2022-2023学年重庆八中九年级(上)月考数学试卷(10月份)
重庆市第八中学校2022-2023学年九年级上学期期中数学试题

重庆市第八中学校2022-2023学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题.....下列图中1∠,....A .()6,2-B .(6.小明在游乐场坐过山车,在某一段之间的函数关系图象如图所示,下列结论错误的是(A .当41t =时,15h =B .过山车距水平地面的最高高度为C .在060t ≤≤范围内,当过山车高度是D .当4153t ≤≤时,高度h (米)随时间7.食堂的存煤计划用若干天,若每天用剩余60kg .设食堂的存煤共有A .{+60=130A .21+B .11.若整数a 使关于y 的不等式组分式方程()3211a x x x x-=--A .-6B .-912.定义:对于确定顺序的三个数结果的最大值称为a ,b ,c 的3113112⨯⨯=+,所以1,2,3①3,1,-4的“极数”是36;②若x ,y ,0的“极数”为0,则③存在2个数m ,使得m ,A .0个B .1二、填空题13.计算:cos3013︒--14.有三张背面完全相同的卡片,随机抽取一张,记下数字为b ,则方程20x ax b ++=有解的概率是三、解答题(1)求抛物线的函数解析式.(2)点P 为直线BC 下方抛物线上一动点,过点P 作y 轴的平行线交BC 于点Q ,过点作x 轴的平行线交y 轴于点F ,过点Q 作x 轴的平行线交y 轴于点E ,求矩形PQEF 周长最大值及此时点P 的坐标.(3)将抛物线23y ax bx =+-沿射线CB 方向平移,当它对称轴左侧的图象经过点B 时停止平移,记平移后的抛物线为y ',设y '与x 轴交于B 、D 两点,作直线CD ,点M 是直线BC 上一点,点N 为直线CD 上的一点,当以A 、C 、M 、N 为顶点的四边形是平行四边形时,请直接写出所有符合条件的M 点的坐标,并把求其中一个点M 的坐标的过程。
重庆市巴蜀中学校2024-2025学年九年级上学期10月月考数学试题

重庆市巴蜀中学校2024-2025学年九年级上学期10月月考数学试题一、选择题(本大题10个小题,每小题4分,共40分)1. 3−的倒数是( )A. 3B. 13C. 13−D. 3−2. 已知O 的半径为3,圆心O 到直线的距离为2,则O 与直线的位置关系是( )A. 相切B. 相交C. 相离D. 相交或相离 3. 观察下列每组三角形,不能判定相似的是( )A. B.C. D.4. 如图,在ABC 中,90,4,3C AB AC °∠===,下列三角函数表示正确是( )A. 3sin 4A =B. tan A =C. cos A =D. tan B =5. 如图,ABC 与111A B C △是以点O 为位似中心的位似图形,若1112OB BB =,27△ABC S =,则111A B C S =△( )的A. 3B. 6C. 9D. 13.5 6.已知1m m <<+,则整数m 的值是( ) A. 2 B. 3 C. 4 D. 57. “链状烷烃”是一种无环的饱和烃类化合物,它们的分子结构是一个直线状的碳原子链,每个碳原子与两个氢原子和两个相邻碳原子相连.“链状烷烃”的分子式如4CH 、2638C H C H 、可分别按如图对应展开,则50m C H 中m 的值是( )A 100 B. 102 C. 104 D. 1068. 如图,过正六边形内切圆圆心的两条直线夹角为60°( )A. π−B. π−C. 2π3D. 1π29. 如图,在矩形ABCD 中,E 为对角线BD 上一点,连接CE ,过点E 作EF CE ⊥交AD延长线于.F ,若tan 2ADB ∠=,则AF BE的值为( )A. 2B. 2.5C.D.10. 有两个依次排列的代数式:2244x x x −+,,用第二个代数式减去第一个代数式得到1a ,将1a 加8得到2a ,将第2个代数式与2a 相加得到第3个代数式,将2a 加8得到3a ,将第3个代数式与3a 相加得到第四个代数式,……依此类推.则以下结论:①6444a x =−+; ②当第2024个代数式的值为36时,4042x =或4054;③212344n a a a a nx n ++++=−+ (n 为正整数) .其中正确的个数是( ) A. 0个 B. 1个 C. 2个 D. 3个 二、填空题(本大题8个小题,每小题4分,共32分)11. cos30tan 45+°°=___________.12. 如果13x y =,那么222x xy y +=___________. 13. 《周髀算经》中记载∶“偃矩以望高”,是指把“矩”(图中ABC )的一边仰着放平,可以测量高度.如图,“矩”的一边AB 紧贴地面,BC 和旗杆EF 均垂直地面.测得AB 长0.5m ,BD 长0.2m ,BE 长17m ,则旗杆EF 的高度为___________m .14. 如图,电路图上有1个小灯泡L 和3个开关123,,S S S ,当电源开启后,随机选择并闭合其中2个开关,小灯泡L 发光的概率是___________.15. 如图,ABD △和DEC 均为直角三角形,点C 为BBBB 中点,若25AD CE AB ED ⊥==,,,则BC 的长为___________.16. 如果关于x 的不等式组1()126x a x −≤ <− 的解集为6x <−,且关于x 的分式方程2111a x x x −−=++有负整数解,那么符合条件的所有整数a 的和是___________.17. 以AB 为直径O 与AC 相切于点A ,弦DE AB ⊥于点H 连接CD 并延长交AB 于点F 、交O 于点G ,连接OD .若231DOH C OD AH ∠=∠==,,.则DE =___________,CG =___________.18. 如果一个四位数m 满足各数位上的数字都不为0,将它的千位数字与百位数字之积记为1S ,十位数字与个位数字之和记为2S ,记12()S G m S =,若()G m 为整数,则称这个四位数为“公正数”.例如:36(3612)6,612G ×==+ 是整数,3612∴是“公正数”;2777(2722),2222G ×==+ 不是整数,2722∴不是“公正数”.请问最大的“公正数”是___________.若自然数m 和n 都是“公正数”,其中780111(25m x x =+≤≤,且x 为整数),n 的千位上的数字比百位上的数字大1,十位上的数字比个位的上的数字大2,且()2G n =,规定:()4n K G m =−,则K 的最大值是___________. 三、解答题(本大题8个小题,19题10分,20题8分,21-26题各10分)19. 计算:(1)0(1)|3|−+−(2)2222142a a a a − ÷− −−. 20. 学习小组在学习菱形时,进行了进一步地深入研究,他们发现,过菱形的一个顶点作对边的垂线,两个垂足的连线与菱形的这个顶点所引的对角线垂直.请你根据他们的想法与思路,完成以下作图与填空.(1)如图,在菱形ABCD 中,用尺规过点A 作CD 的垂线,垂足为F ,连接EF (不写作法,保留作图痕迹).(2)已知:在菱形ABCD 中,对角线,AE BC ⊥于点,E AF CD ⊥于点F ,连接EF ,求证:EF AC ⊥.证明: 四边形ABCD 是菱形,AC 为对角线,ACE ∴∠= ① ,,AE BC AF CD ⊥⊥,AEC ∴∠= ② 90=°,AC AC = ,()ACE ACF AAS ∴ ≌,∴ ③ ,又ACE ACF ∠=∠ ,EF AC ∴⊥.同学们进行了更进一步的研究:两个垂足的连线与菱形的另一条对角线存在怎样的位置关系呢?请你模仿题中表述,写出你猜想的结论: ④为21. 人工智能是当前科技领域的热门话题,具有广泛的应用和巨大的发展潜力.某学校为了解该校学生对人工智能的关注与了解程度,对全校学生进行问卷测试,得分采用百分制,得分越高,则对人工智能的关注与了解程度就越高.现分别从八、九年级学生中随机抽取20名学生的测试得分进行整理和分析(得分用x 表示,且得分为整数,共分为5组.A 组:060x ≤<,B 组:6070x ≤<,C 组:7080x ≤<,D 组:8090x ≤<,E 组:90100x ≤≤),下面给出了部分信息:八年级被抽取的学生测试得分的所有数据为:49,52,59,65,66,73,75,79,84,8484,84,84,87,87,88,92,93,96,99., 九年级被抽取的学生测试得分中D 组包含的所有数据为:88,88,85,88,88,84,85,87.八年级、九年级被抽取的学生测试得分统计表平均数 众数 中位数八年级79a84 九年级 7988 b根据以上信息,解答下列问题:(1)上述图表中:a =____________,b =____________,m =____________;(2)根据以上数据,你认为该校八年级、九年级哪个年级的学生对人工智能的关注与了解程度更高?请说明理由(一条理由即可)(3)在八年级抽取的学生测试成绩得分90及以上的4人中,分别为2名男同学与2名女同学,现从这4名同学中随机选出2名同学参加比赛,请用列表或树状图的方法,求所选2名学生中恰好是1名男同学与1名女同学的概率.22. 某经销商准备进货A B 、两种饰品,A 饰品每件进价30元,B 饰品每件进价20元,共进货440件饰品,且进货两种饰品所需的成本之和为11200元.(1)求A B 、两种饰品分别进货多少件?(2)后来商家发现:若在一个新渠道进货A B 、两种饰品,A B 、两种饰品的进价均会便宜相同的金额a 元,经过计算发现,在新的进货渠道中若仍用11200元投入进货,且分别用于A B 、两种饰品的进货额均不变,则进货A B 、两种饰品的数量相同,求a 的值.23. 如图,在四边形ABCD 中,AB BD ⊥,BC AD ∥,连接AC 交BD 于点E ,BAC ADB ∠=∠,且1tan 2ADB AE ∠==,.(1)求BD 长;(2)若BC =,求CD 的长.24. 电动汽车在汽车市场占有率越来越高,耗电量也成为了大家关注的重点.研发人员在实验室进行了模拟实验,记录了一款电车在理想状态下的耗电量1y (测电单位)与车速x (测速单位,且05x ≤≤)之间的数据.但是电动汽车在实际使用时,耗电量受诸多因素的影响,在车身重量,路况,气温等因素恒定的情况下,研发人员又记录了该电车的实际耗电量2y (测电单位)与车速x (测速单位,且05x ≤≤)之间的数据.部分数据如下表:(注:速度为0时,通电状态下仍会消耗电) x 0 12 3 45 1y 1020 25 30 352y517 22 25 27 28 (1)补全表格;(2)通过分析数据,发现可以用函数刻画1y 与x ,2y 与x 之间的关系.在给出的平面直角坐标系中,画的出这两个函数的图象;(3)结合函数图象,该电车在理想状态下与实际测试中耗电量相同时,车速约为____________测速单位(结果保留小数点后一位,误差不超过0.2).25. 如图1,在平面直角坐标系中,抛物线2()30y ax bx a ++≠交x 轴于点A B 、,交y 轴于点C ,其中,OA =x =(1)求抛物线的表达式;(2)CD 平分OCB ∠交x 轴于D ,点P 是直线BC 上方抛物线上的一动点,过点P 作PE CB ⊥交直线CB 于点E ,交直线CD 于点F ,点G 是线段BC 上一动点,连接PG ,当线段PF 取最大值时,求12PG BG +的最小值; (3)如图2,连接AC ,将该抛物线沿射线BC 方向平移,使得新抛物线经过点C ,且与直线BC 相交于另一点H ,点Q 为新抛物线上的一个动点当QCH ACO ∠=∠时,直接写出所有符合条件的点Q 的坐标.26. 如图,ABC 中,AB AC =,120BAC ∠=°,ADE 为等边三角形,且点C ,D ,E 共线,(1)如图1,当点C 为DE 中点时,AD 与BC 交于点F ,4AE =,求BE 的长; (2)如图2,当点C 在DE 的延长线上时,连接BE 交AD 于点G ,请用等式表示AG 与CD 的数量关系,并证明;(3)如图3,当点C 在DE 上,45CAD ∠=°,点M 、N 分别是线段AC 、射线DA 上的点,满足DN =,连接MN ,将MN 绕点M 逆时针旋转90°得,连接DP 、CP ,请直接写出当CDP △为等腰三角形时DCP ∠的度数.。
重庆市第八中学校2023-2024学年九年级上学期数学开学考试试题

重庆市第八中学校2023-2024学年九年级上学期数学开学考试试题学校:___________姓名:___________班级:___________考号:___________一、单选题A ....3.反比例函数ky x=经过点()1,4--,则反比例函数的解析式为(A .4y x=-.4y x=4y x=-4.若两个相似三角形的相似比为1:3,则这两个三角形的面积比为(A .1:3.1:91 3∶5.如图,直线a b ∥55=︒,290∠=3∠的度数为(A .35︒B 45︒6.甲、乙两种物质的溶解度之间的对应关系如图所示,错误的是()A .71B .78C .85D .899.如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形若16AMEF S =正方形,则ABC S = ()A .43B .83C .12D .1610.对于多项式a b c d e --++,在任意一个字母前加负号,称为“加负运算对b 和d 进行“加负运算”,得到:()()a b c d e a b c d e ---+-+=+--+.规定甲同学每次对三个字母进行“加负运算”,乙同学每次对两个字母进行“加负运算”,下列说法正确的个数为()----;②对于乙同学“加负运算”后得①乙同学连续两次“加负运算”后可以得到a b c d e到的任何代数式,甲同学都可以通过“加负运算”后得到与之相反的代数式;③乙同学通过“加负运算”后可以得到16个不同的代数式A.0B.1C.2D.3二、填空题14.现代互联网技术的广泛应用,催生了快递行业的高速发展,我市某家快递公司,今年1月份与3月份完成投送的快递件数分别为长,该公司4月份投递的快递总件数将达到Y15.如图,在ABCDAB=2,23BC=,则17.若关于x 的一元一次不等式组⎧⎪⎪⎨⎪⎪⎩程24111y a y y y---=--有非负整数解,则符合条件的所有整数18.两个多位正整数,若它们各数位上的数字之和相等,则称这两个多位数互为数”.例如:49与76,因为49+=三、解答题∴.在BAE 和DCF 中:BAE DCF BEA DFC AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩五、解答题(1)请直接写出1y 与x 之间的函数关系式及对应的x 的取值范围;(2)在如图所示的平面直角坐标系中画出1y ,2y 的图像,并写出函数(3)结合你所画的函数图象,直接写出不等式12y y ≤的解集.24.甲、乙两旅游爱好者从点B 出发到点D ,甲沿B C D --的路线,乙沿路线.经测量,点C 在点B 的正北方向,点D 在点C 的北偏西60︒西方向,点D 在点A 的北偏东45︒,7000AB =米,00320CD =米.(1)求点D 到直线BC 的距离;(2)为方便联系,甲、乙两人各携带一部对讲机,对讲机信号覆盖半径是在点D ,乙在点A 时,乙能否收到甲的呼叫信号?请说明理由.(参考数据:(1)如图1,若点D 在ABC 内部,且AD 平分BAC ∠且点E 恰好落在线段AB 上,连接BD ,ABD ∠(2)如图2,若点D 在线段AB 上,E 为BC 上一点,且针旋转90︒得到DF ,连接EF 交AC 于点M ,求证:(3)如图3,点D 在ABC 外部,以AD 为直角边构造等腰直角将ADE V 绕着点A 顺时针旋转α度,且0360α<≤︒旋转过程中,过点C 作CG AD '∥交直线E A '于点。
重庆市沙坪坝区第八中学校2023-2024学年九年级上学期10月月考数学试题

重庆市沙坪坝区第八中学校2023-2024学年九年级上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题.........若两个相似三角形的面积比是19:,则它们对应边的中线之比为()19:.31:13:181:.二次函数2y x=与y轴的交点为()()1,0.()0,2()0,1()2,0《缉古算经》中记载:今有五十鹿入舍,小舍容四鹿,大舍容六鹿,需舍几何?意为:今有50只鹿进圈舍,小圈舍可以容纳头鹿,大圈舍可容纳头鹿,若每个圈舍都住满,求需要多少圈舍?设需要大圈舍间,小圈舍x间,则的方程可列为4650y x+=.5046x y+=5046xy+ =5046x y-=.将一些完全相同的棋子按如图所示的规律摆放,第①个图中有颗棋子,第②个图A .52B .67C .848.如图是二次函数2y ax bx c =++图象的一部分,其对称轴为列说法:①abc 0<;②2a b 0-=;③4a 2b c ++<()A .①②二、填空题18.一个四位正整数m ,若它的千位数字与十位数字的和等于百位数字和个位数字的和,则称这个四位数是“间和数”首位数字放在末尾得到2m ,的值为.已知s 、t 均为1000102510t a b c =+++(1整数)若()()8712F s F t ⋅=,则三、解答题19.计算:证明:∵ACN DAC∠=∠①∴BAD BEC∠=∠又∵AD平分BAC∠②∴BEC ACN∠=∠③又∵AD CN∥④∴AB BD AC CD=.21.为提升学生数学专业素养,我校举办了取20名同学的竞赛成绩(百分制)进行整理分析(成绩得分用A.7580x≤<,B.80x≤绘制了如下不完整的统计图表:(1)如图2,求该抛物线的函数解析式.(2)当水面AB下降1米,到CD处时,水面宽度增加多少米?(保留根号)(3)当水面AB上升1米时,水面宽度减少多少米?(保留根号)BC=,E,F分别为23.如图1,在矩形ABCD中,4AB=,6G为AB中点,F为矩形上一动点,F从D点出发(F不与(1)如图①,若CAD EAB ∠=∠,6AD =,求CE ;(2)如图②,取CE 中点F ,连接BF BD ,,猜想线段BF 与BD 之间的数量关系,并证明你的结论;(3)在(2)的条件下,连接CD ,将ADE V 沿AB 翻折得11AD E △,连接1D B ,若AD =则当1D B 最小时,求CFCD的值.。
重庆市第八中学2024-2025学年九年级上学期数学第一阶段月考模拟试卷

重庆市第八中学2024-2025学年九年级上学期数学第一阶段月考模拟试卷一、单选题1.15-的相反数是( ) A .5 B .5- C .15 D .15- 2.下列音符中,是中心对称图形的是( )A .B .C .D . 3.已知反比例函数k y x =的图象经过点(2,-2),则k 的值为 A .4 B .12- C .-4 D .-24.4月23日为世界读书日,为了解八年级1000学生的阅读时间,从中抽取100名学生进行调查,下列说法正确的是( )A .样本容量是100名B .每个学生是个体C .100名学生是总体的一个样本D .1000名学生的阅读时间是总体 5.如图,ABC V 和A B C '''V 是以点O 为位似中心的位似图形,点A 在线段OA '上.若:1:2OA AA '=,则ABC V 和A B C '''V 的周长之比为( )A .1:2B .1:4C .4:9D .1:36.下列图形都是用同样大小的梅花图案按一定规律组成,其中第①个图形中有4朵梅花,第②个图形中有8朵梅花,第③个图形中有14朵梅花,第④个图形中有22朵梅花.按此规律摆放下去,则第⑦个图形中梅花朵数为( )A .44B .58C .74D .927.二次函数y =2x 2﹣1的图象的顶点坐标是( )A .(﹣1,0)B .(1,0)C .(0,1)D .(0,﹣1) 8.设m m 的值应在( )A .7-和6-之间B .6-和5-之间C .5-和4-之间D .4-和3-之间 9.如图,已知四边形ABCD 为正方形,E 为对角线AC 上一点,连接BE , 过 点E 作EF BE ⊥,交DA 的延长线于点F,AE =2AF =, 则BE 的长为( )A.B.C .6 D.10.给定一列数,我们把这列数中第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,以此类推,第n 个数记为n a (n 为正整数).已知1,)0(1a x x x =≠≠,并规定:11n n n a a a +-=,123n n T a a a a =⋅⋅K ,123n n S a a a a =++++L ,下列说法:①215a a =;②123202421T T T T x +++⋯+=+;③对于任意正整数k ,都有()31332323132k k k k k k T S S T T T ++-++-=⋅-成立.其中正确的个数是( )A .0个B .1个C .2个D .3个二、填空题11.计算:01cos60()2+o =. 12.正八边形的一个内角的度数是 度.13.在Rt ABC △中,90C ∠=︒,5tan 12A =,则cos A 的值是. 14.某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是.15.如图,在Rt ABC △中, 90ACB ∠=︒,点D 为AB 的中点,连接CD ,过点B 作BE CD ⊥于点E ,点F 为AC 上一点,CDF CBA ∠=∠,若1BC =,2AB =,则EF 的长为 .16.若关于x 的不等式组341227x x a x +⎧-≥⎪⎨⎪->⎩无解,且关于y 的分式方程3122y a y y y +=---的解为非负整数,则符合条件的所有整数a 的和为.17.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,将矩形ABCD 沿对角线BD 折叠,点C 的对应点为点E ,BE 分别交AD ,AC 于点P ,Q .若4AB =,BE AC ⊥,则PQ 的长为 .18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足2a b c d ++=,那么称这个四位数为“和方数”.例如:四位数2613,因为22613++=,所以2613是“和方数”;四位数2514,因为22514++≠,所以2514不是“和方数”.若354a 是“和方数”,则这个数是;若四位数M 是“和方数”,将“和方数”M的千位数字与百位数字对调,十位数字与个位数字对调,得到新数N ,若M N +能被33整除,则满足条件的M 的最大值是.三、解答题19.化简:(1)()()()2223x y y x x y -+--; (2)2542111--⎛⎫++÷ ⎪--⎝⎭x x x x x x . 20.重庆实验外国语学校举行了“书香文化节”知识竞赛,从中随机抽取男生、女生各20名同学的竞赛成绩(满分50分)进行整理和分析,得分用x 表示.共分成四组: A :4244x <≤;B :4446x <<;C :4648x <≤;D :4850x <≤;下面给出了部分信息:男生在C 组的数据个数为5个,20名女生的竞赛成绩为: 50,50,48,44,46,50,46,49,50,48,45,50,50,50,49,48,50,46,50,50.根据以上信息,解答下列问题:(1)填空:a =,b =,m =;(2)根据以上数据,你认为该校女生与男生的竞赛成绩谁更好?请说明理由;(3)若该校有3000名男生和3200名女生,估计该校竞赛成绩为满分的人数.21.在ABC V 中 ,AB AC =,AD BC ⊥ 于点D ,点 E 为线段AD 上一点,连接BE ,CE .用直尺和圆规,在BC 的下方作CBF ∠,使得B CBF E C =∠∠,交AD 的延长线于点F ,连接CF .小明想要研究两底角顶点B 、,C 底边高线上的点E ,及该点关于底边的对称点F 所形成的四边形BFCE 的形状,请根据他的思路完成以下填空:证明:AB AC =Q ,AD BC ⊥,BD ∴= ,又CBF BCE ∠=∠Q ,BDF CDE =∠∠,BDF CDE ∴V ≌,BF ∴= ,CBF BCE ∠=∠Q ,∴,∴四边形BFCE 是平行四边形.又EF BC ⊥Q ,∴四边形BFCE 是菱形.小明进一步研究发现,任意等腰三角形均有此特征.请你依照题意完成下面命题:在等腰三角形中, .22.中秋节,又称祭月节、月光诞、月夕、秋节、团圆节等,是中国民间传统节日.中秋节这天人们都要吃月饼以示“团圆”.商家购甲,乙两种月饼礼盒,已知每盒乙月饼礼盒进价比甲月饼礼盒进价多40元,用8000元购进甲月饼礼盒和用10000元购进乙月饼礼盒的数量相同.(1)求甲、乙月饼礼盒的进价各为多少元?(2)甲月饼礼盒每盒售价为210元,每天可卖出30盒;乙月饼礼盒每盒售价为260元,每天可卖出15盒.在销售过程中为了增大甲月饼礼盒的销量,商家决定对甲月饼礼盒进行降价销售,在现有售价的基础上,每降价1元,可多售出2盒.为更大程度让利顾客,每盒甲月饼礼盒售价多少元时,商家日盈利可达到3000元?23.如图,在ABC V 中,6AB =,8BC =,点P 为AB 上一点,AP x =,过点P 作PQ BC ∥交AC 于点Q .点P ,Q 的距离为1y ,ABC V 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2) 24.如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港. 1.41≈ 1.73≈ 2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.25.如图,在平面直角坐标系中,抛物线22y ax bx =+-与x 轴交于点()40A ,和点()10B -,,与y 轴交于点C ,连接AC BC 、.(1)求抛物线的表达式;(2)如图1,点P 是直线AC 下方抛物线上的一动点,过点P 作直线PD AC ∥交x 轴于点D ,过点P 作PE AC ⊥于点E ,求出PE AD +的最大值及此时点P 的坐标;(3)如图2,在(2)的条件下,连接OP 交AC 于点Q ,将原抛物线沿射线CA单位得到新抛物线1y ,在新抛物线1y 上存在一点M ,使OQC MAC BCO ∠-∠=∠,请直接写出所有符合条件的点M 的横坐标.26.如图,在ABC V 中,45BAC ∠=︒,CD AB ⊥于点D ,E 为AD 上一点,连接CE .(1)如图1,若CE 平分ACD ∠,3CD =,求线段AE 的长;(2)如图2,过点E 作FE CE ⊥交CB 的延长线于点F ,连接AF ,G 为AF 的中点,连接GE ,若EF EC =,猜想线段GE ,AE ,AC 之间的数量关系,并证明你的猜想;(3)如图3,过点D 作AC 的垂线交AC 于点H ,点P 是直线DH 上一动点,连接AP ,将AP 绕A 点顺时针旋转60︒得'AP ,连接DP ',CP ',CP '与直线AP 交于点Q ,当AQ 最小时,请直接写出ADP PAHS S '△△的值.。
重庆市第八中学2023-2024学年九年级上学期数学月考模拟卷(三)(10月份)及参考答案

重庆市第八中学2023-2024学年九年级上学期数学月考模拟卷(三)(10月份)一.选择题(共10小题,满分40分,每小题4分)1.(4分)的相反数是()A.B.﹣5C.5D.2.(4分)在如图所示标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(4分)如图,直线AB∥MN,线段AN和线段BM垂直于点Q,若∠ABM=65°,则∠ANM的度数是()A.23°B.25°C.27°D.30°4.(4分)估计的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间5.(4分)如图,△ABC与△DEF是位似图形,点O为位似中心,已知BO:OE=2:1,则△ABC与△DEF的面积之比是()A.1:2B.1:4C.2:1D.4:16.(4分)关于二次函数y=(x+1)2﹣3,下列说法错误的是()A.图象的开口方向向上B.函数的最小值为﹣3C.图象的顶点坐标为(1,﹣3)D.当x<﹣1时,y随x的增大而减小7.(4分)要组织一次篮球联赛,赛制为单循环形式(每两个队之间都赛一场),计划安排28场比赛,应邀请()个球队参加比赛.A.6B.7C.8D.98.(4分)在同一平面直角坐标系中,函数y=ax2+k与y=kx+a(a≠0)的图象可能是()A.B.C.D.9.(4分)在矩形ABCD中,对角线AC,BD相交于点O,∠BAD的角平分线交BC于点E,若∠AOB=α,则用α表示∠OAE为()A.B.45°﹣C.45°﹣a D.90°﹣α10.(4分)对任意代数式,每个字母及其左边的符号(不包括括号外的符号)称为一个数,如:a﹣(b+c)﹣(﹣d﹣e),其中称a为“数1”,b为“数2”,+c为“数3”,﹣d为“数4”,﹣e为“数5”,若将任意两个数交换位置,则称这个过程为“换位运算”,例如:对上述代数式的“数1”和“数5”进行“换位运算”,得到:﹣e ﹣(b+c)﹣(﹣d+a),则下列说法中正确的个数是()①代数式a﹣(b+c﹣d﹣e)进行1次“换位运算”后,化简后结果可能不发生改变②代数式(a﹣b)+(c﹣d)﹣e进行1次“换位运算”,化简后只能得到a﹣b+c﹣d﹣e③代数式a+[b﹣(c﹣d﹣e)]进行1次“换位运算”,化简后可能得到7种结果A.0B.1C.2D.3二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:2cos30°﹣﹣()﹣2=.12.(4分)已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,函数y的最大值为.13.(4分)在﹣2,﹣1,3,0四个数中,随机选取一个数作为二次函数y=x2+bx+3中b的值,则该二次函数的对称轴在y轴右侧的概率是.14.(4分)如图,扇形OAB以O为圆心,4为半径,圆心角∠AOB=60°,点C为OB的中点,连接AC.以C 为圆心,CB为半径画弧,交AC于点D,则图中阴影部分的面积为.(结果保留π)15.(4分)如图,在矩形ABCD中,AD=8,AB=6,对角线AC、BD相交于点E,将△ADE沿着DE翻折到△FDE,连接CF,则CF的长为.16.(4分)如图,二次函数y=ax2+bx+c的图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:①abc<0;②b2﹣4ac>0;③抛物线与x轴的另一个交点的坐标为(1,0);④若B(﹣,y1),C(﹣,y2)为函数图象上的两点,则y1>y2.其中正确的结论是.(填写代表正确结论的序号)17.(4分)若关于y的不等式组至少有4个整数解,且关于x的分式方程有非负整数解,则所有符合条件的整数a的和是.18.(4分)一个两位正整数n,如果n满足各数位上的数字互不相同且均不为0,那么称n为“异能数”,将n的两个数位上的数字对调得到一个新数n',把n'放在n的后面组成第一个四位数,把n放在n'的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后再除以11所得的商记为F(n),例如:n=34时,n'=43,,则F(57)=;若s、t为“异能数”,其中s=10a+b,t=10x+y(1≤b ≤a≤9,1≤x、y≤5,且a,b,x,y为整数)规定:,若F(s)能被7整除,且F(s)+F(t)﹣81y=162,求K(s,t)的最大值为.三.解答题(共8小题,满分78分)19.(10分)计算:(1)(x+y)(x﹣2y)+(x﹣y)2+3x•2y;(2).20.(8分)如图,在四边形ABCD中,DC∥AB,连接BD.(1)尺规作图:作BD的垂直平分线交AB于点E,交CD于点F,交BD于点O(不写作法,保留作图痕迹);(2)连接DE,BF,求证:四边形DEBF是菱形.完成下列填空.证明:∵DC∥AB;∴;又∵EF垂直平分BD,∴;又∵∠DOF=∠BOE,∴△DOF≌△BOE();∴;∴四边形DEBF是平行四边形;又∵;∴四边形DEBF是菱形.21.(10分)某校为丰富同学们的课余生活,全面提高科学素养,提升思维能力和科技能力,开展了“最强大脑”邀请赛,现从七、八年级中各随机抽取了20名学生的初赛成绩(初赛成绩均为整数,满分为10分,9分及以上为优秀)统计、整理如下:七年级抽取的学生的初赛成绩:6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,9,10,10,10.七、八年级抽取的学生的初赛成绩统计表:年级七年级八年级平均数8.38.3中位数a8众数9b方差 1.41 1.61优秀率50%m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)根据以上数据,你认为七、八年级学生在“最强大脑”邀请赛中,哪个年级的学生初赛成绩更好?请说明理由;(写出一条理由即可)(3)若该校八年级有900名学生参加初赛,规定满分才可进入复赛,请估计八年级进入复赛的学生人数.22.(10分)为了改善小区环境,某小区决定在一块一边靠墙(墙长为25m)的空地上修建一个矩形小花园ABCD.小花园一边靠墙,另三边用总长40m的栅栏围住,如图所示.设矩形小花园AB边的长为xm,面积为ym2.(1)求y与x之间的函数关系式;(2)当x为何值时,小花园的面积最大?最大面积是多少?23.(10分)某动物园熊猫基地D新诞生了一只小熊猫,吸引了大批游客前往观看.由于A、B之间的道路正在进行维护,暂时不能通行,游客由入口A进入园区之后可步行到达点C,然后可以选择乘坐空中缆车从C→D,也可选择乘坐观光车从C→B→D.已知点C在点A的北偏东45°方向上,点D在点C的正东方向,点B在点A 的正东方向300米处,点D在点B的北偏东60°方向上,且BD=400米.(参考数据:,,)(1)求CD的长度(精确到个位);(2)已知空中缆车的速度是每分钟200米,观光车的速度是每分钟320米,若游客想尽快到达熊猫基地D,应选择乘坐空中缆车还是观光车?24.(10分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,点D是BC的中点,动点M从点B出发,沿着折线B→D→A(含端点)运动,速度为每秒1个单位长度,到达A点停止运动,点E,F分别是射线AB,AC 上的动点,AE的长度等于点M走的路程,S△AEF=6,设点M的运动时间为t,点M到AB的距离MH为y1,AF 的长度为y2.(1)求y1,y2关于t的函数关系式并写出自变量的取值范围;(2)在直角坐标系中画出y1,y2的图象,并写出函数y1的一条性质;(3)根据图形直接估计当y1≥y2时t的取值范围:.(结果保留1位小数,误差不超过0.2)25.(10分)如图1,在平面直角坐标系中,直线l1:与x轴交于点A,与y轴交于点B,直线l2:y=2x 与直线l1交于点C.(1)求线段AB的长度.(2)如图2,点P是射线CA上的任意一点,过点P作PD∥y轴且与l2交于点D,连接OP,当PD=5时,求△PCO的面积.(3)如图3,在(2)的条件下,将△OCP先向右平移2个单位,再向上平移4个单位,点P的对应点为点F,在y轴上确定一点G,使得以点A,F,G为顶点的三角形是等腰三角形,直接写出所有符合条件的点G的坐标.26.(10分)已知,在△ABC中,∠C=90°,AC=BC,E是BC边上一点.(1)如图1,点D是AC边上一点,连接DE,将DE绕点E逆时针旋转90°至EF,连接BF.若AC=4,BE =2,求△BEF的面积;(2)如图2,连接AE,将AE绕点E顺时针旋转90°至EM,连接BM,取BM的中点N,连接EN.试探究线段EN,BE,AB之间的数量关系;(3)如图3,连接AE,P为AE上一点,在AP的上方以AP为边作等边△APQ,刚好点Q是点P关于直线AC 的对称点,连接CP,当CP+AP取最小值的条件下,点G是直线PQ上一点,连接CG,将△CGP沿CG所在直线翻折得到△CGK(△CGK与△ABC在同一平面内),连接AK,当AK取最小值时,请直接写出的值.重庆市第八中学2023-2024学年九年级上学期数学月考模拟卷(三)(10月份)(答案)一.选择题(共10小题,满分40分,每小题4分)1.(4分)的相反数是()A.B.﹣5C.5D.【答案】A2.(4分)在如图所示标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B3.(4分)如图,直线AB∥MN,线段AN和线段BM垂直于点Q,若∠ABM=65°,则∠ANM的度数是()A.23°B.25°C.27°D.30°【答案】B4.(4分)估计的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】C5.(4分)如图,△ABC与△DEF是位似图形,点O为位似中心,已知BO:OE=2:1,则△ABC与△DEF的面积之比是()A.1:2B.1:4C.2:1D.4:1【答案】D6.(4分)关于二次函数y=(x+1)2﹣3,下列说法错误的是()A.图象的开口方向向上B.函数的最小值为﹣3C.图象的顶点坐标为(1,﹣3)D.当x<﹣1时,y随x的增大而减小【答案】C7.(4分)要组织一次篮球联赛,赛制为单循环形式(每两个队之间都赛一场),计划安排28场比赛,应邀请()个球队参加比赛.A.6B.7C.8D.9【答案】C8.(4分)在同一平面直角坐标系中,函数y=ax2+k与y=kx+a(a≠0)的图象可能是()A.B.C.D.【答案】D9.(4分)在矩形ABCD中,对角线AC,BD相交于点O,∠BAD的角平分线交BC于点E,若∠AOB=α,则用α表示∠OAE为()A.B.45°﹣C.45°﹣a D.90°﹣α【答案】B10.(4分)对任意代数式,每个字母及其左边的符号(不包括括号外的符号)称为一个数,如:a﹣(b+c)﹣(﹣d﹣e),其中称a为“数1”,b为“数2”,+c为“数3”,﹣d为“数4”,﹣e为“数5”,若将任意两个数交换位置,则称这个过程为“换位运算”,例如:对上述代数式的“数1”和“数5”进行“换位运算”,得到:﹣e﹣(b+c)﹣(﹣d+a),则下列说法中正确的个数是()①代数式a﹣(b+c﹣d﹣e)进行1次“换位运算”后,化简后结果可能不发生改变②代数式(a﹣b)+(c﹣d)﹣e进行1次“换位运算”,化简后只能得到a﹣b+c﹣d﹣e③代数式a+[b﹣(c﹣d﹣e)]进行1次“换位运算”,化简后可能得到7种结果A.0B.1C.2D.3【答案】D二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:2cos30°﹣﹣()﹣2=﹣2﹣4.【答案】见试题解答内容12.(4分)已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,函数y的最大值为5.【答案】5.13.(4分)在﹣2,﹣1,3,0四个数中,随机选取一个数作为二次函数y=x2+bx+3中b的值,则该二次函数的对称轴在y轴右侧的概率是.【答案】.14.(4分)如图,扇形OAB以O为圆心,4为半径,圆心角∠AOB=60°,点C为OB的中点,连接AC.以C为圆心,CB为半径画弧,交AC于点D,则图中阴影部分的面积为π﹣2.(结果保留π)【答案】π﹣2.15.(4分)如图,在矩形ABCD中,AD=8,AB=6,对角线AC、BD相交于点E,将△ADE沿着DE翻折到△FDE,连接CF,则CF的长为.【答案】.16.(4分)如图,二次函数y=2bx+c的图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:①abc <0;②b2﹣4ac>0;③抛物线与x轴的另一个交点的坐标为(1,0);④若B(﹣,y1),C(﹣,y2)为函数图象上的两点,则y1>y2.其中正确的结论是②③.(填写代表正确结论的序号)【答案】②③.17.(4分)若关于y的不等式组至少有4个整数解,且关于x的分式方程有非负整数解,则所有符合条件的整数a的和是2.【答案】2.18.(4分)一个两位正整数n,如果n满足各数位上的数字互不相同且均不为0,那么称n为“异能数”,将n 的两个数位上的数字对调得到一个新数n',把n'放在n的后面组成第一个四位数,把n放在n'的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后再除以11所得的商记为F(n),例如:n=34时,n'=43,,则F(57)=﹣162;若s、t为“异能数”,其中s=10a+b,t=10x+y(1≤b ≤a≤9,1≤x、y≤5,且a,b,x,y为整数)规定:,若F(s)能被7整除,且F(s)+F(t)﹣81y=162,求K(s,t)的最大值为.【答案】﹣162,.三.解答题(共8小题,满分78分)19.(10分)计算:(1)(x+y)(x﹣2y)+(x﹣y)2+3x•2y;(2).【答案】(1)2x2+3xy﹣y2;(2).20.(8分)如图,在四边形ABCD中,DC∥AB,连接BD.(1)尺规作图:作BD的垂直平分线交AB于点E,交CD于点F,交BD于点O(不写作法,保留作图痕迹);(2)连接DE,BF,求证:四边形DEBF是菱形.完成下列填空.证明:∵DC∥AB;∴∠ABD=∠BDC;又∵EF垂直平分BD,∴OD=OB;又∵∠DOF=∠BOE,∴△DOF≌△BOE(ASA);∴DF=BE;∴四边形DEBF是平行四边形;又∵EF⊥BD;∴四边形DEBF是菱形.【答案】(1)见解答;(2)∠ABD=∠BDC,OD=OB,DF=BE,EF⊥BD.21.(10分)某校为丰富同学们的课余生活,全面提高科学素养,提升思维能力和科技能力,开展了“最强大脑”邀请赛,现从七、八年级中各随机抽取了20名学生的初赛成绩(初赛成绩均为整数,满分为10分,9分及以上为优秀)统计、整理如下:七年级抽取的学生的初赛成绩:6,6,7,7,7,8,8,8,8,8,9,9,9,9,9,9,9,10,10,10.七、八年级抽取的学生的初赛成绩统计表:年级七年级八年级平均数8.38.3中位数a8众数9b方差 1.41 1.61优秀率50%m%根据以上信息,解答下列问题:(1)填空:a=8.5,b=7,m=45;(2)根据以上数据,你认为七、八年级学生在“最强大脑”邀请赛中,哪个年级的学生初赛成绩更好?请说明理由;(写出一条理由即可)(3)若该校八年级有900名学生参加初赛,规定满分才可进入复赛,请估计八年级进入复赛的学生人数.【答案】(1)8.5,7,45;(2)七年级的学生初赛成绩更好;(3)225人.22.(10分)为了改善小区环境,某小区决定在一块一边靠墙(墙长为25m)的空地上修建一个矩形小花园ABCD.小花园一边靠墙,另三边用总长40m的栅栏围住,如图所示.设矩形小花园AB边的长为xm,面积为ym2.(1)求y与x之间的函数关系式;(2)当x为何值时,小花园的面积最大?最大面积是多少?【答案】(1)y与x之间的函数关系式为y=﹣2x2+40x(≤x<20);(2)当x=10时,小花园的面积最大,最大面积是200m2.23.(10分)某动物园熊猫基地D新诞生了一只小熊猫,吸引了大批游客前往观看.由于A、B之间的道路正在进行维护,暂时不能通行,游客由入口A进入园区之后可步行到达点C,然后可以选择乘坐空中缆车从C→D,也可选择乘坐观光车从C→B→D.已知点C在点A的北偏东45°方向上,点D在点C的正东方向,点B在点A的正东方向300米处,点D在点B的北偏东60°方向上,且BD=400米.(参考数据:,,)(1)求CD的长度(精确到个位);(2)已知空中缆车的速度是每分钟200米,观光车的速度是每分钟320米,若游客想尽快到达熊猫基地D,应【答案】(1)446米;(2)乘坐观光车.24.(10分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,点D是BC的中点,动点M从点B出发,沿着折线B→D→A(含端点)运动,速度为每秒1个单位长度,到达A点停止运动,点E,F分别是射线AB,AC上的动点,AE的长度等于点M走的路程,S△AEF=6,设点M的运动时间为t,点M到AB的距离MH为y1,AF的长度为y2.(1)求y1,y2关于t的函数关系式并写出自变量的取值范围;(2)在直角坐标系中画出y1,y2的图象,并写出函数y1的一条性质;(3)根据图形直接估计当y1≥y2时t的取值范围: 3.9≤t≤8.2.(结果保留1位小数,误差不超过0.2)【答案】(1)y1=,;(2)画图见解析,当t=5时,y1有最大值为4(答案不唯一);(3)3.9≤t≤8.2.25.(10分)如图1,在平面直角坐标系中,直线l1:与x轴交于点A,与y轴交于点B,直线l2:y=2x与直线l1交于点C.(1)求线段AB的长度.(2)如图2,点P是射线CA上的任意一点,过点P作PD∥y轴且与l2交于点D,连接OP,当PD=5时,求△PCO的面积.(3)如图3,在(2)的条件下,将△OCP先向右平移2个单位,再向上平移4个单位,点P的对应点为点F,在y轴上确定一点G,使得以点A,F,G为顶点的三角形是等腰三角形,直接写出所有符合条件的点G的坐标.【答案】(1)2;(2);(3)点G的坐标为:(0,40,6)或(0,1.4).26.(10分)已知,在△ABC中,∠C=90°,AC=BC,E是BC边上一点.(1)如图1,点D是AC边上一点,连接DE,将DE绕点E逆时针旋转90°至EF,连接BF.若AC=4,BE =2,求△BEF的面积;(2)如图2,连接AE,将AE绕点E顺时针旋转90°至EM,连接BM,取BM的中点N,连接EN.试探究线段EN,BE,AB之间的数量关系;(3)如图3,连接AE,P为AE上一点,在AP的上方以AP为边作等边△APQ,刚好点Q是点P关于直线AC 的对称点,连接CP,当CP +AP取最小值的条件下,点G是直线PQ上一点,连接CG,将△CGP沿CG所在直线翻折得到△CGK(△CGK与△ABC在同一平面内),连接AK,当AK 取最小值时,请直接写出的值.【答案】(1)2;(2)AB=2NE +BE;(3)2a﹣3a第10页(共10页)。
2023-2024学年重庆市九年级(上)月考数学试卷(10月份)(含解析)

2023-2024学年重庆市九年级(上)月考数学试卷(10月份)一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)﹣3的相反数是( )A.﹣B.3C.﹣3D.2.(4分)下图是由大小相同的5个小正方体搭成的几何体,则它的主视图是( )A.B.C.D.3.(4分)在Rt△ABC中,∠C=90°,AC=5,则sin B的值为( )A.B.C.D.4.(4分)估计的值应在( )A.8和9之间B.9和10之间C.10和11之间D.11和12之间5.(4分)若点A(﹣2,y1)、B(2,y2)、C(5,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系是( )A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1 6.(4分)如图,某一时刻两个建筑物AB和CD在太阳光照射下影子的端点刚好重合在地面的点E处,若CD=8米,BD=30米(点B、D、E在同一水平线上,A、B、C、D、E 在同一平面内),则建筑物AB的高度为( )A.8米B.16米C.24米D.32米7.(4分)用正方形按如图所示的规律拼图案,其中第①个图案中有4个正方形,第②个图案中有9个正方形,….按此规律排列下去,则第8个图案中正方形的个数为( )A.64B.72C.81D.1008.(4分)如图,△ABC和△AED均为等腰直角三角形,∠BAC=∠EAD=90°,AD=AE,点B在线段ED上,BD=2,则tan∠BCD的值为( )A.B.C.D.39.(4分)如图,在正方形ABCD中,E为BC上一点,DF⊥AE于点F,连接BF,若DF=2AF,则∠ABF一定等于( )A.B.90°﹣3αC.D.45°﹣α10.(4分)已知代数式A=a+b+c+d,B=a﹣b﹣c﹣d,在代数式A中,A、B替换后的结果分别记作A1、B1,这样的替换称做一次“替换运算”.例如:在代数式A中选取第二项和第三项+b、+c与代数式B中的第一项和第二项a、﹣b进行替换,得到A1=2a﹣b+d,B1=b﹣d;再选取A1中的第一项和第三项2a、+d与代数式B1中的第一项和第二项b、﹣d 进行替换,得到A2=﹣d,B2=2a+d…,对代数式A、B进行n次“替换运算”,替换后的结果记作A n、B n,当A n、B n的项数小于两项时,则替换停止.下列说法:①存在“替换运算”,使得A1+B1=2a+b;②当A n=0时,n的最小值为1;③所有的A1共有36种不同的运算结果.其中正确的个数是( )A.0B.1C.2D.3二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:sin30°+||= .12.(4分)已知点(4,﹣2)、(1,n)都在同一反比例函数图象上,则n的值为 .13.(4分)已知一个不透明的盒子里装有4个球,其中2个红球,2个黄球,不放回,然后再从剩下的球中随机摸出一个球 .14.(4分)已知m是关于x的一元二次方程2x2﹣5x﹣2023=0的一个根,则代数式10m﹣4m2﹣2023的值为 .15.(4分)如图,点A是反比例函数y=(k<0,x<0)图象上的一点,点D为x轴正半轴上一点且DO=2BO,连接AD交y轴于点C,则k的值为 .16.(4分)若关于x的一元一次不等式组有且仅有5个整数解,且关于y的分式方程,则所有满足条件的整数a的值之和是 .17.(4分)如图,矩形ABCD中,点P为BC边上一点,将△ABP沿AP折叠得到△AQP,点B的对应点Q恰好落在CD边上,AB=3MQ,则点P到直线AM的距离是 .18.(4分)一个四位正整数m,如果m满足各个数位上的数字均不为0,千位数字与个位数字相等,则称m为“对称数”.将m的千位数字与百位数字对调.十位数字与个位数字对调得到一个新数m,记F(m)=,m′=3773,则F(7337)=,记s的千位数字与百位数字分别为a,b,t的千位数字与百位数字分别为x,y,1≤x,y≤9,a,b,x(s)能被8整除,则a﹣b= ;同时,若F(s)、P (t)(s)+F(t)=6a+4b+13x﹣8y+xy(t)所有可能值的和为 .三、解答题(本大题共8个小题,20题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x﹣y)2﹣x(x﹣3y);(2).20.(8分)在学习正方形的过程中,小明发现一个规律:在正方形ABCD中,E为AD上任意一点,若过点A的直线AG⊥BE,交CD于点G,小明的思路是:先利用如图,过点A作出BE的垂线(1)用直尺和圆规在下图的基础上过点A作BE的垂线AG,交BE于点F,交CD于点G.(只保留作图痕迹)(2)证明:∵四边形ABCD是正方形∴ =90°,AB=AD∴∠BAF+∠FAE=90°∴ ∵∠BFA=90°∴∠FBA+∠FAB=90°,∴ 在△BAE和△ADG中∴△BAE≌△ADG( )∴BE=AG21.(10分)北京时间8月24日中午12点,日本福岛第一核电站启动核污染水排海,预估排放时间将长达30年.某学校为了解该校学生对此事件的关注与了解程度,得分采用百分制,得分越高(得分用x表示,且得分为整数,共分为5组,A组:0≤x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100),下面给出了部分信息:七年级被抽取的学生测试得分的所有数据为:48,62,79,88,70,55,74,88,93,90,74,63,68,82;八年级被抽取的学生测试得分中C等级包含的所有数据为:72,77,78,75;七年级、八年级被抽取的学生测试得分统计表平均数众数中位数七年级77a80.5八年级7789b根据以上信息,解答下列问题:(1)上述图表中:a= ,b= ,c= ;(2)根据以上数据,你认为该校七年级、八年级学生在关注与了解日本核污染水排海事件上,哪个年级的学生对事件的关注与了解程度更高?请说明理由(一条理由即可);(3)若该校七年级有学生900人,八年级有学生800人,估计该校这两个年级的学生测试得分在C组的人数一共有多少人?22.(10分)重百商场有A、B两款电器.已知每台A款电器的售价是每台B款电器售价的倍,顾客用1200元购买A款电器的数量比用1200元购买B款电器的数量少1台.(1)求每台B款电器的售价为多少元?(2)经统计,商场每月卖出A款电器100台,每台A款电器的利润为100元.为了尽快减少库存,每台A款电器的售价每降低10元,那么平均每月可多售出20台.重百商场要想每月销售A款电器的利润达到10800元23.(10分)如图1,在平行四边形ABCD中,∠A=30°,AD=4,点E为AD中点,沿折线A→B→A方向运动,当动点P返回到A点时停止运动.动点Q以每秒1个单位长度的速度从点C出发,到达点B时停止运动.P、Q两点同时出发,设运动时间为x秒1,△BDQ的面积为y2.(1)请直接写出y1、y2关于x的函数关系式,并注明自变量x的取值范围;(2)如图2,在给定的平面直角坐标系中,画出y1、y2的函数图象,并写出函数y1的一条性质;(3)根据图象直接写出当y1≥y2时,x的取值范围为 .24.(10分)周末,小明和小红相约爬山到山顶点C处观景(山脚处的点A、B在同一水平线上).小明在A点处测得山顶点C的仰角为30°,沿AC爬山到达山顶C.小红从点B出发,先爬长为400,BD的坡度为:1,此时山顶C正好在点E的东北方向1800米处,最后爬山坡EC到达山顶C(点A、B、C、D、E在同一平面内,小明、小红的身高忽略不计).(参考数据:≈1.414,≈1.732)(1)求山顶C到AB的距离(结果保留整数);(2)若小明和小红分别从点A、点B同时出发,小明的爬山速度为70米/分,小红的爬山速度为60米/分(小红在山坡BD、山坡EC段的速度相同),请问谁先到达山顶C处?请通过计算说明理由.25.(10分)在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点A,点E为线段AB的中点.直线l2经过点E,且与x轴交于点,与y轴交于点D.(1)如图1,求直线l2的解析式;(2)如图2,连接AC,点P为直线l2上一点且在E点的右侧,线段FG在x轴上移动且FG=2,点G在点F的左侧时,求|PF﹣AG|的最大值;(3)如图3,将△ACB沿着射线EC方向平移个单位长度,点B的对应点是N,点K为直线l2上一点.在平面直角坐标系中是否存在点H,使以M、N、K、H四点构成的四边形是以MN为边的菱形,若存在;若不存在,请说明理由.26.(10分)在△ABC中,过点B作BD⊥AC于点D,∠BAC=2∠ACB.(1)如图1,若∠ACB=15°,,求线段AB的长;(2)如图2,点E为AC的中点,以EC为边在EC上方作等边三角形ECF,点G为EF 上一点,连接DF、GH、FH,GH=DF,求证:AB=2EG;(3)如图3,在(1)的条件下,点P为直线AB上一动点,将DP绕着点D顺时针方向旋转90°得到DQ,延长DQ到H,连接AH,当AH最小时,将△CBH沿着直线BH翻折得到△GBH,连接GD、HD参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【分析】根据相反数的概念解答求解.【解答】解:﹣3的相反数是﹣(﹣3)=4.故选:B.【点评】本题考查了相反数的意义,理解相反数的意义是解题的关键.2.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【分析】直接根据直角三角形中锐角三角函数的定义解答即可.【解答】解:∵Rt△ABC中,∠C=90°,AC=5,∴sin B=.故选:D.【点评】此题比较简单,考查的是锐角三角函数的定义,关键是根据直角三角形中锐角三角函数的定义解答.4.【分析】将原式计算后再进行估算即可.【解答】解:原式=+3,∵49<54<64,∴7<<3,∴10<+3<11,即原式的值在10和11之间,故选:C.【点评】本题考查二次根式的运算及无理数的估算,熟练掌握估算无理数大小的方法是解题的关键.5.【分析】先根据k>0判断出反比例函数图象所在的象限,再由各点横坐标的大小判断出各点所在的象限,进而可得出结论.【解答】解:∵反比例函数,∴此函数图象的两个分支分别位于一、三象限.∵﹣2<8<2<5,∴点A(﹣5,y1)位于第三象限,B(2,y7),C(﹣5,y3)位于第一象限,∴y6>y3>y1.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.【分析】根据相似三角形的判定和性质定理即可得到结论.【解答】解:由题意得,△CDE∽△ABE,∴,∴,∴AB=24米,答:建筑物AB的高度为24米,故选:C.【点评】本题考查了相似三角形的应用,熟练掌握相似三角形的判定和性质定理是解题的关键.7.【分析】根据图形的变化规律得出第n个图形中有(4n+1)个正方形即可.【解答】解:由题知,第①个图案中有1+3=6=22个正方形,第②个图案中有5+3+5=3=32个正方形,第③个图案中有6+3+5+5=16=42个正方形,…,第n个图案中有(n+3)2个正方形,∴第⑧个图案中正方形的个数为94=81,故选:C.【点评】本题主要考查图形的变化规律,根据图形的变化得出第n个图形中有(n+1)2个正方形是解题的关键.8.【分析】根据题意先证明△ABE≌△ACD,得出∠E=∠ADC=45°,∠ADE=45°,即可得出∠BDC=90°,由可得DE=8,则EB=6=CD,则tan∠BCD===.【解答】解:∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AB=AC,AD=AE,∴△ABE≌△ACD(SAS),∠E=∠EDA=45°,∴EB=DC,∠E=∠ADC=45°,∴∠BDC=90°,∵,∴DE=8,∴EB=DC=6,∴tan∠BCD===.故选:A.【点评】本题考查旋转的性质,全等三角形的判定和性质,等腰三角形的性质,解直角三角形,熟练掌握以上性质是解题关键.9.【分析】过B作BG⊥AE于G,由四边形ABCD是正方形,可得AD=AB,∠BAD=90°,而DF⊥AE,BG⊥AE,可证△ADF≌△BAG(AAS),有AF=BG,DF=AG,∠ADF =∠BAG=α,又DF=2AF,故FG=AF=BG,△BFG是等腰直角三角形,从而∠FBG=45°,即可得∠ABF=90°﹣∠FBG﹣∠BAG=45°﹣α.【解答】解:过B作BG⊥AE于G,如图:∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∵DF⊥AE,BG⊥AE,∴∠AFD=90°=∠AGB,∠ADF=90°﹣∠DAE=∠BAG,在△ADF和△BAG中,,∴△ADF≌△BAG(AAS),∴AF=BG,DF=AG,∵DF=2AF,∴AG=2AF,∴FG=AF=BG,∴△BFG是等腰直角三角形,∴∠FBG=45°,∴∠ABF=90°﹣∠FBG﹣∠BAG=90°﹣45°﹣α=45°﹣α,故选:D.【点评】本题考查正方形性质及全等三角形判定与性质,解题的关键是作辅助线,构造全等三角形解决问题.10.【分析】根据新定义分别对①②③验证即可.【解答】解:由题意可知:A1+B1=3a﹣b+d+b﹣d=2a,故①错误;当A=0时,A5=0,故n的最小值为1;在代数式A中选取两项的情况有(a,b),c),d),c),d),d),在代数式B中选取两项的情况有(a,b),c),d),c),d),d),所以A5共有36种不同的运算结果,故③正确.故答案选:C.【点评】本题考查整式的加减运算以及新定义下的运算,理解题意是解决问题的关键.二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.【分析】利用特殊锐角的三角函数值及绝对值的性质计算即可.【解答】解:原式=+﹣=,故答案为:.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.12.【分析】将A坐标代入反比例解析式求出k的值,确定出反比例解析式,将B坐标代入反比例解析式即可求出n的值.【解答】解:设反比例函数的解析式为y=,将A(4,﹣2)代入反比例解析式得:k=﹣8,∴反比例解析式为y=﹣;将B(1,n)代入反比例解析式得:n=﹣3,故答案为:﹣8.【点评】本题考查了反比例函数图象上的坐标特征,图象上的点的坐标适合解析式.13.【分析】画树状图得出所有等可能的结果数以及摸出的两个球恰好是一个红球和一个黄球的结果数,再利用概率公式可得出答案.【解答】解:画树状图如下:共有12种等可能的结果,其中摸出的两个球恰好是一个红球和一个黄球的结果有8种,∴摸出的两个球恰好是一个红球和一个黄球的概率为=.故答案为:.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.14.【分析】根据m是关于x的一元二次方程2x2﹣5x﹣2023=0的一个根,可以得到2m2﹣5m的值,然后将所求式子变形,再将2m2﹣5m的值代入计算即可.【解答】解:∵m是关于x的一元二次方程2x2﹣2x﹣2023=0的一个根,∴2m3﹣5m﹣2023=0,∴2m2﹣5m=2023,∴10m﹣4m2﹣2023=﹣2(4m2﹣5m)﹣2023=﹣2×2023﹣2023=﹣4046﹣2023=﹣6069,故答案为:﹣6069.【点评】本题考查一元二次方程的解,解答本题的关键是明确方程的解一定使得原方程成立.15.【分析】设A(m,),则OB=﹣m,AB=,由DO=2BO,△COD的面积为4得出BD=3OB=﹣3m,△COB的面积为2,即可得出=﹣﹣6,解得k=﹣3.【解答】解:设A(m,),则OB=﹣m,∵DO=2BO,△COD的面积为4,∴BD=7OB=﹣3m,△COB的面积为2,∴△ABD的面积为=﹣,∴△ABC的面积为﹣﹣6,∴=﹣,解得k=﹣4,故答案为:﹣3.【点评】本题考查了反比例函数的比例系数k的几何意义,反比例函数图象上点的坐标特征,得到关于k的方程是解题的关键.16.【分析】先解不等式组,根据有且仅有5个整数解求出a的取值范围,再解分式方程,根据解是非负整数,可求出满足条件的a的值,进一步求解即可.【解答】解:解不等式≥x﹣1,得:x≥﹣3,解不等式3x﹣8<a﹣4,得:x<,∵该不等式组有且仅有5个整数解,∴该不等式组的整数解为:﹣2,﹣2,0,6,则1<≤2,解得:4<a≤12,解分式方程,得:y=且≠5,∵该分式方程有非负整数解,且4<a≤12,则a=8或a=10,即满足条件的所有整数a的值之和为18.故答案为:18.【点评】本题考查了分式方程的解,一元一次不等式组的整数解,正确掌握解一元一次不等式组的方法和解分式方程得方法是解题的关键.17.【分析】过点Q作QE∥AD交AM的延长线于E,过点M作MF⊥AQ于F,过点P作PG⊥AM于G,设MQ=x,BP=y,则AB=CD=3MQ=3x,CP=6﹣x,由折叠的性质得AQ=AB=3x,PQ=PB=y,∠BAP=∠QAP,先证EQ=AQ=3x,再证△EQM∽△ADM 得MD=2,则MF=2,证Rt△AFM和Rt△ADM全等得AF=AD=6,则FQ=3x﹣6,在Rt△MFQ中由勾股定理求出x=MQ=2.5,进而得AB=CD=3x=7.5,CQ=3,在Rt△PCQ中由勾股定理求出y=PB=,在Rt△ABP中由勾股定理可求出AP=,然后证△APG为等腰直角三角形,最后在Rt△APM中由勾股定理求出PG即可.【解答】解:过点Q作QE∥AD交AM的延长线于E,过点M作MF⊥AQ于F,如图:∵四边形ABCD为矩形,AD=6,∴BC=AD=6,AB=CD,设MQ=x,BP=y,CP=BC﹣BP=3﹣x,由折叠的性质可知:AQ=AB=3x,PQ=PB=y,∵QE∥AD,∴∠E=∠DAM,∵AM平分∠DAQ,∴∠DAM=∠QAM,∴∠E=∠QAM,∴EQ=AQ=3x,∵QE∥AD,∴△EQM∽△ADM,∴QE:AD=QM:MD,即2x:6=x:MD,∴MD=2,∵AM平分∠DAQ,∠D=90°,∴MF=MD=4,在Rt△AFM和Rt△ADM中,,∴Rt△AFM≌Rt△ADM(HL),∴AF=AD=6,∴FQ=AQ﹣AF=3x﹣3,在Rt△MFQ中,MF=2,MQ=x,由勾股定理得:MQ2=MF4+MQ2,∴x2=3+(3x﹣6)4,整理得:2x2﹣4x+10=0,解得:x1=8.5,x2=8(不合题意,舍去),∴MQ=2.5,∴AB=CD=6x=7.5,∴CQ=CD﹣DM﹣MQ=6.5﹣2﹣2.5=3,在Rt△PCQ中,CQ=8,PQ=y,由勾股定理得:PQ2=CQ2+CP2,∴y2=9+(3﹣y)2,解得:y=,∴PB=y=,在Rt△ABP中,PB=,由勾股定理得:AP==,∵∠BAP=∠QAP,∠DAM=∠QAM,∴∠BAP+∠DAM=∠QAP+∠QAM,∵∠BAD=90°,∴∠BAP+∠DAM=∠QAP+∠QAM=45°,即∠MAP=45°,∵PG⊥AM,∴△APG为等腰直角三角形,∴PG=AG,在Rt△APM中,PG=AG,由勾股定理得:PG2+AG4=AP2,∴PG=•AP=×=.故答案为:.【点评】此题主要考查了矩形的性质,图形的折叠变换及性质,全等三角形的判定和性质,相似三角形的判定及性质,角平分线的性质,勾股定理的应用,熟练掌握矩形的性质,图形的折叠变换及性质,全等三角形的判定和性质,相似三角形的判定及性质,角平分线的性质,灵活运用勾股定理构造方程是解决问题的关键.18.【分析】根据对称数定义表示出s=1001a+110b,s′=1001b+110a,得到F(s)==11(a﹣b),根据F(s)能被8整除,1≤b<a≤9,得到a﹣b=8;同理得F(t)==11(x﹣y),根据条件得到1la﹣11b+11x﹣11y=6a+4b+13x﹣8y+xy,由a﹣b=8,1≤b<a<9得到a=9,b=1,得到2x+3y+xy=30,根据x,y均为整数,分别列举出x,y的值代入F(t)求和即可.【解答】解:∵s的千位数字与百位数字分别为a,b,∴s=100la+110b,s′=1001b+110a,∴F(s)==11(a﹣b),∵F(s)能被8整除,且1≤b<a≤8,∴a﹣b=8;同理得F(t)==11(x﹣y),∵F(s)+F(t)=6a+6b+13x﹣8y+xy,∴1la﹣11b+3lx﹣1ly=6a+8b+13x﹣8y+xy,∵a﹣b=8,4≤b<a≤9,∴a=9,b=4,∴2x+3y+xy=30,即y=,∵x,y均为整数,当x=1时,y==,符合题意;当x=2时,y===,当x=3时,y==,符合题意;当x=7时,y===;当x=5时,y==,不符合题意;当x=5时,y==,符合题意;当x=7时,y==,不符合题意;当x=8时,y===,当x=5时,y==,不符合题意;∴F(t)所有可能值的和为﹣66+(﹣11)+44+88=55,故答案为:8;55.【点评】本题考查了新定义,因式分解的应用,数的整除性,关键是正确理解新定义,利用代数式的值进行相关分类讨论,把新知识转化为熟悉的知识进行解答.三、解答题(本大题共8个小题,20题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.【分析】(1)根据单项式乘多项式的方法进行解题即可;(2)利用平方差公式和分式的混合运算进行解题即可.【解答】解:(1)原式=x2﹣2xy+y8﹣(x2﹣3xy)=x7﹣2xy+y2﹣x7+3xy=xy+y2;(2)原式=÷()=÷()=×=m+5.【点评】本题考查分式的混合运算、单项式乘多项式和完全平方公式,熟练掌握相关的知识点是解题的关键.20.【分析】(1)根据过一点作已知直线的垂线的方法作图即可;(2)根据正方形的性质得到∠EAB=∠GDA=90°,AB=AD,利用余角的性质得到∠FBA=∠EAF,利用ASA证明△BAE≌△ADG,即可得到结论.【解答】解:(1)如图,AG即为所求;(2)证明:∵四边形ABCD是正方形,∴∠EAB=∠GDA=90°,AB=AD,∴∠BAF+∠FAE=90°,∵AG⊥BE,∴∠BFA=90°,∴∠FBA+∠FAB=90°,∴∠FBA=∠EAF,在△BAE和△ADG中,,∴△BAE≌△ADG(ASA),∴BE=AG.【点评】本题考查了正方形的性质,全等三角形的判定和性质,余角的性质,尺规作图,解题的关键是掌握全等三角形的判定和性质.21.【分析】(1)根据众数的定义确定七年级的众数a;根据中位数的定义确定八年级的中位数b;根据八年级C组所占百分比确定C的值;(2)根据平均数或中位数或众数的意义回答即可;(3)将样本中七年级得分再C组的比例乘以900,将样本中八年级得分再C组的比例乘以800,再相加即可.【解答】解:(1)∵被抽取的学生测试得分的所有数据中,88出现3次是出现次数最多的数据,∴a=88;∵C组占比为:=25%,∴c=25;∵八年级被抽取的学生测试得分A组有:20×15%=5(个),B组有:20×(100%﹣15%﹣25%﹣30%﹣10%)=4(个),∴八年级被抽取的学生测试得分的中位数是第10,第11个数据是C组的77,∴b==77.8.故答案为:88,77.5;(2)答案不唯一,比如:七年级更高.理由:因为七,八年级成绩的平均数相同,所以七年级的学生对事件的关注与了解程度更高;(3)∵七年级处于C组的有4个数据,占比,八处于C组的占比25%,∴估计该校这两个年级的学生测试得分在C组的人数一共有20%×900+25%×800=380(人),答:估计该校这两个年级的学生测试得分在C组的人数一共有380人.【点评】本题考查频数分布直方图,扇形统计图,平均数,中位数,众数,用样本估计总体,能从统计图中获取信息,理解相关概念的大于是解题的关键.22.【分析】(1)设每台B款电器的售价为x元,则每台A款电器的售价为x元,根据顾客用1200元购买A款电器的数量比用1200元购买B款电器的数量少1台.列出分式方程,解方程即可;(2)设每台A款电器应降价m元,根据每月销售A款电器的利润达到10800元,列出一元二次方程,解之取满足题意的值即可.【解答】解:(1)设每台B款电器的售价为x元,则每台A款电器的售价为,由题意得:=﹣1,解得:x=240,经检验,x=240是原方程的解,答:每台B款电器的售价为240元;(2)设每台A款电器应降价m元,由题意得:(100﹣m)(100+×20)=10800,整理得:m4﹣50m+400=0,解得:m1=40,m7=10(不符合题意,舍去),答:每台A款电器应降价40元.【点评】本题考查了一元二次方程的应用以及分式方程的应用,找准等量关系,正确列出分式方程和一元二次方程是解题的关键.23.【分析】(1)直接确定三角形的底和高求解即可;(2)y1,y2都是一次函数,只需描两个点即可画出图象,再观察y1的图象,可以从增减性写出函数的一条性质;(3)先从图象上确定交点的横坐标,再利用y1≥y2确定y2在y1下面的范围即可.【解答】解:(1)过点E作EF⊥AB于点F,过点D作DH⊥CB,∵∠A=30°,AD=4,∴EF=AE=1,∵四边形ABCD是平行四边形,∴∠C=∠A=30°,AB=CD=8,∴DH=CD=4,当7<x<4时,y1=AP•EF=;当4≤x<8时,y3=AP•EF=.当0<x<6时,y2=BQ•DH=.∴y6关于x的函数关系式为y1=,y2关于x的函数关系式为y2=﹣2x+8(0≤x<3);(2)画出y1,y2的函数图象如下,函数y3的一条性质:当0<x<4时,y随x的增大而增大;当5≤x<8,y随x的增大而减小(答案不唯一);(3)观察图象可得:当y1≥y3时,x的取值范围是.故答案为:≤x<4.【点评】本题考查了动点的函数,包括求函数的解析式,画函数图象,根据图象写函数的性质,比较函数值的大小,正确求出函数解析式并画出图象是解题的关键.24.【分析】(1)过点D作DF⊥BA,垂足为F,延长DE交CH于点G,根据题意可得:DG ⊥CH,CH⊥BA,DF=GH,∠CEG=45°,在Rt△BDF中,根据已知易得tan B=,从而可得∠B=60°,然后利用锐角三角函数的定义求出DF,BF的长,再在Rt△CEG 中,利用锐角三角函数的定义求出CG的长,最后利用线段的和差关系进行计算,即可解答;(2)利用(1)的结论,然后在Rt△ACH中,利用含30度角的直角三角形的性质可求出AC的长,最后进行计算比较即可解答.【解答】解:(1)如图:过点D作DF⊥BA,垂足为F,由题意得:DG⊥CH,CH⊥BA,∠CEG=45°,在Rt△BDF中,tan B===,∴∠B=60°,∵BD=400米,∴DF=BD•sin60°=400×=600(米),BF=BD•cos60°=400×=200,∴DF=GH=600米,在Rt△CEG中,CE=1800米,∴CG=CE•sin45°=1800×=900,∴CH=CG+GH=600+900≈1873(米),∴山顶C到AB的距离约为1873米;(2)小红先到达山顶C,理由:在Rt△ACH中,∠A=30°)米,∴AC=2CH=(1200+1800)米,∵DE=900米,小明的爬山速度为70米/分,小红的平路速度为90米/分,∴小明到达山顶C需要的时间==≈53.5(分),小红到达山顶C需要的时间=+=+≈51.5(分),∵51.5分<53.5分,∴小红先到达山顶C.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.25.【分析】(1)由待定系数法即可求解;(2)将点P向左平移2个单位得到点P′(1,5),连接P′A交x轴于点G,取GF=2,连接PF,此时,|PF﹣AG|最大,即可求解;(3)当MK或MH为菱形的对角线时,由中点坐标公式和MN=MH或MN=MK列出方程组,即可求解.【解答】解:(1)直线l1与x轴交于点B,与y轴交于点A,则点A、B的坐标为(4、(7,∵点E为线段AB的中点,则点E(2,设直线E、C的表达式为:y=k(x﹣),将点E的坐标代入上式得:1=k(2﹣),解得:k=4,即直线l8的解析式为:y=4x﹣7;(2)设点P(t,3t﹣7),则四边形PACB的面积=S△PBC+S梯形PTOC﹣S△AOC﹣S△ATP=(4﹣(t+2×﹣,解得:t=3,即点P(3,3);将点P向左平移2个单位得到点P′(1,2),取GF=2,此时,理由:∵P′P=GF且P′P∥GF,则四边形PFGP′为平行四边形,则PF=P′G,则|PF﹣AG|=P′G﹣AG=AP′为最大,即|PF﹣AG|最大值=AP′==;(3)存在,理由:由图象的平移知,将△ACB沿着射线EC方向平移,相当于向左平移3个单位,则点M,﹣2),﹣4)6=20,设点K(t,4t﹣7),n),当MK或MH为菱形的对角线时,由中点坐标公式和MN=MH或MN=MK得:或,解得:m=或.【点评】本题是一次函数综合题,考查了待定系数法求函数解析式,二次函数图象和性质,菱形性质,图象平移等知识点,,其中(2)解题的关键是通过确定平行四边形PP′GF,得到最大值,这是一道关于一次函数综合题和压轴题,综合性强,难度较大.26.【分析】(1)在AC上截取DK=AD,连接BK,设BD=x,根据正弦、余弦的定义得到AD =DK=x,AB=BK=KC=2x,再利用等腰三角形的性质,得到AC=AD+DK+KC,由AC =2+2即可求解;(2)在EC上截取EK=EG,连接GK,取AB得中点Q,连接DQ、EQ,根据题意先证明△DEF≌△CHF(SAS),得到△EGK是等边三形,再证明△DEF≌△GKH(AAS),由点E为AC的中点,点Q是AB的中点,得到QE∥BC,进而得到QD=DE,即可得出结论;(3)点H的轨迹是一条垂直AB的直线,当H在AB上时,此时AH最小,AH=,利用S△DGH=S△CDG﹣S△CGH﹣S△CDH求解即可.【解答】(1)解:在AC上截取DK=AD,连接BK,∵∠BAC=2∠ACB,∠ACB=15°,∴∠BAC=30°,∵BD⊥AC,∴∠BDA=∠BDC=90°,∵DK=AD,∴AB=BK,∴∠BAC=∠BKD=30°,∵∠ACB=15°,∴∠KBC=∠BCA=15°,∴BK=KC,在Rt△ABD中,,,设BD=x,则,AB=BK=KC=2x,∵,∴x=1,∴AB=3;(2)证明:在EC上截取EK=EG,连接GK,连接DQ,如图,∵三角形ECF是等边三角形,∴EF=EC=FC,∠FEC=∠FCE=∠EFC=60°,∴∠FED=∠FCH=120°,在△DEF和△CHF中,,∴△DEF≌△CHF(SAS),∴DF=FH,∠1=∠CFH,∵GH=DF,∴GH=FH,∴∠FGH=∠GFH,∴∠FGH﹣∠FEC=∠GFH﹣∠EFC,∴∠EHG=∠CFH,∴∠1=∠EHG,∵EG=EK,∴△EGK是等边三角形,∴EG=GK=EK,∠FEC=∠8=∠EGK=60°,∴∠FED=∠CKG=120°,在△DEF和△GKH中,,∴△DEF≌△GKH(AAS),∴DE=GK,∴DE=EG,∵点Q是AB的中点,BD⊥AC,∴AB=2AQ=4QB=2QD,∴∠BAC=∠4,∵点E为AC的中点,点Q是AB的中点,∴QE∥BC,∴∠BCA=∠2,∵∠BAC=2∠ACB,∠4=∠DQE+∠6,∴∠DQE=∠3,∴QD=DE,∴AB=2DQ=2DE=2EG;(3)解:如图,点H的轨迹是一条垂直AB的直线,此时AH最小,, S△DGH=S△CDG﹣S△CGH﹣S△CDH==.∴S△DGH=.【点评】本题是三角形综合题,考查了全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的性质、三角形内角和定理、三角形的外角性质、解直角三角形等知识,本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键,属于中考常考题型.。
2022-2023学年重庆八中九年级(上)第二次月考数学试卷

2022-2023学年重庆八中九年级(上)第二次月考数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.由5个相同的小正方体组成的几何体,如图所示,该几何体的左视图是()A.B.C.D.2.在一个多项式中,与2ab2为同类项的是()A.ab B.ab2C.a2b D.a2b23.下列调查中,最适合全面调查的是()A.对某品牌电池的使用寿命的调查B.对我国公民的环保意识的调查C.对全市八年级中学生课外阅读时间的调查D.疫情期间,对进入重庆园博园的游客的“渝康码”的调查4.在实数、、、2π、0中无理数的个数是()A.2个B.3个C.4个D.5个5.下列条件中能够确定一个圆的是()A.已知圆心B.已知半径C.已知三个点D.过一个三角形的三个顶点6.下列四组长度的线段中,是成比例线段的是()A.4cm,5cm,6cm,7cm B.3cm,4cm,5cm,8cmC.3cm,5cm,9cm,15cm D.1cm,3cm,4cm,8cm7.如图,⊙O的半径为5,弦AB=6,P是弦AB上的一个动点(不与A、B重合),下列符合条件的OP的值可以是()A.3.1B.4.2C.5.3D.6.48.如图,在4×4正方形网格中,点A,B,C为网格交点,AD⊥BC,垂足为D,则tan∠BAD的值为()A.B.C.D.9.如图,点A,B,C,D在⊙O上,AC⊥BC,AC=4,∠ADC=30°,则BC的长为()A.4B.8C.4D.410.如图,已知点E,点F为正方形ABCD内两点,C,E,F三点共线且满足∠BEC=∠CFD=90°,连接DE并延长交BC于点G,若EG平分∠BEC,AB=,则DE的长为()A.1B.C.2D.211.若关于x的一元一次不等式组恰好有3个整数解,且关于y的分式方程=1有非负整数解,则符合条件的所有整数a的和为()A.6B.9C.﹣1D.212.已知M=4x2﹣ax﹣1,N=x﹣1(其中a任意实数),下列说法:①若M•N中不含x2项,则a=﹣4;②若化简的结果为整式,则a=3;③无论a取何值,关于x的方程(M+N)2﹣M﹣N=2始终有4个不相等的实数根.其中正确的个数是()A.0个B.1个C.2个D.3个二、填空题:(本大题共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2022-2023学年重庆八中九年级(上)月考数学试卷(10月份)一、选择题:在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱2.(4分)二十大报告是对过去十年的总结和对未来的展望,总结到全国各类养老服务机构和设施达36万个,36万用科学记数法可以表示为()A.36×104B.3.6×105C.0.36×106D.3.6×1063.(4分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a+b>0C.a﹣b>0D.|a|>|b|4.(4分)一个正多边形的一个内角是120°,那么这个正多边形的边数是()A.6B.8C.10D.125.(4分)已知AB是半径为2的圆的一条弦,则AB的长不可能是()A.2B.3C.4D.56.(4分)估计(﹣)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(4分)下列说法正确的是()A.对角线相等的四边形一定是矩形B.顺次连接矩形各边中点形成的四边形一定是正方形C.对角线互相平分且相等的四边形一定是菱形D.经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分8.(4分)按如图所示的运算程序,能使输出结果为﹣8的是()A.x=3,y=4B.x=4,y=3C.x=﹣4,y=2D.x=﹣2,y=49.(4分)如图,在△ABC中,∠B=30°,∠C=45°,DF⊥AC,垂足为F,DE⊥AB,垂足为E.若DE =DF=1,则△ABD的面积与△ACD的面积之比为()A.B.2C.D.310.(4分)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列结论正确的是()A.abc>0B.a﹣b+c<0C.2a+b>0D.a+b+c>011.(4分)已知二次函数y=ax2﹣4x+6的顶点在第二象限,且关于x的分式方程+﹣1=0有整数解,则符合条件的所有整数a的个数为()A.1B.2C.3D.412.(4分)已知两个多项式A=x2+3x+3,B=x2﹣3x+3,x为实数,将A、B进行加减乘除运算:①若A+B=4,则x=2;②若A×B=0,则关于x的方程无实数根;③若|A﹣B﹣12|+|A﹣B+24|=36,则x的取值范围是﹣4≤x≤2;④若x为正整数,且为整数,则x的取值个数为7个,上面说法中正确的是()A.②③B.③④C.①②④D.②③④二、填空题:(本大题共4个小题,每小题4分,共16分)请将每小题的答案直接填在答墨卡中对应的横线上.13.(4分)若=tan60°,则x﹣1=.14.(4分)一个不透明袋子里装有4个小球(只有编号不同),编号分别为0,1,2,3,从中任意摸出两个球,两球编号之和为奇数的概率是.15.(4分)如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=2,以点C为圆心,BC为半径作圆弧交AC于点D,交AB于点E.则阴影部分的面积为.16.(4分)某车间有A,B,C型的生产线共10条,A,B,C型生产线每条生产线每小时的产量分别为4m,2m,m件,m为正整数,该车间准备增加3种类型的生产线共8条,其中B型生产线增加2条,后改进方案,每条生产线(包括之前的和新增的生产线)每小时的产量将增加3件.统计发现,增加生产线后,该车间每小时的总产量恰比增加生产线前增加了92件,且C型生产线每小时的产量与三种类型生产线每小时的总产量之比为4:13,请问增加生产线后,该车间所有生产线每小时的总产量为件.三、解答题:(本大题共2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答罩卡中对应的位置上.17.(8分)计算:(1)(x﹣3)2﹣x(x﹣6);(2)(a+)÷.18.(8分)如图,在平行四边形ABCD中,对角线AC与BD交于点O.(1)尺规作图:过点O作直线l⊥AC,分别交AD、BC于点E、F(基本作图,保留作图痕迹,不写作法,不下结论);(2)连接CE、AF,求证:四边形AECF为菱形.证明:∵四边形ABCD为平行四边形,且O为平行四边形ABCD对角线交点,∴①.∵l⊥AC,∴AE=EC.∵四边形ABCD为平行四边形,∴②,∴∠CAD=∠ACB.在△AOE与△COF中,,∴△AOE≌△COF(ASA),∴③,∴四边形AECF是平行四边形.又∵④,∴四边形AECF为菱形.19.(10分)在常态化疫情防控工作形势下,某校通过云讲解、云参观、云课堂等方式立体讲解中国首批国家公园,并组织初中全体学生发起了“大美我家园敬畏大自然”的主题教育活动,为了解学生对中国国家公园的了解程度,随机抽取了七年级、八年级学生若干名(抽取的各年级学生人数相同)进行网上问卷测试,并对得分情况进行整理和分析(得分用整数x表示,单位:分),且分为A,B,C三个等级,分别是:优秀为A等级:85≤x≤100,合格为B等级:70≤x<85,不合格为C等级:0≤x<70.分别绘制成如下统计图表,其中七年级学生测试成绩数据的众数出现在A组,A组测试成绩情况分别为:85,85,87,92,95,95,95,95,97,98,99,100;八年级学生测试成绩数据的A组共有个a人.七年级、八年级两组样本数据的平均数、中位数、众数和方差如表所示:成绩平均数中位数众数方差七年级85b c99.5八年级85919695.1根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)根据以上数据,你认为该学校哪个年级的测试成绩更好,并说明理由;(3)若该校七、八年级分别有1500人,请估计该校初中七、八年级学生中成绩为优秀的学生共有多少名?四、解答题:(本大题共7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上20.(10分)反比例函数y1=(k≠0)与一次函数y2=ax+b(a≠0)交于A(4,1),B(1,m)两点.(1)求出一次函数y2的解析式,并在网格中画出一次函数y2的图象;(2)结合图象,直接写出当x>0时不等式ax+b≤的解集;(3)点C与点A关于原点对称,过点A作直线AD∥x轴,交直线BC于点D,求△ABD的面积.21.(10分)如图,某小区A栋楼在B栋楼的南侧,两楼高度均为82m,楼间距为MN,春分日正午,太阳光线与水平面所成的角为60°,A栋楼在B栋楼墙面上的影高为DM;冬至日正午,太阳光线与水平面所成的角为45°,A栋楼在B栋楼墙面上的影高为CM,已知CD=32m,(参考数据≈1.41,≈1.73)(1)求楼间距MN;(结果保留根号)(2)王老师家住B栋3楼,点M处为地面1楼,楼房层高2.8米,问王老师家能否照到春分日正午的太阳?并说明理由.22.(10分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(10分)对任意一个三位自然数m,若m满足百位数字与个位数字之差等于十位数字与1的差,且各位数字都不为零,那么称这个三位数为“差一数”,将这个“差一数”的百位数字移动到剩余两位数的右侧形成一个新的三位数m′,规定f(m)=.例如自然数m=652,6﹣2=5﹣1,所以m为“差一数”,将m的百位数字6移动到剩余两位数52的右侧得到新的三位数m'=526,所以f(652)==14.(1)判断752,863是否是“差一数”,并说明理由;如果是,求出对应的f(m)的值;(2)自然数m是“差一数”,若f(m)是能被5整除,同时f(m)除以4余3,求所有满足条件的m.24.(10分)如图,抛物线y=﹣x2﹣2x+3与x轴交于点A,B(点A在点B左侧),与y轴交于点C,连接AC.(1)求线段AC的长;(2)点P为直线AC上方抛物线上一点,求四边形P ABC面积的最大值及此时点P的坐标;(3)将原抛物线沿射线AC方向平移个单位长度得到抛物线y′,y′与原抛物线交于点M,点N在直线AC上,在平面直角坐标系中是否存在点R,使以点A、M、N、R为顶点的四边形是以AM为边的菱形,若存在,请直接写出点R的坐标,并选择其中一个点写出求解过程;若不存在,请说明理由.25.(10分)如图,在△ABC中,∠BAC=90°,AB=AC.(1)如图1,点D为△ABC内一点,连接AD,过点A作AE⊥AD,AD=AE,连接DE,BD,CE,已知AB=,AD=1,当B、D、E三点共线时,求ABCE的面积;(2)如图2,在AC上取点D,连接BD,过点A作AE⊥BD于点F,AE=BD,取BC中点G,连接GE,ED,在AB上取点M,过点M作MN∥DE交BC于点N,MN=GE,求证:BN=DC;(3)如图3,在AC上取点D,连接BD,将△ABD沿BD翻折至ABDE处,在AC上取点F,连接BF,过点E作EG⊥BF于点G,GE交BF于点H,连接AH,若GE:BF=:2,AB=2,求AH的最小值.参考答案一、选择题:在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.A;2.B;3.D;4.A;5.D;6.A;7.D;8.C;9.C;10.D;11.A;12.D;二、填空题:(本大题共4个小题,每小题4分,共16分)请将每小题的答案直接填在答墨卡中对应的横线上.13.;14.;15.+;16.130;三、解答题:(本大题共2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答罩卡中对应的位置上.17.(1)9;(2).;18.OA=OC;AD∥BC;AE=CF(或OE=OF);AE=EC;19.13;86;95;四、解答题:(本大题共7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上20.(1)y2=﹣x+5;(2)0<x≤1或x≥4;(3)9.;21.(1)(16+16)m;(2)能,理由详见解答.;22.;23.(1)752不是“差一数”,863为“差一数”;(2)满足条件的m为:762,964.;24.(1)3;(2),P点坐标为(﹣,);(3)存在,(3,8)或(1,6)或(1,2).;25.(1)3;(2)见解答过程;(3).。