导数--复合函数的导数练习试题[精品]

合集下载

导数专项训练及答案

导数专项训练及答案

导数专项训练例题讲解【1】导数的几何意义及切线方程1. 已知函数f(x) a在x 1处的导数为2,则实数a的值是x2. 曲线y=3x-x3上过点A( 2,-2)的切线方程为 _______________________ .1 23•曲线y 1和y x2在它们的交点处的两条切线与x轴所围成的三角形的面积是_.x4. 若直线y= kx-3与曲线y=2lnx相切,则实数k= ________ .5. 已知直线y x 2与曲线y In x a相切,则a的值为__________________ .6. 等比数列{a n}中,3 1^2012 9,函数f (x) x(x a0(x a2)L (x a2012) 2,则曲线y f(x)在点(0, f(0))处的切线方程为 ____________________ .7. 若点P是曲线y=x2-Inx上的任意一点,则点P到直线y=x-2的最小距离为 ____________ .8. 若点P、Q分别在函数y=e x和函数y=lnx的图象上,则P、Q两点间的距离的最小值是______ .9. 已知存在实数a,满足对任意的实数b,直线y x b都不是曲线y x3 3ax的切线,则实数a的取值范围是__________ .10. 若关于x的方程e x 3x kx有四个实数根,则实数k的取值范围是_____________________ .11. 函数f(x)=ax2+1(a>0), g(x)=x3+bx.若曲线y=f(x)与曲线y=g(x)在它们的交点(1, c)处具有公共切线,则c的值是____________ .【2】常见函数的导数及复合函数的导数x x1. f(x)=2 e2 e2 ,则f'2) = ____________.ln x2. 设曲线y = ——1在点(1,0)处的切线与直线x- ay+ 1 = 0垂直,则a =____________ .x I3 3 33 .函数f(x) (x 1)(x 2)L (x 100)在x 1处的导数值为__________________ .4. 已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1, f(1))处的切线方程是5. 若函数f (x) x n 1 n N*的图像与直线x 1交于点P,且在点P处的切线与x轴交点的横坐标为X n,则log2013 N log2013 X2 log2°13 X3 L log2013 X2012 的值为-------------6. 设f1(x)=cos x,定义f n 1(x)为f n(x)的导数,即f n 1(x) f'n(x), n N*,若ABC 的内角A 满足f/A) f2( A) L f2013( A) 0,则sin A 的值是____________ .【3】导数与函数的单调性1 21•函数y lx2 In X的单调递减区间为_____________ .f x f(X1 )2. 已知函数f (x) In x(a R),若任意为、x[2,3]且X2 X i , t = 2—,则实数tX2 X i的取值范围_____________ .3. 已知函数f(x)=x3-6x2+9x+a在x R上有三个零点,则实数a的取值范是 _______ .4. 设f'(x)和g'(x)分别是f(x )和g(x)的导函数,若f'(x)g'(x) 0在区间I上恒成立,则称f(x)1 和g(x)在区间I上单调性相反若函数f(x)= -X3 2ax与g(x)=x2+2bx在开区间(a, b)上单调性3相反(a>0),贝U b-a的最大值为_________ .【4】导数与函数的极值、最值3 2 21. 已知函数f (x) x 3mx nx m在x 1时有极值0,则m n ____________________ .2. 已知函数f (x) 2f (1)ln x x ,贝U f (x)的极大值为________________ .3. 已知函数f(x)=x4+ax3+2^+b,其中a, b R .若函数f(x)仅在x=0处有极值,则a的取值范围是_______________ .4. 设曲线y (ax 1)e x在点Axoy 处的切线为h ,曲线y 1 x e x在点B(X o』2)处的切3线为12.若存在x o 0,-,使得l1 I2,则实数a的取值范围为__________________ .5. 已知函数f(x)=e X-1, g(x)= -x2+4x-3若有f(a)=g(b),则b的取值范围为________ .13 2 26. f '(x)是函数f(x) ~x mx (m 1)x n的导函数,若函数y f[ f '(x)]在区间[m ,3m+1]上单调递减,则实数m的取值范围是 ___________ .【解答题】1. 某企业拟建造如上图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左80右两端均为半球形,按照设计要求容器的体积为乩立方米,且I 2r.假设该容器的建造3费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c c 3 .设该容器的建造费用为y千元.(1) 写出y关于r的函数表达式,并求该函数的定义域;(2) 求该容器的建造费用最小时的r22. 已知函数 f (x )= ax — ( a + 2) x + Inx.(1 )当a = 1时,求曲线y = f(x)在点(1, f(1))处的切线方程;(2)当a >0时,若f (x)在区间[1 , e )上的最小值为一2,求a 的取值范围.3. 已知函数 f(x) (x a)Inx ,( a 0).(1)当a 0时,若直线y 2x m 与函数y f (x)的图象相切,求m 的值;⑵若f (x)在1,2上是单调减函数,求a 的最小值; ⑶ 当x 1,2e 时,f (x)e 恒成立,求实数a 的取值范围.(e 为自然对数的底).2a4. 已知函数f (x) In x ——,a R .x(1) 若函数f (x)在[2,)上是增函数,求实数 a 的取值范围;(2) 若函数f(x)在[1,e ]上的最小值为3,求实数a 的值.5. 设函数 f (x) e x 1 x ax 211.4(2) 右当x 0时f (x)0,求a 的取值范围导数专项练习答案【1】 导数的几何意义及切线方程1. 2;2. y=-2 或 9x+y-16=03.3 . 44. 2,e ; 5 6.y 小2012 一 3 x 2 ;7. .2;8.2;1 9. a -1031 1. e - ; 2. e123. 3 99!4. 2x-y-1=0 ;5. -1【3】导数与函数的单调性1 111. (0, 1);2.帀;3. (-4, 0);4. 23 ; 0,3 e6. 1;(1 )若a 0,求f (x)的单调区间;【2】常见函数的导数及复合函数的导数【4】导数与函数的极值、最值1. 11 ;2. 2ln2-2 ;3. 838,3 ;4. 1 a32 ;5. 1,3 ;6. m 0[5]解答题1.答案解:(1)由题意可知r 2l 4 3 r 80 l 2r , 即1 80 4 r 2r,则0 r 23 3 3r2 3容器的建造费用为y 2 rl 3 4 r2 c 6 r 80 4 r 4 2 r c,3r2 3160r2 4 r2c,定义域为16 r 8 rc ,令y2 ,得c —,2x0 r 2 0,得r9 20①当3 c 2时,,;2 2,当0 r 2时,y0,函数单调递减,•••当r 2时y有最小值;②当c 9时,.:2:2,当0 r .. ■' 2;时,y 0;当r9综上所述,当3 c 时,建造费用最小时r2 2;当c 时,建造费用最小时r22.答案IA 题輛乐① 当”二1 时、$ xx | = 5 +—P... 1 分.t:.f i ■ - o,111 = —2, ....................................................................................................所以■切线方良是尸-2・ ............................................. .#!⑵函数f x 2ax当a 0时,f 2ax0, 2 x In x的定义域是0,+ ,1 2ax2 a 2 1 八a 2 —---------------------- x 0……5分x x22ax a 2 1 2x 1 ax 1--------------------- = --------------------- 0,x x........................................................... 6分0,当X丄幻"目卩皿三1时「厂门低[1・d上单调己孑a所以F⑴在[山“_!_的#d'1M^/(5=-2j .................................... 吒分1 1沽―一“时,兀T)在[九一」二的畫加值是/( -)<J (1)-4*下合杀意!10^a a时,了检)衽E小丁二嗨產族・a所应了⑴在一存贞]上的最小借杲f⑷疋/⑴=-氛不咅邈直 ....... ... 11分放口的取值为厲杪冷--------------------------- ------ - -- - 12分希為导較的几何談厶刊臣#财函忌壶值,3•解答解:〔L )当斗口时j f C x ) =K1IIX ■・・・f C x 3 =lrut+l・・■直线尸%+IT>与函数尸£ J J的图象栢切"■■■lnx+l=2> -\x=e '-'t C宅)-*i j・"■切.点为〔宅"电)丿・'-n>-—e iC 2) f? O)二lz+1—旦Vf Cx)在口上囚上是单调减函敷・「・严(s)=lnK+l--^0在[1 , 2]上恒成盒K-"-5clm<+x在[1 r21 上恒成立夺耳〔我〉=slns+K r贝U# ( X ) =llWc+2 y- 0■花 5)二显坤坛在[1 >迂]上单调递増.■- i> C 2 J =ZlnZ+2/-曲最小值为ZLLnS+Z ;t □ > | f C x ) | 丘■等价于-« C x™* J I EUE W e-"・_,一^M~a< eI JTK lnx/-R~- E—底直氐H+-C-lm(lnx设h〔乂)=x+—-— > t ( x i ―-—J则t【筈)nri日艾€ 3■羔h〔工)min』True lrix商h, Cx) JgJ—e j・.・k t ^) =□2Hili. K令玉〔兀7 =Kln^s_e J苑U [1 厦Ze] J则$ I K)-I IL^X+I TLK> 0「■h〔丑7 [ 1 J2e 1 J" 调iM増丄「・h ( K? min=h〔已〉=2e iv•--■t.f( X J =14-—> 0 J -■- t ( KT 3 ^[1 , Ze]上单调谨増”-*-t C K ) iYiax=t 〔Ze ) =Ze-ln2e上j 2e_----------- - ——宅五€2~ .In2e试題解析t躺(1> ••丁加“X+兰…丄-牛.㈤往|2円。

导数典型例题(含答案)

导数典型例题(含答案)

导数典型例题导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点.一、与导数概念有关的问题【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 A.0 B.1002 C.200 D.100! 解法一 f '(0)=xf x f x ∆-∆+→∆)0()0(lim=xx x x x ∆--∆-∆-∆∆→∆0)100()2)(1(lim=lim 0→∆x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D.解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D.点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解.【例2】 已知函数f (x )=nn n k k n n n n x c nx c k x c x c c 1121221++++++ ,n ∈N *,则 x x f x f x ∆∆--∆+→∆)2()22(lim= .解 ∵xx f x f x ∆∆--∆+→∆)2()22(lim=2xf x f x ∆-∆+→∆2)2()22(lim+[]xf x f x ∆--∆-+→∆-)2()(2lim=2f '(2)+ f '(2)=3 f '(2),又∵f '(x )=1121--+++++n n n k k n n n x c x c x c c ,∴f '(2)=21(2nn n k n k n n c c c c 222221+++++ )=21[(1+2)n -1]= 21(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如xm x f x m x f x ∆--∆-→∆-)()(000lim,且其定义形式可以是xm x f x m x f x ∆--∆-→∆)()(000lim,也可以是00)()(limx x x f x f x --→∆(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关知识的综合题,连接交汇、自然,背景新颖.【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .解 ∵S =πR 2,而R =R (t ),t R '=2 cm/s ,∴t S '=t R )π(2'=2πR ·t R '=4πR ,∴t S '/R =10=4πR/R =10=40π cm 2/s.点评 R 是t 的函数,而圆面积增加的速度是相当于时间t 而言的(R 是中间变量),此题易出现“∵S =πR 2,S '=2πR ,S '/R =10=20π cm 2/s ”的错误.本题考查导数的物理意义及复合函数求导法则,须注意导数的物理意义是距离对时间的变化率,它是表示瞬时速度,因速度是向量,故变化率可以为负值.2004年高考湖北卷理科第16题是一道与实际问题结合考查导数物理意义的填空题,据资料反映:许多考生在求出距离对时间的变化率是负值后,却在写出答案时居然将其中的负号舍去,以致痛失4分.二、与曲线的切线有关的问题【例4】 以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是A.⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3 B. []π,0 C.⎥⎦⎤⎢⎣⎡4π3,4π D. ⎥⎦⎤⎢⎣⎡4π,0∪⎦⎤⎢⎣⎡4π3,2π 解 设过曲线y =sin x 上点P 的切线斜率角为α,由题意知,tan α=y '=cos x . ∵cos x ∈[-1,1], ∴tan α∈[-1,1],又α∈[)π,0,∴α∈⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3.故选A.点评 函数y =f (x )在点x 0处的导数f '(x 0)表示曲线,y =f (x )在点(x 0,f (x 0))处的切线斜率,即k =tan α(α为切线的倾斜角),这就是导数的几何意义.本题若不同时考虑正切函数的图像及直线倾斜角的范围,极易出错.【例5】 曲线y =x 3-ax 2的切线通过点(0,1),且过点(0,1)的切线有两条,求实数a 的值.解 ∵点(0,1)不在曲线上,∴可设切点为(m ,m 3-am 2).而y '=3x 2-2ax , ∴k 切=3m 3-2am ,则切线方程为y =(3m 3-2am )x -2m 3-am 2. ∵切线过(0,1),∴2m 3-am 2+1=0.(*)设(*)式左边为f (m ),∴f (m )=0,由过(0,1)点的切线有2条,可知f (m )=0有两个实数解,其等价于“f (m )有极值,且极大值乘以极小值等于0,且a ≠0”.由f (m )=2m 3-am 2+1,得f '(m )= 6m 3-am 2=2m (3m -a ),令f '(m )=0,得m =0,m =3a, ∴a ≠0,f (0)·f (3a )=0,即a ≠0,-271a 3+1=0,∴a =3.点评 本题解答关键是把“切线有2条”的“形”转化为“方程有2个不同实根”的“数”,即数形结合,然后把三次方程(*)有两个不同实根予以转化.三次方程有三个不同实根等价于“极大值大于0,且极小值小于0”.另外,对于求过某点的曲线的切线,应注意此点是否在曲线上.三、与函数的单调性、最(极)值有关的问题【例6】 以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是A.①、②B.①、③C.③、④D.①、④解 由题意知导函数的图像是抛物线.导函数的值大于0,原函数在该区间为增函数;导函数的值小于0,原函数在该区间为减函数,而此抛物线与x 轴的交点即是函数的极值点,把极值点左、右导数值的正负与三次函数在极值点左右的递增递减结合起来考虑,可知一定不正确的图形是③、④,故选C.点评 f '(x )>0(或<0)只是函数f '(x )在该区间单递增(或递减)的充分条件,可导函数f '(x )在(a ,b )上单调递增(或递减)的充要条件是:对任意x ∈(a ,b ),都有f '(x )≥0(或≤0)且f '(x )在(a ,b )的任意子区间上都不恒为零.利用此充要条件可以方便地解决“已知函数的单调性,反过来确定函数解析式中的参数的值域范围”问题.本题考查函数的单调性可谓新颖别致.【例7】函数y =f (x )定义在区间(-3,7)上,其导函数如图所示,则函数y =f (x )在区间(-3,7)上极小值的个数是 个.解 如图,A 、O 、B 、C 、E 这5个点是函数的极值点,观察这5个极值点左、右导数的正、负,可知O 点、C 点是极小值点,故在区间(-3,7)上函数y =f (x )的极小值个数是2个.点评 导数f '(x )=0的点不一定是函数y =f (x )的极值点,如使f '(x )=0的点的左、右的导数值异号,则是极值点,其中左正右负点是极大值点,左负右正点是极小值点.本题考查函数的极值可以称得上是匠心独运.【例8】 设函数f (x )与数列{a n }满足关系:①a 1>α,其中α是方程f (x )=x 的实数根;②a n+1=f (a n ),n ∈N *;③f (x )的导数f '(x )∈(0,1).(1)证明:a n >α,n ∈N *;(2)判断a n 与a n+1的大小,并证明你的结论. (1)证明:(数学归纳法)当n =1时,由题意知a 1>α,∴原式成立. 假设当n =k 时,a k >α,成立. ∵f '(x )>0,∴f (x )是单调递增函数.∴a k+1= f (a k )> f (α)=α,(∵α是方程f (x )= x 的实数根)即当n =k +1时,原式成立.故对于任意自然数N *,原式均成立.(2)解:g (x )=x -f (x ),x ≥α,∴g '(x )=1-f '(x ),又∵0< f '(x )<1,∴g '(x )>0. ∴g '(x )在[)+∞,α上是单调递增函数.而g '(α)=α-f (α)=0,∴g '(x )>g (α) (x >α),即x >f (x ). 又由(1)知,a n >α,∴a n >f (a n )=a n+1.点评 本题是函数、方程、数列、导数等知识的自然链接,其中将导数知识融入数学归纳法,令人耳目一新.四、与不等式有关的问题【例9】 设x ≥0,比较A =xe -x ,B =lg(1+x ),C =xx +1的大小.解 令f (x )=C -B=xx +1-lg(1+x ),则f '(x )=xx x ++-+1)1(2)11(2>0,∴f (x )为[)+∞,0上的增函数,∴f (x )≥f (0)=0,∴C ≥B .令g (x )=B -A =lg(1+x )-xe -x,则当x ≥0时,g '(x )=xx e x +---1)1(12≥0,∴g (x )为[)+∞,0上的增函数,∴g (x )≥g (0)=0,∴B ≥A .因此,C ≥B ≥A (x =0时等号成立).点评 运用导数比较两式大小或证明不等式,常用设辅助函数法,如f (a )=φ(a ),要证明当x >a 时,有f (a )=φ(a ),则只要设辅助函数F (x )= f (a )-φ(a ),然后证明F (x )在x >a 单调递减即可,并且这种设辅助函数法有时可使用多次,2004年全国卷Ⅱ的压轴题就考查了此知识点.五、与实际应用问题有关的问题【例10】 某汽车厂有一条价值为a 万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值y 万元与技术改造投入x 万元之间满足:①y 与(a -x )和x 2的乘积成正比;②当2ax =时,y =a 3.并且技术改造投入比率:)(2x a x-∈(]t ,0,其中t 为常数,且t ∈(]2,0.(1)求y =f (x )的解析式及定义域;(2)求出产品的增加值y 的最大值及相应的x 值. 解:(1)由已知,设y =f (x )=k (a -x )x 2,∵当2a x =时,y = a 3,即a 3=k ·2a ·42a ,∴k =8,则f (x )=8-(a -x )x 2.∵0<)(2x a x-≤t ,解得0<x ≤122+t at .∴函数f (x )的定义域为0<x ≤122+t at .(2)∵f '(x )= -24x 2+16ax =x (-24x +16a ),令f '(x )=0,则x =0(舍去),32ax =,当0<x <32a 时,f '(x )>0,此时f (x )在(0,32a)上单调递增;当x >32a 时,f '(x )<0,此时f (x )是单调递减.∴当122+t at ≥32a 时,即1≤t ≤2时,y max =f (32a )=32732a ;当122+t at <32a 时,即0<t <1时,y max =f (122+t at )=323)12(32+t t a . 综上,当1≤t ≤2时,投入32a 万元,最大增加值是32732a ,当0<t <1时,投入122+t at万元,最大增加值是323)12(32+t t a .点评 f '(x 0)=0,只是函数f (x )在x 0处有极值的必要条件,求实际问题的最值应先建立一个目标函数,并根据实际意义确定其定义域,然后根据问题的性质可以断定所建立的目标函数f (x )确有最大或最小值,并且一定在定义区间内取得,这时f (x )在定义区间内部又只有一个使f '(x 0)=0的点x 0,那么就不必判断x 0是否为极值点,取什么极值,可断定f (x 0)就是所求的最大或最小值.。

高中数学专题练习《简单复合函数的导数》含详细解析

高中数学专题练习《简单复合函数的导数》含详细解析

5.2.3简单复合函数的导数基础过关练题组一复合函数的求导法则1.函数y=(2020-8x)3的导数y'=()A.3(2020-8x)2B.-24xC.-24(2020-8x)2D.24(2020-8x)22.若f(x)=e x ln2x,则f'(x)=()A.e x ln2x+e x2x B.e x ln2x-exxC.e x ln2x+exxD.2e x·1x3.已知函数f(x)=ln(ax-1)的导函数是f'(x),且f'(2)=2,则实数a的值为()A.12B.23C.34D.14.若函数f(x)=√4x-3,则f'(x)=.5.函数f(x)=cos2xe x的导函数f'(x)=.6.求下列函数的导数.(1)y=x 2(2x+1)3;(2)y=e-x sin2x;(3)y=ln√2x+1-1;(4)y=cos(-2x)+32x+1.深度解析题组二复合函数求导的综合运用7.曲线f(x)=e4x-x-2在点(0,f(0))处的切线方程是()A.3x+y+1=0B.3x+y-1=0C.3x-y+1=0D.3x-y-1=08.某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可近似地表示为y=f(t)=√10t,则在时刻t=40min的降雨强度为()A.20mm/minB.400mm/minC.12mm/min D.14mm/min9.已知函数f(x)=2ln(3x)+8x,则limΔx→0f(1-2Δx)-f(1)Δx的值为()A.10B.-10C.-20D.2010.已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1B.2C.-1D.-211.设函数f(x)在(-∞,+∞)内的导函数为f'(x),若f(ln x)=x+1x,则f(0)f'(0)=()A.2B.-2C.1D.e+112.设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0垂直,则a=.13.已知f(x)为偶函数,当x≤0时,f(x)=e-x-2-x,则曲线y=f(x)在(2,f(2))处的切线方程为.14.设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴交于点(0,6),试确定a的值.能力提升练题组复合函数的导数及其应用1.()已知y=f(x)=ln|x|,则下列各命题中,正确的是()A.x>0时,f'(x)=1x ,x<0时,f'(x)=-1xB.x>0时,f'(x)=1x,x<0时,f'(x)无意义C.x≠0时,都有f'(x)=1xD.因为x=0时f(x)无意义,所以不能对y=ln|x|求导2.()设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为()A.-15B.0C.15D.53.()已知f(x)=1+(1+x)+(1+x)2+(1+x)3+…+(1+x)n,则f'(0)=()A.nB.n-1C.n(n-1)2D.n(n+1)24.(2020河南开封五县高二上期末联考,)设a∈R,函数f(x)=e x+a·e-x 为奇函数,曲线y=f(x)的一条切线的切点的纵坐标是0,则该切线方程为()A.2x-y=0B.2x+y=0C.4x-y=0D.4x+y=05.()定义方程f(x)=f'(x)的实数根x0为函数f(x)的“新驻点”,若函数g(x)=x2+1,h(x)=ln(x+2),φ(x)=cos x(x∈(0,π))的“新驻点”分别为a,b,c,则a,b,c的大小关系为()A.a<b<cB.a<c<bC.b<a<cD.b<c<a6.(多选)()已知函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<π2的图象如图所示,令g(x)=f(x)+f'(x),则下列关于函数g(x)的说法正确的是()A.函数g(x)图象的对称轴方程为x=kπ-π12(k∈Z)B.函数g(x)的最大值为2C.函数g(x)的图象上存在点P,使得在P点处的切线与直线l:y=3x-1平行D.方程g(x)=2的两个不同的解分别为x1,x2,则|x1-x2|的最小值为π27.()已知y=x1−√1−x,则y'=.8.()若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b=.9.()设函数f(x)=ae x ln x+be x-1x.(1)求导函数f'(x);(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2,求a,b的值.), 10.()已知函数f(x)=3x+cos2x+sin2x,f'(x)是f(x)的导函数,且a=f'(π4求过曲线y=x3上一点P(a,b)的切线方程.答案全解全析 基础过关练1.C y'=3(2 020-8x)2×(2 020-8x)'=3×(2 020-8x)2×(-8)=-24(2 020-8x)2.故选C.2.C f'(x)=(e x )'·ln 2x+e x ·(ln 2x)' =e xln 2x+e xx.故选C.3.B 由f(x)=ln(ax-1)可得f'(x)=aax -1,由f'(2)=2,可得a2a -1=2,解得a=23.故选B.4.答案2√4x -34x -3解析 ∵f(x)=√4x -3=(4x-3)12, ∴f'(x)=12(4x-3)-12·(4x-3)'=2√4x -34x -3. 5.答案 -2sin2x+cos2xe x解析 由f(x)=cos2x e x, 得f'(x)=-2sin2x+cos2xe x. 6.解析 (1)∵y=x 2(2x+1)3,∴y'=2x ·(2x+1)3-x 2·3(2x+1)2·2(2x+1)6=2x -2x 2(2x+1)4.(2)y'=-e -x sin 2x+2e -x cos 2x =e -x (2cos 2x-sin 2x).(3)∵y=ln √2x +1-1=12ln(2x+1)-1,∴y'=12×12x+1×(2x+1)'=12x+1.(4)y'=-2sin 2x+(2x+1)'32x+1ln 3 =-2sin 2x+2·32x+1ln 3.易错警示 分析函数的运算结构,以基本初等函数的导数为基础,利用导数的四则运算法则及复合函数的求导法则依次求导即可. 7.D ∵f'(x)=4e 4x -1,∴k=f'(0)=3.又f(0)=-1,∴切线方程为y+1=3x,即3x-y-1=0.故选D. 8.D 由f(t)=√10t , 得f'(t)=2√10t·(10t)'=√102√t, 所以f'(40)=√102√40=14. 9.C ∵f(x)=2ln(3x)+8x,∴f'(x)=2x+8,∴f'(1)=10, ∴limΔx →0f(1-2Δx)-f(1)Δx =-2limΔx →0f(1-2Δx)-f(1)-2Δx=-2f'(1)=-20.故选C. 10.B 设切点为P(x 0,y 0), 则y 0=x 0+1,y 0=ln(x 0+a), ∵y' x=x 0=1x 0+a=1,∴x 0+a=1,∴y 0=ln(x 0+a)=0,∴x 0=y 0-1=-1.∴a=1-x 0=2.故选B. 11.B 令ln x=t,则x=e t,代入f(ln x)=x+1x得y=e t +1e t=1+1et =1+e -t ,∴y'=-1e t ,∴f(0)f'(0)=1+1-1=-2.故选B.12.答案 2解析 令y=f(x),则曲线y=e ax 在点(0,1)处的切线的斜率为f'(0),又切线与直线x+2y+1=0垂直,所以f'(0)=2.因为f(x)=e ax ,所以f'(x)=(e ax )'=(e ax )·(ax)'=ae ax ,所以f'(0)=ae 0=a,故a=2. 13.答案 y=2x-1解析 设x>0,则-x<0,∴f(-x)=e x-2+x,∵f(x)为偶函数,∴f(x)=e x-2+x,则f'(x)=e x-2+1,∴f'(2)=2,又f(2)=3,∴曲线y=f(x)在(2,f(2))处的切线方程为y-3=2(x-2),即y=2x-1. 14.解析 因为f(x)=a(x-5)2+6ln x, 所以f '(x)=2a(x-5)+6x .令x=1,得f(1)=16a,f '(1)=6-8a,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1).由点(0,6)在切线上,可得6-16a=8a-6, 解得a=12.能力提升练1.C 根据题意得f(x)={lnx(x >0),ln(−x)(x <0).分两种情况讨论:(1)x>0时,f(x)=ln x ⇒f'(x)=(ln x)'=1x ;(2)x<0时,f(x)=ln(-x)⇒f'(x) =[ln(-x)]'=1-x·(-1)=1x.故选C.2.B 由题设可知f(x+5)=f(x), ∴f'(x+5)=f'(x),∴f'(5)=f'(0),又f(-x)=f(x),∴f'(-x)(-1)=f'(x),即f'(-x)=-f'(x),∴f'(0)=0,∴f'(5)=f'(0)=0.故选B.3.D f(x)=1+(1+x)+(1+x)2+(1+x)3+…+(1+x)n,则f'(x)=1+2(1+x)+3(1+x)2+4(1+x)3+…+n(1+x)n-1,.故选D.则f'(0)=1+2+3+4+…+n=n(n+1)24.A因为函数f(x)=e x+a·e-x是奇函数,所以f(-x)=-f(x)对一切x∈R恒成立,所以e-x+a·e x=-e x-a·e-x对一切x∈R恒成立,即(a+1)(e x+e-x)=0对一切x∈R恒成立,所以a+1=0,解得a=-1,因此f(x)=e x-e-x,故f'(x)=e x+e-x.由曲线y=f(x)的一条切线的切点的纵坐标是0,得f(x)=e x-e-x=0,解得x=0.所以曲线y=f(x)的这条切线的切点的坐标为(0,0),切线的斜率为f'(0)=e0+e0=2.故曲线y=f(x)的这条切线方程为y-0=2(x-0),即2x-y=0.故选A.5.C由g(x)=x2+1可得g'(x)=2x,令x2+1=2x,解得x1=x2=1,即a=1.,由h(x)=ln(x+2)可得h'(x)=1x+2,设F(x)=h(x)-h'(x)=ln(x+2)-1x+2当x=-1时,F(-1)=-1<0,当x=0时,F(0)=ln2-1=ln√4-ln√e>0,故-1<b<0.2由φ(x)=cos x(x ∈(0,π))可得φ'(x)=-sin x, 令cos x=-sin x,得sin x+cos x=0, 则√2sin (x +π4)=0,又x ∈(0,π),所以x+π4=π,得x=3π4,即c=3π4.综上可知,b<a<c.故选C.6.AD 根据函数f(x)=Asin(ωx+φ)的图象知A=2,T 4=2π3-π6=π2,∴T=2π,ω=2πT=1.根据五点法画图知,当x=π6时,ωx+φ=π6+φ=π2+2kπ,k ∈Z,∵|φ|<π2,∴φ=π3,∴f(x)=2sin (x +π3),∴f'(x)=2cos (x +π3),∴g(x)=f(x)+f'(x)=2sin (x +π3)+2cos (x +π3)=2√2sin (x +π3+π4) =2√2sin (x +7π12), 令x+7π12=π2+kπ,k ∈Z,解得x=-π12+kπ,k ∈Z,∴函数g(x)图象的对称轴方程为x=-π12+kπ,k ∈Z,A 正确;当x+7π12=π2+2kπ,k ∈Z 时,函数g(x)取得最大值2√2,B 错误;g'(x)=2√2cos (x +7π12),∵g'(x)≤2√2<3,∴不存在点P,使得在P点处的切线与直线l:y=3x-1平行,C错误;方程g(x)=2,即2√2sin(x+7π12)=2,∴sin(x+7π12)=√22,∴x+7π12=π4+2kπ,k∈Z或x+7π12=3π4+2kπ,k∈Z,∴方程的两个不同的解分别为x1,x2时,|x1-x2|的最小值为π2,D正确.故选AD.7.答案-2√1−x解析y=1−√1−x=√1−x)(1-√1−x)·(1+√1−x)=x(1+√1−x)1−(1−x)=1+√1−x.设y=1+√u,u=1-x,则y'x=y'u·u'x=(1+√u)'·(1-x)'=2√u ·(-1)=-2√1−x.8.答案1-ln2解析设f(x)=ln x+2,g(x)=ln(x+1),则f'(x)=1x ,g'(x)=1x+1.设f(x)上的切点为(x1,y1),g(x)上的切点为(x2,y2),则k=1x1=1x2+1,则x2+1=x1.又y1=ln x1+2,y2=ln(x2+1)=ln x1,所以k=y1-y2x1-x2=2,故x1=1k =12,y1=ln12+2=2-ln2.故b=y1-kx1=2-ln2-1=1-ln2.9.解析(1)由f(x)=ae x ln x+be x-1x,得f'(x)=(ae x ln x)'+(be x-1x)'=ae x ln x+ae xx +bex-1x-be x-1x2.(2)由题意得,切点既在曲线y=f(x)上,又在切线y=e(x-1)+2上,将x=1代入切线方程,得y=2,将x=1代入函数y=f(x),得f(1)=b,所以b=2.将x=1代入导函数f'(x)中,得f'(1)=ae=e,所以a=1.10.解析由f(x)=3x+cos2x+sin2x,得f'(x)=3-2sin2x+2cos2x,则a=f'(π4)=3-2sinπ2+2cosπ2=1.由y=x3得y'=3x2.当P点为切点时,切线的斜率k=3a2=3×12=3,又b=a3,∴b=1,∴切点P的坐标为(1,1),∴曲线y=x3上以点P为切点的切线方程为y-1=3(x-1),即3x-y-2=0.当P点不是切点时,设切点坐标为(x0,x03),此时切线的斜率k'=3x02,∴切线方程为y-x03=3x02(x-x0).∵P(a,b)在曲线y=x3上,且a=1,∴b=1,将P(1,1)代入切线方程,得1-x 03=3x 02(1-x 0),∴2x 03-3x 02+1=0,∴2x 03-2x 02-x 02+1=0,∴(x 0-1)2(2x 0+1)=0,解得x 0=-12(x 0=1舍去), ∴切点坐标为(-12,-18), 又切线的斜率为3×(-12)2=34,∴切线方程为y+18=34(x +12), 即3x-4y+1=0.综上,满足题意的切线方程为3x-y-2=0或3x-4y+1=0.。

函数求导计算练习题

函数求导计算练习题

函数求导计算练习题在微积分中,函数的导数是描述函数变化率的重要工具。

求导是计算函数导数的过程,它在数学、物理、工程等领域中有着广泛的应用。

本文将提供一些函数求导的计算练习题,帮助读者加深对函数求导的理解和掌握。

1. 练习题一:多项式函数的导数计算问题:求解函数f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1的导数。

解答:首先,我们需要知道多项式函数求导的基本规则。

对于函数f(x) = ax^n,其中a和n是常数,它的导数f'(x) = anx^(n-1)。

根据这个规则,我们可以按照以下步骤计算f(x)的导数:f'(x) = 4 * 3x^(4-1) - 3 * 2x^(3-1) + 2 * 5x^(2-1) - 1 * 4x^(1-1)简化后得到:f'(x) = 12x^3 - 6x^2 + 10x - 4因此,函数f(x)的导数为f'(x) = 12x^3 - 6x^2 + 10x - 4。

2. 练习题二:三角函数的导数计算问题:求解函数g(x) = sin(2x) + cos(3x)的导数。

解答:三角函数的导数计算相对复杂一些,需要使用导数的链式法则。

链式法则指出,如果y = f(u)和u = g(x)是可导函数,则复合函数y = f(g(x))的导数dy/dx = f'(g(x)) * g'(x)。

根据链式法则,我们可以按照以下步骤计算g(x)的导数:g'(x) = 2cos(2x) - 3sin(3x)因此,函数g(x)的导数为g'(x) = 2cos(2x) - 3sin(3x)。

3. 练习题三:指数函数和对数函数的导数计算问题:求解函数h(x) = e^x + ln(x)的导数。

解答:指数函数e^x和对数函数ln(x)都属于特殊的函数,它们的导数有特殊的规律。

对于指数函数e^x,它的导数仍然是e^x;对于对数函数ln(x),它的导数为1/x。

复合函数求导练习题

复合函数求导练习题

复合函数求导练习题精品资料欢迎下载复合函数求导练题一、选择题(共26小题)1.设$f(x)=\sqrt{\frac{x}{x+1}}$,则$f'(2)=\frac{1}{9}$。

2.设函数$f(x)=g(x)+x+\ln x$,曲线$y=g(x)$在点$(1,g(1))$处的切线方程为$y=2x+1$,则曲线$y=f(x)$在点$(1,f(1))$处的切线方程为$y=2x+2$。

3.下列式子不正确的是$(2sin2x)'=2cos2x$。

4.设$f(x)=sin2x$,则$f''(\frac{\pi}{4})=-1$。

5.函数$y=cos(2x+1)$的导数是$y'=-2sin(2x+1)$。

6.下列导数运算正确的是$(x^2)'=2x$。

7.下列式子不正确的是$(3x^2+xcosx)'=6x+cosx-xsinx$。

8.已知函数$f(x)=e^{2x}-3x$,则$f'(0)=2$。

9.函数$f(x)=\frac{1}{1+e^x}$的导数是$f'(x)=-\frac{e^x}{(1+e^x)^2}$。

10.已知函数$f(x)=sin2x$,则$f'(x)=2cos2x$。

11.$y=e^{sinx\ cosx\ sinx}$,则$y'=\frac{d}{dx}(e^{sinx\ cosx\ sinx})=cosx\ cos^2x\ e^{sinx\ cosx\ sinx}$,所以$y'(-\frac{\pi}{4})=\frac{\sqrt{2}}{4}$。

12.下列求导运算正确的是$(e^{2x})'=2e^{2x}$。

13.若$f(x)=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{1-x}}$,则函数$f(x)$可以是$ln\frac{1+\sqrt{x}}{\sqrt{x}}$。

复合函数求导练习题

复合函数求导练习题
将y=sin2x写成,
y=u2,u=sinx的形式.
对外函数求导为y′=2u,
对内函数求导为u′=cosx,
故可以得到y=sin2x的导数为
y′=2ucosx=2sinxcosx=sin2x
故选D
22.(2010春•朝阳区期末)函数 的导函数是( )
A.f'(x)=2e2xB.
C. D.
【解答】解:对于函数 ,
C. D.
8.已知函数f(x)=e2x+1﹣3x,则f′(0)=( )
A.0B.﹣2C.2e﹣3D.e﹣3
9.函数 的导数是( )
A. B.
C. D.
10.已知函数f(x)=sin2x,则f′(x)等于( )
A.cos2xB.﹣cos2xC.sinxcosxD.2cos2x
11.y=esinxcosx(sinx),则y′(0)等于( )
【解答】解:函数的导数y′=﹣sin(2x+1)(2x+1)′=﹣2sin(2x+1),
故选:C
6.(2014春•福建月考)下列导数运算正确的是( )
A.(x+ )′=1+ B.(2x)′=x2x﹣1C.(cosx)′=sinxD.(xlnx)′=lnx+1
【解答】解:根据导数的运算公式可得:
A,(x+ )′=1﹣ ,故A错误.
B,(2x)′=lnx2x,故B错误.
C,(cosx)′=﹣sinx,故C错误.
D.(xlnx)′=lnx+1,正确.
故选:D
7.(2013春•海曙区校级期末)下列式子不正确的是( )
A.(3x2+xcosx)′=6x+cosx﹣xsinxB.(sin2x)′=2cos2x

高二数学导数计算试题答案及解析

高二数学导数计算试题答案及解析

高二数学导数计算试题答案及解析1.已知函数,则它的导函数是()A.B.C.D.【答案】B【解析】,【考点】复合函数的导数.2.已知函数f(x)的导函数为f′(x),满足f(x)=2xf′(2)+x3,则f′(2)等于(). A.﹣8B.﹣12C.8D.12【答案】B.【解析】,;令,则,得.【考点】导数的计算.3.已知函数(1)若在上是增函数,求的取值范围;(2)若在处取得极值,且时,恒成立,求的取值范围.【答案】(1);(2)(-∞,-1)∪(2,+∞).【解析】解题思路:(1)利用“若函数在某区间上单调递增,则在该区间恒成立”求解;(2)先根据在处取得极值求得值,再将恒成立问题转化为求,解关于的不等式即可.规律总结:若函数在某区间上单调递增,则在该区间恒成立;“若函数在某区间上单调递减,则在该区间恒成立;求函数最值的步骤:①求导函数;②求极值;③比较极值与端点值,得出最值.试题解析:(1)因在上是增函数,则f′(x)≥0,即3x2-x+b≥0,∴b≥x-3x2在(-∞,+∞)恒成立.=,∴b≥.设g(x)=x-3x2,当x=时,g(x)max(2)由题意,知f′(1)=0,即3-1+b=0,∴b=-2.x∈[-1,2]时,f(x)<c2恒成立,只需f(x)在[-1,2]上的最大值小于c2即可因f′(x)=3x2-x-2,令f′(x)=0,得x=1,或x=-.∵f(1)=-+c,f(-)=+c,f(-1)=+c,f(2)=2+c,∴f(x)=f(2)=2+c,max∴2+c<c 2,解得c>2,或c<-1,所以c的取值范围为(-∞,-1)∪(2,+∞).【考点】1.函数的单调性;2.函数的极值、最值;3.不等式恒成立问题.4.记,,…,.若,则的值为 .【答案】【解析】由f(x)=xcosx,得f(1)(x)=cosx﹣xsinx,f(2)(x)=﹣sinx﹣sinx﹣xcosx=﹣2sinx﹣xcosx,f(3)(x)=﹣2cosx﹣cosx+xsinx=﹣3cosx+xsinx,f(4)(x)=3sinx+sinx+xcosx=4sinx+xcosx,f(5)(x)=4cosx+cosx﹣xsinx=5cosx﹣xsinx,…,则f(0)+f(1)(0)+f(2)+…+f(2013)(0)=0+1+0﹣3+0+5+0﹣…+2013=(1﹣3)+(5﹣7)+…+(2009﹣2011)+2013=﹣2×503+2013=1007,故答案为:1007.【考点】导数的运算.5.为实数,(1)求导数;(2)若,求在[-2,2] 上的最大值和最小值.【答案】⑴ (2) 最大值为最小值为【解析】⑴将括号打开函数变成多项式函数来求导数;也可利用积的导数法则来求解;(2)由结合(1)的结果可求出a值,从而获得的具体解析式,进而获得导数,令其等于零,求得其可能极值,并求出端点的函数值,比较其大小就可求出在[-2,2] 上的最大值和最小值.试题解析:⑴由原式得∴⑵由得,此时有.由得或x="-1" ,又所以f(x)在[-2,2]上的最大值为最小值为【考点】1.函数求导;2.函数的最值.6.已知函数在上不单调,则的取值范围是()A.B.C.D.【答案】A【解析】此题考查导数的应用;,所以当时,原函数递增,当原函数递减;因为在上不单调,所以在上即有减又有增,所以或,或,故选A.【考点】函数的单调性与导数.7.设,若,则()A.B.C.D.【答案】A【解析】因为,所以当时,解得,所以。

高中数学导数的计算精选题目(附答案)

高中数学导数的计算精选题目(附答案)

高中数学导数的计算精选题目(附答案)(1)基本初等函数的导数公式(2)导数运算法则①[f (x )±g (x )]′=f ′(x )±g ′(x );②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 当g (x )=c 时,[cf (x )]′=cf ′(x ).③⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).(3)复合导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.求下列函数的导数: (1)y =10x ; (2)y =lg x ; (3)y =log 12x ;(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1.2.求下列函数的导数: (1)y =⎝ ⎛⎭⎪⎫1e x ;(2)y =⎝ ⎛⎭⎪⎫110x ;(3)y =lg 5; (4)y =3lg 3x ; (5)y =2co S 2x2-1. 3.(1)y =x 3·e x ; (2)y =x -S i n x 2co S x2; (3)y =x 2+log 3x; (4)y =e x +1e x -1.4.求下列函数的导数: (1)y =cos x x ; (2)y =xS i n x +x ; (3)y =1+x 1-x +1-x1+x; (4)y =lg x -1x 2.5.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 6.求过曲线y =co S x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.7.求下列函数的导数. (1)y =1-2x 2; (2)y =e S i n x ;(3)y =S i n ⎝ ⎛⎭⎪⎫2x +π3;(4)y =5log 2(2x +1) 8.求下列函数的导数. (1)f (x )=(-2x +1)2; (2)f (x )=l n (4x -1); (3)f (x )=23x +2; (4)f (x )=5x +4; (5)f (x )=S i n ⎝ ⎛⎭⎪⎫3x +π6;(6)f (x )=co S 2x .9.求下列函数的导数. (1)y =x 1+x 2;(2)y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2.10.求下列函数的导数. (1)y =S i n 2x3; (2)y =S i n 3x +S i n x 3; (3)y =11-x 2; (4)y =x l n (1+x ).11. 设f (x )=l n (x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值.12.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23 D .1参考答案:1.解: (1)y ′=(10x )′=10x l n 10. (2)y ′=(lg x )′=1x ln 10.(3)y ′=(log 12x )′=1x ln 12=-1x ln 2.(4)y ′=(4x 3)′=(x 34)′=34x -14=344x.(5)∵y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1=S i n 2x2+2S i n x 2co S x 2+co S 2x 2-1 =S i n x ,∴y ′=(S i n x )′=co S x .2.解:(1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x l n 1e =-1e x =-e -x .(2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x l n 110=-ln 1010x=-10-x l n 10.(3)∵y =lg 5是常数函数,∴y ′=(lg 5)′=0. (4)∵y =3 lg 3x =lg x ,∴y ′=(lg x )′=1x ln 10.(5)∵y =2co S 2x2-1=co S x ,∴y ′=(co S x )′=-S i n x . 3.解: (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x . (2)∵y =x -12S i n x ,∴y ′=x ′-12(S i n x )′=1-12co S x . (3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln 3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.4.解:(1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos xx 2.(2)y ′=(xS i n x )′+(x )′=S i n x +x co S x +12x.(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x -2,∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln 10+2x 3. 5.解:如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.6.解:∵y =co S x ,∴y ′=(co S x )′=-S i n x ,∴曲线在点P π3,12处的切线的斜率为k =y ′|x =π3=-S i n π3=-32,∴过点P 且与切线垂直的直线的斜率为233,∴满足题意的直线方程为y -12=233⎝ ⎛⎭⎪⎫x -π3,即233x -y +12-239π=0. 7.解: (1)设y =u 12,u =1-2x 2, 则y ′=⎝ ⎛⎭⎪⎫u 12′(1-2x 2)′=⎝ ⎛⎭⎪⎫12u -12·(-4x ) =12(1-2x 2)-12(-4x )=-2x 1-2x 2 .(2)设y =e u ,u =S i n x ,则y x ′=y u ′·u x ′=e u ·co S x =e S i n x co S x . (3)设y =S i n u ,u =2x +π3,则y x ′=y u ′·u x ′=co S u ·2=2co S ⎝ ⎛⎭⎪⎫2x +π3.(4)设y =5log 2u ,u =2x +1, 则y ′=5(log 2u )′(2x +1)′=10u ln 2=10(2x +1)ln 2.8.解:(1)设y =u 2,u =-2x +1,则y ′=y u ′·u x ′=2u ·(-2)=-4(-2x +1)=8x -4. (2)设y =l n u ,u =4x -1, 则y ′=y u ′·u x ′=1u ·4=44x -1.(3)设y =2u ,u =3x +2,则y ′=y u ′·u x ′=2u l n 2·3=3l n 2·23x +2. (4)设y =u ,u =5x +4, 则y ′=y u ′·u x ′=12u·5=525x +4.(5)设y =S i n u ,u =3x +π6,则y ′=y u ′·u x ′=co S u ·3=3co S ⎝ ⎛⎭⎪⎫3x +π6.(6)法一:设y =u 2,u =co S x , 则y ′=y u ′·u x ′=2u ·(-S i n x ) =-2co S x ·S i n x =-S i n 2x ; 法二:∵f (x )=co S 2x =1+cos 2x 2=12+12co S 2x , 所以f ′(x )=⎝ ⎛⎭⎪⎫12+12cos 2x ′=0+12·(-S i n 2x )·2=-S i n 2x . 9.解: (1)y ′=(x 1+x 2)′ =x ′1+x 2+x (1+x 2)′ =1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2.(2)∵y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2=x (-S i n 2x )co S 2x =-12xS i n 4x ,∴y ′=⎝ ⎛⎭⎪⎫-12x sin 4x ′=-12S i n 4x -x2co S 4x ·4 =-12S i n 4x -2x co S 4x .10.解:(1)y ′=⎝ ⎛⎭⎪⎫sin 2x 3′=2S i n x 3·⎝ ⎛⎭⎪⎫sin x 3′ =2S i n x 3·co S x 3·⎝ ⎛⎭⎪⎫x 3′=13S i n 2x3.(2)y ′=(S i n 3x +S i n x 3)′=(S i n 3x )′+(S i n x 3)′ =3S i n 2x co Sx +co S x 3·3x 2=3S i n 2x co S x +3x 2co S x 3. (3)y ′=0-(1-x 2)′1-x 2=-12(1-x 2)-12(1-x 2)′1-x 2=x (1-x 2)-121-x 2=x(1-x 2) 1-x 2.(4)y ′=x ′l n (1+x )+x []ln (1+x )′ =l n (1+x )+x 1+x. 11.解: 由曲线y =f (x )过(0,0)点,可得l n 1+1+b =0,故b =-1.由f (x )=l n (x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a ,此即为曲线y =f (x )在点(0,0)处的切线的斜率.由题意,得32+a =32,故a =0.12.解析:选A 依题意得y ′=e -2x ·(-2)=-2e -2x ,y ′|x =0=-2e-2×0=-2.曲线y =e-2x+1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2、y =0与y =x 的图象,因为直线y =-2x +2与y =x的交点坐标是⎝ ⎛⎭⎪⎫23,23,直线y =-2x +2与x 轴的交点坐标是(1,0),结合图象可得,这三条直线所围成的三角形的面积等于12×1×23=13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数求导1. 简单函数的定义求导的方法(一差、二比、三取极限) (1)求函数的增量)()(00x f x x f y -∆+=∆;(2)求平均变化率xx f x x f x y ∆-∆+=∆∆)()(00。

(3)取极限求导数=)(0'x f xx f x x f x ∆-∆+→∆)()(lim 0002.导数与导函数的关系:特殊与一般的关系。

函数在某一点)(0'x f 的导数就是导函数)(x f ,当0x x =时的函数值。

3.常用的导数公式及求导法则: (1)公式①0'=C ,(C 是常数) ②x x cos )(sin '= ③x x sin )(cos '-=④1')(-=n n nxx⑤a a a xx ln )('=⑥xx e e =')(⑦a x x a ln 1)(log '=⑧x x 1)(ln '= ⑨x x 2'cos 1)(tan = ⑩(xx 2'sin 1)cot -= (2)法则:''')]([)]([)]()([x g x f x g x f ±=±, )()()()()]()(['''x f x g x g x f x g x f +=)()()()()(])()([2'''x g x f x g x g x f x g x f -=例:(1)()324y x x =- (2)sin xy x=(3)3cos 4sin y x x =- (4)()223y x =+(5)()ln 2y x =+复合函数的导数如果函数)(x ϕ在点x 处可导,函数f (u )在点u=)(x ϕ处可导,则复合函数y= f (u )=f [)(x ϕ]在点x 处也可导,并且(f [)(x ϕ])ˊ=[])(x f ϕ')(x ϕ'或记作 x y '=u y '•x u '熟记链式法则若y= f (u ),u=)(x ϕ⇒ y= f [)(x ϕ],则x y '=)()(x u f ϕ''若y= f (u ),u=)(v ϕ,v=)(x ψ⇒ y= f [))((x ψϕ],则x y '=)()()(x v u f ψϕ'''(2)复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成的,且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。

在求导时要由外到内,逐层求导。

例1函数4)31(1x y -=的导数.解:4)31(1x y -=4)31(--=x . 设4-=uy ,x u 31-=,则x u x u y y '''⋅=x u x u )'31()'(4-⋅=-)3(45-⋅-=-u 55)31(1212---==x u 5)31(12x -=.例2求51xxy -=的导数. 解:511⎪⎭⎫⎝⎛-=x x y , '541151'⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-=-x x x x y 254)1()1(1151x x x x x ----⋅⎪⎭⎫⎝⎛-=-254)1(1151x x x -⋅⎪⎭⎫ ⎝⎛-=-5654)1(51---=x x . 例3 求下列函数的导数x y 23-=解:(1)x y23-=令 u=3 -2x ,则有 y=u ,u=3 -2x由复合函数求导法则x u x u y y '∙'='有y ′=()x ux u )23('-'=xu 231)2(21--=-∙在运用复合函数的求导法则达到一定的熟练程度之后,可以不再写出中间变量u ,于是前面可以直接写出如下结果:y ˊ=xx x231)23(2321--='-∙-在运用复合函数求导法则很熟练之后,可以更简练地写出求导过程:y ˊ=xx231)2(2321--=-∙-例4求下列函数的导数 (1)y=x 21-cos x (2)y=ln (x +21x +)解:(1)y=x 21-cos x由于y=x 21-cos x 是两个函数x 21-与cos x 的乘积,而其中x 21-又是复合函数,所以在对此函数求导时应先用乘积求导法则,而在求x 21-导数时再用复合函数求导法则,于是y ˊ=(x 21-)ˊcos x -x 21-sin x=x xcos 212)2(---x 21-sin x=xx 21cos ---x 21-sin x(2)y=ln (x +21x +) 由于y=ln (x +21x +)是u= x +21x +与y=ln u 复合而成,所以对此函数求导时,应先用复合函数求导法则,在求x u '时用函数和的求导法则,而求(21x +)′的导数时再用一次复合函数的求导法则,所以y ˊ=211x x ++• [1+(21x +)ˊ]=211x x ++•⎪⎪⎭⎫ ⎝⎛++21221x x=211x x ++•2211x x x +++=211x +例 5 设)1ln(++=x x y 求 y '. 解 利用复合函数求导法求导,得)1(11])1[ln(222'++++='++='x x x x x x y ])1(1[1122'++++=x x x ])1(1211[11222'+++++=x x x x 11]11[11222+=++++=x x x x x .1.求下函数的导数.(1)cos 3xy = (2)y =(1)y =(5x -3)4 (2)y =(2+3x )5 (3)y =(2-x 2)3 (4)y =(2x 3+x )2(1)y =32)12(1-x (2)y =4131+x (3)y =sin(3x -6π) (4)y =cos(1+x 2)⑴32)2(x y -=; ⑵2sin x y =;⑶)4cos(x y -=π; ⑷)13sin(ln -=x y .1.求下列函数的导数(1) y =sin x 3+sin 33x ; (2)122sin -=x x y (3))2(log 2-x a2.求)132ln(2++x x 的导数一、选择题(本题共5小题,每题6分,共30分) 1. 函数y =2)13(1-x 的导数是( ) A. 3)13(6-x B. 2)13(6-x C. -3)13(6-x D. -2)13(6-x3. 函数y =sin (3x +4π)的导数为( )A. 3sin (3x +4π) B. 3cos (3x +4π) C. 3sin 2(3x +4π) D. 3cos 2(3x +4π)4. 曲线nx y =在x=2处的导数是12,则n=( ) A. 1B. 2C.3D. 45. 函数y =cos2x +sin x 的导数为( ) A. -2sin2x +xx2cos B. 2sin2x +x x2cos C. -2sin2x +xx 2sinD. 2sin2x -xx 2cos6. 过点P (1,2)与曲线y=2x 2相切的切线方程是( ) A. 4x -y -2=0 B. 4x+y -2=0 C. 4x+y=0D. 4x -y+2=0二、填空题(本题共5小题,每题6分,共30分)8. 曲线y =sin3x 在点P (3π,0)处切线的斜率为___________。

9. 函数y =x sin (2x -2π)cos (2x +2π)的导数是 。

10. 函数y =)32cos(π-x 的导数为 。

11. ___________,2)(,ln )(00'===x x f x x x f 则。

例2.计算下列定积分(1)2(1)x x dx +⎰; (2)2211()xe dx x +⎰(3)20sin xdx π⎰5.42xe dx -⎰的值等于 ( )42()A e e -- (B) 42e e + (C) 422e e +- (D) 422e e -+-9.计算由曲线36y x x =-和2y x =所围成的图形的面积.复合函数的导数1.C2.B3.B4.A5.A6.A7.y =u 3,u =1+sin3x 8.-39.y ′=21sin4x +2x cos4x 10.)32cos()32sin(ππ---x x 11.x x x 1sin 1cos 122⋅。

相关文档
最新文档