不同类型的数学题

合集下载

二次函数的应用大题专练(七大类型)-2023年中考数学压轴题(解析版)

二次函数的应用大题专练(七大类型)-2023年中考数学压轴题(解析版)

二次函数的应用大题专练(七大类型)题型一:考向分析1类型一、销售问题1(2023·浙江湖州·统考一模)为鼓励大学毕业生自主创业,某市政府出台相关政策,本市企业提供产品给大学毕业生自主销售,政府还给予大学毕业生一定补贴.已知某种品牌服装的成本价为每件100元,每件政府补贴20元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-3x+900.(1)若第一个月将销售单价定为160元,政府这个月补贴多少元?(2)设获得的销售利润(不含政府补贴)为w(元),当销售单价为多少元时,每月可获得最大销售利润?(3)若每月获得的总收益(每月总收益=每月销售利润+每月政府补贴)不低于28800元,求该月销售单价的最小值.【答案】(1)8400元(2)200元(3)140元【解析】(1)解:在y=-3x+900中,令x=160,则y=420,∴政府这个月补贴420×20=8400元;(2)由题意可得:w=-3x+9002+30000,x-100=-3x-200∵a=-3<0,∴当x=200时,w有最大值30000.即当销售单价定为200元时,每月可获得最大利润30000元.(3)设每月获得的总收益为w ,由题意可得:w =-3x+9002+36300,=-3x-190x-100+20-3x+900令w =28800,则-3x-1902+36300=28800,解得:x=140或x=240,∵a=-3<0,则抛物线开口向下,对称轴为直线x=190,∴当140≤x≤240时,w≥28800,∴该月销售单价的最小值为140元.2类型二、图形面积问题2(2023春·湖北武汉·九年级校联考期中)春回大地,万物复苏,又是一年花季到.某花圃基地计划将如图所示的一块长40m,宽20m的矩形空地划分成五块小矩形区域.其中一块正方形空地为育苗区,另一块空地为活动区,其余空地为种植区,分别种植A,B,C三种花卉.活动区一边与育苗区等宽,另一边长是10m.A,B,C三种花卉每平方米的产值分别是2百元、3百元、4百元.(1)设育苗区的边长为x m,用含x的代数式表示下列各量:花卉A的种植面积是_____m2,花卉B的种植面积是______m2,花卉C的种植面积是_______m2.(2)育苗区的边长为多少时,A,B两种花卉的总产值相等?(3)若花卉A与B的种植面积之和不超过560m2,求A,B,C三种花卉的总产值之和的最大值.【答案】(1)(x2-60x+800);(-x2+30x);(-x2+20x),(2)32m或10m,(3)168000元【解析】(1)解:∵育苗区的边长为x m,活动区的边长为10m,∴花卉A的面积为:40-x20-x=(x2-60x+800)m2,花卉B的面积为:x40-x-10=(-x2+30x)m2,花卉C的面积为:x20-x=(-x2+20x)m2,故答案为:(x2-60x+800);(-x2+30x);(-x2+20x);(2)解:∵A,B花卉每平方米的产值分别是2百元、3百元,∴A,B两种花卉的总产值分别为2×x2-60x+800百元和3×-x2+30x百元,∵A,B两种花卉的总产值相等,∴200×x2-60x+800=300×-x2+30x,∴x2-42x+320=0,解方程得x=32或x=10,∴当育苗区的边长为32m或10m时,A,B两种花卉的总产值相等;(3)解:∵花卉A与B的种植面积之和为:x2-60x+800+-x2+30x=(-30x+800)m2,∴-30x+800≤560,∴x≥8,∵设A,B,C三种花卉的总产值之和y百元,∴y=2x2-60x+800+3-x2+30x,+4-x2+20x∴y=-5x2+50x+1600,∴y=-5(x-5)2+1725,∴当x≥8时,y随x的增加而减小,∴当x=8时,y最大,且y=-5(8-5)2+1725=1680(百元),故A,B,C三种花卉的总产值之和的最大值168000元.3类型三、拱桥问题3(2023·安徽黄山·统考一模)如图,国家会展中心大门的截面图是由抛物线ADB 和矩形OABC 构成.矩形OABC 的边OA =34米,OC =9米,以OC 所在的直线为x 轴,以OA 所在的直线为y 轴建立平面直角坐标系,抛物线顶点D 的坐标为92,245.(1)求此抛物线对应的函数表达式;(2)近期需对大门进行粉刷,工人师傅搭建一木板OM ,点M 正好在抛物线上,支撑MN ⊥x 轴,ON =7.5米,点E 是OM 上方抛物线上一动点,且点E 的横坐标为m ,过点E 作x 轴的垂线,交OM 于点F .①求EF 的最大值.②某工人师傅站在木板OM 上,他能刷到的最大垂直高度是125米,求他不能刷到大门顶部的对应点的横坐标的范围.【答案】(1)y =-15x -92 2+245;(2)①当m =72时,EF 有最大值165;②32<m <112.【解析】(1)解:由题意知,抛物线顶点D 的坐标为92,245,设抛物线的表达式为y =a x -92 2+245,将点A 0,34 代入抛物线解析式得34=a 0-92 2+245,解得a =-15,∴抛物线对应的函数的表达式为y =-15x -92 2+245;(2)解:①将x =7.5代入y =-15x -92 2+245中,得y =3,∴点M 152,3 ,∴设直线OM 的解析式为y =kx k ≠0 ,将点M 152,3 代入得152k =3,∴k =25,∴直线OM 的解析式为y =25x ,∴EF =-15m -92 2+245-25m =-15m 2+75m +34=-15m -72 2+165,∵-15<0,∴当m =72时,EF 有最大值,为165;②∵师傅能刷到的最大垂直高度是125米,∴当EF >125时,他就不能刷到大门顶部,令EF =125,即-15m -72 2+165=125,解得m 1=32,m 2=112,又∵EF 是关于m 的二次函数,且图象开口向下,∴他不能刷到大门顶部的对应点的横坐标m 的范围是32<m <112.4类型四、投球问题4(2023·浙江丽水·统考一模)某天,小明在足球场上练习“落叶球”(如图1),足球运动轨迹是抛物线的一部分,如图2,足球起点在A 处,正对一门柱CD ,距离AC =12m ,足球运动到B 的正上方,到达最高点2.5m ,此时AB =10m .球门宽DE =5m ,高CD =2m .(1)以水平方向为x 轴,A 为原点建立坐标系,求足球运动轨迹抛物线的函数表达式.(2)请判断足球能否进球网?并说明理由.(3)小明改变踢球方向,踢球时,保持足球运动轨迹抛物线形状不变的前提下,足球恰好在点E 处进入球网.若离A 点8m 处有人墙GH ,且GH ∥CF ,人起跳后最大高度为2.2m ,请探求此时足球能否越过人墙,并说明理由.【答案】(1)足球运动轨迹抛物线的函数表达式为y =-140x +10 2+2.5(2)足球不能进球网,理由见解析(3)足球能越过人墙,理由见解析【解析】(1)解:由题意得抛物线的顶点坐标为-10,2.5 ,设抛物线的函数表达式为y =a x +10 2+2.5,将0,0 代入得,0=100a +2.5,解得a =-140,∴足球运动轨迹抛物线的函数表达式为y =-140x +10 2+2.5;(2)解:足球不能进球网,理由如下:当x =-12时,y =-140-12+10 2+2.5=2.4,∵2.4>2,∴足球不能进球网.(3)解:足球能越过人墙,理由如下:∵足球运动轨迹抛物线形状不变,并经过点0,0 ,∴设抛物线的函数表达式为y =-140x 2+bx .如图,由题意知,四边形CDEF 是矩形,则CF =DE =5,在Rt △ACF 中,由勾股定理得AF =AC 2+CF 2=13,∵足球恰好在点E 处进入球网,∴抛物线经过点-13,2 ,将-13,2 代入得,2=-140×-13 2-13b ,解得b =-249520,∴y =-140x 2-249520x ,∵GH ∥CF ,∴△AGH ∽△ACF ,∴AH AF =AG AC ,即AH 13=812,解得AH =263,把x =-263代入得,y =-140×-263 2-249520×-263 =409180,∵409180>2.2,∴足球能越过人墙.5类型五、喷水问题5(2023·山东潍坊·统考一模)如图①,灌溉车沿着平行于绿化带底部边线l 的方向行驶,为绿化带浇水.喷水口H 离地竖直高度OH =1.5米.如图②,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG ,其水平宽度DE =2米,竖直高度EF =1米.下边缘抛物线可以看作由上边缘抛物线向左平移得到,上边缘抛物线最高点A 离喷水口的水平距离为2米,高出喷水口0.5米,灌溉车到l 的距离OD 为d 米.(1)求上边缘抛物线的函数表达式,并求喷出水的最大射程OC ;(2)求下边缘抛物线与x 轴的正半轴交点B 的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带(即矩形DEFC 位于上边缘抛物线和下边缘抛物线所夹区域内),求d 的取值范围.【答案】(1)6米(2)y=-18x+22+2,2,0(3)2≤d≤22【解析】(1)解:如图,由题意得A2,2是上边缘抛物线的顶点,则设y=a x-22+2.又∵抛物线经过点0,1.5,∴4a+2=1.5,∴a=-18.∴上边缘抛物线的函数解析式为y=-18x-22+2.当y=0时,-18x-22+2=0,∴x1=6,x2=-2(舍去).∴喷出水的最大射程OC为6m.(2)法一:∵上边缘抛物线对称轴为直线x=2,∴点0,1.5的对称点为4,1.5,∴下边缘抛物线是由上边缘抛物线向左平移4m得到的,∴将点C向左平移4m得到点B的坐标为2,0法二:∵下边缘抛物线可以看做是上边缘抛物线向左平移t个单位长度得到的,∴可设y=-18x+t-22+2,将点0,1.5代入得t1=4,t2=0(舍去)∴下边缘抛物线的关系式为y=-18x+22+2,∴当y=0时,0=-18x+22+2,解得x1=2,x2=-6(舍去),∴点B的坐标为2,0;(3)解:如图,先看上边缘抛物线,∵EF=1,∴点F的纵坐标为1.当抛物线恰好经过点F时,-18x-22+2=1.解得x=2±22,∵x>0,∴x=2+22.当x>0时,y随着x的增大而减小,∴当2≤x≤6时,要使y≥1,则x≤2+22.∵当0≤x<2时,y随x的增大而增大,且x=0时,y=1.5>0.5,∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+22.∵DE=2,灌溉车喷出的水要浇灌到整个绿化带,∴d的最大值为2+22-2=22.再看下边缘抛物线,喷出的水能浇灌到绿化带底部的条件是OB ≤d ,∴d 的最小值为2.综上所述,d 的取值范围是2≤d ≤22.6类型六、几何动点问题1例6.(2023·山东青岛·统考一模)如图,在四边形ABCD 中,AB ∥CD ,∠ABC =90°,AB =8cm ,BC =6cm ,AD =10cm ,点P 、Q 分别是线段CD 和AD 上的动点.点P 以2cm/s 的速度从点D 向点C 运动,同时点Q 以1cm s 的速度从点A 向点D 运动,当其中一点到达终点时,两点停止运动,将PQ 沿AD 翻折得到QP ,连接PP 交直线AD 于点E ,连接AC 、BQ .设运动时间为t s ,回答下列问题:(1)当t 为何值时,PQ ∥AC ?(2)求四边形BCPQ 的面积S cm 2 关于时间t s 的函数关系式;(3)是否存在某时刻t ,使点Q 在∠PP D 平分线上?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)t =409(2)S =35t 2-425t +72(3)存在,t =5【解析】(1)解:过点A 作AK ⊥CD 于点K ,∵∠ABC =90°,AB =8,BC =6,∴由勾股定理得AC =AB 2+BC 2=10,∵AD =10cm ,∴AC =AD ,∴△ACD 是等腰三角形,∴CD =2CK ,又∵AB ∥CD ,∴∠ABC =∠BCD =∠AKC =90°,∴四边形ABCK 是矩形,∴CK =AB =8,∴CD =16,若PQ ∥AC ,∴DP DC =DQ DA,由题意得,DP =2t ,AQ =t 则DQ =10-t ,∴2t 16=10-t 10,解得t =409,所以,t =409时,PQ ∥AC ;(2)过点Q 作QT ⊥CD ,交CD 于点T ,交AB 于点H ,∴AK =HT =BC =6,由(1)知CK =DK =8,AD =10,∴cos ∠D =DK AD =45,∴sin ∠D =AK AD=35=QT DQ =QT 10-t ,∴QT =6-35t ,∴QH =6-6-35t =35t ,∵四边形BCPQ 的面积=S ΔABC +S ΔACD -S ΔPQD -S ΔABQ =12⋅AB ⋅BC +12⋅CD ⋅AK -12⋅DP ⋅QT -12⋅AB ⋅QH ∴S =12×8×6+12×16×6-12⋅2t ⋅6-35t -12×8⋅35t ,整理得S =35t 2-425t +72,即四边形BCPQ 的面积S cm 2 关于时间t s 的函数关系式为S =35t 2-425t +72;(3)如图,设PP 交AD 于点E ,过点Q 作QF ⊥DP 于点F ,由折叠的性质得∠ADP =∠ADP ,PP ⊥AD ,∵AD 平分∠PDP ,QT ⊥PD ,QF ⊥P D ,∴QT =QF =6-35t ,∵点Q 在∠PP D 平分线上,PP ⊥AD ,QF ⊥P D ,∴QF =QE =6-35t ,∴DE =DQ +EQ =10-t +6-35t =16-85t ,∵cos ∠EDP =DE DP=45,即16-85t 2t =45,解得t =5,经检验t =5是分式方程的解且符合题意,所以t =5时,点Q 在∠PP D 平分线上.7类型七、图形运动问题7(2023·天津·校联考一模)在平面直角坐标系中,O 为原点,四边形AOBC 是正方形,顶点A -4,0 ,点B 在y 轴正半轴上,点C 在第二象限,△MON 的顶点M 0,5 ,点N 5,0 .(1)如图①,求点B ,C 的坐标;(2)将正方形AOBC 沿x 轴向右平移,得到正方形A O B C ,点A ,O ,B ,C 的对应点分别为A ,O ,B ,C .设OO =t ,正方形A O B C 与△MON 重合部分的面积为S .①如图②,当1<t ≤4时,正方形A O B C 与△MON 重合部分为五边形,直线B C 分别与y 轴,MN 交于点E ,F ,O B 与MN 交于点H ,试用含t 的式子表示S ;②若平移后重合部分的面积为92,则t 的值是_______(请直接写出结果即可).【答案】【答案】(1)B 0,4 ,C -4,4(2)①S =-12t 2+5t -12;②5-15或6【解析】(1)解:由A -4,0 ,得AO =4,∵四边形AOBC 正方形,∴OB =BC =4.∴B 0,4 ,C -4,4 ;(2)解:①∵M 0,5 ,N 5,0 ,∠MON =90°,∴OM =ON =5,∠OMN =∠ONM =45°.由平移知,四边形A O B C 是正方形,得B C =4,∠B =∠B O O =90°.∴四边形OO B E 是矩形.∴B E =OO =t ,OE =B O =4,∠B EM =90°.∴∠EFM =45°,∴EF =ME =1,B F =t -1.∵∠B FH =∠EFM =45°,∴∠B HF =45°.∴B H =B F =t -1.当1<t ≤4时,S =OO ⋅OE -12B H ⋅B F =4t -12(t -1)2=-12t 2+5t -12.②当1<t ≤4时,由题意得S =-12t 2+5t -12=92,解得t=5-15或5+15(舍去);当t=5时,点O 与点N重合,此时S=12×4×4=8>92,∴5<t<9,∴A N=A F=9-t,由题意得129-t2=92,解得t=6或t=12(舍去);综上,t的值是5-15或6.故答案为:5-15或6.题型二:压轴题速练1一.解答题(共24小题)1(2023•宁波一模)抗击疫情期间,某商店购进了一种消毒用品,进价为每件8元,销售过程中发现,该商品每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数),部分对应值如下表:每件售价(元)91113每天的销售量(件)1059585(1)求y与x的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元.(3)设该商店销售这种消毒用品每天获利w(元),问:当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?【答案】(1)y=-5x+150(8≤x≤15);(2)13元;(3)当每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.【解析】解:(1)设y与x的函数关系式为y=kx+b,(8≤x≤15),将(9,105),(11,95)代入得105=9k+b95=11k+b,解得k=-5b=150,∴y=-5x+150,∴y与x的函数关系式为y=-5x+150(8≤x≤15);(2)由题意知,利润w=(x-8)(-5x+150)=-5(x-19)2+605,令w=425,则-5(x-19)2+605=425,解得x=13或x=25(不合题意,舍去),∴每件消毒用品的售价为13元;(3)由(2)知w=-5(x-19)2+605(8≤x≤15),∵-5<0,∴当8≤x≤15时,w随着x的增大而增大,∴当x=15时,w=525,此时利润最大,∴当每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.2(2023•莱西市一模)某公司电商平台经销一种益智玩具,先用3000元购进一批.售完后,第二次购进时,每件的进价提高了20%,同样用3000元购进益智玩具的数量比第一次少了25件.销售时经市场调查发现,该种益智玩具的周销售量y(件)是关于售价x(元/件)的一次函数,如表仅列出了该商品的售价x(元/件),周销售量y(件)的三组对应值数据.x407090y1809030(1)求第一次每件玩具的进价;(2)求y关于x的函数解析式;(3)售价x为多少时,第一周的销售利润W最大?并求出此时的最大利润.【答案】(1)第一次每件玩具的进价为20元(2)y=-3x+300(3)当x=60时,第一周的销售利润W最大,此时的最大利润为4800元【解析】解:(1)设第一次每件玩具的进价为m元,则第二次每件玩具的进价为(1+20%)m元,由题意得,3000 m -3000(1+20%)m=25,解得m=20,经检验m=20是原方程的解且符合题意,答:第一次每件玩具的进价为20元;(2)设y=kx+b,把x=40,y=180;x=70,y=9分别代入得,40k+b=180 70k+b=90,解得k=-3b=300,∴y=-3x+300,即y关于x的函数解析式是y=-3x+300;(3)W=y(x-20)=(-3x+300)(x-20)=-3x2+360x-6000=-3(x-60)2+4800,∵a=-3<0,抛物线开口向下,∴当x=60时,第一周的销售利润W最大,此时的最大利润为4800.3(2023•天山区一模)一名高校毕业生响应国家创业号召,回乡承包了一个果园,并引进先进技术种植一种优质水果,经核算这批水果的种植成本为16元/千克、设销售时间为x(天),通过一个月(30天)的试销,该种水果的售价P(元/千克)与销售时间x(天)满足如图所示的函数关系(其中0≤x≤30,且x为整数).已知该种水果第一天销量为60千克,以后每天比前一天多售出4千克.(1)直接写出售价P(元/千克)与销售时间x(天)的函数关系式;(2)求试销第几天时,当天所获利润最大,最大利润是多少?【答案】(1)P=-12x+3424(20<x≤30) ;(2)试销第30天时,当天所获利润最大,最大利润是1408元.【解析】解:(1)当0≤x≤20时,设售价P(元/千克)与销售时间x(天)的函数关系式为P=kx+b,把(0,34),(20,24)代入得20k+b=24b=34,j解得k=-12b=34,∴P=-12x+34;由函数图象可知当20<x≤30时,P=24;综上所述,P=-12x+3424(20<x≤30) ;(2)设第x天的利润为W,∵该种水果第一天销量为60千克,以后每天比前一天多售出4千克,∴第x天的销售量为60+4(x-1)=(4x+56)千克,当0≤x≤20时,∴W=-12x+34-16(4x+56)=-2x2+72x-28x+1008=-2x2+44x+1008=-2(x-11)2+1250∵-2<0,∴当x=11时,W最大,最大为1250;当20<x≤30时,W=(24-16)(4x+56)=32x+448,∵32>0,∴当x=30时,W最大,最大为32×30+448=1408;∵1408>1250,∴试销第30天时,当天所获利润最大,最大利润是1408元.4(2023•武汉模拟)某市新建了一座室内滑雪场,该滑雪场地面积雪厚达40cm,整个赛道长150m,全天共可容纳约3300人滑雪嬉戏.小明和小华相约去体验滑雪,小明从赛道顶端A处下滑,测得小明离A处的距离s(单位:m)随运动时间x(单位:s)变化的数据,整理得下表.滑行时间x/s01234滑行距离s/m06142436经验证小明离A 处的距离s 与运动时间x 之间是二次函数关系.小明出发的同时,小华在距赛道终点30m 的B 处操控一个无人机沿着赛道方向以2m/s 的速度飞向小明,无人机离A 处的距离y (单位:m )与运动时间x (单位:s )之间是一次函数关系.(1)直接写出s 关于x 的函数解析式和y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)小明滑完整个赛道需要耗时多久?(3)小明出发多久后与无人机相遇?​【答案】(1)s 关于x 的函数解析式为s =x 2+5x ,y 关于x 的函数解析式为y =-2x +120;(2)小明滑完整个赛道需要耗时10s ;(3)小明出发8s 与无人机相遇.【解析】解:(1)设s 关于x 的函数解析式为s =ax 2+bx +c ,将(0,0),(1,6),(2,14)代入得:c =0a +b +c =64a +2b +c =14 ,解得a =1b =5c =0,∴s =x 2+5x ;根据题意得y =150-30-2x =-2x +120,∴s 关于x 的函数解析式为s =x 2+5x ,y 关于x 的函数解析式为y =-2x +120;(2)在s =x 2+5x 中,令s =150得:150=x 2+5x ,解得x =10或x =-15(舍去),∴小明滑完整个赛道需要耗时10s ;(3)由x 2+5x =-2x +120得:x =8或x =-15,∴小明出发8s 与无人机相遇.5(2023•邯郸模拟)将小球(看作一点)以速度v 1竖直上抛,上升速度随时间推移逐渐减少直至为0,此时小球达到最大高度,小球相对于抛出点的高度y (m )与时间t (s )的函数解析式为两部分之和,其中一部分为速度v 1(m/s )与时间t (s )的积,另一部分与时间t (s )的平方成正比.若上升的初始速度v 1=10m/s ,且当t =1s 时,小球达到最大高度.(1)求小球上升的高度y 与时间t 的函数关系式(不必写范围),并写出小球上升的最大高度;(2)如图,平面直角坐标系中,y 轴表示小球相对于抛出点的高度,x 轴表示小球距抛出点的水平距离,向上抛出小球时再给小球一个水平向前的均匀速度v 2(m/s ),发现小球运动的路线为一抛物线,其相对于抛出点的高度y (m )与时间t (s )的函数解析式与(1)中的解析式相同.①若v 2=5m/s ,当t =32s 时,小球的坐标为 152,154 ,小球上升的最高点坐标为(5,5);求小球上升的高度y 与小球距抛出点的水平距离x 之间的函数关系式;②在小球的正前方的墙上有一高3536m 的小窗户PQ ,其上沿P 的坐标为6,154,若小球恰好能从窗户中穿过(不包括恰好去中点P ,Q ,墙厚度不计),请直接写出小球的水平速度v 2的取值范围.【答案】(1)y =-5t 2+10t ,小球上升的最大高度是5m ;(2)①152,154 ;(5,5);y =-15x 2+2x ;②185<v 2<4.【解析】解:(1)根据题意可设y =at 2+10t ,∵当t =1s 时,小球达到最大高度,∴抛物线y =at 2+10t 的对称轴为直线t =1,即-102a=1,解得a =-5,∴上升的高度y 与时间t 的函数关系式为y =-5t 2+10t ,在y =-5t 2+10t 中,令t =1得y =5,∴小球上升的最大高度是5m ;(2)①当t =32s 时,y =-5×32 2+10×32=154,x =v 2t =5×32=152,∴小球的坐标为152,154;由(1)可知,t =1s 时,取得最大高度,x =v 2t =5×1=5,∴小球上升的最高点坐标为(5,5);由题意可知,x =v 2t ,∴t =x v 2=x 5,∴y =-5×x 5 2+10×x 5=-15x 2+2x ;∴小球上升的高度y 与小球距抛出点的水平距离x 之间的函数关系式是y =-15x 2+2x ;故答案为:152,154 ;(5,5);②∵PQ =3536m ,P 的坐标为6,154 ,∴Q 6,259;当小球刚好击中P 点时,-5t 2+10t =154,解得t =1.5或t =0.5,∵t >1,∴t =1.5,此时v 2=6t=4m/s ,当小球刚好击中Q 点时,-5t 2+10t =259,解得t =53或t =13,∵t >1,∴t =53,此时v 2=6t =185m/s ,∴v 2的取值范围为:185<v 2<4.6(2023•崂山区一模)跳台滑雪简称“跳雪”,选手不借助任何外力、从起滑台P 处起滑,在助滑道PE 上加速,从跳台E 处起跳,最后落在山坡MN 或者水平地面上.运动员从P 点起滑,沿滑道加速,到达高度OE =42m 的E 点后起跳,运动员在空中的运动轨迹是一条抛物线.建立如图所示平面直角坐标系,OM =38m ,ON =114m ,设MN 所在直线关系式为y =kx +b .甲运动员起跳后,与跳台OE 水平距离xm 、竖直高度ym 之间的几组对应数据如下:水平距离x /m 010203040竖直高度y /m4248504842(1)求甲运动员空中运动轨迹抛物线的关系式;(2)运动员得分由距离得分+动作分+风速得分组成距离得分:运动员着陆点到跳台OE 水平距离为50m ,即得到60分,每比50m 远1米多得2分;反之,当运动员着陆点每比50m 近1米扣2分.距离分计算采取“2舍3入法”,如60.2米计为60米,60.3米则计为60.5米.动作得分:由裁判根据运动员空中动作的优美程度打分.风速得分:由逆风或者顺风决定.甲运动员动作分、风速加分如下表:距离分动作分风速加分50-2.5请你计算甲运动员本次比赛得分.【答案】(1)y =-150x 2+45x +42;(2)甲运动员本次比赛得分为147.5分.【解析】解:(1)∵抛物线经过点(10,48),(30,48),∴对称轴是:直线x =10+302=20,∴顶点坐标为(20,50),设甲运动员空中运动轨迹抛物线的关系式为:y =a (x -20)2+50,将(0,42)代入得:a (0-20)2+50=42,∴a =-150,∴甲运动员空中运动轨迹抛物线的关系式为:y =-150(x -20)2+50=-150x 2+45x +42;(2)根据题意可得,当y =0时,即-150(x -20)2+50=0,解得:x 1=70,x 2=-30(舍),则60+2×(70-50)+50+(-2.5)=147.5,所以甲运动员本次比赛得分为147.5分.7(2023•镇平县模拟)为培养学生劳动实践能力,某学校在校西南角开辟出一块劳动实践基地.如图①是其中蔬菜大棚的横截面,它由抛物线AED 和矩形ABCD 构成.已知矩形的长BC =12米,宽AB =3米,抛物线最高点E 到地面BC 的距离为6米.(1)按图①所示建立平面直角坐标系,求抛物线AED 的解析式;(2)冬季到来,为防止大雪对大棚造成损坏,学校决定在大棚两侧安装两根垂直于地面且关于y 轴对称的支撑柱PQ 和NM ,如图②所示.①若两根支撑柱的高度均为5.25米,求两根支撑柱之间的水平距离;②为了进一步固定大棚,准备在两根支撑柱上架横梁PN ,搭建成一个矩形“脚手架”PQMN ,为了筹备材料,需求出“脚手架”三根支杆PQ ,PN ,MN 的长度之和w 的最大值,请你帮管理处计算一下.【答案】(1)抛物线AED 的解析式为:y =-112x 2+6;(2)①两根支撑柱之间的水平距离为6米;②“脚手架”三根支杆PQ ,PN ,MN 的长度之和w 的最大值为18米.【解析】解:(1)∵四边形ABCD 是矩形,∴AD =BC =12(米),∴点A (-6,3),点D (6,3),根据题意和图象可得,顶点E 的坐标为(0,6),∴可设抛物线AED 的解析式为:y =ax 2+6,把点A (-6,3)代入解析式可得:36a +6=3,解得:a =-112,∴抛物线AED 的解析式为:y =-112x 2+6;(2)①当y =5.25时,-112x 2+6=5.25,解得x =±3,3-(-3)=3+3=6(米),∴两根支撑柱之间的水平距离为6米;②设N点坐标为m,-112m2+6,则MQ=2m,MN=-112m2+6,∴w=2m+2-112m2+6=-16m2+2m+12=-16(m-6)2+18,∵-16<0,∴当m=6时,w有最大值,最大值为18,∴“脚手架”三根支杆PQ,PN,MN的长度之和w的最大值为18米.8(2023•宝应县一模)科学研究表明:一般情况下,在一节45分钟的课堂中,学生的注意力随教师讲课的时间变化而变化.经过实验分析,在0≤x≤8时,学生的注意力呈直线上升,学生的注意力指数y与时间x(分钟)满足关系y=2x+68,8分钟以后,学生的注意力指数y与时间x(分钟)的图象呈抛物线形,到第16分钟时学生的注意力指数y达到最大值92,而后学生的注意力开始分散,直至下课结束.(1)当x=8时,注意力指数y为84,8分钟以后,学生的注意力指数y与时间x(分钟)的函数关系式是y=-18x2+4x+60;(2)若学生的注意力指数不低于80,称为“理想听课状态”,则在一节45分钟的课中学生处于“理想听课状态”所持续的时间有多长?(精确到1分钟)(3)现有一道数学压轴题,教师必须持续讲解24分钟,为了使效果更好,要求学生的注意力指数在这24分钟内的最低值达到最大,则该教师上课后从第几分钟开始讲解这道题?(精确到1分钟)(参考数据:6≈2.449)【答案】(1)84,y=-18x2+4x+60;(2)在一节45分钟的课中学生处于“理想听课状态”所持续的时间约有20分钟;(3)教师上课后从第4分钟开始讲解这道题,能使学生的注意力指数在这24分钟内的最低值达到最大.【解析】解:(1)根据题意,把x=8代入y=2x+68可得:y=84,由题意可知,抛物线的顶点坐标为(16,92),∴可设抛物线的解析式为:y=a(x-16)2+92,把(8,84)代入可得:64a+92=84,解得:a=-1 8,∴y=-18(x-16)2+92=-18x2+4x+60,故答案为:84,y=-18x2+4x+60;(2)由学生的注意力指数不低于80,即y≥80,当0≤x≤8时,由2x+68≥80可得:6≤x≤8;当8<x≤45是,则-18x2+4x+60≥80,即-18(x-16)2+92≥80,整理得:(x-16)2≤96,解得:8<x≤16+46,∴16+46-6=10+46≈20(分钟),答:在一节45分钟的课中学生处于“理想听课状态”所持续的时间约有20分钟;(3)设教师上课后从第t分钟开始讲解这道题,∵10+46<24,∴0≤t<6,要使学生的注意力指数在这24分钟内的最低值达到最大,则当x=t和当x=t+24时对应的函数值相同,即2t+68=-18(t+24-16)2+92,整理得:(t+16)2=384,解得:t1=86-16,t2=-86-16(舍),∴t≈4,答:教师上课后从第4分钟开始讲解这道题,能使学生的注意力指数在这24分钟内的最低值达到最大.9(2023•昭阳区一模)新华书店销售一个系列的儿童书刊,每套进价100元,销售定价为140元,一天可以销售20套.为了扩大销售,增加盈利,减少库存,书店决定采取降价措施.若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求出y与x的函数关系式;(2)若要书店每天盈利1200元,则每套书销售定价应为多少元?(3)当每套书销售定价为多少元时,书店一天可获得最大利润?这个最大利润为多少元?【答案】(1)y=-2x2+20x+400;(2)若要书店每天盈利1200元,则每套书销售定价应为130元或120元;(3)当每套书销售定价为125元时,书店一天可获得最大利润,最大利润为1250元.【解析】解:(1)由题意可得:销售量=(20+2x)套,则y=(20+2x)(140-x-100)=(2x+20)(40-x)=-2x2+60x+800,∴y与x的函数关系式为:y=-2x2+60x+800;(2)由题意可得:当y=1200时,即-2x2+60x+800=1200,解得:x1=10,x2=20,∴140-10=130(元),140-20=120(元),答:若要书店每天盈利1200元,则每套书销售定价应为130元或120元;(3)由(1)可知:y=-2x2+60x+800=-2(x-15)2+1250,∵-2<0,∴当x=15时,y有最大值,最大值为1250,此时,售价=140-15=125(元),答:当每套书销售定价为125元时,书店一天可获得最大利润,最大利润为1250元.10(2023•大丰区一模)比萨斜塔是意大利的一座著名斜塔,据说物理学家伽利略曾在塔顶上做过著名的自由落体试验:在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.已知:某建筑OA的高度为44.1m,将一个小铁球P(看成一个点)从A处向右水平抛出,在水平方向小铁球移动的距离d(m)与运动时间t(s)之间的函数表达式是:d=7t,在竖直方向物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=4.9t2.以点O为坐标原点,水平向右为x轴,OA所在直线为y轴,取1m为单位长度,建立如图所示平面直角坐标系,已知小铁球运动形成的轨迹为抛物线.(1)求小铁球从抛出到落地所需的时间;(2)当t=1时,求小铁球P此时的坐标;(3)求抛物线的函数表达式,并写出自变量x的取值范围.【答案】(1)小铁球从抛出到落地所需的时间为3秒;(2)(7,39.2);(3)y=-110x2+44.1(0≤x≤21).【解析】解:(1)根据题意可得,OA的高度为44.1m,且竖直方向物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=4.9t2,∴当h=44.1时,小铁球落到地面,∴4.9t2=44.1,解得:t1=3,t2=-3(舍),答:小铁球从抛出到落地所需的时间为3秒;(2)当t=1时,则d=7×1=7,h=4.9×12=4.9,∴y p=44.1-4.9=39.2,∴小铁球P此时的坐标为(7,39.2);(3)由(1)可知小铁球从抛出到落地所需的时间为3秒,∴d=7×3=21,∴OB=21(m),即B(21,0),根据题意可得,顶点坐标为A(0,44.1),∴可设抛物线解析式为:y=ax2+44.1,将点B(21,0)代入得:441a+44.1=0,解得:a=-1 10,∴抛物线的函数表达式为:y=-110x2+44.1(0≤x≤21).11(2023•南昌模拟)一个运动员跳起投篮,球的运行路线可以看做是一条抛物线,如图1所示,图2是它的示意图,球的出手点D到地面EB的距离为2.25m(即DE=2.25m,当球运行至F处时,水平距离为2.5m(即F到DE的距离为2.5m),达到最大高度为3.5m,已知篮圈中心A到地面EB的距离为3.05m,篮球架AB可以在直线EB上水平移动.(1)请建立恰当的平面直角坐标系,求该抛物线的解析式;(2)若篮球架离人的水平距离EB为4.5m,问该运动员能否将篮球投入篮圈?若能,说明理由;若不能,算一算将篮球架往哪个方向移动,移动多少距离,该运动员此次所投的篮球才能投入篮圈.。

小学数学应用题21种类型总结(附例题、解题思路)

小学数学应用题21种类型总结(附例题、解题思路)

小学数学应用题21种类型总结(附例题、解题思路)1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

六年级常用的数学题

六年级常用的数学题

六年级常用的数学题
以下是一些六年级常用的数学题类型:
1. 四则运算:包括整数、小数、分数的加减乘除混合运算。

2. 分数的加减:同分母、异分母分数的加减。

3. 分数的乘除:分数乘以整数、分数除以整数、分数乘以分数、分数除以分数。

4. 比例:比例的意义、性质、解比例。

5. 百分数:百分数的意义、读写、百分数与分数、小数的互化。

6. 图形的周长和面积:计算各种平面图形的周长和面积。

7. 数据的收集与整理:绘制条形统计图、折线统计图和扇形统计图,并根据统计图进行数据分析。

8. 解决问题:应用所学数学知识解决实际问题,如行程问题、工程问题、经济问题等。

这些题型涵盖了六年级数学的主要知识点,通过练习这些题目,可以帮助学生巩固所学知识,提高解题能力。

一年级10以内所有类型题目

一年级10以内所有类型题目

一年级10以内所有类型题目一年级学生主要学习基础的数学概念,包括加法、减法、比较大小等。

以下是一些一年级学生可能会遇到的10以内的不同类型的数学题目:
1. 加法题目:
• 3 + 4 = ?
• 5 + 2 = ?
• 1 + 6 = ?
2. 减法题目:
• 8 - 2 = ?
• 4 - 1 = ?
• 7 - 3 = ?
3. 比较大小:
•比较符号(>, <, =)的使用,例如:4 __ 3,3 __ 5。

4. 组合题目:
• 2 + 1 - 3 = ?
• 4 - 2 + 1 = ?
5. 数学故事问题:
•有三个苹果,再加上两个苹果,一共有几个苹果?
•有六个玩具,给了两个朋友各一个,还剩下几个玩具?
6. 数的排列:
•从1数到10,写出其中的奇数。

•从1数到10,写出其中的偶数。

这些题目旨在帮助学生建立对基本数学概念的理解和运用。

教师通常会根据学生的水平和学习需求逐步引入这些题目。

四年级数学期末必考六大类型应用题

四年级数学期末必考六大类型应用题

四年级数学上册满赠问题专项类型一每件便宜多少钱1、每棵树苗16元,买3棵送1棵。

一次买3棵,每棵便宜多少钱?16÷(3+1)=4(元)答:每棵便宜4元。

2、商场搞了一次促销活动,每袋洗衣粉20元,买4袋送一袋,妈妈买了4袋,每袋便宜多少元?20÷(1+4)=4(元)答:每袋便宜4元。

3、健力宝每瓶2元4角,买3瓶送一瓶,一次买3瓶,每瓶便宜多少钱?24÷(3+1)=6(角)答:每瓶便宜6角。

4、一束鲜花35元,买5束花送2束,茵苗一次买5束,每束花便宜多少钱?35-35×5÷(5+2)=10(元)答:每束花便宜10元。

类型二:最多可以买多少件1、面包每个7元,面包店搞促销活动买3个送1个,63元钱,最多能买几个这样的面包?63÷7=9(个) 9÷3=3(组) 9+3=12(个)答:最多能买12个这样的面包。

2、超市的盒装纸促销,买3盒送1盒,每盒4元。

156元最多买多少盒这样的纸巾?156÷4=39(盒) 39÷3=13(组) 39+13=52(盒)答:最多可以买52盒这样的纸巾。

3、某种饮料37元1瓶,64元2瓶,茵苗有320元,最多可以买多少瓶?还剩多少钱?320÷64=5(组) 5×2=10(瓶)答:最多可以买10瓶,没有剩钱。

4、商店里衬衫的价格是50元一件,90元两件。

王叔叔有610元,最多可以买几件?还剩多少元?610÷90=6(组)…… 70(元)6×2=12(件)70÷50=1(件)…… 20(元)12+1=13(件)答:最多可以买13件,还剩20元。

5、学校准备500元,准备购置一些书包(26元/个,46元/2个)作为奖品,最多可以买多少个书包,还剩多少钱?500÷46=10(组)……40(元)10×2=20(个)40÷26=1(个)……14(元)20+1=21(个)答:最多可以买21个书包,还剩14元钱6、服装店进了一批衣服,为了吸引顾客,推出了3种购买方案,妈妈带了218元钱,最多可以买多少件?还剩多少钱?(28元/件,48元/2件,买3赠1)买法1:218÷48=4(组)……26(元)4×2=8(件)买法2:218÷28=7(件)……22(元)7÷3=2(组)……1(件)7+2=9(件)答:妈妈最多可以买9件,还剩22元钱。

幼小衔接数学类型题

幼小衔接数学类型题

幼小衔接数学类型题
幼小衔接数学类型题可以有以下几种:
一、计算题
1.简单的加减法:如3+2=,5-3=等。

2.比较大小:如比较两个数字的大小,或者比较两个算式的结果
大小等。

3.找规律:如找出数字之间的规律,填写下一个数字等。

二、图形题
1.认识图形:如认识圆形、正方形、三角形等,并能进行简单的
分类。

2.图形拼接:如用几个相同的图形拼成一个大的图形,或者将一
个图形分割成几个小的图形等。

3.图形计数:如数出图形中有多少个某种特定的小图形等。

三、应用题
1.简单的实际问题:如用加减法解决实际问题,如购物找零、分
配物品等。

2.时间问题:如认识钟表,能读出时间,或者根据时间进行简单
的计算等。

3.空间问题:如认识方向,能指出上下左右等方向,或者进行简
单的空间推理等。

四、智力题
1.逻辑推理:如根据已知条件进行逻辑推理,找出隐藏的规律等。

2.创造力发挥:如进行简单的创意拼图,或者根据给定的主题进
行创意绘画等。

十大无解数学题有哪些

十大无解数学题有哪些

十大无解数学题有哪些十大难题困扰了许多数学家和数学学者很多年,目前由于数学的计算技术不断提升,这十道题也逐渐能够得以解决。

下面和小编一起来看十大无解数学题有哪些,希望有所帮助!一、假钞问题一个人拿着100元假钞向老板买一件定价15元,进货12元的'商品,如果老板收了假钞,请问老板亏了多少钱。

二、母猪过河问题有三对猪母子要过河,其中有一对母子都会划船,有一对是母猪会孩子不会,最后一对是孩子会母猪不会,如果出现母猪会孩子不会这种情况出现时,母猪会吃掉孩子,请问应该怎样搭配过河。

三、找次品问题现在有26个乒乓球样品,其中有一个是次品,可以通过比较重量的方式将乒乓球次品找出来,乒乓球次品的质量较轻,请问要在天平上最少称几次。

四、填空问题数学家可以通过填空问题,将原本不成立的等式变得成立,比如一个月加一个季度等于四个月,这就实现了1+1=4,请问可以用怎样的单位代换,使得2+5=1。

五、退钱问题有三个人各出了十元,凑够30元住旅馆,可第二天老板退了五块钱,三个人要将五块钱平分,其中分钱的人由于贪心自己独占了两块,然后准备每个人分一块,分到最后还剩了一块,怎么办。

六、圆周问题现在有两个圆,大圆的半径为a,小圆半径为b,a>b,如果小圆围绕大圆内部半径旋转一周的话,小圆自转了几周。

七、喝汽水问题现在有一个非常优惠的喝汽水活动,一块钱买一瓶汽水,喝完后两个空瓶还可以再替换一瓶汽水,请问20块钱能够喝几瓶汽水?八、年龄问题经理有三个女儿,三个女儿年龄之和为13岁,现在有下属猜测经理女儿的年龄,经理给出提示,只有一个女儿头发为黑色,请问经理三个女儿分别为多大。

九、考试成绩问题小明在一次考试中,数学和语文总共为197分,语文和英语总共为199分,数学和英语总分为196分,请问小明总分为多少各科成绩为多少?十、切饼问题现在小明家有八个人想要共分一张饼,妈妈要求他用一刀将这张饼切成八个部分,请问小明应该怎样切这张饼?。

大班数学类型题

大班数学类型题

大班数学类型题趣味数学题目一:找规律1. 2, 4, 6, 8, 10, 12, ?2. 5, 9, 17, 33, ?解答:1. 观察给定的数列,可以发现每个数都是前一个数加2。

因此,下一个数字应为12 + 2 = 14。

2. 观察给定数列,可以发现每个数字都是前一个数乘以2减去1。

因此,下一个数字应为33 * 2 – 1 = 65。

趣味数学题目二:算一算1. 12 ÷ 3 × 2 = ?2. 8 – 4 + 6 × 2 = ?解答:1. 根据数学运算的优先级,先进行乘法和除法,再进行加法和减法。

所以,12 ÷ 3 × 2 = 4 × 2 = 8。

2. 同样按照数学运算的优先级,先进行乘法,再进行加法和减法。

所以,8 – 4 + 6 × 2 = 8 – 4 + 12 = 16。

趣味数学题目三:填空1. 3 × 4 + 2 = ______2. 5 ÷ 1 + 2 × 3 = ______解答:1. 先进行乘法,再进行加法。

所以,3 × 4 + 2 = 12 + 2 = 14。

2. 先进行乘法,再进行除法和加法。

所以,5 ÷ 1 + 2 × 3 = 5 + 6 = 11。

趣味数学题目四:奇偶性判断1. 13是奇数还是偶数?2. 26是奇数还是偶数?解答:1. 13是奇数,因为它不能被2整除,没有余数。

2. 26是偶数,因为它可以被2整除,没有余数。

趣味数学题目五:数字组合给定数字0、1、2、3、4,不重复地从中选取3个数字,能组成多少个不同的三位数?解答:根据排列组合的原理,可以知道,从5个数字中选取3个数字的组合数为5 × 4 × 3 = 60。

因此,能组成的不同的三位数共有60个。

结语:以上是一些大班数学类型的趣味题目,通过这些题目可以锻炼孩子们的数学思维能力、逻辑思维能力和计算能力,帮助他们更好地学习数学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指定日普通票:200元 指定日优惠价:120元 平日普通票:160元 平日优惠价:100元 1.2米以下儿童免票,身高1.2米以上儿童和60岁以上老人, 可买优惠票
一、数学测试内容领域 (一)数与代数


2.数的运算
(4)探索和理解运算,能运用运算律进行一些简便运算 例17:A、B均为1~9中的某一个数字,那么算式0.A×0.B +0.1的结果,( )。 A.大于1 B.小于1 C.等于1 D.无法确定 例:2.8×13 +2.8×7(期末)
例19:1/4+9/20-3/5;1.25×7+1.25-1.2
例20: 91.7×15+0.83×150 2.5×39
例21: (8/11+8/17)÷(12/11+12/17)
(1/56+1/72+1/90)×70
一、数学测试内容领域 (一)数与代数

2.数的运算 (7)会解决有关小数、分数的简单实际问题. 例22:妈妈給小方买了一套运动衣花了96元,其中运动裤的价钱是上衣 的5/7,运动裤的价钱是多少元? (8)会解决具体问题过程中,能选择合适的估算方法,养成估算的 习惯。 例23:甲、乙、丙三所小学联合组织全校师生共同观看比赛,有以下四 个不同座位数量的体育馆可供选择。根据表格中各年级人数,你 认为选择座位数为( )的体育馆比较合适(要保证每人都有座 位且空位最少)。(请将思考过程写在草稿区) 一 二 三 四 五 六 甲227 258 214 272 263 209 乙249 225 266 217 282 246 丙227 246 271 240 229 283




(6)体会数在日常生活中的作用,会用数表示事物,并能进行交流。
一、数学测试内容领域 (一)数与代数


1.数的认识
(7)在1—100的自然数中,能找出10以内某个自然数的所有倍数, 并知道2、3、5的倍数特征,能找出10以内两个自然数的公倍 数和最小公倍数。 例7:用2、3、0、7四个数字组成的所有四位数(数字不重复使 用),( )。 A. 都是2的倍数 B. 都是3的倍数 C. 都是5的倍数 D. 既不是2和3、也不是5的倍数 例8:有一张长方形的纸,长8厘米,宽6厘米。至少要用( )张 这样的纸才能拼成一个正方形。 A、7 B、12 C、24 D、10
A
错误率 1.27%
B
50%


(5)在解决简单实际过程中,体会加与减、乘与除的互逆关系。 例18:小明在计算两位数乘两位数的乘法时,错把一个因数35 个 位上的5看成了8,结果比正确的结果多了132,那么正确的结 果应是 ( )
一、数学测试内容领域 (一)数与代数


2.数的运算
(6)会分别进行简单的小数、分数加、减、乘、除运算及混合运算。 (不含带分数,不含分数乘除混合运算)Fra bibliotek

一、数学测试内容领域 (一)数与代数


1.数的认识
(8)在1—20的自然数中,能找出某个自然数的所有因数,在 1—20的自然数中,能找出两个自然数的公因数和最大公因数。 例9:希腊人心目中最理想、最完全的数恰好有这个数的所有因 数(本身除外)相加之和。比如:6有四个因数1、2、3、6, 除去本身6以外,还有1、2、3三个因数。6=1+2+3,恰好是所 有因数之和,所以6是最理想、最完全的数。这样的数被叫做 “完全数”。下面数中( )是“完全数”。 A.28 B.10 C.36 D.8 例10: ( )既是30的因数,又是35的因数。 A、1和5 B、5和6 C、只有5 D、只有1



一、数学测试内容领域 (一)数与代数


1.数的认识
(9)知道整数、奇数、偶数、质数、合数。
例11:10以内的自然数有( )个质数
例12:一个奇数如果( ),结果一定是偶数。 A、加上2 B、减去2 C、乘2 D、除以2 例13:用一条长20厘米的铁丝围成一个长方形,要求长和宽都是质 数,它的面积是 ( )平方厘米。 A.20 B.15 C.21 D.39 例14:一个三位数,百位上的数既不是质数也不是合数;十位上的数 是最小的质数;个位上的数是最小的合数,这个三位数是( ). 例 15:已知相邻的两个数互质,他们的最小公倍数是 90,这两个数分 别为( )、( )。
一、数学测试内容领域 (一)数与代数


1.数的认识
(3)会比较小数分数的大小 例5:甲、乙、丙、丁四个容器装满水,甲倒出1/3,乙倒出 1/4,丙倒出1/5,丁倒出1/6,( )容器剩的多? (4)了解负数的意义,会用负数表示一些日常生活中的问题(有的 版本没学) (5)结合现实情境,感受大数的意义,并能进行估计。 例6:把100张百元纸币捆成一捆是( )元,将100捆装为1箱,1箱是 ( )元。
(2)进一步认识小数和分数,探索小数、分数之间的关系,并会进 行转化(不包括循环小数化为分数) 例3:下图是数轴的一部分,0.12所在的位置应该在( )。
A.S点的左侧
B.S点与P点之间
C.P点与Q点之间
D.Q点右侧
例4:1/7可以化成循环小数,这个循环小数的小数点后第2009位上的数字 是( )。 A 1 B 4 C 5 D 7





一、数学测试内容领域 (一)数与代数


2.数的运算
(1)会口算百以内一位数乘除两位数。
参测学校
错误率
A
26.72%
B
92.06%


(2)能笔算三位数乘两位数的乘法,三位数除以两位数的除法(融于整 数四则运算之中)例:15+25×13 286-273÷13 (3)能结合现实素材理解运算顺序,并进行简单的整数四则混合运 算(最多三步) 例16:李聪与父母、爷爷在暑假的一天(平日)参观世博会,李聪身高 1.5 米,爷爷67岁,他们门票需多少元?
老师们:
下面是五年级历次数学考试典型题的 归类,它贯穿了各个年级,希望老师们在 上本年级数学课的同时,给予练习、关注, 达到提升及举一反三的目的。
欢迎使用!
一、数学测试内容领域 (一)数与代数


1.数的认识
(1)在具体情境中认、读、写亿以内的数,了解十 进制计数法,会 用万、亿为单位表示大数。 例1:北京奥运会三大主场馆之一的国家体育馆总建筑 面积约为八万零 八百九 十平方米,写作( )平方米。 例2:奥运主体育场的建筑面积是二十五万八千平方米, 写作( ) 平方米,四舍五入省略万后面的尾数约是 ( )万平方米。
相关文档
最新文档