2017-2018学年重庆八中九年级(上)期末数学试卷 (解析版)
重庆八中2018-2019(上)期末考试初三年级数学试题

重庆八中2018-2019(上)期末考试初三年级数学试题(全卷共五个大题,满分150分,考试时间120分钟)2018年1月注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答.2.作答前认真阅读答题卡上的注意事项.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为(2b a -,244ac b a -),对称轴公式为2b x a=-.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D的四个答案,其中只有一个是正确的.请将答题卡...上对应题目的正确答案标号涂黑. 1.下列各数中最小的数是( )A .5-B .1-C .0D .1 2.下列图形中是轴对称图形的是( )3.计算()322y x 正确的结果是( )A .366y x B .368y x C .y x 28 D .y x 68 4.下列调查中,最适合采用全面调查(普查)方式的是( ) A .对重庆市初中学生每天自主学习时间的调查 B .对渝北区市民观看电影《芳华》情况的调查C .对重庆八中男生311寝室本学期期末体育考试成绩的调查D .对江北区市民了解江北区创“全国文明城区”情况的调查 5.估计231-的值应在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 6.若,,412-==b a 则代数式182-+b a 的值为( ) A .5 B .3 C .1 D .1-7.如果分式63-x x有意义,则x 需要满足的条件是( )A .2=xB .2>xC .2≠xD .2<x8.若ABC ∆~DEF ∆,且两三角形对应中线的比为3:4,则它们的面积之比为( ) A .3:4 B .6:8 C .9:16 D .9:129.如图,等边三角形ABC 的边长为2,AB CD ⊥于D ,若以点C 为圆心,CD 为半径画弧,则图形阴影部分的面积是( )A .π213-B .π-32C .π3432-D .π3232-10.下列图形都是由同样大小的黑色圆点按照一定规律所组成的,其中第①个图形中一共有6个黑色圆点,第②个图形中一共有15个黑色圆点,第③个图形中一共有28个黑色圆点,……,按此规律排列下去,第⑥个图形中的黑色圆点的个数为( )A .45B .61C .66D .91 11. 如图所示是某游乐场“激流勇进”项目的示意图,游船从D 点水平运动到A 处后,沿着坡度为1:3=i 的斜坡AB 到达游乐场项目的最高点B ,然后沿着俯角为030,长度为m 42的斜坡BC 运动,最后沿斜坡CD 俯冲到达点D ,完成一次“激流勇进”.如果AD CDA ,037=∠的长为()m 32152+,则斜坡CD 的长约为( ).(参考数据:75.037tan 8.037cos 6.037sin 0≈≈≈,,) A .m 36 B .m 45 C .m 48 D .m 5512.若关于x 的方程x xx a x ax ---+=-3333的解为整数,且不等式组⎩⎨⎧<->-0732a x x 无解,则所有满足条件的非负整数a 的和为( )A .2B .3C .7D .10二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上. 13.2017年12月24日“八中之春”在重庆市大剧院成功演出,其中播放的王俊凯祝福母校八十周年庆的视频,当天网络点击量达到350000次,数字350000用科学计数法表示为 .14.()=--+0230sin 212π .15.如图,AB 是圆O 的直径,C 、D 为圆上的两点,若∠BAC =55°,则∠ADC 为 度.16.在重庆八中“青春飞扬”艺术节的钢琴演奏比赛决赛中,参加比赛的10名选手成绩统计如图所示,则这10名学生成绩的中位数是 .17.小明和小亮分别从同一直线跑道A 、B 两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的35倍,并匀速运动达到B 端,且小明到达B 端后停止运动,小亮匀速跑步到达A 端后,立即按原速返回B 端(忽略调头时间),回到B 端后停止运动,已知两人相距的路程S (千米)与小亮出发时间t (秒)之间的关系如图所示,则当小明到达B 端后,经过 秒,小亮回到B 端.18.正方形ABCD 中的边长为4,对角线AC 、BD 交于点O ,E 为DC 边上一点,连接AE 交BD 于F ,BG ⊥AE于点G ,连接OG ,若,045=∠DGE 则=∆FGO S .三、解答题(本大题共2小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 19.如图,已知射线BM 平分∠ABC ,点D 是BM 上一点,且DE ∥BC 交AB 于E ,若∠EDB =28°,求∠AED 的度数.20.随着迪士尼公司出品的电影《寻梦环游记》的热播,公司现需要了解该节目在中学生中的受欢迎程度,走进重庆八中随机抽取部分学生就“你是否喜欢看《寻梦环游记》?”进行问卷调查,并将调查后的结果统计后绘制成如图所示的不完整条形统计图和扇形统计图,请你结合图中信息解答下列问题. (1)参与调查的学生共有 人,并请补全条形统计图;(2)现在了解到3名不喜欢的学生分别是小王、小李、小张,若从他们3人中随机抽取2名同学进行座谈,请用列表法或画树状图法,求小王和小李同时被选中的概率.四、解答题(本大题共5小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 21.计算(1)()()y x x y x 2322--- (2)aa a a a a 32313432+-÷⎪⎭⎫ ⎝⎛+---22.如图所示,在平面直角坐标系中,一次函数()01≠+=a ax y 与反比例函数()0≠=k xky 的图像交于D A 、两点,x AB ⊥轴于点B ,AOB AOB ∆=∠,23tan 的面积为3.(1)求反比例函数和一次函数的解析式; (2)求AOD ∆的面积.23.2017年11月,重庆八中为了更好第打造“书香校园”,从新华书店采购了一批文学著作.其中,A 著作180本,每本单价40元,B 著作350本,每本单价60元.(1)新书一到学校图书馆,A 、B 两著作很快便被借阅一空.于是,学校再用不超过13800元的资金从新华书店增购270本A 、B 两著作,问A 著作至少增购了多少本?(2)八中学生对A 、B 著作的阅读热情被媒体报道后,获得了社会好评,新书书店为了满足更多读者的阅读需求,决定将A 著作每本降价10元,B 著作每本降价()0%>a a .于是,仅在12月第一周,A 著作的销量就比重庆八中第一次采购的A 著作多了%914a ,B 著作的销量比重庆八中第一次采购的B 著作多了()%20+a ,且12月份第一周A 、B 两著作的销售总额达到了30600元.求a 的值.24.已知:在Rt △ABC 中,CD 是斜边AB 上的中线,点E 是直角边AC 上一点,连接DE 、BE . (1)若DE ⊥AB 且BC =3,AC =4,如图1,求△CDE 的面积; (2)∠AED =∠BEC ,如图2,求证:F 是CD 的中点.25.一个三位自然数是s ,将它任意两个数位的数字对调后得到一个首位不为0的新三位自然数's ('s 可以与s 相同),设xyz s =',在's 所有的可能情况中,当z y x -+3最大时,我们称此时的's 是s 的“梦想数”,并规定()2223z y x s P -+=.例如125按上述方法可得到新数有:217、172、721,因为,,,,20122121672022112732 =-+=-+=-+ 所以172是172的“梦想数”,此时,()1442731127222=-⨯+=P .(1)求512的“梦想数”及()512P 的值;(2)设三位自然数,ab s 1=交换其个位与十位上的数字得到新数's ,若4887'729=+s s ,且()s P 能被7整除,求s 的值.五、解答题(本大题共1小题,每小题12分,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡...中对应的位置上. 26.如图,在平面直角坐标系中,抛物线332232-+-=x x y 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点E ,直线CE 交抛物线于点F (异于点C ),直线CD 交x 轴交于点G .(1)如图①,求直线CE 的解析式和顶点D 的坐标;(2)如图①,点P 为直线CF 上方抛物线上一点,连接PC 、PF ,当△PCF 的面积最大时,点M 是过P 垂直于x 轴的直线l 上一点,点N 是抛物线对称轴上一点,求NO MN FM ++的最小值;(3)如图②,过点D 作DG DI ⊥交x 轴于点I ,将△GDI 沿射线GB 方向平移至'''I D G ∆处,将'''I D G ∆绕点'D 逆时针旋转()01800<<αα,当旋转到一定度数时,点'G 会与点I 重合,记旋转过程中的'''I D G ∆为'''''I D G ∆,若在整个旋转过程中,直线G ’’I ’’分别交x 轴和直线GD ’于点K 、L 两点,是否存在这样的K 、L ,使△GKL 为以∠LGK 为底角的等腰三角形?若存在,求此时GL 的长.重庆八中2018-2019学年度(上)期末考试初三年级数学试题答案1-12 ABBCB CCCAD BC13、5105.3⨯ 14、 32 15、 35 16、8.5 17、 54 18、1514 19、56°20、 30,喜欢处补9 概率为31 21、222y xy x +- a a 22-22、x y 6=,1+=x y (2)25 23、至少120 (2) a=20 24、3221延长FE 过D 作DM 垂直AC 交FE 延长线于M 证DMF ≌CBF 得到结论 法二:过D 作DH ⊥CB 于H 交BF 于N 证CEDN 为平行四边形 25、(1)152,()72512=P(2)3a+b=13 得到s=134 ,141 127 最后只有s=134 26、(1)323-=x y D ()32, (2)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛837,2323,3P F , 最小值为8197 (3)略。
2017-2018学年重庆市江津区九年级(上)期末数学试卷(解析版)

2017-2018学年重庆市江津区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1. 下列交通标志中是中心对称图形的是()A. B. C. D.【答案】C【解析】解:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,故此选项正确;D.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选C.2. 下列方程中是一元二次方程的是()A. x2﹣1=0B. y=2x2+1C. x+=0D. x2+y2=1【答案】A【解析】解:A.x2﹣1=0是一元二次方程,故A正确;B.y=2x2+1是二次函数,故B错误;C.x+=0是分式方程,故C错误;D.x2+y2=1中含有两个未知数,故D错误.故选A.3. 下列说法正确的是()A. 若你在上一个路口遇到绿灯,则在下一路口必遇到红灯B. 某蓝球运动员2次罚球,投中一个,则可断定他罚球命中的概率一定为50%C. “明天我市会下雨”是随机事件D. 若某种彩票中奖的概率是1%,则买100张该种彩票一定会中奖【答案】C【解析】解:A.若你在上一个路口遇到绿灯,则在下一路口不一定遇到红灯,故本选项错误;B.某蓝球运动员2次罚球,投中一个,这是一个随机事件,但不能断定他罚球命中的概率一定为50%,故本选项错误;C.明天我市会下雨是随机事件,故本选项正确;D.某种彩票中奖的概率是1%,买100张该种彩票不一定会中奖,故该选项错误.故选C.4. 如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A. 45°B. 35°C. 25°D. 20°【答案】A【解析】试题分析:由OA⊥OB知∠AOB=90°,再由圆周角定理可知∠ACB的度数为45°.试题解析:∵OA⊥OB∴∠AOB=90°∴∠ACB=∠AOB=×90°=45°.故选C.考点:圆周角定理.5. 一元二次方程2x2﹣6x﹣3=0根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 无法确定【答案】B【解析】解:∵2x2﹣6x﹣3=0,∴△=(﹣6)2﹣4×2×(﹣3)=36+24=60>0,∴方程有两个不相等的实数根.故选B.6. 某市2004年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2006年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A. 300(1+x)=363B. 300(1+x)2=363C. 300(1+2x)=363D. 363(1﹣x)2=300【答案】B【解析】试题分析:知道2004年的绿化面积经过两年变化到2006,绿化面积成为363,设绿化面积平均每年的增长率为x,由题意可列出方程.解:设绿化面积平均每年的增长率为x,300(1+x)2=363.故选B.考点:由实际问题抽象出一元二次方程.7. 如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A. 50°B. 60°C. 70°D. 80°【答案】B【解析】试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.考点:旋转的性质.8. 在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A. B. C. D.【答案】A【解析】试题分析:本题可先由二次函数y=ax2+bx+c图象得到字母系数的正负,再与一次函数y=ax+b的图象相比较看是否一致.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.考点:二次函数的图象;一次函数的图象.9. 如图,CD是⊙O的直径,弦AB⊥CD,垂足为M,若CM=8,DM=12,则AB等于()A. 4B. 8C. 8D. 4【答案】C【解析】解:如图,连接OA.∵CD是⊙O的直径,CM=8,DM=12,∴OA=OC=10,AM=BM,∴OM=OC﹣CM=10﹣8=2.在Rt△AOM中,由勾股定理可得:AM== =,∴AB=2AM=.故选C.10. 点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣(x﹣1)2+2的图象上,则y1,y2,y3的大小关系是()A. y3>y2>y1B. y3>y1=y2C. y1>y2>y3D. y1=y2>y3【答案】D【解析】解:∵y=﹣(x﹣1)2+2,∴图象的开口向上,对称轴是直线x=1,P1(﹣1,y1)关于直线x=1的对称点是(3,y1).∵1<3<5,∴y1=y2>y3.故选D.11. 某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C. 暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D. 掷一个质地均匀的正六面体骰子,向上的面点数是4【答案】D【解析】试题解析:A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为,故A选项错误;B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是:;故B选项错误;C、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故C选项错误;D、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为≈0.17,故D选项正确.故选D.考点:利用频率估计概率.视频12. 如图,在等腰Rt△ABC中,∠A=90°,AC=12,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转90°得到线段OD,要使点D恰好落在BC边上,则OP的长等于()A. 5B. 3C. 3D. 3【答案】B【解析】解:如图,过点D作DE⊥AC于E,则∠DOE+∠AOP=90°,∠DOE+∠ODE=90°,∴∠ODE=∠AOP.在△DEO和△OAP中,∵∠OED=∠P AO,∠AODE=∠POA,OD=OP,∴△DEO≌△OAP(AAS),∴DE=OA=3,AP=OE.在等腰Rt△ABC中,∵∠C=45°,DE⊥AC,∴CE=DE=3,∴AP=OE=AC﹣OA﹣CE=12﹣3﹣3=6,∴OP==.故选B.点睛:本题考查了旋转的性质、等腰直角三角形的性质以及全等三角形的判定与性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.二、填空题(本大题共6小题,每小题4分,共24分)13. 抛物线y=(x﹣1)2+3的对称轴是直线_____.【答案】x=1【解析】解:∵y=(x﹣1)2+3,∴其对称轴为x=1.故答案为:x=1.14. 等腰三角形的底和腰是方程x2﹣6x+8=0的两根,则这个三角形的周长为_____.【答案】10【解析】试题分析:∵x2-6x+8=0,∴(x-2)(x-4)=0,解得:x=2或x=4,∵等腰三角形的底和腰是方程x2-6x+8=0的两根,∴当2是等腰三角形的腰时,2+2=4,不能组成三角形,舍去;当4是等腰三角形的腰时,2+4>4,则这个三角形的周长为2+4+4=10.∴这个三角形的周长为10.故答案为:10.考点:等腰三角形的性质;解一元二次方程-因式分解法.15. 二次函数y=ax2+bx+c的图象如图所示,当函数值y<0时,自变量x的取值范围是_____.【答案】﹣1<x<3【解析】试题解析:函数值y<0时,自变量x的取值范围是-1<x<3.考点:二次函数与不等式(组).16. 在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出1个小球,记下数字,前后两次的数字分别记为x,y,并以此确定点P(x,y),那么点P在抛物线y=﹣x2+3x上的概率为_____.【答案】【解析】解:画树状图如下:17. 如图,在Rt△ABC中,∠C=90°,∠BAC=60°,将△ABC绕点A逆时针旋转60°后得到△ADE,若AC=1,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是_____(结果保留π).【答案】【解析】解:∵∠C=90°,∠BAC=60°,AC=1,∴AB=2,扇形BAD的面积是:= ,在直角△ABC中,BC=AB•sin60°=2×= ,AC=1,∴S△ABC=S△ADE= AC•BC= ×1×= .扇形CAE的面积是:= ,则阴影部分的面积是:S扇形DAB+S△ABC﹣S△ADE﹣S扇形ACE= =.故答案为:.18. 如图,一段抛物线y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为_____.【答案】-6【解析】解:∵一段抛物线:y=﹣x(x﹣5)(0≤x≤5),∴图象与x轴交点坐标为:(0,0),(5,0).∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,由2018÷5=403…3可知抛物线C404在x轴下方,∴抛物线C404的解析式为y=(x﹣2015)(x﹣2020).∵P(2018,m)在第404段抛物线C404上,∴m=(2018﹣2015)(2018﹣2020)=﹣6.故答案为:﹣6.点睛:本题考查了二次函数图象与几何变换,根据平移规律得出解析式是解题的关键.三、解答题(本大题共2小题,每小题8分,共16分)19. 解方程:(1)x2﹣2x=0(2)x2﹣6x﹣1=0.【答案】(1) x1=0,x2=2;(2) x1=3+,x2=3﹣.【解析】试题分析:(1)利用因式分解法求解即可;(2)利用求根公式求解即可.试题解析:解:(1)分解因式可得:x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2;(2)在x2﹣6x﹣1=0中,a=1,b=﹣6,c=﹣1,∴△=(﹣6)2﹣4×1×(﹣1)=40,∴x==3±,∴x1=3+,x2=3﹣.20. 已知:如图,在坐标平面内△ABC的顶点坐标分别为A(0,2),B(3,3),C(2,1),(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC关于原点对称的△A1B1C1,并直接写出点C1点的坐标;(2)画出△ABC绕点A顺时针方向旋转90°后得到的△A2B2C2,并直接写出C2点的坐标.【答案】(1)见解析;(2)见解析【解析】试题分析:(1)根据网格结构找出点A、B、C关于原点对称的点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点C1的坐标;(2)根据网格结构找出点A、B、C绕点A顺时针方向旋转90°后对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点C2的坐标.试题解析:解:(1)△A1B1C1如图所示,C1(﹣2,﹣1);(2)△A2B2C2如图所示,C2(﹣1,0).点睛:本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.四、解答题(本大题共4小题,每小题10分,共40分)21. 在体育活动课中,体育老师随机抽取了九年级甲、乙两班部分学生进行某体育项目的测试,并对成绩进行统计分析,绘制了频数分布表,请你根据表中的信息完成下列问题:(1)频数分布表中a= ,b= ;(2)如果该校九年级共有学生900人,估计该校该体育项目的成绩为良和优的学生有多少人?(3)已知第一组中有两个甲班学生,第二组中只有一个乙班学生,老师随机从这两个组中各选一名学生对体育活动课提出建议,则所选两人正好是甲班和乙班各一人的概率是多少?【答案】(1)0.3,4;(2)585人;(3)【解析】试题分析:(1)由概率之和为1得出a的值,根据第一组频数及频率得出总人数,再乘以第二组频率可得b的值;(2)总人数乘以样本中第三、四组频率之和可得;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好是甲班和乙班各一人的情况,再利用概率公式即可求得答案.试题解析:解:(1)a=1﹣(0.15+0.20+0.35)=0.3.∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人).故答案为:0.3,4;(2)900×(0.35+0.3)=585(人).答:估计该校该体育项目的成绩为良和优的学生有585人;(3)画树状图如下:由树状图可知共有12种等可能结果,其中所选两人正好是甲班和乙班各一人的有5种,所以所选两人正好是甲班和乙班各一人的概率为.点睛:本题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22. 如图所示,AB为⊙O的直径,AD平分∠CAB,AC⊥CD,垂足为C.(1)判断CD与⊙O的位置关系,并说明理由;(2)求证:∠CDA=∠AED.【答案】(1)证明见解析;(2)见解析【解析】试题分析:(1)连接OD,根据OA=OD,推出∠OAD=∠CAD,求出∠ODA=∠CAD,求出OD⊥CD,根据切线的判定推出即可;(2)连接BD,利用AB为直径的性质进行解答.试题解析:证明:(1)CD是⊙O的切线.证明如下:..................(2)连接BD.∵AB为直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∠B=∠AED,∴∠AED+∠BAD=90°.∵∠CDA+∠CAD=90°,∠CAD=∠BAD,∴∠CDA=∠AED.23. 某超市要销售一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.(1)求销售单价为多少元时,该文具每天的销售利润最大,并求出最大的利润;(2)经过试营销后,超市按(1)中单价销售,为了回馈广大顾客,同时提高该文具知名度,超市决定在1月1日当天开展降价促销活动,若每件文具降价2a%,则可多售出4a%,结果当天销售额为5670元,要使销量尽可能的大,求a的值.【答案】(1)35元;(2)a=20【解析】试题分析:(1)根据利润=(单价﹣进价)×销售量,列出函数关系式即可,运用配方法求最大值;(2)首先确定原来的销售量,然后根据销售量×售价=销售额列出方程求解即可.试题解析:解:(1)设单价为x元,利润为W元。
2017-2018学年重庆市江北区九年级上期末模拟数学试卷含答案解析

2017-2018学年重庆市江北区九年级(上)期末模拟数学试卷一、选择题(共10题;共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是()A. 40°B. 60°C. 70°D. 80°3.如果反比例函数的图象经过点(-1,-2),则k的值是()A. 2B. -2C. -3D. 34.如图,已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D 点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①双曲线的解析式为y=(x>0);②E点的坐标是(5,8);③sin∠COA=;④AC+OB=12.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个5.某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A. 20%B. 40%C. -220%D. 30%6.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A. 10(1+x)2=16.9B. 10(1+2x)=16.9C. 10(1﹣x)2=16.9D. 10(1﹣2x)=16.97.二次根式有意义,则x的取值范围是()A. x≤﹣7B. x≥﹣7C. x<﹣7D. x>﹣78.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=30°,则∠OCB的度数为()A. 30°B. 60°C. 50°D. 40°9.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A. 当a=1时,函数图象过点(﹣1,1)B. 当a=﹣2时,函数图象与x轴没有交点C. 若a>0,则当x≥1时,y随x的增大而减小D. 若a<0,则当x≤1时,y随x的增大而增大10.以点O为圆心,以5cm为半径作⊙O,若线段OP的长为8cm,那么OP的中点A与⊙O的位置关系是()A. A点在⊙O外B. A点在⊙O上C. A点在⊙O内D. 不能确定二、填空题(共8题;共24分)11.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF=________.12.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为________.13.计算:=________.14.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB的度数为________(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示)________ .(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ 的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是________15.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是________.16.如图所示,以边长为2的等边△ABO的顶点O为坐标原点,点B在x轴上,则经过点A的反比例函数的表达式为________17.已知⊙O半径为3cm,点P到圆心O的距离为3cm,则点P与⊙O的位置关系是 ________.18.如图,△ABC中,∠C是直角,AB=12cm,∠ABC=60°,将△ABC以点B为中心顺时针旋转,使点C旋转到AB的延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是________.三、解答题(共6题;共36分)19.解方程:x2﹣x﹣12=0.20.某批乒乓球的质量检验结果如下:优等品频率(1)画出这批乒乓球“优等品”频率的折线统计图;(2)这批乒乓球“优等品”的概率的估计值是多少?(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.①求从袋中摸出一个球是黄球的概率;②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?21.在Rt△ABC中,∠C=90°,BC=3,AC=4,以C点为圆心、BC长为半径画圆,请你判断点A与⊙C的位置关系.22.如图,在⊙O中,AB为弦,C、D在AB上,且AC=BD,请问图中有几个等腰三角形?把它们分别写出来,并说明理由.23.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB 的关系是?24.如图,2×2网格(每个小正方形的边长为1)中,有A,O,B,C,D,E,F,H,G九个格点.抛物线l 的解析式为y=x2+bx+c.(1)若l经过点O(0,0)和B(1,0),则b= ,c= ;它还经过的另一格点的坐标为.(2)若l经过点H(﹣1,1)和G(0,1),求它的解析式及顶点坐标;通过计算说明点D(1,2)是否在l上.(3)若l经过这九个格点中的三个,直接写出所有满足这样的抛物线的条数.四、综合题(共10分)25.如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.2017-2018学年重庆市江北区九年级(上)期末模拟数学试卷参考与答案与试题解析一、选择题1.【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.2.【答案】D【考点】圆周角定理,圆内接四边形的性质【解析】【解答】解:∵四边形ABCD是圆内接四边形,∴∠ADC+∠B=180°,又∠ADC=140°,∴∠B=40°,∴∠AOC=2∠B=80°,故选:D.【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理得到答案.3.【答案】D【考点】待定系数法求反比例函数解析式【解析】【分析】根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.【解答】根据题意,得-2=,即2=k-1,解得,k=3.故选D.【点评】此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.4.【答案】B【考点】反比例函数的应用【解析】【解答】解:过点C作CF⊥x轴于点F,∵OB•AC=160,A点的坐标为(10,0),∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF==8,在Rt△OCF中,∵OC=10,CF=8,∴OF==6,∴C(6,8),∵点D时线段AC的中点,∴D点坐标为,即(8,4),∵双曲线y=(x>0)经过D点,∴4=,即k=32,∴双曲线的解析式为:y=(x>0),故①错误;∵CF=8,∴直线CB的解析式为y=8,∴,解得x=4,y=8,∴E点坐标为(4,8),故②错误;∵CF=8,OC=10,∴sin∠COA= ,故③正确;∵A(10,0),C(6,8),∴AC= ,∵OB•AC=160,∴OB= ,∴AC+OB=4+8=12,故④正确.故选:B.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标;由sin∠COA=可求出∠COA的正弦值;根据A、C两点的坐标可求出AC的长,由OB•AC=160即可求出OB的长.5.【答案】A【考点】一元二次方程的应用【解析】【解答】设每年投资的增长率为x ,根据题意,得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=-2.2(舍去),故每年投资的增长率为为20%.故选:A.【分析】先设每年投资的增长率为x ,再根据2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,列方程求解.此题主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为a(1+x)n,其中n为共增长了几年,a为第一年的原始数据,x是增长率.6.【答案】A【考点】一元二次方程的应用【解析】【解答】解:设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.【答案】B【考点】二次根式有意义的条件【解析】【解答】解:由题意,得x+7≥0,解得x≥﹣7,故选:B.【分析】根据被开房数是非负数,可得答案.8.【答案】B【考点】切线的性质,切线的判定与性质【解析】【解答】解:∵AB是⊙O的切线,B为切点,∴∠OBA=90°,∵∠BAO=30°,∴∠O=60°,∵OB=OC,∴△OBC是等边三角形,∴∠OCB=60°,故选:B.【分析】根据切线性质得出∠OBA=90°,求出∠O=60°,证出△OBC是等边三角形,即可得出结果.9.【答案】D【考点】二次函数的性质【解析】【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.10.【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=8cm,A是线段OP的中点,∴OA=4cm,小于圆的半径5cm,∴点A在圆内.故选C.【分析】知道OP的长,点A是OP的中点,得到OA的长与半径的关系,求出点A与圆的位置关系.二、填空题11.【答案】20°【考点】圆周角定理【解析】【解答】解:∵⊙O的直径CD过弦EF的中点G,∴弧ED=弧DF(垂径定理),∴∠DCF=∠EOD(等弧所对的圆周角是圆心角的一半),∴∠DCF=20°.【分析】欲求∠DCF,又已知一圆心角,可利用圆周角与圆心角的关系求解.12.【答案】122°【考点】圆周角定理,三角形的内切圆与内心【解析】【解答】解:在⊙O中,∵∠CBD=32°,∵∠CAD=32°,∵点E是△ABC的内心,∴∠BAC=64°,∴∠EBC+∠ECB=(180°﹣64°)÷2=58°,∴∠BEC=180°﹣58°=122°.故答案为:122°.【分析】根据圆周角定理可求∠CAD=32°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC的度数.13.【答案】12【考点】二次根式的乘除法【解析】【解答】解:=3 × ÷=3=12.故答案为:12.【分析】直接利用二次根式乘除运算法则化简求出答案.14.【答案】30°;90°﹣α;45°<α<60°【考点】圆周角定理,生活中的旋转现象【解析】【解答】解:(1)如图1,∵BA=BC,∠BAC=60°,∴AB=BC=AC,∠ABC=60°,∵M为AC的中点,∴MB⊥AC,∠CBM=30°,AM=MC.∵PQ由PA旋转而成,∴AP=PQ=QM=MC.∵∠AMQ=2α=120°,∴∠MCQ=60°,∠QMD=30°,∴∠MQC=60°.∴∠CDB=30°.故答案为:30°;(2)如图2,连接PC,∵由(1)得BM垂直平分AC,∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD,又∵PQ=PA,∴PQ=PC=PA,∴Q,C,A在以P为圆心,PA为半径的圆上,∴∠ACQ=∠APQ=α,∴DC∥BA,∴∠CDB=∠ABD=90°﹣α.故答案为:90°﹣α;(3)∵∠CDB=90°﹣α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°﹣2α>α,∴45°<α<60°.故答案为:45°<α<60°.【分析】(1)由条件可得出AB=BC=AC,再利用旋转可得出QM=MC,证得CB=CD=BA,再由三角形外角的性质即可得出结论;(2)由(1)可得BM为AC的垂直平分线,结合条件可以得出Q,C,A在以P为圆心,PA为半径的圆上,由圆周角定理可得∠ACQ=∠APQ=α,可得出∠CDB和α的关系;(3)借助(2)的结论和PQ=QD,可得出∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,结合∠BAD>∠PAD>∠MAD,代入可得出α的范围.15.【答案】2【考点】切线的性质【解析】【解答】解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴,∵PA=x,PB=y,半径为4,∴,∴y= x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.【分析】作直径AC,连接CP,得出△APC∽△PBA,利用,得出y= x2,所以x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.16.【答案】y=-【考点】反比例函数系数k的几何意义【解析】【解答】解:过A作AM⊥BO于点M,∵△ABO为等边三角形,∴AB=BO=AO=2,∵AM⊥BO,∴OM=BO=1,∴AM=则点A的坐标为(﹣1,)则这个反比例函数的解析式为y=-.故答案为:y=-.【分析】过A作AM⊥BO于点M,根据等边三角形的性质和B点坐标求出A点坐标,然后用待定系数法求出解析式.17.【答案】点P在⊙O上【考点】点与圆的位置关系【解析】【解答】解:PO=r=3,点P在⊙O上,故答案为:点P在⊙O上.【分析】根据d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.18.【答案】36πcm2【考点】扇形面积的计算,旋转的性质【解析】【解答】解:∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC= AB= ×12=6cm,∵△ABC以点B为中心顺时针旋转得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=120°,∴阴影部分的面积=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD= ﹣=48π﹣12π=36πcm2.故答案为:36πcm2.【分析】根据直角三角形两锐角互余求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BC= AB,然后求出阴影部分的面积=S扇形ABE﹣S扇形BCD,列计算即可得解.三、解答题19.【答案】解:分解因式得:(x+3)(x﹣4)=0,可得x+3=0或x﹣4=0,解得:x1=﹣3,x2=4.【考点】解一元二次方程-因式分解法【解析】【分析】方程左边利用十字相乘法分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.20.【答案】解:(1)如图;(2)这批乒乓球“优等品”概率的估计值是0.946;(3)①∵袋中一共有球5+13+22=40个,其中有5个黄球,∴从袋中摸出一个球是黄球的概率为:②设从袋中取出了x个黑球,由题意得≥,解得x≥8,故至少取出了9个黑球.【考点】利用频率估计概率【解析】【分析】(1)根据统计表中的数据,先描出各点,然后折线连结即可;(2)根据频率估计概率,频率都在0.946左右波动,所以可以估计这批乒乓球“优等品”概率的估计值是0.946;(3)①用黄球的个数除以球的总个数即可;②设从袋中取出了x个黑球,根据搅拌均匀后使从袋中摸出一个是黄球的概率不小于,列出不等式,解不等式即可.21.【答案】解:如图所示:∵∠C=90°,BC=3,AC=4,以点C为圆心、BC长为半径画圆,∴AC>BC,则点A在⊙C外.【考点】点与圆的位置关系【解析】【分析】直接利用点与圆的位置关系进而得出答案.22.【答案】解:等腰三角形有:△OAB、△OCD.证明:∵OA=OB(同圆半径相等),∴△OAB是等腰三角形,∴∠A=∠B,又∵AC=BD,OA=OB,∴△OAC≌△OBD,∴OC=OD,∴△OCD是等腰三角形.【考点】圆的认识【解析】【分析】图中等腰三角形有两个,圆中半径处处相等,所以△OAB是等腰三角形,根据所给的已知条件,易证△OAC≌△OBD,根据全等三角形的性质,OC=OD,所以△OCD也是等腰三角形.23.【答案】解:连CO∵DC⊥AD,CE⊥OBCD=EC∠1=∠2【考点】圆心角、弧、弦的关系【解析】【解答】连CO∵DC⊥AD,CE⊥OBCD=EC∠1=∠2【分析】此题考查了圆心角弦弧的关系,作好辅助线,利用好相关条件.24.【答案】解:(1)根据题意得:,解得:,故函数的解析式是:y=x2﹣x,点中H(﹣1,1)满足函数解析式,则另一个格点的坐标是(﹣1,1).故答案是:-,0,(﹣1,1);(2)根据题意得:,解得:,则函数的解析式是:y=x2+x+1,y=x2+x+1=(x+)2+,则顶点坐标为(﹣,),点D(1,2)在抛物线l上;(3)因为题目中的a=0.5,在这个条件下,抛物线的开口方向和开口大小是确定的.应该是4条,分别过HOB三点,AOC三点,HGD三点,还有FGC三点,综上所述,满足这样的抛物线有4条.【考点】二次函数的应用【解析】【分析】(1)把两个点代入解析式即可得到关于b、c的方程组,从而求得b和c的值,然后把格点坐标代入解析式即可判断;(2)与(1)的解法相同;(3)二次函数的二次项系数不变,则抛物线的形状和开口方向不变,则移动抛物线的顶点到图中的一个点,同时,经过另外两个的抛物线就是符合要求的图形.四、综合题25.【答案】(1)解:如图,△A1B1C1为所作,(2)解:四边形AB1A1B的面积= ×6×4=12【考点】作图-旋转变换【解析】【分析】(1)利用网格特点,延长AC到A1使A1C=AC,延长BC到B1使B1C=BC,C点的对应点C1与C点重合,则△A1B1C1满足条件;(2)四边形AB1A1B的对角线互相垂直平分,则四边形AB1A1B为菱形,然后利用菱形的面积公式计算即可.本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.。
2017-2018年重庆市巴南区初三上学期期末数学试卷及参考答案

2017-2018学年重庆市巴南区初三上学期期末数学试卷一、选择题(共12个小题,每小题4分,共48分.在每小题列出的四个选项中,选出符合题目要求的一项,请把答案填在下表相应的位置上)1.(4分)下列函数中,是反比例函数的是()A.y=x B.y=C.y=3x+1 D.y=2.(4分)下列四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(4分)如图,把△ABC绕点C按顺时针方向旋转35°后能与△A′B′C′重合,且B′C′交AB于点E,若∠ABC=50°,则∠AEC的度数是()A.80°B.85°C.90°D.95°4.(4分)在平面直角坐标系中,如果点P1(a,﹣3)与点P2(4,b)关于原点O对称,那么式子(a+b)2018的值为()A.1 B.﹣1 C.2018 D.﹣20185.(4分)如果,AB是⊙O的切线,A为切点,OB=5,AB=5,AC是⊙O的弦,OH⊥AC,垂足为H,若OH=3,则弦AC的长为()A.5 B.6 C.8 D.106.(4分)下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是必然事件B.任意掷一枚质地均匀的硬币20次,正面向上的一定是10次C.“概率为0.00001的事件”是不可能事件D.“任意画出一个平行四边形,它是中心对称图形”是随机事件7.(4分)在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣18.(4分)已知关于x的方程(k﹣2)2x2+(2k+1)x+1=0有实数解,且反比例函数y=的图象经过第二、四象限,若k是常数,则k的值为()A.4 B.3 C.2 D.19.(4分)已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6 B.8 C.10 D.8或1010.(4分)观察下列一组图形,图形①中有5个小正方形,图形②中共有10个小正方形,图形③中共有17个小正方形,…,按此规律,图形⑩中小正方形的个数是()A.100个B.101个C.121个D.122个11.(4分)如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A为圆心,AC为半径的弧交AB于点E,以B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为()A.15πB.18C.15π﹣18D.12﹣5π12.(4分)抛物线y=ax2+bx+c(a≠0)如图所示,现有下列四个结论:①abc>0;②3a+c>0;③2a+b>0;④b>a+c.其中错误的结论有()A.1个 B.2个 C.3个 D.4个二、填空题(共6个小题,每小题4分,共24分)13.(4分)抛物线y=(x﹣2)2﹣3的顶点坐标是.14.(4分)如图,若点A在反比例函数y=(k≠0)的图象上,AM⊥x轴于点M,△AMO的面积为3,则k=.15.(4分)如图,△ABC内接于⊙O,如果∠OAC=35°,那么∠ABC的度数是.16.(4分)网球抛出后,距离地面的高度h(米)和飞行时间t(秒)满足函数关系式h=6t﹣t2,若网球在飞行中距离地面的最大高度是m米,则m=.17.(4分)若m是从四个数﹣1、0、1、2中任取的一个数,n是从三个数﹣2、0、3中任取的一个数,则二次函数y=(x﹣m)2+n的顶点不在坐标轴上的概率是.18.(4分)如图,在△ABC中,AB=AC=4,∠BAC=90°,点D在边AB上,BE∥CD,AE⊥CD,垂足为F,且EF=2,点G在线段CF上,若∠GAF=45°,则△ACG 的面积为.三、解答题(本题共2小题,每小题8分,共16分)19.(8分)用适当的方法解下列方程:(1)3x(x+1)=2(x+1);(2)4y2=12y+320.(8分)如图,点A′在Rt△ABC的边AB上,与BC交于点D,∠ABC=30°,AC=2,∠ACB=90°,△ACB绕顶点C按逆时针方向旋转与△A′CB′重合,连接BB′,求线段BB′的长度.四、解答题(本题共4小题,每小题10分,共40分)21.(10分)如图,点A是一次函数y=﹣x+的图象与反比例函数y=(m>0)的图象的一个交点,AB⊥x轴,垂足为B,且AB=.(1)求这个反比例函数的解析式;(2)当1<x<4,求反比例函数y=的取值范围.22.(10分)如图是一个转盘,转盘被平均分成4等分,即被分成4个大小相等的扇形,4个扇形分别标有数字2、3、4、6,指针的位置固定,转动转盘后任其自由停止,每次指针落在每个扇形的机会均等(若指针恰好落在分界线上则重转).(1)若图中标有“2”的扇形至少绕圆心旋转n度能与标有“3”的扇形的起始位置重合,求n的值;(2)现有一张电影票,兄弟俩商定通过转盘游戏定输赢(赢的一方先得).游戏规则是:姐妹俩各转动一次转盘,两次转动后,若指针所指扇形上的数字之和为小于8,则哥哥赢;若指针所指扇形上的数字之和不小于8,则弟弟赢.这个游戏规则对双方公平吗?请利用树状图或列表法说明理由.23.(10分)某商场销售两种型号的饮水机,八月份销售A种型号的饮水机150个和B种型号的饮水机200个.(1)商场八月份销售饮水机时,A种型号的售价比B种型号的2倍少10元,总销售额为88500元,那么B种型号的饮水机的单价是每件多少元?(2)为了提高销售量,商场九月份销售饮水机时,A种型号的售价比八月份A 种型号售价下降了a%(a>0),且A种型号的销量比八月份A种型号的销量提高了a%;B种型号的售价比八月份的B种型号的售价下降了a%,但B种型号的销售量与八月份的销售量相同,结果九月份的总销售额也是88500元,求a的值.24.(10分)如图,在三角形ABC中,AB=AC,点D在△ABC内,且∠ADB=90°.(1)如图1,若∠BAD=30°,AD=3,点E、F分别为AB、BC边的中点,连接EF,求线段EF的长;(2)如图2,若△ABD绕顶点A逆时针旋转一定角度后能与△ACG重合,连接GD并延长交BC于点H,连接AH,求证:∠DAH=∠DBH.五、解答题(本题共2小题,25题12分,26题10分,共22分)25.(12分)先阅读下列材料,然后解决后面的问题.材料:一个三位数(百位数为a,十位数为b,个位数为c),若a+c=b,则称这个三整数为“协和数”,同时规定c=(k≠0),k称为“协和系数”,如264,因为它的百位上数字2与个位数字4之和等于十位上的数字6,所有264是“协和数”,则“协和数”k=2×4=8.(1)对于“协和数”,求证:“协和数”能被11整除.(2)已知有两个十位数相同的“协和数”,(a 1>a2),且k1﹣k2=1,若y=k1+k2,用含b的式子表示y.26.(10分)如图,抛物线y=﹣x2﹣x+与x轴交于A、B两点(点A 在点B左侧),与y轴交于点C.(1)求该抛物线的对称轴和线段AB的长;(2)如图1,已知点D(0,﹣),点E是直线AC上访抛物线上的一动点,求△AED的面积的最大值;(3)如图2,点G是线段AB上的一动点,点H在第一象限,AC∥GH,AC=GH,△ACG与△A′CG关于直线CG对称,是否存在点G,使得△A′CH是直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.2017-2018学年重庆市巴南区初三上学期期末数学试卷参考答案与试题解析一、选择题(共12个小题,每小题4分,共48分.在每小题列出的四个选项中,选出符合题目要求的一项,请把答案填在下表相应的位置上)1.(4分)下列函数中,是反比例函数的是()A.y=x B.y=C.y=3x+1 D.y=【解答】解:A、该函数属于一次函数,故本选错误;B、该函数是y与x2成反比例,故本选错误;C、该函数属于一次函数,故本选错误;D、该函数符合反比例函数的定义,故本选项正确;故选:D.2.(4分)下列四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:B.3.(4分)如图,把△ABC绕点C按顺时针方向旋转35°后能与△A′B′C′重合,且B′C′交AB于点E,若∠ABC=50°,则∠AEC的度数是()A.80°B.85°C.90°D.95°【解答】解:∵把△ABC绕点C按顺时针方向旋转35°后能与△A′B′C′重合,∴∠BCB′=35°,∵∠ABC=50°,∴∠AEC=∠BCB′+∠ABC=35°+50°=85°.故选:B.4.(4分)在平面直角坐标系中,如果点P1(a,﹣3)与点P2(4,b)关于原点O对称,那么式子(a+b)2018的值为()A.1 B.﹣1 C.2018 D.﹣2018【解答】解:∵点P1(a,﹣3)与点P2(4,b)关于原点O对称,∴a=﹣4,b=3,故(a+b)2018=(﹣4+3)2018=1.故选:A.5.(4分)如果,AB是⊙O的切线,A为切点,OB=5,AB=5,AC是⊙O的弦,OH⊥AC,垂足为H,若OH=3,则弦AC的长为()A.5 B.6 C.8 D.10【解答】解:∵AB是⊙O的切线,A为切点,∴∠OAB=90°,∵AB=5,BO=5,∴AO=,∵OH⊥AC,∴AC=2AH,∵OH=3,∴AH==4,∴AC=8,故选:C.6.(4分)下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是必然事件B.任意掷一枚质地均匀的硬币20次,正面向上的一定是10次C.“概率为0.00001的事件”是不可能事件D.“任意画出一个平行四边形,它是中心对称图形”是随机事件【解答】解:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,正确;B、任意掷一枚质地均匀的硬币20次,正面向上的一定是10次,错误;C、“概率为0.00001的事件”是不可能事件,错误;D、“任意画出一个平行四边形,它是中心对称图形”是必然事件,故此选项错误.故选:A.7.(4分)在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣1【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大增大.故选:A.8.(4分)已知关于x的方程(k﹣2)2x2+(2k+1)x+1=0有实数解,且反比例函数y=的图象经过第二、四象限,若k是常数,则k的值为()A.4 B.3 C.2 D.1【解答】解:∵关于x的方程(k﹣2)2x2+(2k+1)x+1=0有实数解,∴△≥0,即(2k+1)2﹣4(k﹣2)2≥0,解得k≥;∵反比例函数y=的图象经过第二、四象限,∴2k﹣3<0,即k<,∴≤k<,观察选项,只有D选项符合题意.故选:D.9.(4分)已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6 B.8 C.10 D.8或10【解答】解:把x=2代入方程x2﹣(m+4)x+4m=0得4﹣2(m+4)+4m=0,解得m=2,方程化为x2﹣6x+8=0,解得x1=4,x2=2,因为2+2=4,所以三角形三边为4、4、2,所以△ABC的周长为10.故选:C.10.(4分)观察下列一组图形,图形①中有5个小正方形,图形②中共有10个小正方形,图形③中共有17个小正方形,…,按此规律,图形⑩中小正方形的个数是()A.100个B.101个C.121个D.122个【解答】解:图形①中有3+1+1=5个小正方形,图形②中共有5+3+1+1=10个小正方形,图形③中共有7+5+3+1+1=17个小正方形,图形⑩中小正方形的个数是31+19+17+15+13+11+9+7+5+3+1+1=22故选:D.11.(4分)如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A为圆心,AC为半径的弧交AB于点E,以B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为()A.15πB.18C.15π﹣18D.12﹣5π【解答】解:S阴影部分=S扇形ACE+S扇形BCD﹣S△ABC,∵S扇形ACE=,S扇形BCD=,S△ABC=×6×6=18,∴S阴影部分=12π+3π﹣18=15.故选:C.12.(4分)抛物线y=ax2+bx+c(a≠0)如图所示,现有下列四个结论:①abc>0;②3a+c>0;③2a+b>0;④b>a+c.其中错误的结论有()A.1个 B.2个 C.3个 D.4个【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴a与b异号,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵0<﹣<1,而a>0,∴2a+b>0,所以③正确,∵x=﹣1时,y>0,∴a﹣b+c>0,∴a+c>b,所以④错误.而b>﹣2a,∴a+c>﹣2a,∴3a+c>﹣,所以②正确.故选:C.二、填空题(共6个小题,每小题4分,共24分)13.(4分)抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).【解答】解:∵抛物线y=(x﹣2)2﹣3∴该抛物线的顶点坐标为:(2,﹣3),故答案为:(2,﹣3).14.(4分)如图,若点A在反比例函数y=(k≠0)的图象上,AM⊥x轴于点M,△AMO的面积为3,则k=﹣6.【解答】解:因为△AOM的面积是3,所以|k|=2×3=6.又因为图象在二,四象限,k<0,所以k=﹣6.故答案为:﹣6.15.(4分)如图,△ABC内接于⊙O,如果∠OAC=35°,那么∠ABC的度数是55°.【解答】解:∵OA=OC,∠OAC=35°,∴∠AOC=180°﹣35°×2=110°,由圆周角定理得,∠ABC=∠AOC=55°,故答案为:55°.16.(4分)网球抛出后,距离地面的高度h(米)和飞行时间t(秒)满足函数关系式h=6t﹣t2,若网球在飞行中距离地面的最大高度是m米,则m=9.【解答】解:h=6t﹣t2=﹣(t2﹣6t)=﹣(t2﹣6t+9)+9=﹣(t﹣3)2+9,∵﹣1<0,∴抛物线的开口向下,有最大值,当t=3时,h有最大值是9,即m=9.故答案为:9.17.(4分)若m是从四个数﹣1、0、1、2中任取的一个数,n是从三个数﹣2、0、3中任取的一个数,则二次函数y=(x﹣m)2+n的顶点不在坐标轴上的概率是.【解答】解:∵抛物线的顶点坐标为(m,n),(m,n)的所有可能:(﹣1,﹣2),(﹣1,0),(﹣1,3),(0,﹣2),(0,0),(0,3),(1,﹣2),(1,0),(1,3),(2,﹣2),(2,0),(2,3)共12种可能,点(m,n)不在正半轴上的有:(﹣1,﹣2),(﹣1,3),(1,﹣2),(1,3),(2,﹣2),(2,3)有6种可能,∴二次函数y=(x﹣m)2+n的顶点不在坐标轴上的概率==,故答案为.18.(4分)如图,在△ABC中,AB=AC=4,∠BAC=90°,点D在边AB上,BE∥CD,AE⊥CD,垂足为F,且EF=2,点G在线段CF上,若∠GAF=45°,则△ACG的面积为﹣1.【解答】解:∵AE⊥CD,BE∥CD,∴∠AFD=∠AEB=∠AFC=90°,∴∠CAF+∠EAB=90°,∠EAB+∠ABE=90°,∴∠CAF=∠ABE,∵AC=AB,∴△CAF≌△ABE,∴AE=CF,设AF=x,则CF=AE=x+2,在Rt△ACF中,∵AC2=AF2+CF2,∴42=x2+(x+2)2,∴x=﹣1+或﹣1﹣(舍弃)∵∠GAF=45°,∠AFG=90°∴AF=FG=﹣1,CG=CF﹣FG=1+﹣(﹣1)=2,∴S=•CG•AF=﹣1,△AGC故答案为﹣1.三、解答题(本题共2小题,每小题8分,共16分)19.(8分)用适当的方法解下列方程:(1)3x(x+1)=2(x+1);(2)4y2=12y+3【解答】解:(1)方程整理,得3x(x+1)﹣2(x+1)=0,因式分解,得(x+1)(3x﹣2)=0于是,得x+1=0或3x﹣2=0,解得x1=﹣1,x2=;(2)方程整理,得4y2﹣12y﹣3=0,a=4,b=﹣12,c=﹣3,△=b2﹣4ac=144﹣4×4×(﹣3)=192>0,x==,x1=,x2=.20.(8分)如图,点A′在Rt△ABC的边AB上,与BC交于点D,∠ABC=30°,AC=2,∠ACB=90°,△ACB绕顶点C按逆时针方向旋转与△A′CB′重合,连接BB′,求线段BB′的长度.【解答】解:∵Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,∴AB=2AC=4,∴BC==2,∵∠A=60°,∴△AA′C是等边三角形,∴AA′=AB=2,∴A′C=A′B,∴∠A′CB=∠A′BC=30°,∵△A′B′C是△ABC旋转而成,∴∠A′CB′=90°,BC=B′C,∴∠B′CB=90°﹣30°=60°,∴△BCB′是等边三角形,∴BB′=BC=2.四、解答题(本题共4小题,每小题10分,共40分)21.(10分)如图,点A是一次函数y=﹣x+的图象与反比例函数y=(m>0)的图象的一个交点,AB⊥x轴,垂足为B,且AB=.(1)求这个反比例函数的解析式;(2)当1<x<4,求反比例函数y=的取值范围.【解答】解:(1)∵AB⊥x轴,垂足为B,且AB=,∴A点纵坐标为.把y=代入y=﹣x+,得=﹣x+,解得x=4,∴A点坐标为(4,),∵点A在反比例函数y=(m>0)的图象上,∴m=4×=2,∴这个反比例函数的解析式为y=;(2)∵当x=1时,y==2,当x=4时,y==,∴当1<x<4时,反比例函数y=的取值范围是<y<2.22.(10分)如图是一个转盘,转盘被平均分成4等分,即被分成4个大小相等的扇形,4个扇形分别标有数字2、3、4、6,指针的位置固定,转动转盘后任其自由停止,每次指针落在每个扇形的机会均等(若指针恰好落在分界线上则重转).(1)若图中标有“2”的扇形至少绕圆心旋转n度能与标有“3”的扇形的起始位置重合,求n的值;(2)现有一张电影票,兄弟俩商定通过转盘游戏定输赢(赢的一方先得).游戏规则是:姐妹俩各转动一次转盘,两次转动后,若指针所指扇形上的数字之和为小于8,则哥哥赢;若指针所指扇形上的数字之和不小于8,则弟弟赢.这个游戏规则对双方公平吗?请利用树状图或列表法说明理由.【解答】解:(1)∵转盘被平均分成4等份,∴n=360°÷4=90°;(2)公平,列表如下:234624568356794678106891012由表可知,共有16种等可能结果,其中数字之和为小于8的有8种结果,数字之和不小于8的也有8种结果,所以这个游戏规则公平.23.(10分)某商场销售两种型号的饮水机,八月份销售A种型号的饮水机150个和B种型号的饮水机200个.(1)商场八月份销售饮水机时,A种型号的售价比B种型号的2倍少10元,总销售额为88500元,那么B种型号的饮水机的单价是每件多少元?(2)为了提高销售量,商场九月份销售饮水机时,A种型号的售价比八月份A 种型号售价下降了a%(a>0),且A种型号的销量比八月份A种型号的销量提高了a%;B种型号的售价比八月份的B种型号的售价下降了a%,但B种型号的销售量与八月份的销售量相同,结果九月份的总销售额也是88500元,求a的值.【解答】解:(1)设B种型号的饮水机的单价是每件x元,则A种型号的饮水机的单价是每件(2x﹣10)元,根据题意得:150(2x﹣10)+200x=88500,x=180,答:B种型号的饮水机的单价是每件180元;(2)2x﹣10=2×180﹣10=350,则350(1﹣a%)•150(1+a%)+180(1﹣a%)•200=88500,35(1﹣a%)(1+a%)+24(1﹣a%)=59,设a%=y,则原方程化为:35(1﹣y)(1+y)+24(1﹣y)=59,10y2﹣y=0,y1=0,y2=,∴a=10.24.(10分)如图,在三角形ABC中,AB=AC,点D在△ABC内,且∠ADB=90°.(1)如图1,若∠BAD=30°,AD=3,点E、F分别为AB、BC边的中点,连接EF,求线段EF的长;(2)如图2,若△ABD绕顶点A逆时针旋转一定角度后能与△ACG重合,连接GD并延长交BC于点H,连接AH,求证:∠DAH=∠DBH.【解答】(1)解:如图1,在Rt△ABD中,∠BAD=30°,∴AB=2BD,设BD=x,则AB=2x,由勾股定理得:,x=3或﹣3(舍),∴AB=2x=6,∵AC=AB=6,∵点E、F分别为AB、BC边的中点,∴EF=AC=3;(2)证明:如图2,由旋转得:△ADB≌△AGC,∴AG=AD,∠AGC=∠ADB=90°,CG=BD,∴∠AGD=∠ADG,∵∠ADB=90°,∴∠ADG+∠BDH=90°,∵∠AGD+∠MGC=90°,∴∠MGC=∠BDH,在GH上取一点M,使GM=DH,∴△CGM≌△BDH,∴CM=BH,∠GCM=∠DBH,∵∠CMH=∠MGC+∠MCG,∠CHM=∠BDH+∠DBH,∴∠CMH=∠CHM,∴CM=CH=BH,∵AC=AB,∴AH⊥BC,即∠AHB=90°=∠ADB,∵∠AOD=∠BOH,∴∠DAH=∠DBH.五、解答题(本题共2小题,25题12分,26题10分,共22分)25.(12分)先阅读下列材料,然后解决后面的问题.材料:一个三位数(百位数为a,十位数为b,个位数为c),若a+c=b,则称这个三整数为“协和数”,同时规定c=(k≠0),k称为“协和系数”,如264,因为它的百位上数字2与个位数字4之和等于十位上的数字6,所有264是“协和数”,则“协和数”k=2×4=8.(1)对于“协和数”,求证:“协和数”能被11整除.(2)已知有两个十位数相同的“协和数”,(a 1>a2),且k1﹣k2=1,若y=k1+k2,用含b的式子表示y.【解答】(1)证明:∵为“协和数”,∴a+c=b,∵=100a+10b+c=99a+10b+a+c=99a+11b=11(9a+b),∵a是整数,b是整数,∴9a+b是整数,∴“协和数”能被11整除;(2)∵k1﹣k2=a1•b1﹣a2•b2=a1•(b﹣a1)﹣a2(b﹣a2)=(a1﹣a2)(b﹣a1﹣a2)=1,a1、a2、b均为整数,∴a1﹣a2=1,b﹣a1﹣a2=1,∴a1+a2=b﹣1,∴a12﹣2a1a2+a22=1①,a12+2a1a2+a22=(b﹣1)2②,①+②得:=,y=k1+k2=a1•b1+a2•b2=a1•(b﹣a1)+a2(b﹣a2)=+=b(a1+a2)﹣()=b(b﹣1)﹣=﹣1.26.(10分)如图,抛物线y=﹣x2﹣x+与x轴交于A、B两点(点A 在点B左侧),与y轴交于点C.(1)求该抛物线的对称轴和线段AB的长;(2)如图1,已知点D(0,﹣),点E是直线AC上访抛物线上的一动点,求△AED的面积的最大值;(3)如图2,点G是线段AB上的一动点,点H在第一象限,AC∥GH,AC=GH,△ACG与△A′CG关于直线CG对称,是否存在点G,使得△A′CH是直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.【解答】解:(1)对于y=﹣x2﹣x+令y=0,可得﹣x2﹣x+=0,解得x=﹣3或1,∴A(﹣3,0),B(1,0),∴AB=4,抛物线的对称轴x=﹣=﹣=﹣1.(2)如图1中,设E(m,﹣m2﹣m+),=S△AOD+S△AEO+S△ECO﹣S△ECD∵S△AED=×3×+×3×(﹣m2﹣m+)+××(﹣m)﹣×2×(﹣m)=﹣(m+)2+,∵﹣<0,有最大值,最大值为.∴m=﹣时,S△AED(3)①如图2中,连接BC.∵AC∥GH,AC=GH,∴四边形ACHG是平行四边形,∴CH∥AB,当点A′在y轴上时,∠HCA′=90°满足条件.∵AO=3,OC=,OB=1,∴tan∠CAO==,tan∠BCO==,∴∠CAO=30°,∠OCB=30°,∴∠ACO=60°,∴∠ACB=∠ACO+∠OCB=90°,当点A′在y轴上时,∠ACG=∠A′CG=30°,∴OG=OC•tan30°=1,∴G(﹣1,0).②如图3中,当点G与点O重合时,易证四边形GCHA′是矩形,此时△CHA′是直角三角形;③如图4中,当点G与B重合时,四边形GCHA′是矩形,此时△CHA′是直角三角形,G(1,0),综上所述,满足条件点G坐标为(﹣1,0)或(0,0)或(1,0).。
2017-2018学年九年级年级(上)期末数学试卷

2017-2018学年九年级年级(上)期末数学试卷(120分,120分钟)一、选择题(每题3分,共30分)1. 下列方程中,不是一元二次方程的是( )A.3y 2+2y +1=0B.12x 2=1-3xC.110a 2-16a +23=0 D .x 2+x -3=x 22.如图,几何体的左视图是( )(第2题)3.平行四边形、矩形、菱形、正方形都具有的性质是( ) A .对角线互相平分 B .对角线互相垂直 C .对角线相等 D .对角线互相垂直且相等4.若反比例函数y =kx 的图象经过点(m ,3m),其中m ≠0,则反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 5.若关于x 的一元二次方程kx 2-6x +9=0有实数根,则k 的取值范围是( ) A .k<1 B .k ≤1 C .k<1且k ≠0 D .k ≤1且k ≠06.在英语句子“Wish you success ”(祝你成功)中任选一个字母,这个字母为“s ”的概率是( )A .14B .411C .27D .377.如图,在△ABC 中,已知点D ,E 分别是边AC ,BC 上的点,DE ∥AB ,且CE EB =2 3,则DE AB 等于( )A .2 3B .2 5C .3 5D .4 5(第7题) (第8题) (第10题)8.如图,在菱形纸片ABCD 中,∠A =60°,P 为AB 中点.折叠该纸片使点C 落在点C′处,且点P 在DC′上,折痕为DE ,则∠CDE 的大小为( )A .30°B .40°C .45°D .60°9.关于x 的函数y =k(x +1)和y =-kx(k ≠0)在同一坐标系中的图象可能是( )10.如图,在△ABC 中,AB =BC ,∠ABC =90°,BM 是AC 边上的中线,点D ,E 分别在边AC 和BC 上,DB =DE ,DE 与BM 相交于点N ,EF ⊥AC 于点F ,以下结论:①∠DBM =∠CDE ;②S △BDE <S 四边形BMFE ;③CD·EN =BN·BD ;④AC =2DF. 其中正确结论的个数是( ) A .1 B .2 C .3 D .4 二、填空题(每题3分,共24分) 11.若反比例函数y =k +1x的图象在每一象限内,y 随x 的增大而减小,则k 的值可以是________.(写出一个即可)12.如图,物理课上张明做小孔成像试验,已知蜡烛与成像板之间的距离为24 cm ,要使烛焰的像A′B′是烛焰AB 的2倍,则蜡烛与成像板之间的小孔纸板应放在离蜡烛________的地方.(第12题) (第13题) (第14题)13.如图是由一些完全相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体的个数可能是______________.14.如图,在一块长为22 m ,宽为17 m 的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300 m 2.若设道路宽为x m ,根据题意可列出方程为______________________________.15.如图,在两个直角三角形中,∠ACB =∠ADC =90°,AC =6,AD =2.当AB =________时,△ABC 与△ACD 相似.(第15题) (第17题) (第18题)16.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼.如果在这200条鱼中有5条鱼是有记号的,则可估计鱼塘中约有鱼________条.17.如图,以▱ABCO 的顶点O 为原点,边OC 所在直线为x 轴,建立平面直角坐标系,顶点A ,C 的坐标分别为(2,4),(3,0),过点A 的反比例函数y =kx 的图象交BC 于点D ,连接AD ,则四边形AOCD 的面积是________.18.如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为O ,点E ,F ,G ,H 分别为AD ,AB ,BC ,CD 的中点.若AC =8,BD =6,则四边形EFGH 的面积为________.三、解答题(19~22题每题8分,23,24题每题11分,25题12分,共66分) 19.解方程:(1)x 2-6x -6=0; (2)(x +2)(x +3)=1.20.已知关于x 的一元二次方程x 2-3x +1-k =0有两个不相等的实数根. (1)求k 的取值范围;(2)若k 为负整数...,求此时方程的根.21.小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字2,3,4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.若和为奇数,则小明胜;若和为偶数,则小亮胜.(1)请你用画树状图或列表的方法,求出这两数和为6的概率. (2)你认为这个游戏规则对双方公平吗?说说你的理由.22.如图,九年级(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竹竿AB的长为3 m.某一时刻,测得竹竿AB在阳光下的投影BC的长为2 m.(1)请你在图中画出此时旗杆DE在阳光下的投影,并写出画图步骤;(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6 m,请你计算旗杆DE的高度.(第22题) 23.如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=kx相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.(第23题)24.如图,在矩形ABCD中,点M,N分别是AD,BC的中点,点P,Q分别是BM,DN的中点.(1)求证:△MAB≌△NCD.(2)四边形MPNQ是什么特殊四边形?请说明理由.(第24题)25.在等腰三角形ABC 中,AB =AC ,D 是AB 延长线上一点,E 是AC 上一点,DE 交BC 于点F.(1)如图①,若BD =CE ,求证:DF =EF.(2)如图②,若BD =1nCE ,试写出DF 和EF 之间的数量关系,并证明.(3)如图③,在(2)的条件下,若点E 在CA 的延长线上,那么(2)中结论还成立吗?试证明.(第25题)答案一、1.D 2.C 3.A4.B 点拨:把(m ,3m)的坐标代入y =kx ,得到k =3m 2,因为m ≠0,所以k>0.所以图象在第一、三象限.5.D 6.C 7.B 8.C9.A 点拨:当k >0时,反比例函数的系数-k <0,反比例函数图象位于第二、四象限,一次函数图象过第一、二、三象限,没有正确图象;当k <0时,反比例函数的系数-k >0,反比例函数图象位于第一、三象限,一次函数图象过第二、三、四象限,A 图象符合.故选A .10.C 点拨:①设∠EDC =x ,则∠DEF =90°-x ,从而可得到∠DBE =∠DEB =180°-(90°-x )-45°=45°+x ,∠DBM =∠DBE -∠MBE =45°+x -45°=x ,从而可得到∠DBM =∠CDE ,所以①正确.②可证明△BDM ≌△DEF ,然后可证明△DNB 的面积=四边形NMFE 的面积,所以△DNB 的面积+△BNE 的面积=四边形NMFE 的面积+△BNE 的面积,即S △BDE =S四边形BMFE .所以②错误;③可证明△DBC ∽△NEB ,所以CD BD =BNEN,即CD·EN =BN·BD.所以③正确.④由△BDM ≌△DEF ,可知DF =BM ,由直角三角形斜边上的中线的性质可知BM =12AC ,所以DF =12AC ,即AC =2DF.所以④正确.故选C .二、11.1 点拨:答案不唯一,只要满足k>-1即可. 12.8 cm 13.4或514.(22-x)(17-x)=300(或x 2-39x +74=0)点拨:如图,把道路平移后,草坪的面积等于图中阴影部分的面积,即(22-x)(17-x)=300,也可整理为x 2-39x +74=0.(第14题)15.3或32 点拨:∵∠ACB =∠ADC =90°,AC =6,AD =2,∴CD =AC 2-AD 2= 2.设AB =x ,当AC ∶AD =AB ∶AC 时,△ABC ∽△ACD ,∴62=x6.解得x =3,即AB =3.当AB ∶AC =AC ∶CD 时,△ABC ∽△CAD ,∴x 6=62,解得x =32,即AB =3 2. ∴AB =3或3 2. 16.1 20017.9 点拨:由题易知OC =3,点B 的坐标为(5,4).∴▱ABCO 的面积为12.设直线BC 对应的函数表达式为y =k′x +b ,则⎩⎪⎨⎪⎧3k′+b =0,5k′+b =4,解得⎩⎪⎨⎪⎧k′=2,b =-6.∴直线BC 对应的函数表达式为y =2x -6.∵点A(2,4)在反比例函数y =kx的图象上,∴k =8.∴反比例函数的表达式为y =8x .由⎩⎪⎨⎪⎧y =2x -6,y =8x解得⎩⎪⎨⎪⎧x =4,y =2或⎩⎪⎨⎪⎧x =-1,y =-8(舍去).∴点D 的坐标为(4,2). ∴△ABD 的面积为12×2×3=3.∴四边形AOCD 的面积是9. 18.12 点拨:易知EF ∥BD ∥HG , 且EF =HG =12BD =3.同理得EH ∥AC ∥GF 且EH =GF =12AC =4.又∵AC ⊥BD , ∴EF ⊥FG.∴四边形EFGH 是矩形.∴四边形EFGH 的面积=EF ×EH =3×4=12. 故答案是12.三、19.解:(1)x 2-6x -6=0, x 2-6x +9= 15, (x -3)2= 15, x -3= ±15,∴x 1=3+15,x 2=3-15. (2)(x +2)(x +3)=1, x 2+5x +6= 1, x 2+5x +5= 0, x =-5±52-4×1×52,∴x 1=-5+52,x 2=-5-52.20.解:(1)由题意得Δ>0, 即9-4(1-k)>0, 解得k >-54.(2)若k 为负整数,则k =-1, 原方程为x 2-3x +2=0, 解得x 1=1,x 2=2. 21.解:(1)列表如下:总共有9种结果,每种结果出现的可能性相同,而两数和为6的结果有3种,因此P(两数和为6)=39=13.(2)这个游戏规则对双方不公平.理由:因为P(和为奇数)=49,P(和为偶数)=59,而49≠59,所以这个游戏规则对双方不公平.22.解:(1)如图,线段EF 就是此时旗杆DE 在阳光下的投影.作法:连接AC ,过点D 作DF ∥AC ,交直线BE 于点F ,则线段EF 即为所求.(第22题)(2)∵AC ∥DF , ∴∠ACB =∠DFE. 又∠ABC =∠DEF =90°, ∴△ABC ∽△DEF.∴AB DE =BC EF. ∵AB =3 m ,BC =2 m ,EF =6 m , ∴3DE =26.∴DE =9 m .∴旗杆DE 的高度为9 m .23.解:(1)∵直线y =x +b 与双曲线y =kx 相交于A ,B 两点,已知A(2,5),∴5=2+b ,5=k2.解得b =3,k =10.(2)如图,过A 作AD ⊥y 轴于D ,过B 作BE ⊥y 轴于E ,∴AD =2. ∵b =3,k =10, ∴y =x +3,y =10x. 由⎩⎪⎨⎪⎧y =x +3,y =10x 得⎩⎪⎨⎪⎧x 1=2,y 1=5,⎩⎪⎨⎪⎧x 2=-5,y 2=-2.∴B 点坐标为(-5,-2).∴BE =5.设直线y =x +3与y 轴交于点C. ∴C 点坐标为(0,3). ∴OC =3.∴S △AOC =12OC·AD =12×3×2=3,S △BOC =12OC·BE =12×3×5=152.∴S △AOB =S △AOC +S △BOC =212.(第23题)24.(1)证明:∵四边形ABCD 是矩形, ∴AB =CD ,AD =BC , ∠A =∠C =90°.∵点M ,N 分别是AD ,BC 的中点, ∴AM =12AD ,CN =12BC.∴AM =CN.在△MAB 和△NCD 中. ∵AB =CD ,∠A =∠C =90°, AM =CN.∴△MAB ≌△NCD(SAS ).(2)解:四边形MPNQ 是菱形.理由如下:如图,连接AP ,MN.易知四边形ABNM 是矩形.(第24题)又∵P 为BM 的中点,∴A ,P ,N 在同一条直线上.∴AN =BM. ∵△MAB ≌△NCD ,∴BM =DN. ∵点P ,Q 分别是BM ,DN 的中点, ∴PM =12BM ,NQ =12DN.∴PM =NQ.∵点M ,N 分别是AD ,BC 的中点, ∴DM =12AD ,BN =12BC.又∵AD =BC ,∴DM =BN. 又∵DM ∥BN.∴四边形DMBN 是平行四边形. ∴MB ∥DN ,即MP ∥QN. ∴四边形MPNQ 是平行四边形.∵点M 是AD 的中点,点Q 是DN 的中点, ∴MQ =12AN.∴MQ =12BM.又∵MP =12BM ,∴MP =MQ.∴四边形MPNQ 是菱形.25.(1)证明:在题图①中作EG ∥AB 交BC 于点G , 则∠ABC =∠EGC ,∠D =∠FEG. ∵AB =AC ,∴∠ABC =∠C. ∴∠EGC =∠C.∴EG =EC. ∵BD =CE ,∴BD =EG .∵∠D =∠FEG ,∠BFD =∠GFE , ∴△BFD ≌△GFE.∴DF =EF.(2)解:DF =1nEF. 证明:在题图②中作EG ∥AB 交BC 于点G ,则∠D =∠FEG.由(1)得EG =EC. ∵∠D =∠FEG ,∠BFD =∠EFG ,∴△BFD ∽△GFE.∴BD EG =DF EF. ∵BD =1n CE =1nEG , ∴DF =1nEF. (3)解:成立.证明:在题图③中作EG ∥AB 交CB 的延长线于点G ,则仍有EG =EC ,△BFD ∽△GFE.∴BD EG =DF EF .∵BD =1n CE =1n EG ,∴DF =1n EF.。
2017-2018学年重庆市江北区九年级上期末模拟数学试卷及解析答案

2017-2018学年重庆市江北区九年级(上)期末模拟数学试卷一、选择题(共10题;共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.2.如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是()A.40°B.60°C.70°D.80°3.如果反比例函数的图象经过点(-1,-2),则k的值是()A.2B.-2C.-3D. 34.如图,已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①双曲线的解析式为y=(x>0);②E点的坐标是(5,8);③sin∠COA=;④AC+OB=12.其中正确的结论有()A.1个B.2个C.3个D.4个5.某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.-220%D.30%6.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9B.10(1+2x)=16.9C.10(1﹣x)2=16.9D.10(1﹣2x)=16.97.二次根式有意义,则x的取值范围是()A.x≤﹣7 B.x≥﹣7 C.x<﹣7 D.x>﹣78.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=30°,则∠OCB的度数为()A.30°B.60°C.50°D.40°9.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大10.以点O为圆心,以5cm为半径作⊙O,若线段OP的长为8cm,那么OP的中点A与⊙O 的位置关系是()A.A点在⊙O外B.A点在⊙O上 C.A点在⊙O内 D.不能确定二、填空题(共8题;共24分)11.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF=________.12.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为________.13.计算:=________.14.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA 绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB的度数为________(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB 的度数为(用含α的代数式表示)________.(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是________15.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是________.16.如图所示,以边长为2的等边△ABO的顶点O为坐标原点,点B在x轴上,则经过点A 的反比例函数的表达式为________17.已知⊙O半径为3cm,点P到圆心O的距离为3cm,则点P与⊙O的位置关系是________.18.如图,△ABC中,∠C是直角,AB=12cm,∠ABC=60°,将△ABC以点B为中心顺时针旋转,使点C旋转到AB的延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是________.三、解答题(共6题;共36分)19.解方程:x2﹣x﹣12=0.20.某批乒乓球的质量检验结果如下:(1)画出这批乒乓球“优等品”频率的折线统计图;(2)这批乒乓球“优等品”的概率的估计值是多少?(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.①求从袋中摸出一个球是黄球的概率;②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?21.在Rt△ABC中,∠C=90°,BC=3,AC=4,以C点为圆心、BC长为半径画圆,请你判断点A与⊙C的位置关系.22.如图,在⊙O中,AB为弦,C、D在AB上,且AC=BD,请问图中有几个等腰三角形?把它们分别写出,并说明理由.23.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB的关系是?24.如图,2×2网格(每个小正方形的边长为1)中,有A,O,B,C,D,E,F,H,G九个格点.抛物线l的解析式为y=x2+bx+c.(1)若l经过点O(0,0)和B(1,0),则b=,c= ;它还经过的另一格点的坐标为.(2)若l经过点H(﹣1,1)和G(0,1),求它的解析式及顶点坐标;通过计算说明点D (1,2)是否在l上.(3)若l经过这九个格点中的三个,直接写出所有满足这样的抛物线的条数.四、综合题(共10分)25.如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C (0,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.2017-2018学年重庆市江北区九年级(上)期末模拟数学试卷参考与答案与试题解析一、选择题1.【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.2.【答案】D【考点】圆周角定理,圆内接四边形的性质【解析】【解答】解:∵四边形ABCD是圆内接四边形,∴∠ADC+∠B=180°,又∠ADC=140°,∴∠B=40°,∴∠AOC=2∠B=80°,故选:D.【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理得到答案.3.【答案】D【考点】待定系数法求反比例函数解析式【解析】【分析】根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.【解答】根据题意,得-2=,即2=k-1,解得,k=3.故选D.【点评】此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.4.【答案】B【考点】反比例函数的应用【解析】【解答】解:过点C作CF⊥x轴于点F,∵OB•AC=160,A点的坐标为(10,0),∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF==8,在Rt△OCF中,∵OC=10,CF=8,∴OF==6,∴C(6,8),∵点D时线段AC的中点,∴D点坐标为,即(8,4),∵双曲线y=(x>0)经过D点,∴4=,即k=32,∴双曲线的解析式为:y=(x>0),故①错误;∵CF=8,∴直线CB的解析式为y=8,∴,解得x=4,y=8,∴E点坐标为(4,8),故②错误;∵CF=8,OC=10,∴sin∠COA= ,故③正确;∵A(10,0),C(6,8),∴AC= ,∵OB•AC=160,∴OB= ,∴AC+OB=4+8=12,故④正确.故选:B.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标;由sin∠COA=可求出∠COA的正弦值;根据A、C两点的坐标可求出AC的长,由OB•AC=160即可求出OB的长.5.【答案】A【考点】一元二次方程的应用【解析】【解答】设每年投资的增长率为x ,根据题意,得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=-2.2(舍去),故每年投资的增长率为为20%.故选:A.【分析】先设每年投资的增长率为x ,再根据2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,列方程求解.此题主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为a(1+x)n,其中n 为共增长了几年,a为第一年的原始数据,x是增长率.6.【答案】A【考点】一元二次方程的应用【解析】【解答】解:设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.【答案】B【考点】二次根式有意义的条件【解析】【解答】解:由题意,得x+7≥0,解得x≥﹣7,【分析】根据被开房数是非负数,可得答案.8.【答案】B【考点】切线的性质,切线的判定与性质【解析】【解答】解:∵AB是⊙O的切线,B为切点,∴∠OBA=90°,∵∠BAO=30°,∴∠O=60°,∵OB=OC,∴△OBC是等边三角形,∴∠OCB=60°,故选:B.【分析】根据切线性质得出∠OBA=90°,求出∠O=60°,证出△OBC是等边三角形,即可得出结果.9.【答案】D【考点】二次函数的性质【解析】【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.10.【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=8cm,A是线段OP的中点,∴OA=4cm,小于圆的半径5cm,∴点A在圆内.故选C.【分析】知道OP的长,点A是OP的中点,得到OA的长与半径的关系,求出点A与圆的位置关系.二、填空题11.【答案】20°【考点】圆周角定理【解析】【解答】解:∵⊙O的直径CD过弦EF的中点G,∴弧ED=弧DF(垂径定理),∴∠DCF=∠EOD(等弧所对的圆周角是圆心角的一半),∴∠DCF=20°.【分析】欲求∠DCF,又已知一圆心角,可利用圆周角与圆心角的关系求解.12.【答案】122°【考点】圆周角定理,三角形的内切圆与内心【解析】【解答】解:在⊙O中,∵∠CBD=32°,∵∠CAD=32°,∵点E是△ABC的内心,∴∠BAC=64°,∴∠EBC+∠ECB=(180°﹣64°)÷2=58°,∴∠BEC=180°﹣58°=122°.故答案为:122°.【分析】根据圆周角定理可求∠CAD=32°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC 的度数.13.【答案】12【考点】二次根式的乘除法【解析】【解答】解:=3 ×÷=3=12.故答案为:12.【分析】直接利用二次根式乘除运算法则化简求出答案.14.【答案】30°;90°﹣α;45°<α<60°【考点】圆周角定理,生活中的旋转现象【解析】【解答】解:(1)如图1,∵BA=BC,∠BAC=60°,∴AB=BC=AC,∠ABC=60°,∵M为AC的中点,∴MB⊥AC,∠CBM=30°,AM=MC.∵PQ由PA旋转而成,∴AP=PQ=QM=MC.∵∠AMQ=2α=120°,∴∠MCQ=60°,∠QMD=30°,∴∠MQC=60°.∴∠CDB=30°.故答案为:30°;(2)如图2,连接PC,∵由(1)得BM垂直平分AC,∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD,又∵PQ=PA,∴PQ=PC=PA,∴Q,C,A在以P为圆心,PA为半径的圆上,∴∠ACQ=∠APQ=α,∴∠BAC=∠ACD,∴DC∥BA,∴∠CDB=∠ABD=90°﹣α.故答案为:90°﹣α;(3)∵∠CDB=90°﹣α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°﹣2α>α,∴45°<α<60°.故答案为:45°<α<60°.【分析】(1)由条件可得出AB=BC=AC,再利用旋转可得出QM=MC,证得CB=CD=BA,再由三角形外角的性质即可得出结论;(2)由(1)可得BM为AC的垂直平分线,结合条件可以得出Q,C,A在以P为圆心,PA为半径的圆上,由圆周角定理可得∠ACQ=∠APQ=α,可得出∠CDB和α的关系;(3)借助(2)的结论和PQ=QD,可得出∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,结合∠BAD>∠PAD>∠MAD,代入可得出α的范围.15.【答案】2【考点】切线的性质【解析】【解答】解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴,∵PA=x,PB=y,半径为4,∴,∴y= x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.【分析】作直径AC,连接CP,得出△APC∽△PBA,利用,得出y= x2,所以x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.16.【答案】y=-【考点】反比例函数系数k的几何意义【解析】【解答】解:过A作AM⊥BO于点M,∵△ABO为等边三角形,∴AB=BO=AO=2,∵AM⊥BO,∴OM=BO=1,∴AM=则点A的坐标为(﹣1,)则这个反比例函数的解析式为y=-.故答案为:y=-.【分析】过A作AM⊥BO于点M,根据等边三角形的性质和B点坐标求出A点坐标,然后用待定系数法求出解析式.17.【答案】点P在⊙O上【考点】点与圆的位置关系【解析】【解答】解:PO=r=3,点P在⊙O上,故答案为:点P在⊙O上.【分析】根据d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.18.【答案】36πcm2【考点】扇形面积的计算,旋转的性质【解析】【解答】解:∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC= AB= ×12=6cm,∵△ABC以点B为中心顺时针旋转得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=120°,∴阴影部分的面积=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD= ﹣=48π﹣12π=36πcm2.故答案为:36πcm2.【分析】根据直角三角形两锐角互余求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BC= AB,然后求出阴影部分的面积=S扇形ABE﹣S扇形BCD,列计算即可得解.三、解答题19.【答案】解:分解因式得:(x+3)(x﹣4)=0,可得x+3=0或x﹣4=0,解得:x1=﹣3,x2=4.【考点】解一元二次方程-因式分解法【解析】【分析】方程左边利用十字相乘法分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程求解.20.【答案】解:(1)如图;(2)这批乒乓球“优等品”概率的估计值是0.946;(3)①∵袋中一共有球5+13+22=40个,其中有5个黄球,∴从袋中摸出一个球是黄球的概率为:②设从袋中取出了x个黑球,由题意得≥,解得x≥8,故至少取出了9个黑球.【考点】利用频率估计概率【解析】【分析】(1)根据统计表中的数据,先描出各点,然后折线连结即可;(2)根据频率估计概率,频率都在0.946左右波动,所以可以估计这批乒乓球“优等品”概率的估计值是0.946;(3)①用黄球的个数除以球的总个数即可;②设从袋中取出了x个黑球,根据搅拌均匀后使从袋中摸出一个是黄球的概率不小于,列出不等式,解不等式即可.21.【答案】解:如图所示:∵∠C=90°,BC=3,AC=4,以点C为圆心、BC长为半径画圆,∴AC>BC,则点A在⊙C外.【考点】点与圆的位置关系【解析】【分析】直接利用点与圆的位置关系进而得出答案.22.【答案】解:等腰三角形有:△OAB、△OCD.证明:∵OA=OB(同圆半径相等),∴△OAB是等腰三角形,∴∠A=∠B,又∵AC=BD,OA=OB,∴△OAC≌△OBD,∴OC=OD,∴△OCD是等腰三角形.【考点】圆的认识【解析】【分析】图中等腰三角形有两个,圆中半径处处相等,所以△OAB是等腰三角形,根据所给的已知条件,易证△OAC≌△OBD,根据全等三角形的性质,OC=OD,所以△OCD 也是等腰三角形.23.【答案】解:连CO∵DC⊥AD,CE⊥OBCD=EC∠1=∠2【考点】圆心角、弧、弦的关系【解析】【解答】连CO∵DC⊥AD,CE⊥OBCD=EC∠1=∠2【分析】此题考查了圆心角弦弧的关系,作好辅助线,利用好相关条件.24.【答案】解:(1)根据题意得:,解得:,故函数的解析式是:y=x2﹣x,点中H(﹣1,1)满足函数解析式,则另一个格点的坐标是(﹣1,1).故答案是:-,0,(﹣1,1);(2)根据题意得:,解得:,则函数的解析式是:y=x2+x+1,y=x2+x+1=(x+)2+,则顶点坐标为(﹣,),点D(1,2)在抛物线l上;(3)因为题目中的a=0.5,在这个条件下,抛物线的开口方向和开口大小是确定的.应该是4条,分别过HOB三点,AOC三点,HGD三点,还有FGC三点,综上所述,满足这样的抛物线有4条.【考点】二次函数的应用【解析】【分析】(1)把两个点代入解析式即可得到关于b、c的方程组,从而求得b和c 的值,然后把格点坐标代入解析式即可判断;(2)与(1)的解法相同;(3)二次函数的二次项系数不变,则抛物线的形状和开口方向不变,则移动抛物线的顶点到图中的一个点,同时,经过另外两个的抛物线就是符合要求的图形.四、综合题25.【答案】(1)解:如图,△A1B1C1为所作,(2)解:四边形AB1A1B的面积= ×6×4=12【考点】作图-旋转变换【解析】【分析】(1)利用网格特点,延长AC到A1使A1C=AC,延长BC到B1使B1C=BC,C点的对应点C1与C点重合,则△A1B1C1满足条件;(2)四边形AB1A1B的对角线互相垂直平分,则四边形AB1A1B为菱形,然后利用菱形的面积公式计算即可.本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.。
重庆八中九年级上学期期末考试数学试卷及答案解析

2020-2021学年重庆八中九年级上学期期末考试数学试卷一.选择题(共12小题,满分48分,每小题4分)
1.如果一个有理数的绝对值是6,那么这个数一定是()
A.6B.﹣6C.﹣6或6D.无法确定
2.用一个平面去截正方体ABCD﹣A1B1C1D1(如图),所截得的截面不可能的是()
A.正三角形B.正方形C.正五边形D.正六边形
3.下列运算正确的是()
A.﹣4﹣3=﹣1B.5×(﹣1)2=﹣1C.x2•x4=x8D.√2+√8=3√2 4.下列语句不是命题的是()
A.连结AB B.对顶角相等
C.相等的角是对顶角D.同角的余角相等
5.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1B.1C.﹣5D.5
6.如图,仔细观察用直尺和圆规作出∠AOB的角平分线OE示意图,请你根据所学知识,说明画出的∠AOE=∠BOE的依据是()
A.ASA B.SAS C.AAS D.SSS
7.如图,菱形ABCD的边长为2,∠B=45°,AE⊥BC,则这个菱形的面积是()
A.4B.8C.2√2D.√2
第1 页共26 页。
(word版)20172018学年重庆市万州区九年级(上)期末数学试卷(含部分答案)

2021-2021学年重庆市万州区九年级〔上〕期末数学试卷一、选择题1.〔分〕1的相反数是〔〕A.121B.C.2D.﹣2222.〔分〕下面四个图形中,是轴对称图形的是〔〕A.B.C.D.3.〔分〕化简2x2的结果是〔〕A.x4B.2x2C.4x2D.4x4.〔分〕如表记录了甲、乙、丙、丁四名跳高运发动最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数〔cm〕185180185180方差根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择〔〕A.甲B.乙C.丙D.丁5.〔分〕方程2x+a﹣4=0的解是x=﹣2,那么a等于〔〕A.﹣8B.0C.2D.86.〔分〕假设代数式x 有意义,那么实数x的取值范围是〔〕x4A.x=0B.x=4C.x≠0D.x ≠47.〔分〕估算273的值在〔〕A.1与2之间B.2与3之间C.3与4之间D.5与6之间.〔分〕关于x的一元二次方程x 2﹣2x+k=0有两个相等的实数根,那么k的8值为〔〕-1-A.1 B.﹣1C.2D.﹣29.〔分〕如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,那么△BEC的周长为〔〕A.13B.14C.15D.1610.〔分〕如图,以下条件中不能证明△ABD≌△ACD的是〔〕A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,BD=DC D.∠BAD=∠CAD,AB=AC11.〔分〕将一些半径相同的小圆按如下列图的方式摆放,图①中有8个小圆,图②中有13个小圆,图③中有19个小圆,图④中有26个小圆,照此规律,图⑨中小圆的个数为〔〕A.64B.76C.89D.9312.〔分〕关于x的方程2x m的解为正数,且关于y的不等式组x222xy2m有解,那么符合题意的整数m有〔〕个.y m2m2A.4B.5C.6D.7二、填空题:〔本大题6个小题,每题4分,共24分〕请将答案直接填在答-2-题卡中对应的横线上13.〔分〕2021年12月26日13点,连接重庆万州和湖北利用的跨省高速公路正式建成通车,其中,万州段总投资 812800万元,把812800这个数用科学 记数法表示为..〔分〕计算:+|﹣3|﹣1 1.=142215.〔分〕如果两个相似三角形对应角平分线的比是 4:9,那么它们的周长 比是 . 16.〔分〕一名射击运发动连续打靶 9次,假设他打靶命中环数的情况如图 所示,那么该射击运发动本次打靶命中环数的中位数为 环.17.〔分〕甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时 出发去距离甲 1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y 米,乙行驶的时间为 x 秒,y 与x 之间的关系如下列图.那么甲的速度为每秒米.18.〔分〕如图,正方形 ABCD 的对角线交于点 O ,以AD 为边向外作 Rt△ADE ,∠AED=90°,连接 OE ,DE=6,OE=82,那么另一直角边 AE 的长为.-3-三、解答题:〔本大题2个小题,每题8分,共16分〕解答时每题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上19.〔分〕△ABC中,DE∥BC,∠AED=50°,CD平分∠ACB,求∠CDE的度数.20.〔分〕2021年11月18日,党的十九大胜利召开,为了伸入贯彻落实习近平总书记系列重要讲话精神,万州区某学校组织全校党员同志开展征文活动,要求每位党员同志分别以A.“讲党恩爱核心〞B.“讲团结爱祖国〞C.“讲奉献爱(家园〞D.“讲文明爱生活〞四个主题选其中一个主题写一篇文章,为了了解该校党(员同志征文情况,学校党委进行了统计,并将统计结果绘制成了两幅不完整的统(计图,请答复以下问题:(〔1〕这次参加征文活动的党员同志共有人.(2〕请你将条形统计图〔2〕补充完整.(3〕在本次征文活动中,甲、乙、丙、丁四人的文章都非常优秀,学校现决定从这四名党员同志的文章中任选两篇参加区征文比赛,请用画树状图或列表法求恰好选中甲、乙两位党员同志文章的概率.-4-四、解答题:〔本大题4个小题,每题10分,共40分〕解答时每题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上21.〔分〕化简1〕x〔4x+3y〕﹣〔2x+y〕〔2x﹣y〕〔2〕〔1﹣1〕÷x22x1.x2x2422.〔分〕如图,一次函数y=ax+b〔a≠0〕的图象与反比例函数y k k0x的图象交于第二、四象限内的A,B两点,与y轴交于C点,过点A作AH⊥y2轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为〔m,﹣2〕.(1〕求该反比例函数和一次函数的解析式;(2〕求△AOB的面积.-5-23.〔分〕“万州古红桔〞原名“万县红桔〞,古称丹桔〔以下简称为红桔〕,种植距今至少已有一千多年的历史,“玫瑰香橙〞〔源自意大利西西里岛塔罗科血橙,以下简称香橙〕现已是万州柑橘开展的主推品种之一.某水果店老板在2021年11月份用15200元购进了400千克红桔和600千克香橙,香橙的每千克进价比红桔的每千克进价2倍还多4元.〔1〕求11月份这两种水果的进价分别为每千克多少元?2〕时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔 每千克的进价在11月份的根底上下降了1m %,香橙每千克的进价在11月份的2 根底上下降了m %,由于红桔和“玫瑰香橙〞都深受库区人民欢迎,实际水果店老 板在12月份购进的红桔数量比 11月份增加了5m%,香橙购进的数量比11月份8增加了2m %,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求m 的值.24.〔分〕两个等腰Rt△ABC,Rt△CEF有公共顶点C,∠ABC﹣∠CEF=90°,连接AF,M是AF的中点〔1〕如图1,当CB与CE在同一直线上时,连接CM,假设CB=1,CE=2,求CM的长.2〕如图2,连接MB,ME,当∠BCE=45°时,求证:BM=ME.五、解答题:〔本大题2个小题,25小题10分,26小题12分,共22分〕解答时每题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上25.〔分〕一个能被13整除的自然数我们称为“十三数〞,“十三数〞的特征是:假设把这个自然数的末三位与末三位以前的数字组成的数之差,如果能被13整除,那么这个自然数就一定能被13整除.例如:判断383357能不能被13整除,这个数的末三位数字是357,末三位以前的数字组成的数是383,这两个数的差是383﹣357=26,26能被13整除,因此383357是“十三数〞.1〕判断3253和254514是否为“十三数〞,请说明理由.2〕假设一个四位自然数,千位数字和十位数字相同,百位数字与个位数字相同,那么称这个四位数为“间同数〞.①求证:任意一个四位“间同数〞能被101整除.②假设一个四位自然数既是“十三数〞,又是“间同数〞,求满足条件的所有四位数的最大值与最小值之差.26.〔分〕如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,OA=1,OC=3,连接BC.1〕求b的值;2〕点D是直线BC上方抛物线一动点〔点B、C除外〕,当△BCD的面积取得最大值时,在y轴上是否存在一点P,使得|PB﹣PD|最大,假设存在,请求出(点P的坐标;假设不存在,请说明理由.(3〕在〔2〕的条件下,假设在平面上存在点Q,使得以点B、C、D、Q为顶点的四边形为平行四边形,请直接写出点Q坐标.-8-2021-2021学年重庆市万州区九年级〔上〕期末数学试卷参考答案一、选择题1.B;2.A;3.C;4.A;5.D;6.D;7.B;8.A;9.A;10.C;11.B;12.C;二、填空题:〔本大题6个小题,每题4分,共24分〕请将答案直接填在答题卡中对应的横线上13.×105;14.2;15.4:9;16.9;17.6;18.10;-9-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年重庆八中九年级(上)期末数学试卷一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.请将答题卡上对应题目的正确答案标号涂黑.1.下列各数中最小的数是()A.﹣5B.﹣1C.0D.32.如图图形中是轴对称图形的是()A.B.C.D.3.计算(2x2y)3正确的结果是()A.6x6y3B.8x6y3C.8x2y D.8x6y4.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天自主学习时间的调查B.对渝北区市民观看电影《芳华》情况的调查C.对重庆八中男生311寝室本学期期末体育考试成绩的调查D.对江北区市民了解江北区创“全国文明城区”情况的调查5.估计2的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.若a=2,b,则代数式2a+8b﹣1的值为()A.5B.3C.1D.﹣17.如果分式有意义,则x需要满足的条件是()A.x=2B.x>2C.x≠2D.x<28.若△ABC∽△DEF,且两三角形对应中线的比为4:3,则它们的面积之比为()A.4:3B.8:6C.16:9D.12:99.如图,等边三角形ABC的边长为2,CD⊥AB于D,若以点C为圆心,CD为半径画弧,则图形阴影部分的面积是()A.πB.2 πC.2D.210.如图图形都是由同样大小的黑色圆点按照一定规律所组成的,其中第①个图形中一共有6个黑色圆点,第②个图形中一共有15个黑色圆点,第③个图形中一共有28个黑色圆点,……,按此规律排列下去,第⑥个图形中的黑色圆点的个数为()A.45B.61C.66D.9111.如图所示是某游乐场“激流勇进”项目的示意图,游船从D点水平运动到A处后,沿着坡度为i=3:1的斜坡AB到达游乐场项目的最高点B,然后沿着俯角为30°,长度为42m的斜坡BC运动,最后沿斜坡CD俯冲到达点D,完成一次“激流勇进”.如果∠CDA =37°,AD的长为(52+21)m,则斜坡CD的长约为()(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)A.36m B.45m C.48m D.55m12.若关于x的方程的解为整数,且不等式组><无解,则所有满足条件的非负整数a的和为()A.2B.3C.7D.10二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.2017年12月24日“八中之春”在重庆市大剧院成功演出,其中播放的王俊凯祝福母校八十周年庆的视频,当天网络点击量达到350000次,数字350000用科学记数法表示为.14.2sin30°﹣(π﹣2)0=.15.如图,AB是圆O的直径,C、D为圆上的两点,若∠BAC=55°,则∠ADC为度.16.在重庆八中“青春飞扬”艺术节的钢琴演奏比赛决赛中,参加比赛的10名选手成绩统计如图所示,则这10名学生成绩的中位数是.17.小明和小亮分别从同一直线跑道A、B两端同时相向匀速出发,小明和小亮第一次相遇后,小明觉得自己速度太慢便提速至原速的倍,并匀速运动达到B端,且小明到达B 端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过秒,小亮回到B端.18.正方形ABCD中的边长为4,对角线AC、BD交于点O,E为DC边上一点,连接AE 交BD于F,BG⊥AE于点G,连接OG,若∠DGE=45°,则S△FGO=.三、解答题(本大题共2小题,每小题8分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.如图,已知射线BM平分∠ABC,点D是BM上一点,且DE∥BC交AB于E,若∠EDB =28°,求∠AED的度数.20.随着迪士尼公司出品的电影《寻梦环游记》的热播,公司现需要了解该节目在中学生中的受欢迎程度,走进重庆八中随机抽取部分学生就“你是否喜欢看《寻梦环游记》?”进行问卷调查,并将调查后的结果统计后绘制成如图所示的不完整条形统计图和扇形统计图,请你结合图中信息解答下列问题.(1)参与调查的学生共有人,并请补全条形统计图;(2)现在了解到3名不喜欢的学生分别是小王、小李、小张,若从他们3人中随机抽取2名同学进行座谈,请用列表法或画树状图法,求小王和小李同时被选中的概率.四、解答题(本大题共5小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.计算:(1)(2x﹣y)2﹣x(3x﹣2y)(2)(a﹣3)22.如图所示,在平面直角坐标系中,一次函数y=ax+1(a≠0)与反比例函数y(k≠0)的图象交于A,D两点,AB⊥x轴于点B,tan∠AOB,△AOB的面积为3.(1)求反比例函数和一次函数的解析式;(2)求△AOD的面积.23.2017年11月,重庆八中为了更好第打造“书香校园”,从新华书店采购了一批文学著作.其中,A著作180本,每本单价40元,B著作350本,每本单价60元.(1)新书一到学校图书馆,A、B两著作很快便被借阅一空.于是,学校再用不超过13800元的资金从新华书店增购270本A、B两著作,问A著作至少增购了多少本?(2)八中学生对A、B著作的阅读热情被媒体报道后,于是,仅在12月第一周,A著作的销量就比重庆八中第一次采购的A著作多了%,B著作的销量比重庆八中第一次采购的B著作多了(a+20)%,且12月份第一周A、B两著作的销售总额达到了38840元.求a的值.24.已知:在Rt△ABC中,CD是斜边AB上的中线,点E是直角边AC上一点,连接DE、BE.(1)若DE⊥AB,BC=3,AC=4,如图1,求△CDE的面积;(2)若∠AED=∠BEC,如图2,求证:F是CD的中点.25.一个三位自然数是s,将它任意两个数位的数字对调后得到一个首位不为0的新三位自然数s′(s′可以与s相同),设s′,在s′所有的可能情况中,当|x+3y﹣z|最大时,我们称此时的s′是s的“梦想数”,并规定P(s)=x2+3y2﹣z2.例如127按上述方法可得到新数有:217、172、721,因为|2+3﹣7|=2,|1+21﹣2|=20,|7+6﹣1|=12,2<12<20,所以172是127的“梦想数”,此时,P(127)=12+3×72﹣22=144.(1)求512的“梦想数”及P(512)的值;(2)设三位自然数S交换其个位与十位上的数字得到新数s′,若29s+7s′=4887,且P(s)能被7整除,求s的值.五、解答题(本大题共1小题,每小题12分,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.如图1,在平面直角坐标系中,抛物线y x2+2x与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点E,直线CE交抛物线于点F(异于点C),直线CD交x轴交于点G.(1)如图1,求直线CE的解析式和顶点D的坐标;(2)如图1,点P为直线CF上方抛物线上一点,连接PC、PF,当△PCF的面积最大时,点M是过P垂直于x轴的直线l上一点,点N是抛物线对称轴上一点,求FM+MN+NO 的最小值;(3)如图2,过点D作DI⊥DG交x轴于点I,将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,记旋转过程中的△G′D′I′为△G″D′I″,若在整个旋转过程中,直线G″I″分别交x轴和直线GD′于点K、L两点,是否存在这样的K、L,使△GKL为以∠LGK为底角的等腰三角形?若存在,求此时GL的长.2017-2018学年重庆八中九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.请将答题卡上对应题目的正确答案标号涂黑.1.下列各数中最小的数是()A.﹣5B.﹣1C.0D.3【解答】解:∵﹣5<﹣1<0<3,∴最小的数是﹣5.故选:A.2.如图图形中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.3.计算(2x2y)3正确的结果是()A.6x6y3B.8x6y3C.8x2y D.8x6y【解答】解:(2x2y)3=8x6y3.故选:B.4.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天自主学习时间的调查B.对渝北区市民观看电影《芳华》情况的调查C.对重庆八中男生311寝室本学期期末体育考试成绩的调查D.对江北区市民了解江北区创“全国文明城区”情况的调查【解答】解:A、对重庆市初中学生每天自主学习时间的调查,适合抽样调查,故此选项错误;B、对渝北区市民观看电影《芳华》情况的调查,适合抽样调查,故此选项错误;C、对重庆八中男生311寝室本学期期末体育考试成绩的调查,适合全面调查,故此选项正确;D、对江北区市民了解江北区创“全国文明城区”情况的调查,适合抽样调查,故此选项错误;故选:C.5.估计2的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【解答】解:∵5<<6,∴3<2<4,故选:B.6.若a=2,b,则代数式2a+8b﹣1的值为()A.5B.3C.1D.﹣1【解答】解:当a=2、b时,原式=2×2+8×()﹣1=4﹣2﹣1=1,故选:C.7.如果分式有意义,则x需要满足的条件是()A.x=2B.x>2C.x≠2D.x<2【解答】解:分式有意义,则3x﹣6≠0,解得:x≠2.故选:C.8.若△ABC∽△DEF,且两三角形对应中线的比为4:3,则它们的面积之比为()A.4:3B.8:6C.16:9D.12:9【解答】解:∵△ABC∽△DEF,且两三角形对应中线的比为4:3,∴它们的相似比为4:3,则它们的面积之比为16:9,故选:C.9.如图,等边三角形ABC的边长为2,CD⊥AB于D,若以点C为圆心,CD为半径画弧,则图形阴影部分的面积是()A.πB.2 πC.2D.2【解答】解:∵△ABC是等边三角形,且CD⊥AB,∴AD AB=1,∠ACB=60°,由勾股定理得:CD,∴S阴影=S△ABC﹣S扇形CEF AB•CD2,故选:A.10.如图图形都是由同样大小的黑色圆点按照一定规律所组成的,其中第①个图形中一共有6个黑色圆点,第②个图形中一共有15个黑色圆点,第③个图形中一共有28个黑色圆点,……,按此规律排列下去,第⑥个图形中的黑色圆点的个数为()A.45B.61C.66D.91【解答】解:通过观察,得到:第①个图形中的黑色圆点的个数为:1+3+1×2=6,第②个图形中的黑色圆点的个数为:1+3+5+2×3=15,第③个图形中的黑色圆点的个数为:1+3+5+7+3×4=28,…,所以第n个图形中的黑色圆点的个数为:1+3+5+…+(2n+1)+n(n+1),当n=6时,1+3+5+7+9+11+13+6×7=91,故选:D.11.如图所示是某游乐场“激流勇进”项目的示意图,游船从D点水平运动到A处后,沿着坡度为i=3:1的斜坡AB到达游乐场项目的最高点B,然后沿着俯角为30°,长度为42m的斜坡BC运动,最后沿斜坡CD俯冲到达点D,完成一次“激流勇进”.如果∠CDA =37°,AD的长为(52+21)m,则斜坡CD的长约为()(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)A.36m B.45m C.48m D.55m【解答】解:过点B作BF⊥DA,垂直为F,过点C作CG⊥BF,垂直为G,过点C作CE⊥DA,垂直为E.则四边形CEGF为矩形,所以CG=EF,CE=GF设CD的长为am,在Rt△CDE中,CE=sin37°×CD≈0.6a,DE=coa37°×CD≈0.8a;在Rt△CDG中,∵∠BCG=30°,BC=42,∴CG=cos30°×CB=21,BG=sin30°×CB=21;∴AF=AD﹣DE﹣EF=52+210.8a﹣2152﹣0.8a,BF=BG+GF=BG+CE=21+0.6a,又∵AB的坡度i∴BF=3AF,即21+0.6a=3(52﹣0.8a)解得:a=45(m).即斜坡CD的长约为45m.故选:B.12.若关于x的方程的解为整数,且不等式组><无解,则所有满足条件的非负整数a的和为()A.2B.3C.7D.10【解答】解:,去分母,方程两边同时乘以x﹣3,ax=3+a+x,x,且x≠3,>①<②,由①得:x>5,由②得:x<a,∵不等式组><无解,∴a≤5,当a=0时,x3,当a=1时,x无意义,当a=2时,x5,当a=3时,x3分式方程无解,不符合题意,当a=4时,x,当a=5时,x2,∵x是整数,a是非负整数,∴a=0,2,5,所有满足条件的非负整数a的和为7,故选:C.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.2017年12月24日“八中之春”在重庆市大剧院成功演出,其中播放的王俊凯祝福母校八十周年庆的视频,当天网络点击量达到350000次,数字350000用科学记数法表示为 3.5×105.【解答】解:将350000用科学记数法表示为:3.5×105,故答案为:3.5×105.14.2sin30°﹣(π﹣2)0=2.【解答】解:原式=221=2.故答案为:2.15.如图,AB是圆O的直径,C、D为圆上的两点,若∠BAC=55°,则∠ADC为35度.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠BAC=55°,∴∠ABC=90°﹣55°=35°,∴∠ADC=∠ABC=35°故答案为3516.在重庆八中“青春飞扬”艺术节的钢琴演奏比赛决赛中,参加比赛的10名选手成绩统计如图所示,则这10名学生成绩的中位数是8.5分.【解答】解:由折线统计图知这10位学生的成绩为:7、7.5、8、8、8.5、8.5、9、9、9、9.5,则这10名学生成绩的中位数是8.5(分),故答案为:8.5分.17.小明和小亮分别从同一直线跑道A、B两端同时相向匀速出发,小明和小亮第一次相遇后,小明觉得自己速度太慢便提速至原速的倍,并匀速运动达到B端,且小明到达B 端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过54秒,小亮回到B端.【解答】解:小明提速前,小亮和小明的速度和为360÷45=8m/s,小明提速后,小亮和小明的速度和为270÷(72﹣45)=10m/s,小明提速前的速度为(10﹣8)÷(1)=3m/s,小明提速后的速度为35m/s,小亮的速度为8﹣3=5m/s,小明到达B端的时间为72+(360﹣270)÷5=90s,小亮回到B端的时间为72×2=144s,∵144﹣90=54s.∴当小明到达B端后,经过54秒,小亮回到B端.故答案为:54.18.正方形ABCD中的边长为4,对角线AC、BD交于点O,E为DC边上一点,连接AE 交BD于F,BG⊥AE于点G,连接OG,若∠DGE=45°,则S△FGO=.【解答】解:过D作DM⊥BG,交BG的延长线于M,BM交AD于H,过D作DN⊥AE 于N,∵AE⊥BG,∴∠BAG+∠ABG=90°,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ADE=90°,∴∠BAG+∠DAE=90°,∴∠DAE=∠ABG,在△ABH和△DAE中,∵,∴△ABH≌△DAE(ASA),∴AH=DE,同理得:△AGH≌△DNE,∴AG=DN,∵∠DGE=45°∠MGD,∴DM=DN,∴AG=DM=DN,∴△AGH≌△DMH,∴AH=DH=2=DE,由勾股定理得:BD4,AE2,∵AB∥DE,∴△ABF∽△EDF,∴2,∴AF=2EF,∵AF+EF=2,∴AF,同理得:DF,OF=2,sin∠ABG,∴,AG,∴FG=AF﹣AG,∴,∴S△FGO,故答案为:.三、解答题(本大题共2小题,每小题8分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.如图,已知射线BM平分∠ABC,点D是BM上一点,且DE∥BC交AB于E,若∠EDB =28°,求∠AED的度数.【解答】解:∵DE∥BC,∴∠EDB=∠CBD=28°,∠AED=∠ABC,又∵BM平分∠ABC,∴∠ABD=∠CBD=28°,∴∠ABC=∠AED=56°.20.随着迪士尼公司出品的电影《寻梦环游记》的热播,公司现需要了解该节目在中学生中的受欢迎程度,走进重庆八中随机抽取部分学生就“你是否喜欢看《寻梦环游记》?”进行问卷调查,并将调查后的结果统计后绘制成如图所示的不完整条形统计图和扇形统计图,请你结合图中信息解答下列问题.(1)参与调查的学生共有30人,并请补全条形统计图;(2)现在了解到3名不喜欢的学生分别是小王、小李、小张,若从他们3人中随机抽取2名同学进行座谈,请用列表法或画树状图法,求小王和小李同时被选中的概率.【解答】解:(1)参与调查的学生共有:3÷10%=30(人);喜欢的有:30﹣12﹣6﹣3=9(人),补图如下:故答案为:30;(2)根据题意画图如下:由图可知,共有6种等可能的结果数,其中小王和小李同时被选中的有2种,则小王和小李同时被选中的概率是.四、解答题(本大题共5小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.计算:(1)(2x﹣y)2﹣x(3x﹣2y)(2)(a﹣3)【解答】解:(1)原式=4x2﹣4xy+y2﹣3x2+2xy=x2﹣2xy+y2(2)原式•••=a2﹣2a22.如图所示,在平面直角坐标系中,一次函数y=ax+1(a≠0)与反比例函数y(k≠0)的图象交于A,D两点,AB⊥x轴于点B,tan∠AOB,△AOB的面积为3.(1)求反比例函数和一次函数的解析式;(2)求△AOD的面积.【解答】解:(1)∵tan∠AOB,∴设AB=3a,BO=2a,∵△ABO的面积为3,∴•3a•2a=3,解得a=1,∴AB=3,OB=2,∴A的坐标是(2,3),把A的坐标代入y得:k=6,∴反比例函数的解析式是:y,把A的坐标代入y=ax+1得:3=2a+1得:a=1,∴一次函数的解析式是:y=x+1;(2)解方程组,得:,,∵A(2,3),∴D(﹣3,﹣2).把y=0代入y=x+1得:0=x+1,解得x=﹣1,设AD与x轴交于点C,则OC=1,∴S△AOD=S△AOD+S△DOC1×31×2.23.2017年11月,重庆八中为了更好第打造“书香校园”,从新华书店采购了一批文学著作.其中,A著作180本,每本单价40元,B著作350本,每本单价60元.(1)新书一到学校图书馆,A、B两著作很快便被借阅一空.于是,学校再用不超过13800元的资金从新华书店增购270本A、B两著作,问A著作至少增购了多少本?(2)八中学生对A、B著作的阅读热情被媒体报道后,于是,仅在12月第一周,A著作的销量就比重庆八中第一次采购的A著作多了%,B著作的销量比重庆八中第一次采购的B著作多了(a+20)%,且12月份第一周A、B两著作的销售总额达到了38840元.求a的值.【解答】解:(1)设A著作增购了x本,B著作增购了(270﹣x)本.由题意40x+60(270﹣x)≤13800,解得x≥120,答:A著作至少增购120 本;(2)由题意:(180+180a%)×40+[350+350×(a+20)%]×60=38840解得:a=20答:a的值为20.24.已知:在Rt△ABC中,CD是斜边AB上的中线,点E是直角边AC上一点,连接DE、BE.(1)若DE⊥AB,BC=3,AC=4,如图1,求△CDE的面积;(2)若∠AED=∠BEC,如图2,求证:F是CD的中点.【解答】(1)解:∵BC=3,AC=4,∴6,AB=5,∵CD是斜边AB上的中线,∴S△ADC3,AD,∵DE⊥AB,∴∠ADE=∠ACB=90°,∵∠EAD=∠CAB,∴△ADE∽△ACB,∴,∴,∴DE,∴,∴S△CDE=S△ADC﹣S△ADE=3.(2)证明:过D作DM⊥AC于点H,交FE的延长线于M,∵∠AED=∠BEC=∠MEH,∠DHE=∠MHE=90°,EH=EH,∴△DHE≌△MHE(ASA),∴DH=MH,∵D为AB的中点,DH∥BC,∴DH BC,∴DM=BC,又∵∠M=∠CBF,∠MFD=∠CFB,∴△DMF≌△CBF(AAS),∴CF=DF,即F是CD的中点.25.一个三位自然数是s,将它任意两个数位的数字对调后得到一个首位不为0的新三位自然数s′(s′可以与s相同),设s′,在s′所有的可能情况中,当|x+3y﹣z|最大时,我们称此时的s′是s的“梦想数”,并规定P(s)=x2+3y2﹣z2.例如127按上述方法可得到新数有:217、172、721,因为|2+3﹣7|=2,|1+21﹣2|=20,|7+6﹣1|=12,2<12<20,所以172是127的“梦想数”,此时,P(127)=12+3×72﹣22=144.(1)求512的“梦想数”及P(512)的值;(2)设三位自然数S交换其个位与十位上的数字得到新数s′,若29s+7s′=4887,且P(s)能被7整除,求s的值.【解答】解:(1)∵512按上述方法可得到新数有:152,215,521,∵|1+3×5﹣2|=14,|2+3×1﹣5|=0,|5+3×2﹣1|=10∴14>10>0∴152是512的“梦想数”.P(512)=1+3×25﹣4=72(2)∵S∴s'∵29s+7s′=4887∴29(100+10a+b)+7(100+10b+a)=4887∴3a+b=13∵a,b为自然数∴a=2,b=7a=3,b=4a=4,b=1∴三位数为127,134,141∴P(127)=144,P(134)=42,P(141)=48又∵P(s)能被7整除∴s=134五、解答题(本大题共1小题,每小题12分,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.如图1,在平面直角坐标系中,抛物线y x2+2x与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点E,直线CE交抛物线于点F(异于点C),直线CD交x轴交于点G.(1)如图1,求直线CE的解析式和顶点D的坐标;(2)如图1,点P为直线CF上方抛物线上一点,连接PC、PF,当△PCF的面积最大时,点M是过P垂直于x轴的直线l上一点,点N是抛物线对称轴上一点,求FM+MN+NO 的最小值;(3)如图2,过点D作DI⊥DG交x轴于点I,将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,记旋转过程中的△G′D′I′为△G″D′I″,若在整个旋转过程中,直线G″I″分别交x轴和直线GD′于点K、L两点,是否存在这样的K、L,使△GKL为以∠LGK为底角的等腰三角形?若存在,求此时GL的长.【解答】解:(1)∵抛物线y x2+2x与y轴交于点C,∴C(0,),∵y x2+2x(x﹣2)2,∴顶点D(2,),对称轴x=2,∴E(2,0),设CE解析式y=kx+b,∴,解得:,∴直线CE的解析式:y x;(2)∵直线CE交抛物线于点F(异于点C),∴x(x﹣2)2,∴x1=0,x2=3,∴F(3,),过P作PH⊥x轴,交CE于H,如图1,设P(a,a2+2a)则H(a,a),∴PH a2+2a(a),a2,∵S△CFP PH×3a2,∴当a时,S△CFP面积最大,如图2,作点M关于对称轴的对称点M',过F点作FG∥MM',FG=1,即G(4,),∵M的横坐标为,且M与M'关于对称轴x=2对称,∴M'的横坐标为,∴MM'=1,∴MM'=FG,且FG∥MM',∴FGM'M是平行四边形,∴FM=GM',∴FM+MN+ON=GM'+NM'+ON,根据两点之间线段最短可知:当O,N,M',G四点共线时,GM'+NM'+ON的值最短,即FM+MN+ON的值最小,∴FM+MN+ON=OG;(3)如图3,设CD解析式y=mx+n,则,解得:,∴CD解析式y x,∴当y=0时,x=1.即G(1,0),∴DG2,∵tan∠DGI,∴∠DGI=60°,∵DI⊥DG,∴∠GDI=90°,∠GID=30°,∴GI=2DG=4∴I(5,0),∵将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,连接D'I,∴G'D'=D'I=DG=2,∠D'G'I=∠DGI=60°,∴△G'D'I是等边三角形,∴G'I=2,G'K=2D'G'=4∴G'(3,0),如图4,当I''与I、K重合,△GKL为以∠LGK为底角的等腰三角形,∠LGK=∠GLK=30°,∴GL=D'G+D'L=4;如图5,L与G''重合,△GKL为以∠LGK为底角的等腰三角形,∴GL=GD'+D'L=22综上,GL的长为4或22.。