然后利用E 45∠=︒得到EH 与CH 的长度,于是可得DE EH DH =-.【详解】如图,过点C 作CH AE ⊥于H ,∵AB AC 8==, ∴()()11B ACB 180BAC 180307522∠∠∠==︒=︒︒=︒﹣﹣. ∵将ABC V 绕点A 逆时针旋转,使点B 落在点C 处,此时点C 落在点D 处,∴AD AB 8==, CAD BAC 30,∠∠==︒∵ACB CAD E ,∠∠∠=+∴E 753045.∠=︒-︒=︒在Rt ACH V 中,∵CAH 30∠=︒,∴1CH AC 42==, AH ==∴DH AD AH 8=-=-,在Rt CEH V 中,∵E 45∠=︒,∴EH CH 4==,∴(DE EH DH 484=-=--=.故答案为4.【点睛】本题考查三角形性质的综合应用,要熟练掌握等腰三角形的性质,含30 角的直角三角形的三边关系,旋转图形的性质.15.1【解析】分析:第一项根据非零数的零次幂等于1计算,第二项根据算术平方根的意义化简,第三项根据负整数指数幂等于这个数的正整数指数幂的倒数计算.详解:原式=1+2﹣2=1.故答案为:1.点睛:本题考查了实数的运算,熟练掌握零指数幂、算术平方根的意义,负整数指数幂的运算法则是解答本题的关键.16.x<-2或x>1【解析】试题分析:根据函数图象可得:当12y y f 时,x <-2或x >1.考点:函数图象的性质17.(6054,2)【解析】分析:分析题意和图形可知,点B 1、B 3、B 5、……在x 轴上,点B 2、B 4、B 6、……在第一象限内,由已知易得AB=52,结合旋转的性质可得OA+AB 1+B 1C 2=6,从而可得点B 2的坐标为(6,2),同理可得点B 4的坐标为(12,2),即点B 2相当于是由点B 向右平移6个单位得到的,点B 4相当于是由点B 2向右平移6个单位得到的,由此即可推导得到点B 2018的坐标.详解:∵在△AOB 中,∠AOB=90°,OA=32,OB=2, ∴AB=52, ∴由旋转的性质可得:OA+AB 1+B 1C 2=OA+AB+OB=6,C 2B 2=OB=2,∴点B 2的坐标为(6,2),同理可得点B 4的坐标为(12,2),由此可得点B 2相当于是由点B 向右平移6个单位得到的,点B 4相当于是由点B 2向右平移6个单位得到,∴点B 2018相当于是由点B 向右平移了:2018660542⨯=个单位得到的, ∴点B 2018的坐标为(6054,2).故答案为:(6054,2).点睛:读懂题意,结合旋转的性质求出点B 2和点B 4的坐标,分析找到其中点B 的坐标的变化规律,是正确解答本题的关键.18.62n +【解析】【分析】根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.【详解】第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+2×6个火柴组成, ……∴组成n 个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.故答案为6n+2【点睛】本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)()20320416y x x =-+≤≤;(2)80米/分;(3)6分钟【解析】【分析】(1)根据图示,设线段AB 的表达式为:y=kx+b ,把把(4,240),(16,0)代入得到关于k ,b 的二元一次方程组,解之,即可得到答案,(2)根据线段OA ,求出甲的速度,根据图示可知:乙在点B 处追上甲,根据速度=路程÷时间,计算求值即可,(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.【详解】(1)根据题意得:设线段AB 的表达式为:y=kx+b (4≤x≤16),把(4,240),(16,0)代入得:4240160k b k b +=⎧⎨+=⎩, 解得:20320k b =-⎧⎨=⎩, 即线段AB 的表达式为:y= -20x+320 (4≤x≤16),(2)又线段OA 可知:甲的速度为:2404=60(米/分), 乙的步行速度为:()24016460164+-⨯-=80(米/分), 答:乙的步行速度为80米/分,(3)在B 处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),与终点的距离为:2400-960=1440(米),相遇后,到达终点甲所用的时间为:144060=24(分), 相遇后,到达终点乙所用的时间为:144080=18(分), 24-18=6(分),答:乙比甲早6分钟到达终点.【点睛】本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.20.(1)详见解析;(2).【解析】∵四边形ABCD 是矩形,∴∠B=∠C=90°,AB=CD,BC=AD ,AD ∥BC,∴∠EAD=∠AFB ,∵DE ⊥AF ,∴∠AED=90°,在△ADE 和△FAB 中, ∴△ADE ≌△FAB(AAS),∴AE=BF=1∵BF=FC=1∴BC=AD=2故在Rt△ADE中,∠ADE=30°,DE=, ∴的长==.21.1 3【解析】【分析】根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解. 【详解】解:原式=()()2a a1 a11a1a2---⨯--=a a2 -∵a(a+1)=0,解得:a=0或-1,由题可知分式有意义,分母不等于0, ∴a=-1,将a=-1代入aa2-得,原式=1 3【点睛】本题考查了分式的化简求值,中等难度,根据分式有意义的条件代值计算是解题关键.22.(1)详见解析;(2)23 3π【解析】【分析】(1)连接OD,由平行线的判定定理可得OD∥AC,利用平行线的性质得∠ODE=∠DEA=90°,可得DE 为⊙O的切线;(2)连接CD,求弧DC与弦DC所围成的图形的面积利用扇形DOC面积-三角形DOC的面积计算即可.【详解】解:(1)证明:连接OD,∵OD=OB,∴∠ODB=∠B,∵AC=BC,∴∠A=∠B,∴∠ODB=∠A,∴OD∥AC,∴∠ODE=∠DEA=90°,∴DE为⊙O的切线;(2)连接CD,∵∠A=30°,AC=BC,∴∠BCA=120°,∵BC为直径,∴∠ADC=90°,∴CD⊥AB,∴∠BCD=60°,∵OD=OC,∴∠DOC=60°,∴△DOC是等边三角形,∵BC=4,∴OC=DC=2,∴S△DOC=DC×=,∴弧DC与弦DC所围成的图形的面积=﹣=﹣.【点睛】本题考查的知识点是等腰三角形的性质、切线的判定与性质以及扇形面积的计算,解题的关键是熟练的掌握等腰三角形的性质、切线的判定与性质以及扇形面积的计算.23.证明见解析.【解析】【分析】根据在同圆中等弦对的弧相等,AB、CD是⊙O的直径,则¼¼=,由FD=EB,得,»»CFD AEBFD EB=,由等量减去等量仍是等量得:¼»¼»-=-,即»»CFD FD AEB EBFC AE=,由等弧对的圆周角相等,得∠D=∠B.【详解】解:方法(一)证明:∵AB 、CD 是⊙O 的直径,∴¼¼CFD AEB =.∵FD=EB ,∴»»FDEB =. ∴¼»¼»CFD FD AEB EB-=-. 即»»FC AE =.∴∠D=∠B .方法(二)证明:如图,连接CF ,AE .∵AB 、CD 是⊙O 的直径,∴∠F=∠E=90°(直径所对的圆周角是直角).∵AB=CD ,DF=BE ,∴Rt △DFC ≌Rt △BEA (HL ).∴∠D=∠B .【点睛】本题利用了在同圆中等弦对的弧相等,等弧对的弦,圆周角相等,等量减去等量仍是等量求解. 24.(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.【解析】试题分析:(1460.a b --=可以求得,a b 的值,根据长方形的性质,可以求得点B 的坐标; (2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可.试题解析:(1)∵a 、b 460.a b --=∴a−4=0,b−6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.25.(1)见解析;(2)tan∠DBC=12.【解析】【分析】(1)先利用圆周角定理得到∠ACB=90°,再利用平行线的性质得∠AEO=90°,则根据垂径定理得到¼¼AD DC=,从而有AD=CD;(2)先在Rt△OAE中利用勾股定理计算出AE,则根据正切的定义得到tan∠DAE的值,然后根据圆周角定理得到∠DAC=∠DBC,从而可确定tan∠DBC的值.【详解】(1)证明:∵AB为直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OE⊥AC,∴¼¼AD DC=,∴AD=CD;(2)解:∵AB=10,∴OA=OD=5,∴DE=OD﹣OE=5﹣3=2,在Rt △OAE 中,AE =225-3=4,∴tan ∠DAE =2142DE AE ==, ∵∠DAC =∠DBC , ∴tan ∠DBC =12. 【点睛】垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.26. (1) 40%;(2) 2616.【解析】【分析】(1)设A 市投资“改水工程”的年平均增长率是x .根据:2008年,A 市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.【详解】解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.解之,得0.4x =或 2.4x =-(不合题意,舍去).所以,A 市投资“改水工程”年平均增长率为40%.(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.27.1x ->【解析】试题分析:按照解一元一次不等式的步骤解不等式即可.试题解析:3122x x -->,3221x x >--+,1x ->.解集在数轴上表示如下点睛:解一元一次不等式一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
g2 x
x 3 ex , ,根据以上规律, 则函数 g1 x , g2 x , g3 x ,
之积为 __________ . 三解答题(本题共 2 小题,每小题 15 分,共 30 分.) 15.从 1 到 9 的九个数字中取三个偶数四个奇数,试问: ( 1)能组成多少个没有重复数字的七位数? ( 2)在( 1)中的七位数中三个偶数排在一起的有几个? ( 3)在( 1)中任意两偶数都不相邻的七位数有几个? (答题要求:先列式,后计算 , 结果用具体数字表示. )
B. 48
C. 24
D.12
5.甲、乙等 5 人排一排照相,要求甲、乙 2 人相邻但不排在两端,那么不同的排法共有(
)
A. 36 种
B. 24 种
C. 18 种
D. 12 种
6.有红色、黄色小球各两个,蓝色小球一个,所有小球彼此不同,现将五球排成一行,颜色相同者不相
邻,不同的排法共有(
)种
A. 48
2
,
.
7
分
2sin
2
33
(2)令 S
1 3cos 3a 2sin 2
0, cos
1
1
,设 cos 0
,0
3
3
2 , 33
,0
0
3
0,2 3
S
-
0
+
S
单调递减
极大值
单调递增
所以当 cos
1 时, S 最小,此时 sin
22 , BD
3 36
14
分
3
3
2sin
8
∴ 当 BD 3 6 时 S 最小 .
15
A77
100800 个. 5 分
(2) 先选后排, 分别选完三个偶数四个奇数再排列, 三个偶数相邻, 所以三个偶数捆绑 A33,
ቤተ መጻሕፍቲ ባይዱ
当一个整体再和另四个数一起为 5 个数的全排列: C43C54 A55 A33 14400 个. 5 分
(3) 选从 5 个奇数当中选 4 个进行全排列,再从 4 个偶数当中选 3 个,在五个空档中选 3
个插入,
A54C
3 4
A53
28800 个.
5
分
1
BD
AD
16. (1) 在△ ABD中 , 由正弦定理得 sin
sin
sin 2
3
3
,
2
分
所以 BD
3
3cos 1
, AD
,
2sin
2sin 2
3cos 则S a
2sin
1 2a 1
2
3cos 1 2sin 2
3 3a
2sin
3 3 3cos 3
a
,由题意得
率是 __________ .
13.已知函数 f (x)
x
23
4e (x 1) k( x
3
则实数 k 的取值范围是 __________ .
2
2x )
,若
x
2 是函数 f ( x) 的唯一一个极值点,
14.设 f x xex ,有 g1 x f x
x 1 ex , g2 x
g1 x
x 2 ex ,
g3 x
B. 72
C. 78
D.84
7.排一张 5 个独唱和 3 个合唱的节目单,如果合唱不排两头,且任何两个合唱不相邻,则这种事件发生
的概率是(
)
1
A.
4
1
B.
144
1
C.
8
8.在由数字 1, 2,3, 4, 5 组成的所有没有重复数字的
1
D.
14
5 位数中,大于 23145 且小于 43521 的数共有
, g10 x 的极小值
16.如图,准备在墙上钉一个支架, 支架由两直杆 AC与 BD 焊接而成, 焊接点 D 把杆 AC 分成 AD, CD 两 段,其中两固定点 A, B 间距离为 1 米, AB 与杆 AC 的夹角为 60 ,杆 AC 长 为 1 米,若制作 AD 段的成本为 a 元/ 米,制作 CD 段的成本是 2 a 元 / 米,制 作杆 BD 成本是 3 a 元 / 米 . 设 ADB ,则制作整个支架的总成本记为 S 元. ( 1)求 S 关于 的函数表达式,并求出 的取值范围;
D.对任意两个正实数 x1 , x2 ,且 x1 x2 ,若 f x1 f x2 ,则 x1 x2 4 .
二、填空题(本题共 4 小题,每小题 5 分,共 20 分.)
11.对于给定的复数 z0 ,若满足 z 2i
______
z z0
4 的复数对应的点的轨迹是椭圆,则
z0 的取值范围是
1
12.某办公楼前有 7 个连成一排的车位,现有三辆不同型号的车辆停放,恰有两辆车停放在相邻车位的概
( 2)问 BD 段多长时, S 最小?
2
数学参考答案
1. C 2. D 3. C 4. B 5. B 6. A 7. D 8.C 9. D 10. BD
11. 0,6
12. 4 7
13. [0 ,2e] ( B)
14.
1 e65
15.( 1)先选后排,分别选完三个偶数四个奇数再排列
C
43C
4 5
江苏省徐州市第一中学 2019-2020 学年高二数学下学期第三次检测试题
一、选择题(本题共
1.若复数 z 满足 (1 A. i
10 小题,每小题 5 分,共 50 分.)
i )z 4 2i ,则 z 的虚部为( )
B. i
C. 1
D. 1
2.已知 m, n R , i 是虚数单位,若 (1 mi )(1 i ) n ,则 m ni 的值为( )
A. 1
B. 2
C. 3
D. 5
3.已知 n N * ,则 20 n 21 n L 100 n 等于(
)
A.
A80 100
n
B.
A20 100
n n
C.
A81 100
n
D. A2801 n
4. A , B , C , D , E 五名同学站成一排,若要求 A 与 B 相邻,则不同的站法有(
).
A. 72
分
8
去 . 则某人抛掷三次骰子后棋子恰好又回到点
A 处的所有不同走法有(
)
A. 22 种
B. 24 种
C. 25 种
D.27 种
2
10.(多选题) 关于函数 f x
ln x ,下列判断正确的是(
)
x
A. x 2是 f x 的极大值点
B.函数 y = f ( x) - x 有且只有 1 个零点
C.存在正实数 k ,使得 f x kx 成立
A. 56 个
B. 57 个
C. 58 个
D.60 个
9.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形
ABCD (边长为
2 个单位)的顶点 A 处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单
位, 如果掷出的点数为 i(i 1,2, ,6) ,则棋子就按逆时针方向行走 i 个单位, 一直循环下