2019-2020学年重庆八中九年级(下)第一次月考数学试卷

合集下载

重庆八中初2020级初三(下)第一次月考答案

重庆八中初2020级初三(下)第一次月考答案

重庆八中2019-2020学年度(下)初三年级第一次月考数学试题参考答案一.选择题(每小题4分,共12小题)1-5BBBBB6-10AABBA11-12CB二.填空题(每小题4分,共6小题)13.314.︒54015.1216.17.118.12.17.1152412-Ba a a a a a a a a a a a y a x y x y ax a a x x a a a ax x x x ax 故选:个题意>即>>>>即>>方程组得解为正数得解方程组即为整数,即分式方程有整数解得解:解方程2 5 有4,的整数符合综上,5,4255,25050,52,0525,0523525,523:,12517,13411,7,1,5,2,44,2,133434:,1216=∴-∴+--+-∴-+=-=⎩⎨⎧-=-=-≠≠-=∴≠-=∴±±±=--∴+=-=--- ?,此时,答案又是如何轴于点交交反比例函数于点变式思考:直线舍去所以存在由题意或得:解方程即)(可设点轴上在直线由点)(可设点上在直线由点C x B AB x AB S a OAB B A B A a a a a a a aa BC AC aBC a AC a a B x AB x y B a a A x y A A OAB ,112212121,)2,21(),2,21()1,1(),3,1(1,21,01320132,411241,121,,,112,,122122=⨯⨯=⋅=∴=∆∴===+-=+-=++∴=+=+=∴⊥=++=∆2412241224122282282282281612,,,1612,)(4,4,)3(16)5()3(16)5(,3,5,53sin sin 5353∽,,,≌2221111111212222222221111111111111111111-=∴-+=∴⎪⎩⎪⎨⎧+=-=⎪⎩⎪⎨⎧-=+=⎩⎨⎧=+=+==⊥=====∴-==+=+=+===∆=∠=∠∴=∴=∆∆∴∠=∠∴∠+∠=∠∠+∠=∠∠=∠==∴∆∆AD BC AD AD y x y x y x y x yCQ x PC P Q AN BC BC Q C C C A AC DC BC BC x x x x x x BC AC AB x BC x AB ABC RT D BA BAC BCAB AA CC BC C BA A BC C BA A ABC BC C BC A ABC BA A ABC BC A ABC C B BC B A AB BC A ABC <或或解得设点于点交作过舍得解方程即设中在解:据题,可得 18.三.解答题20.(1)解:设半径为r ,则OC =OB =rCD AB AB ^ ,为圆的直径1252CE DE CD \===2OE EB = 2233OE OB r \==222Rt OCE OC CE EC D =+中在,…………………………………………1分分<不等式组的解集为分<由不等式②得:分由不等式①得:②>①)解(565124625121232)5(23:1.19 x x x xx x x ≤∴≥⎪⎩⎪⎨⎧-≥--分分)解:原式(54233344222222y xy x xy x xy y x +--=+--+=2222()3r r =+即:6r =解得6\半径为(2)证明:GF F BF 为切线,为切点,为弦BFG FAG\Ð=ÐBGF FGA Ð=Ð又BGF FGA \D D BF BG= AF FG\=(3)连接OF ,则∠OFG =90°,而∠AFB =90°OFG OFB AFB OFBÐ-Ð=Ð-Ð\AFO GFB Ð=Ð即由(2)AF=GF A G \Ð=ÐAFO GFB D 在与中2260302=12=612112211662218O AFBA G AF GF AFO GFB AFO GFB OF BFOFB BOF A AB r BF AF S S S r BF AF p p p D ìÐ=Ðïï=íïÐ=Ðïî\D @D \=D \Ð=°\Ð=°=\=\=-=-=-=- 阴影即为等边三角形又,21.(1)25,0.20,99.5;……………………………………………………6分()450410000800()508002´=解:由题,乙工厂产品抽查中,件答:大约样品中不合格的有占件不合格.(3)答:选择甲工厂的产品,因为在质量指标检测中,甲工厂产品高质量件数多于乙工厂的,说明甲工厂产品质量更高,样品质量指标检测值的平均数相同时,甲的方差更小,说明产品质量更稳定.………………………………………………2分…………………………………………………………3分…………………………………………………………6分………………………………………………………………8分……………………………………………………………………10分…………………………………………………………9分…………………………………………………………7分…………………………………………………………8分……………10分22.当BM =2时,以AM 为边向右侧构造正方形AMNP ,连接NC ,测得NC 的长约为2.23,所以a 约为2.23;当BM =4时,以BM 为边向右侧构造正方形AMNP ,连接ND ,测得ND 的长约为 1.42,,所以b 约为1.42;(2)(3)当DN =NC 时,由图可得,BM 约为1.50;当DN =DC 时,因为DC =3,由图,BM 约为0.89或5.12当NC =DC 时,因为DC =3,由图,BM =0或3.但是,当BM =3时,DN =0,不构成三角形,需舍掉.综上:BM 约为0或1.50或0.89或5.1223.解:(1)设甲种水果的单价为x 元/千克,则乙种水果的单价为(x +2)元/千克180********66628x x x x =+==+=\由题:解得:经检验,为方程的根且符合题意而甲的单价为6元/千克,乙的单价为8元/千克.2257+7+3=157=(2815)(3000+1000)=100010000390001000(5)640001000160.580.570=56400023m W m m m m m m W ´---++´=--+-<\+\´=由题,每听罐头的总成本为元设降价元,则利润当时,有最大值为当售价(2)由为元时()每听罐头的水果成本,利润最大,为64为:元000元…………………………………1分…………………………………………………………2分……………………………………………………4分…………………………………………………6分………………………………………………10分………………………………………………………………1分………………………………………………2分………………………………………………3分………………………………………………4分……………………………………………………………………5分………………………………………………6分31),23432,(),232,(,1232232,203)2,0(),0,3(,:2<<其中点设点于点轴的垂线交作过点如图解得得代入将点设a a a a E a a F Fl x E x y b k b b k bkx y C A b kx y l Ac Ac -----=∴⎪⎩⎪⎨⎧-==⎩⎨⎧-==++=-+=图121000(5)64000600007315%2815%4.23283=25256W m m m m m =--+==\£\=\-(3)由(2),解得:或者但是,降价幅度不超过定价的,即售价为元答:售价为元时,利润为万元.分抛物线解析式:解得可得代入点将点解:223432232,238403434)2,2(),0,1()1(.2422 --=∴⎪⎩⎪⎨⎧-==⎪⎪⎩⎪⎪⎨⎧-=+-=+++-=--x x y c a c a c a cx ax y D B 分时当得解方程时,当34242121)2,0(2,04)0,3(3,10,234320234320)2(2122 =⨯⨯=⋅=∴-∴-===∴∴=-==--=--=∆c ABC y AB S C y x AB A x x x x x x y …………………………………………………………7分…………………………………………………………………………8分………………………………………………10分.6)2,2(38,1(),3171,2173(2,1,2173),(217323232130,301,32322321321432122222问题利用平行线可快速解决之比,形面积之比可转化为高有两个公共顶点,三角与法二:提示:由分舍解得:或可得由<<<<ABC ACE E E E a a a a a a a a S S a a a a a a a a x x EF S ABC ACE c A ACE ∆∆----∴==-=+==+-=-=⎪⎩⎪⎨⎧+---=-=-=∴∆∆∆图3图2图425.解:(1)设所求方程的根为y ,则y x =-,所以x y =-.把x y =-代入已知方程,得()()210y y -+--=化简,得210y y --=,故所求方程为210y y --=.…………………3分(2)设所求方程的根为y ,则()10y x x =≠,于是()10x y y=≠把1x y =代入方程20++=ax bx c ,得2110a b c y y ⎛⎫+⋅+= ⎪⎝⎭去分母,得2a by cy ++=若0c =,有20ax bx +=,于是方程20++=ax bx c 有一个根为0,不符合题意,分),(综上所述:时当又由中点坐标公式可得轴于点作垂线交的中点过线段如图的顶点时为等腰当点情形三分如图的顶点时为等腰当点情形二分),(点如图的顶点时为等腰当点情形一10)45,0(),132,0(132,0(,2045,0(45,04523:23321)1,23(4,,:9)132,0(),132,0(133,,:7202, 2,,:)3(43214321 P P P P P y x x y l k k k k AC PD D Py D AC CP CA PAC P P P CP CA CP CA PAC C P OP CO CP OA AP AC AP AC PAC A PD PD AC PD AC --+-∴==+-=∴-=∴=-=⋅∴⊥-=∆--+-∴===∆∴==∴⊥==∆∴0c ≠,故所求方程为()200cy by a c ++=≠…………………6分(3)设所求方程的根为y ,则2y x =,所以x y =±,①当x y =时,把x y =代入已知方程,得()20ym y n -+=,即0y m y n -+=;…………………8分②当x y =-时,把x y =-代入已知方程,得()()20y m y n ---+=,即0y m y n ++=.所以,所求方程为0y m y n -+=或0y m y n ++=…………………10分26.解(1)连接CF∵在,Rt ABC Rt CDE ∆∆中,45ABC EDC ∠=∠=︒∴45ACB ECD ∠=∠=︒,,AB BC ED CE ==∵,,A C E 三点在同一直线上∴90BCD ∠=︒∵F 为BD 中点∴CF DF BF ==∵在ACF ABF ∆∆和中AB AC AF AF CF BF =⎧⎪=⎨⎪=⎩∴()ACF ABF SSS ∆∆≌∴1452CAF CAB ∠=∠=︒同理:()ECF EDF SSS ∆∆≌,1452CEF CED ∠=∠=︒∴AEF ∆为等腰直角三角形∵3,5AC AB CE DE ====∴28,422AE AF AE ===…………………3分另解:如图,延长,AF ED 交于点M易证:ABF MDF ∆∆≌,,AEM AEF ∆∆为等腰直角(2)证明:取BC 中点M ,CD 中点N ,连接,,,AM MF EN FN ∵F BD 为中点∴FM 为BCD ∆的一条中位线∴1,2FM CD FM CD CN==∥∴四边形MCNF 为平行四边形,,,CM FN MF CN CMF FNC ==∠=∠∵在Rt ABC ∆中,M 为BC 中点∴90,AMC AM CM ∠=︒=同理:90,ENC EN CN ∠=︒=∴,AM FN MF EN==AMF AMC CMF ENC CNF FNE∠=∠+∠=∠+∠=∠∵AMF ∆和FNE ∆中AM FN AMF FNE MF NE =⎧⎪∠=∠⎨⎪=⎩∴()AMF FNE SAS ∆∆≌∴AF EF =13∠=∠∵()121803290AFE MFN FNC ENC ∠=∠-∠-∠=︒-∠-∠-∠=∠=︒∴AEF ∆为等腰直角三角形…………………6分另解1:过点D 作DM AB ∥交AF 的延长线于M ,连接EM 易证ABF MDF ∆∆≌,DM AB AC ==,ED EC =,又3601236090901218012EDM EDB BDM EDB DBA BAC DECACE∠=∠+∠=∠+∠=︒-∠-∠-∠-∠=︒-︒-︒-∠-∠=︒-∠-∠=∠∴EDM ECA ∆∆≌,AEM ∆,AEF ∆为等腰直角另解2:取BC 中点M ,连接,AM MF 易得:212,222AM AC MF CD CE ===∵9090180270AMF CMF MCD MCD ∠=︒+∠=︒+︒-∠=︒-∠,270ACE MCD ∠+∠=︒∴AMF ACE ∠=∠∴AMF ACE ∆∆∽,22AF AE =,45FAE ∠=︒,AMC AFE ∆∆∽,AEF ∆为等腰直角三角形(3)证明:取BC 中点M ,CD 中点N ,连接,,,AM MF EN FN ∵F BD 为中点∴FM 为BCD ∆的一条中位线∴1,2FM CD FM CD CN==∥∴四边形MCNF 为平行四边形,,,CM FN MF CN CMF FNC ==∠=∠∵在Rt ABC ∆中,M 为BC 中点∴60,AMC AM CM ∠=︒=同理:60,ENC EN CN ∠=︒=∴,AM FN MF EN==AMF AMC CMF ENC CNF FNE∠=∠+∠=∠+∠=∠∵AMF ∆和FNE ∆中AM FN AMF FNE MF NE =⎧⎪∠=∠⎨⎪=⎩∴()AMF FNE SAS ∆∆≌∴AF EF =13∠=∠∵()121803260AFE MFN FNC ENC ∠=∠-∠-∠=︒-∠-∠-∠=∠=︒∴AEF ∆为等边三角形…………………8分另解1:过点D 作DM AB ∥交AF 的延长线于M ,连接EM易证ABF MDF ∆∆≌,DM AB ==,ED =,又3601236090901218012EDM EDB BDM EDB DBA BAC DECACE∠=∠+∠=∠+∠=︒-∠-∠-∠-∠=︒-︒-︒-∠-∠=︒-∠-∠=∠∴EDM ECA ∆∆∽,1DEM ∠=∠,EM =AEM ∆为直角三角形,260EFA EMF ∠=∠=︒,AEF ∆为等边三角形另解2:取BC 中点M ,连接,AM MF 易得:1,2AM AC MF CD CE===∵6060180240AMF CMF MCD MCD ∠=︒+∠=︒+︒-∠=︒-∠,240ACE MCD ∠+∠=︒∴AMF ACE∠=∠∴AMF ACE ∆∆≌,AF AE =,60FAE ∠=︒,AEF ∆为等边三角形拓展:,ABC CDE ∆∆中,90BAC DEC ∠=∠=︒,ABC EDC α∠=∠=,连接BD ,F 为BD 中点,连接,AF EF ,均可证明AF EF =,2AFE α∠=(对于任意角,边的证明用三角函数)。

重庆市九年级下学期数学第一次月考试卷

重庆市九年级下学期数学第一次月考试卷

重庆市九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·镇原期末) 点M(a,2a)在反比例函数y=的图象上,那么a的值是()A . 4B . ﹣4C . 2D . ±22. (2分)某班一些学生做图钉随机抛掷的实验,求图钉尖触地还是图钉面触地的概率,下列做法正确的是()A . 甲做了4000次,得出针尖触地的频率约为42%,于是他断定在做第4001次时,针尖肯定不会触地;B . 乙认为一次一次做,速度太慢,他拿来了大把材料,形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的个数,这样大大提高了速度;C . 老师安排每位同学回家做实验,各人的图钉大小、质地均匀程度都不一样,同学交来的结果,老师进行统计;D . 老师安排同学回家做实验,图钉统一发(完全一样的图钉),同学交来的结果,老师进行统计。

3. (2分) (2016九上·九台期末) 如图,抛物线y=- x2+ x与矩形OABC的边AB交于点D、B,A(0,3),C(6,0),则图中抛物线与矩形OABC形成的阴影部分的面积的和为()A . 3B . 4C . 5D . 64. (2分)如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′//AB,则∠BAB′的度数为()A . 30°B . 35°C . 40°D . 50°5. (2分)一个圆柱底面直径是0.5米,高1.8米,求它的侧面积为()平方米。

A . 9B . 2.83C . 约为2.836. (2分)(2017·江津模拟) 如图,已知平面直角坐标系中有点A(1,1),B(1,5),C(3,1),且双曲线y= 与△ABC有公共点,则k的取值范围是()A . 1≤k≤3B . 3≤k≤5C . 1≤k≤5D . 1≤k≤7. (2分) (2019九上·大丰月考) 下列说法正确的是()A . 等弧所对的圆周角相等B . 平分弦的直径垂直于弦C . 相等的圆心角所对的弧相等D . 圆是轴对称图形,任何一条直径都是它的对称轴8. (2分)为了看图钉落地后钉尖着地的概率有多大,小明做了大量重复试验,发现钉尖着地的次数是实验总次数的40%,下列说法错误的是()A . 钉尖着地的频率是0.4B . 随着试验次数的增加,钉尖着地的频率稳定在0.4附近C . 钉尖着地的概率约为0.4D . 前20次试验结束后,钉尖着地的次数一定是8次9. (2分)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A . 65°B . 130°C . 50°D . 100°10. (2分)(2018·南湖模拟) 如图,在平面直角坐标系中,过点O的直线AB交反比例函数y= 的图象于点A,B,点C在反比例函数y= (x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB= 时,k1 , k2应满足的数量关系是()A . k2=2k1B . k2=-2k1C . k2=4k1D . k2=-4k1二、填空题 (共8题;共8分)11. (1分) (2018九下·夏津模拟) 以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是________。

重庆八中 2019-2020学年 九年级上 第一次月考(答案)

重庆八中 2019-2020学年 九年级上 第一次月考(答案)

2
4
2
0 x 2或x 6
23. (1) a 5320 (2) F(p)的最大值为 32
24. (1)解:设去年八月份购进福建蜜柚 x 个;则购进泰国青柚为 900 - x 个
6x 20900 x 12400 解得 x 400
答:该水果店去年 8 月份购进福建蜜柚最少 400 个
30
22. 函数解析式: y 1 x x 4 4
补全函数图象
当 2 x 4 时, y 随 x 的增大而减小;
当 x 4 时, y 1 x ax b 的最大值是 1; 4
直线 y k 与函数 y 1 x ax b 有两个交点,则 k 1 或 0 4
(4)结合你所画的函数图象与 y 1 x 的图像,直接写出不等式 1 x ax b 1 x 的解集
93
3 16
641
,
93
3 16
641

20. (1)略
(2)3
21. (1) a 4 b 1 m 49
(2)A 村小土豆卖的更好;理由如下 A 村的平均数 48.8,B 村的平均数为 47.4;A 村平均数>B 村平均数; A 村中位数 49,B 村中位数 46,A 村中位数>B 村中位数;
(3)A 村在 45 x 60 范围内的有 6 户;B 村在 45 x 60 范围内的有 7 户; 估计两村村民 210 户,被列为重点培养对象的为 210 13 91
解得 m1 0
m2

1 4
a 25
25. (1) tan B 3
(2)
26. (1) M 3,6来自(2) 3 9 3 3 2 44 2

重庆八中2018-2019学年度下期初2019级九年级第一次月考数学试卷 (解析版)

重庆八中2018-2019学年度下期初2019级九年级第一次月考数学试卷 (解析版)

重庆八中2018-2019学年度下期初2019级初三第一次月考数学试卷一.选择题(共12小题)1.下列实数中,最小的数是()A.﹣2B.2C.3D.﹣32.下列图形中,只有一条对称轴的图形是()A.等腰梯形B.矩形C.等边三角形D.圆3.计算(a2)3下列运算中,结果正确的是()A.a4B.a5C.a6D.a84.若x+2y=5,则代数式3﹣x﹣2y的值为()A.﹣8B.﹣2C.2D.85.若一个多边形的内角和为540°,则该多边形为()边形.A.四B.五C.六D.七6.估计的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.若式子有意义,则一次函数y=(3﹣k)x+k﹣3的图象可能是()A.B.C.D.8.如图,已知△ABC中,AB=4,tan∠C=,过A作AD⊥BC交边BC于D点,且AD=BD,则BC=()A.8B.8C.7D.79.古希腊著名的毕达哥拉斯学派把1、3、6,10…这样的数称为“三角形数”,而把1、9、16…这样的数称为“正方形数”,从下图可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和,若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为a n,计算a2﹣a1,a3﹣a2,a4﹣a3,…由此推算,(a7﹣a6)的值为()A.7B.6C.5D.410.如图,在⊙O中,AB=AC,若∠ABC=57.5°,则∠BOC的度数为()A.132.5°B.130°C.122.5°D.115°11.如图,正方形ABCD的点A,B点分别在x轴,y轴上,与双曲线y=恰好交于BC 的中点E,若OB=2OA,则S△ABO的值为()A.6B.8C.12D.1612.若数m使关于x的不等式组至少有3个整数解且所有解都是2x﹣5≤1的解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.2二.填空题(共6小题)13.计算:|2﹣π|+=.14.如图,在△ABC中,DE∥BC,若=,则S△ADE:S△ABC=.15.如图,菱形ABCD中,以A为圆心,AB为半径画弧,恰好过点C,已知AB=4,则图中阴影部分的面积为(结果保留π).16.已知二次函数y=﹣x2﹣2x+3图象如图,与x轴交于A,B两点(A在B的左侧),与y 轴交于C,图象顶点为D,则直线CD的解析式为.17.A,B两站相距330千米,甲、乙两车都从A站出发开往B站,甲车先出发,且在途中C站停靠6分钟,甲车出发半小时后,乙车从A站直达B站后停止,两车之间的距离y (千米)与甲车行驶的时间x(小时)之间的函数图象如图,则乙车恰好追上甲车时距离C站有千米.18.甲,乙,丙三人做一个抽牌游戏,三张纸牌上分别写有个数字0,x,y(x,y均为正整数,且x<y),每人抽一张纸牌,纸牌上的数字就是这一轮的得分.经过若干轮后(至少四轮),甲的总得分为20,乙的总得分为10,丙的总得分为9.则甲抽到x的次数最多为.三.解答题(共8小题)19.计算:(1)(m﹣2)(m+1)﹣(m+2)2.(2).20.如图①,在Rt△ABC中∠C=90°,两条直角边长分别为a,b,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.(1)根据勾股定理的知识,请直接写出a,b,c之间的数量关系;(2)若正方形EFMN的面积为64,Rt△ABC的周长为18,求Rt△ABC的面积.21.某射击队从甲、乙两人中选拔一人参加比赛,在相同条件下各进行了15次满分为10分的射击测试,成绩如下表整理、描述数据甲8976878878108698乙910775107898587710成绩x x<66≤x≤78≤x≤9x=10甲0591乙2553(说明:成绩6分以下为不合格,6﹣7分为及格,8﹣9分为良好,10分为优秀)(1)两组样本数据的平均数、中位数、众数、方差如下表所示,请补全表格:平均数中位数众数方差甲7.816.4乙7.836.4(2)你认为从甲、乙两人中选择谁去参加比赛更合适?(填“甲”或“乙”),理由为.22.有这样一个问题探究函数(b、c为常数)的图象和性质.元元根据学习函数的经验,对该函数的图象和性质进行了以下探究:下面是元元的探究过程,请你补充完整x……﹣10123456……y……0 2.54m4 2.501……(1)根据上表信息,其中b=,c=,m=.(2)如图,在下面平面直角坐标系中,描出以补全后的表中各对应值为坐标的点,并画出该函数的另一部分图象;(3)观察函数图象,请写出该函数的一条性质:.(4)解决问题:若直线y=3n+2(n为常数)与该函数图象有3个交点时,求n的范围.23.2017年10月18日,党的十九大报告提出“乡村振兴”战略,之后各地发展乡村旅游,某村在2018年3月1日首次举办“百花节”,开园免费赏花,于是大批游客涌入该村赏花,吃农家饭买土特产,平均每人消费100元.(1)据统计,某个周六早上开园后平均每小时有500人进园,两小时后,平均每小时有100人离园,园区规定,当园区内游客人数达到3000时,将停止进园,那么从开园起经过多少小时后停止进园?(2)该村对园区加大建设和宣传力度,2019年3月1日,第二届“百花节”如期开园,同时规定进园门票费为每人60元,受各种因素影响,与2018年同期相比,人数在20000的基础上降低了a%,除门票外平均每人消费金额增长了a%,园区总收入增长了a%,求a的值.24.在平行四边形ABCD中,以AB为边作等边△ABE,点E在CD上,以BC为边作等边△BCF,点F在AE上,点G在BA延长线上且FG=FB.(1)若CD=6,AF=3,求△ABF的面积;(2)求证:BE=AG+CE.25.初中数学代数知识中,方程、函数、不等式存在着紧密的联系,请阅读下列两则材料,回答问题:材料一:利用函数图象找方程x3﹣x+1=0解的范围.设函数y=x3﹣x+1,当x=2时,y=﹣5<0;当x=﹣1时,y=1>0则函数y=x3﹣x+1的图象经过两个点(﹣2,﹣5)与(﹣1,1),而点(﹣2,﹣5)在x轴下方,点(﹣1,1)在x轴上方,则该函数图象与x轴交点横坐标必大于﹣2,小于﹣1.故,方程x3﹣x+1=0有解,且该解的范围为﹣2<x<﹣1.材料二:解一元二次不等式(x﹣1)(x+2)<0.由“异号两数相乘,结果为负”可得:情况①,得,则﹣2<x<﹣1.情况②,得,则无解.故,(x﹣1)(x+2)<0的解集为﹣2<x<﹣1.(1)请根据材料一解决问题:已知方程﹣x3+2x﹣5=0有唯一解x0,且a<x0<a+1(a 为整数),求整数a的值.(2)请结合材料一与材料二解决问题:若关于x的方程mx2﹣(m+1)x﹣4=0的解分别为x1、x2,且﹣1<x1<0,2<x2<3,求m的取值范围.26.如图1,抛物线y=x2﹣3与x轴交于AB两点(点A在点B的右侧),与y轴交于点C,连接AC.点Q是线段AC上的动点,过Q作直线l∥x轴,直线1与∠BAC的平分线交于点M,与∠CAx的平分线交于点N.(1)P是直线AC下方抛物线上一动点,连接P A,PC,当△P AC的面积最大时,求PQ+AM 的最小值;(2)如图2,连接MC,NC,当四边形AMCN为矩形时,将△AMN沿着直线AC平移得到△A'M'N',边A'M'所在的直线与y轴交于D点,若△DM'N'为等腰三角形时,求OD的长.参考答案与试题解析一.选择题(共12小题)1.下列实数中,最小的数是()A.﹣2B.2C.3D.﹣3【分析】将各项数字按照从小到大顺序排列,找出最小的数即可.【解答】解:根据题意得:﹣3<﹣2<2<3,则最小的数是﹣3,故选:D.2.下列图形中,只有一条对称轴的图形是()A.等腰梯形B.矩形C.等边三角形D.圆【分析】根据等腰梯形的性质,矩形的性质,等边三角形的性质,圆的性质逐个判断即可.【解答】解:A、等腰梯形是轴对称图形,并且只有一条对称轴,故本选项符合题意;B、矩形是轴对称图形,有两条对称轴,故本选项不符合题意;C、等边三角形是轴对称图形,有三条对称轴,故本选项不符合题意;D、圆是轴对称图形,有无数条对称轴,故本选项不符合题意;故选:A.3.计算(a2)3下列运算中,结果正确的是()A.a4B.a5C.a6D.a8【分析】根据幂的乘方的运算法则计算可得.【解答】解:(a2)3=a2×3=a6,故选:C.4.若x+2y=5,则代数式3﹣x﹣2y的值为()A.﹣8B.﹣2C.2D.8【分析】将x+2y的值代入原式=3﹣(x+2y)计算可得.【解答】解:∵x+2y=5,∴3﹣x﹣2y=3﹣(x+2y)=3﹣5=﹣2,故选:B.5.若一个多边形的内角和为540°,则该多边形为()边形.A.四B.五C.六D.七【分析】根据多边形的内角和的公式(n﹣2)×180°=540°,解方程即可求出n的值.【解答】解:由多边形的内角和公式可得(n﹣2)×180°=540°解得:n=5故选:B.6.估计的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】先把无理数式子进行化简,再进行估计即可.【解答】解:=6﹣,∵1<<2,∴4<<5,故选:C.7.若式子有意义,则一次函数y=(3﹣k)x+k﹣3的图象可能是()A.B.C.D.【分析】先求出k的取值范围,再判断出3﹣k及k﹣3的符号,进而可得出结论.【解答】解:∵式子有意义,∴k﹣3>0,解得k>3,∴3﹣k<0,k﹣3>0,∴一次函数y=(3﹣k)x+k﹣3的图象过一、二、四象限.故选:D.8.如图,已知△ABC中,AB=4,tan∠C=,过A作AD⊥BC交边BC于D点,且AD=BD,则BC=()A.8B.8C.7D.7【分析】解直角三角形分别求出BD,CD即可.【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵AB=4,BD=AD,∴AD=BD=4,∵tan C==,∴CD=3,∴BC=BD+CD=4+3=7,故选:C.9.古希腊著名的毕达哥拉斯学派把1、3、6,10…这样的数称为“三角形数”,而把1、9、16…这样的数称为“正方形数”,从下图可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和,若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为a n,计算a2﹣a1,a3﹣a2,a4﹣a3,…由此推算,(a7﹣a6)的值为()A.7B.6C.5D.4【分析】根据题意和题目中的图形可以求得a7﹣a6的值,本题得以解决.【解答】解:由题意可得,a2﹣a1=3﹣1=2,a3﹣a2=6﹣3=3,a4﹣a3=10﹣6=4,…则a7﹣a6=7,故选:A.10.如图,在⊙O中,AB=AC,若∠ABC=57.5°,则∠BOC的度数为()A.132.5°B.130°C.122.5°D.115°【分析】根据等腰三角形性质求出∠ACB,根据三角形内角和定理求出∠A,根据圆周角定理求出即可.【解答】解:∵AB=AC,∠ABC=57.5°,∴∠ACB=∠ABC=57.5°,∴∠A=180°﹣∠ABC﹣∠ACB=65°,∴由圆周角定理得:∠BOC=2∠A=130°,故选:B.11.如图,正方形ABCD的点A,B点分别在x轴,y轴上,与双曲线y=恰好交于BC 的中点E,若OB=2OA,则S△ABO的值为()A.6B.8C.12D.16【分析】过点B作x轴的平行线,过点A,C分别作y轴的平行线,两线相交于M,N,证明△ABM≌△BCN,可得BN=AM=2a,CN=BM=a,所以点C坐标为(2a,a),BC 的中点E的坐标为(a,1.5a),把点E代入双曲线y=,可得a的值,进而得出S△ABO 的值.【解答】解:如图,过点B作x轴的平行线,过点A,C分别作y轴的平行线,两线相交于M,N,∵四边形ABCD为正方形,∴∠ABC=90°,AB=BC,∴∠ABM=90°﹣∠CBN=∠BCN,∵∠M=∠N=90°,∴△ABM≌△BCN(AAS),∵OB=2OA,∴设OA=a,OB=2a,则BN=AM=2a,CN=BM=a,∴点C坐标为(2a,a),∵E为BC的中点,B(0,2a),∴E(a,1.5a),把点E代入双曲线y=,得1.5a2=12,a2=8,∴S△ABO==8,故选:B.12.若数m使关于x的不等式组至少有3个整数解且所有解都是2x﹣5≤1的解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.2【分析】根据题意解不等式组,用常数m表示x的解集,通过x的不等式组至少有3个整数解且所有解都是2x﹣5≤1的解,确定常数m的取值范围,其次,解分式方程,同样用含有常数m的代数式去表示方程的解,排除掉当解为增根时m的取值,从剩下的整数m的取值中选择使为整数的取值即可.【解答】解:化简得,∴﹣5<x≤m.又∵2x﹣5≤1解得,x≤3.由不等式组至少有三个整数解且所有解都满足x≤3故﹣2≤m≤3.又∵+=2化整得,4x﹣2﹣(3m﹣1)=2(x﹣1)解得,x=.由该方程有整数解,则≠1,且3m﹣1应为2的整数倍.解得,m≠1.∴在﹣2≤m≤3且m≠1中,满足3m﹣1应为2的倍数的整数m的取值有两个,分别为,﹣1,3.故选:D.二.填空题(共6小题)13.计算:|2﹣π|+=π﹣1.【分析】直接利用绝对值以及零指数幂的性质分析得出答案.【解答】解:原式=π﹣2+1=π﹣1.故答案为:π﹣1.14.如图,在△ABC中,DE∥BC,若=,则S△ADE:S△ABC=.【分析】求出=,根据相似三角形的判定得出△ADE∽△ABC,根据相似三角形的性质得出即可.【解答】解:∵=,∴=,∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=,即S△ADE:S△ABC=,故答案为:.15.如图,菱形ABCD中,以A为圆心,AB为半径画弧,恰好过点C,已知AB=4,则图中阴影部分的面积为﹣8(结果保留π).【分析】连接AC,过A作AE⊥BC于E,求出∠BAC的度数,再分别求出扇形BAC和△BAC的面积,即可求出答案.【解答】解:连接AC,过A作AE⊥BC于E,∵四边形ABCD是菱形,AB=4,∴AB=AD=BC=CD=4,∵以A为圆心,AB为半径画弧,恰好过点C,∴AC=4=AB=BC=CD=AD,∴△ABC和△ACD都是等边三角形,∴∠BAC=∠CAD=60°,∵AE⊥BC,∴BE=CE=2,AE==2,∴阴影部分的面积S=2×(S扇形BAC﹣S△BAC)=2×(﹣)=﹣8,故答案为:﹣8.16.已知二次函数y=﹣x2﹣2x+3图象如图,与x轴交于A,B两点(A在B的左侧),与y 轴交于C,图象顶点为D,则直线CD的解析式为y=﹣x+3.【分析】根据顶点坐标公式求出顶点D的坐标,再令x=0时求出C坐标,再根据待定系数法求得最后结果.【解答】解:令x=0,得y=3,∴C(0,3),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点D(﹣1,4),设直线CD的解析式为:y=kx+b(k≠0),则,解得,,∴直线CD的解析式为:y=﹣x+3.故答案为:y=﹣x+3.17.A,B两站相距330千米,甲、乙两车都从A站出发开往B站,甲车先出发,且在途中C站停靠6分钟,甲车出发半小时后,乙车从A站直达B站后停止,两车之间的距离y (千米)与甲车行驶的时间x(小时)之间的函数图象如图,则乙车恰好追上甲车时距离C站有200千米.【分析】分析如图,根据题意和图象分析各关键点(即图象拐点)的坐标求解即可.【解答】解:∵甲车从A地开出0.5h后行驶了80km.∴甲车的速度为,=200km/h.又由图可知乙车从A站直达B站后停止共用了1.6﹣0.5=1.1h.∴乙车的速度为,=300km/h.∴乙车从A地出发第一次与甲车相遇用了=0.8h.此时甲乙两车距离A地均为300×0.8=240km.又由图得,甲车从A地到达C地用了0.3﹣=0.3﹣0.1=0.2h.∴A地到C地的距离为,200×0.2=40km.∴则乙车恰好追上甲车时距离C站有240﹣40=200km.故答案为200km.18.甲,乙,丙三人做一个抽牌游戏,三张纸牌上分别写有个数字0,x,y(x,y均为正整数,且x<y),每人抽一张纸牌,纸牌上的数字就是这一轮的得分.经过若干轮后(至少四轮),甲的总得分为20,乙的总得分为10,丙的总得分为9.则甲抽到x的次数最多为6.【分析】根据题意,可得每轮甲,乙,丙得数之和为:x+y,则n轮之和三人得数总和为:n(x+y),所以可得:n(x+y)=39,由n≥4,且n为正整数,可得n=13,x+y=3,根据x,y均为正整数,且x<y,可得x=1,y=2,根据甲的总得分为20,可以设甲a次得0分,b次得x,c次得y,根据题意列方程即可求解.【解答】解:根据题意,每轮甲,乙,丙得数之和为:x+y,则n轮之和三人得数总和为:n(x+y),所以可得:n(x+y)=20+10+9=39,∵n≥4,且n为正整数,而39=3×13,∴n=13,x+y=3,∵x,y均为正整数,且x<y,∴x=1,y=2,∵甲的总得分为20,设甲a次得0分,b次得x,c次得y,则a×0+bx+cy=b+2c=20∴b=20﹣2c∴c=(20﹣b)∵0≤c≤13,0≤b≤13,b+c≤13且b,c为正整数,∴7≤c≤10,0≤b≤6,所以b最大为6.答:甲抽到x的次数最多为6.故答案为:6.三.解答题(共8小题)19.计算:(1)(m﹣2)(m+1)﹣(m+2)2.(2).【分析】(1)先算多项式乘多项式,再减去完全平方式;(2)先算括号里的运算再与前边的分式通分计算.【解答】解:(1)原式=m2﹣m﹣2﹣m2﹣4m﹣4=﹣5m﹣6;(2)原式===.20.如图①,在Rt△ABC中∠C=90°,两条直角边长分别为a,b,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.(1)根据勾股定理的知识,请直接写出a,b,c之间的数量关系;(2)若正方形EFMN的面积为64,Rt△ABC的周长为18,求Rt△ABC的面积.【分析】(1)根据勾股定理得到a,b,c之间的数量关系;(2)根据题意求出c,得到a+b的值,根据三角形的面积公式、完全平方公式计算,得到答案.【解答】解:(1)由勾股定理得,a2+b2=c2;(2)∵正方形EFMN的面积为64,∴c2=64,即c=8,∵Rt△ABC的周长为18,∴a+b+c=18,∴a+b=10,则Rt△ABC的面积=ab=[(a+b)2﹣(a2+b2)]=9.21.某射击队从甲、乙两人中选拔一人参加比赛,在相同条件下各进行了15次满分为10分的射击测试,成绩如下表整理、描述数据甲8976878878108698乙910775107898587710成绩x x<66≤x≤78≤x≤9x=10甲0591乙2553(说明:成绩6分以下为不合格,6﹣7分为及格,8﹣9分为良好,10分为优秀)(1)两组样本数据的平均数、中位数、众数、方差如下表所示,请补全表格:平均数中位数众数方差甲7.88816.4乙7.88736.4(2)你认为从甲、乙两人中选择谁去参加比赛更合适?(填“甲”或“乙”),理由为甲.【分析】(1)根据中位数和众数的定义分别进行解答即可;(2)根据方差的意义,方差越小数据越稳定,即可得出答案.【解答】解:(1)把甲这些数从小到大排列为:6,6,7,7,7,8,8,8,8,8,8,8,9,9,10,则中位数是8,众数是8;把乙这些数从小到大排列为:5,5,7,7,7,7,7,8,8,8,9,9,10,10,10,则中位数是8,众数7;故答案为:8,8,8,7;(2)∵S甲2=16.4,S乙2=36.4,∴S甲2<S乙2,∴甲参加比赛更合适;故答案为:甲.22.有这样一个问题探究函数(b、c为常数)的图象和性质.元元根据学习函数的经验,对该函数的图象和性质进行了以下探究:下面是元元的探究过程,请你补充完整x……﹣10123456……y……0 2.54m4 2.501……(1)根据上表信息,其中b=2,c= 2.5,m= 4.5.(2)如图,在下面平面直角坐标系中,描出以补全后的表中各对应值为坐标的点,并画出该函数的另一部分图象;(3)观察函数图象,请写出该函数的一条性质:当x<2时,y随x的增大而增大.(4)解决问题:若直线y=3n+2(n为常数)与该函数图象有3个交点时,求n的范围.【分析】(1)利用待定系数法以及二次函数图象上点的坐标特征可得答案;(3)根据描点法画函数图象,可得答案;(4)根据图象的变化趋势,可得答案;(5)根据图象,可得答案.【解答】解:(1)由表格数据得:当x=﹣1时,y=0;当x=5时,y=0;当x=0时,y =2.5;∴﹣b==2,c=2.5∴y=∴当x=2时,y=4.5,即m=4.5故答案为:2,2.5,4.5;(2)图象如下:(3)观察图象可知:当x<2时,y随x的增大而增大故答案为:当x<2时,y随x的增大而增大(4)∵当x=2时,y=4.5;∴由图象可知直线y=4.5与该函数图象有2个交点,直线y=0与该函数图象有2个交点,∴直线y=3n+2(n为常数)与该函数图象有3个交点时,0<3n+2<4.5∴﹣<n<.23.2017年10月18日,党的十九大报告提出“乡村振兴”战略,之后各地发展乡村旅游,某村在2018年3月1日首次举办“百花节”,开园免费赏花,于是大批游客涌入该村赏花,吃农家饭买土特产,平均每人消费100元.(1)据统计,某个周六早上开园后平均每小时有500人进园,两小时后,平均每小时有100人离园,园区规定,当园区内游客人数达到3000时,将停止进园,那么从开园起经过多少小时后停止进园?(2)该村对园区加大建设和宣传力度,2019年3月1日,第二届“百花节”如期开园,同时规定进园门票费为每人60元,受各种因素影响,与2018年同期相比,人数在20000的基础上降低了a%,除门票外平均每人消费金额增长了a%,园区总收入增长了a%,求a的值.【分析】(1)根据“开园后平均每小时有500人进园,两小时后,平均每小时有100人离园“,列方程即可得到结论;(2)根据题意列方程即可得到结论.【解答】解:(1)设从开园起经过x小时后停止进园,由题意得,500x﹣100(x﹣2)=3000,解得:x=7,答:从开园起经过7小时后停止进园;(2)根据题意得,20000(1﹣a%)[60+100(1+a%)]=20000×100×(1+a%),解得:a=40.24.在平行四边形ABCD中,以AB为边作等边△ABE,点E在CD上,以BC为边作等边△BCF,点F在AE上,点G在BA延长线上且FG=FB.(1)若CD=6,AF=3,求△ABF的面积;(2)求证:BE=AG+CE.【分析】(1)证明AF=EF,可得S△ABF=S△ABE解决问题.(2)作FH⊥AB于H,CJ⊥AE交AE的延长线于J.利用全等三角形的性质证明EC=AF,EF=AG即可解决问题.【解答】(1)解:∵△ABE是等边三角形,∴∠BAF=60°,AB=AE,∵四边形ABCD是平行四边形,∴AB=CD=6,∴AE=AB=6,∵AF=3,∴AF=EF,∴S△ABF=S△ABE=••62=.(2)作FH⊥AB于H,CJ⊥AE交AE的延长线于J.∵△ABE,△FBC都是等边三角形,∴BA=BE,BF=BC,∠ABE=∠FBC=60°,∴∠ABF=∠EBC,∴△ABF≌△EBC(SAS),∴AF=EC,∵AB∥CD,∴∠CEJ=∠F AH,∵∠FHA=∠J=90°,∴△FHA≌△CJE(AAS),∴FH=CJ,AH=EJ,∵FB=FG=FC,FH=CJ,∴Rt△FGH≌Rt△CJF(HL),∴GH=FJ,∵AH=EJ,∴EF=AG,∵BE=AE=AF+EF,∴BE=EC+AG.25.初中数学代数知识中,方程、函数、不等式存在着紧密的联系,请阅读下列两则材料,回答问题:材料一:利用函数图象找方程x3﹣x+1=0解的范围.设函数y=x3﹣x+1,当x=2时,y=﹣5<0;当x=﹣1时,y=1>0则函数y=x3﹣x+1的图象经过两个点(﹣2,﹣5)与(﹣1,1),而点(﹣2,﹣5)在x轴下方,点(﹣1,1)在x轴上方,则该函数图象与x轴交点横坐标必大于﹣2,小于﹣1.故,方程x3﹣x+1=0有解,且该解的范围为﹣2<x<﹣1.材料二:解一元二次不等式(x﹣1)(x+2)<0.由“异号两数相乘,结果为负”可得:情况①,得,则﹣2<x<﹣1.情况②,得,则无解.故,(x﹣1)(x+2)<0的解集为﹣2<x<﹣1.(1)请根据材料一解决问题:已知方程﹣x3+2x﹣5=0有唯一解x0,且a<x0<a+1(a 为整数),求整数a的值.(2)请结合材料一与材料二解决问题:若关于x的方程mx2﹣(m+1)x﹣4=0的解分别为x1、x2,且﹣1<x1<0,2<x2<3,求m的取值范围.【分析】(1)结合材料一,找出函数y=﹣x3+2x﹣5的图象经过两个点(﹣3,16)与(﹣2,﹣1),由该两点分布在x轴的两侧结合a<x0<a+1,可求出a的值;(2)设函数y=mx2﹣(m+1)x﹣4,找出当x=0,﹣1,2,3时y的值,结合材料二可得出关于m的一元二次不等式组,解之即可得出m的取值范围.【解答】解:(1)设函数y=﹣x3+2x﹣5,当x=﹣3时,y=16>0;当x=﹣2时,y=﹣1<0,∴函数y=﹣x3+2x﹣5的图象经过两个点(﹣3,16)与(﹣2,﹣1),∵点(﹣3,16)在x轴上方,(﹣2,﹣1)在x轴下方,∴该函数图象与x轴交点横坐标必大于﹣3,小于﹣2,∴a=﹣3.(2)设函数y=mx2﹣(m+1)x﹣4,∴当x=0时,y=﹣4;当x=﹣1时,y=2m﹣3;当x=2时,y=2m﹣6;当x=3时,y =6m﹣7,∴,解得:<m<3.答:m的取值范围为<m<3.26.如图1,抛物线y=x2﹣3与x轴交于AB两点(点A在点B的右侧),与y轴交于点C,连接AC.点Q是线段AC上的动点,过Q作直线l∥x轴,直线1与∠BAC的平分线交于点M,与∠CAx的平分线交于点N.(1)P是直线AC下方抛物线上一动点,连接P A,PC,当△P AC的面积最大时,求PQ+AM 的最小值;(2)如图2,连接MC,NC,当四边形AMCN为矩形时,将△AMN沿着直线AC平移得到△A'M'N',边A'M'所在的直线与y轴交于D点,若△DM'N'为等腰三角形时,求OD的长.【分析】(1)用割补法求得△P AC面积的表达式,获得点P的坐标,利用30°构造AM 为斜边的直角三角形,转换的关系,可证点P到x轴的距离即为PQ+的最小值;(2)当四边形AMCN为矩形时,根据矩形的性质点Q为AC与MN的中点,△AMN的三边长度固定,当△DM'N'为等腰三角形时,以D、M'、N'为顶点分三类进行讨论,以线段相等作方程,求得OD的长.【解答】解:(1)由已知可得A(,0),B(﹣,0),C(0,﹣3)设P(m,m2﹣3)S△P AC=S△POC+S△AOP﹣S△AOC=+﹣=当m=时,△P AC的面积有最大值,此时点P坐标(,)如图,作AH⊥MN,AH=AMAH长为点Q到x轴的距离PQ+AM=PQ+AH=(2)当四边形AMCN为矩形时,MN=AC,点Q为AC与MN中点有题意可知,直线AC的解析式l1为y=x﹣3过点M与AC平行的直线解析式l2为y=x过点N与AC平行的直线解析式l3为y=x﹣6直线AM的解析式l4为y=设点N'(n,n﹣6),M'(n﹣2,n﹣6)设直线A'M'的解析式为y=将点M'代入可得b=直线A'M'的解析式为y=+则DM'2=(n﹣2)2+(﹣6﹣)2=DN'2=(n)2+(﹣6﹣)2=M'N'2=(n﹣n+2)2+(﹣6﹣+6)2=12①当DM'=DN'时,DM'2=DN'2=解得n=OD=2②当DM'=M'N'时,DM'2=M'N'2=12解得n=0或OD=6或0③当DN'=M'N'时,DN'2=M'N'2=12解得n=±3OD=综上所述,OD的长为2或6或。

重庆市2019-2020学年九年级下学期6月月考数学试题(I)卷

重庆市2019-2020学年九年级下学期6月月考数学试题(I)卷

重庆市2019-2020学年九年级下学期6月月考数学试题(I)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 如图所示,哪一个选项中的左边图形与右边图形成轴对称()A.B.C.D.2 . 如图是我市某景点6月份内日每天的最高温度折线统计图,由图信息可知该景点这10天中,气温出现的频率是()A.3B.0.5C.0.4D.0.33 . 已知,a-b=1,则的值为()A.2B.1C.0D.-14 . 下列事件中,属于随机事件的是()A.的值比8大B.购买一张彩票,中奖C.地球自转的同时也在绕日公转D.袋中只有5个黄球,摸出一个球是白球5 . 若式子有意义,则x的取值范围是()A.B.x≥2C.x≤2D.6 . 某品牌的笔记本成本是7元/本,经销商对其销量与售价的关系进行了调查.整理出如下表所示的4组对应值售价(元/本)12131415销量(本)1101008060为获得最大利润,经销商应将该品牌笔记本售价定为()(单位:元/本)A.13B.12C.14D.157 . 有A、B 两只不透明口袋,每只口袋里装有两只相同的球,A 袋中的两只球上分别写了“细”“致” 的字样,B 袋中的两只球上分别写了“信”“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A.B.C.D.8 . 对于函数y=-3x+1,下列结论正确的是()A.它的图象必经过点(-1,3)B.y的值随x值的增大而增大C.当x>0时,y<1D.它的图象经过第一、二、三象限9 . -2018的相反数是()A.B.-C.8102D.201810 . 某物体的三视图是如图所示的三个图形,那么该物体形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱二、填空题11 . (1)在直角三角形中,有一个锐角是另一个锐角的2倍,则较小的锐角为__________.(2)在中,,,CD平分,点D,E分别在AB,AC上,且,则__________.12 . 如图,在平面直角坐标系中,已知点、、在双曲线上,轴于,轴于,点在轴上,且, 则图中阴影部分的面积之为.13 . △ABC为半径为5的⊙O的内接三角形,若弦BC=8,AB=AC,则点A到BC的距离为_____.14 . 化简+的结果是________.15 . 计算=_____.16 . 如图,点为正方形内一点,连接,,,,若,,则_________.三、解答题17 . 如图,等腰直角△OEF在坐标系中,有E(0,2),F(﹣2,0),将直角△OEF绕点E逆时针旋转90°得到△ADE,且A在第一象限内,抛物线y=ax2+bx+c经过点A,E.且2a+3b+5=0.(1)求抛物线的解析式.(2)过ED的中点O'作O'B⊥OE于B,O'C⊥OD于C,求证:OBO'C为正方形.(3)如果点P由E开始沿EA边以每秒2厘米的速度向点A移动,同时点Q由点A沿AD边以每秒1厘米的速度向点D移动,当点P移动到点A时,P,Q两点同时停止,且过P作GP⊥AE,交DE于点G,设移动的开始后为t 秒.①若S=PQ2(厘米),试写出S与t之间的函数关系式,并写出t的取值范围?②当S取最小时,在抛物线上是否存在点R,使得以P,A,Q,R为顶点的四边形是平行四边形?如果存在,求出R的坐标;如果不存在,请说明理由.18 . 求证:相似三角形对应中线的比等于相似比。

重庆八中初2020级初三上第一次月考

重庆八中初2020级初三上第一次月考

重庆八中2019—2020学年度(上)初三年级第一次月考数 学 试 题(满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是24()24b ac b a a--,,对称轴是2b x a =-.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑. 1.°sin 45=( )A .12B .22 C .32D .1 2.如图是由5个大小相同的小正方体摆成的立体图形,它的俯视图是( )2题图 A . B . C .D .3.在Rt ABC ∆中,90C ∠=,5tan 12A =,则cos A 等于( ) A .512 B .125 C .513D .1213 4.下列命题中,是真命题的是( )A .对角线相等的平行四边形是菱形B .一组邻边相等的四边形是菱形C .对角线互相垂直的平行四边形是菱形D .四个角相等的四边形是菱形 5.估计1(3018)2)之间 A .0和1B .1和2C .2和3D .3和46.二次函数2246y x x =--的最小值是( )A .8-B . 2-C .0D .6FED CBA7.按如图所示的运算程序,能使输出y 值为1的是( )7题图A .6045αβ=,=B .3045αβ=,=C .3030αβ=,=D .4530αβ=,= 8.如图,已知抛物线2(0)y ax bx c a =++≠经过点(2,0)-,对称轴为直线1x =,下列结论中正确的是( )A .0abc >B .2b a =C .930a b c ++< D.80a c += 9.如图,已知在平面直角坐标系中,Rt ABC ∆的顶点(0,3)A ,(3,0)B ,90ABC ∠=︒,AC =,函数(0)ky x x=>的图象经过点C ,则k 的值为( ) 4 C .6D .98题图 9题图 10题图10.如图,为了测量旗杆AB 的高度,小明在点C 处放置了高度为2米的测角仪CD ,测得旗杆顶端点A 的仰角50.2ADE ∠=.然后他沿着坡度为34i =的斜坡CF 走了20米到达点F ,再沿水平方向走8米就到达了旗杆底端点B .则旗杆AB 的高度约为( )米.(参考数据:sin50.20.77,cos50.20.64,tan50.2 1.2≈≈≈) A .8.48 B .14 C .18.8 D .30.812题图17题图11.如果关于x 的不等式组2313464x x x a +⎧≥-⎪⎨⎪->-⎩有且只有两个奇数解,且关于y 的分式方程310122y a y y--=--的解为非负整数,则符合条件的所有整数a 的和为( ) A .8 B .16 C .18 D .20 12.如图,在等腰Rt ABC ∆中90C ∠=,AC BC ==.点D 和点E 分别是BC 边和AB边上两点,连接DE .将BDE ∆沿DE 折叠,得到B DE '∆,点B '恰好落在AC 的中点处.设DE 与BB '交于点F ,则EF =( )A .12 B.53 C .D二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.2019年9月6日,万众瞩目的重庆来福士广场开业,游客数量就突破了350 000人,比成都来福士广场开业首日游客数量和杭州来福士广场开业首日游客数量的总和还要多,将数据350 000用科学记数法表示为____________. 14.计算:24(2)cos60--+-+︒=____________.15.抛物线2y x bx c =++的顶点为(1,2),则它与y 轴交点的坐标为____________. 16.现有4张完全相同的卡片分别写着数字2-,1,3,4.将卡片的背面朝上并洗匀,从中任意抽取一张,将卡片上的数字记作a .再从余下的卡片中任意抽取一张,将卡片上的数字记作c ,则抛物线24y ax x c =++与x 轴有交点的概率为___________. 17.一艘轮船和一艘快艇分别从甲、乙两个港口同时出发(水流速度不计)相向而行,快艇匀速航行到达甲港后,立即原速返回乙港(掉头时间忽略不计),在返回途中追上轮船时刚好到达一个景点,轮船靠岸1小时供游客观赏游玩,然后继续以原速航行到乙港,两船到达乙港均停止航行.轮船和快艇之间的距离y (千米)与轮船出发时间x (小时)之间的函数图象如图所示,当快艇返回到乙港时,轮船距乙港还有____________千米.FB'E D CBAEFDCBA18.重阳佳节来临之际,某糕点店对桂圆味、核桃味、绿豆味重阳糕(分别记为A ,B ,C )进行混装,推出了甲、乙两种盒装重阳糕.盒装重阳糕的成本是盒中所有A ,B ,C 的成本与盒装包装成本之和.每盒甲装有6个A ,2个B ,2个C .每盒乙装有2个A ,4个B ,4个C .每盒甲中所有A ,B ,C 的成本之和是1个A 成本的15倍,每盒乙的盒装包装成本是每盒甲的盒装包装成本的43倍,每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%.当该店销售这两种盒装重阳糕的总销售额为31000元,总利润率为24%时,销售甲种盒装重阳糕的总利润是____________元.三、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)22(2)m n n m n --+(); (2)2569222x x x x x -++-÷--()20.如图,在矩形ABCD 中,点E 是边BC 上的点,AD DE =,AF DE ⊥于点F . (1)求证:CD AF =; (2)若12CE =,3tan 4ADE ∠=,求EF 的长.21.为了加快推进农村电子商务发展,积极助力脱贫攻坚工作,A ,B 两村的村民把特产“小土豆”在某电商平台进行销售(每箱小土豆规格一致),该电商平台从A ,B 两村各抽取15户进行了抽样调查,并对每户每月销售的土豆箱数(用x 表示)进行了数据整理、描述和分析,下面给出了部分信息.A 村卖出的土豆箱数为0540<≤x 的数据有:40,49,42,42,43B 村卖出的土豆箱数为0540<≤x 的数据有:40,43,48,46平均数、中位数、众数如表所示:根据以上信息,回答下列问题:(1)表中a = ;b = ;m = ; (2)你认为A ,B 两村中哪个村的小土豆卖得更好?请说明理由;(3)在该电商平台进行销售的A ,B 两村村民共210户,若该电商平台把每月的小土豆销售量x 在4560x <<范围内的村民列为重点培养对象,估计两村共有多少户 村民会被列为重点培养对象?22.小帆根据学习函数的过程与方法,对函数()041>+=a b ax x y 的图象与性质进行探究.已知该函数图象经过点(2,1),且与x 轴的一个交点为(4,0).(1)求函数的解析式;(2)在给定的平面直角坐标系中:① 补全该函数的图象;② 当24x ≤≤时,y 随x 的增大而 (在横线上填增大或减小); ③ 当4<x 时,b ax x y +=41的最大值是________________; ④ 直线k y =与函数b ax x y +=41有两个交点,则k =_____________; (3)结合你所画的函数图象与x y 21=的图象,直接写出不等式 x b axx 2141≥+的解集.23.如果在一个多位自然数n中,各数位上的数字之和恰好等于10,则称这个数为“十全十美数”,并将它各数位上的数字之积记为()F n.例如在数1234中,因为123410+++=,所以数1234是“十全十美数”,且(1234)123424F=⨯⨯⨯=.(1)若在一个自然数中的任意两个相邻数位上,左边数位上的数字大于或等于右边数位上的数字,则称这个自然数为“降序数”.例如:在数32210中,因为32210>=>>,所以数32210是“降序数”.已知四位自然数a既是“十全十美数”又是“降序数”,它的千位上的数字是5,()0F a=.将数a千位上的数字减1,个位上的数字加1,得到数b,()24F b=.求出数a;(2)“十全十美数”p是三位自然数,将数p百位上的数字与个位上的数字交换得到数q,若102882p q+=,求()F p的最大值.24.柚子糖度高、酸味低,有益身体健康,深受大家喜爱.某水果店在去年8月份购进福建蜜柚和泰国青柚共900个,福建蜜柚进价为6元/个,泰国青柚进价为20元/个,两种柚子的总进价不超过12400元.(1)该水果店去年8月份购进福建蜜柚最少多少个?(2)今年8月份,该水果店用和去年8月份相同的进价购进两种柚子,福建蜜柚购进数量为去年8月份购进数量的最小值,售价为16元/个.泰国青柚购进数量为去年8月份购进数量的最大值,售价为30元/个,两种柚子全部卖出.今年9月份,该水果店购进与上个月数量相同,进货单价相同的福建蜜柚.为了进一步占领市场份额,水果店对福建蜜柚进行了降价促销,它的售价在上个月的基础上先降价17%8a,再“买三送一”(每买3个就免费赠送1个,即4个装成一袋,一袋以3个的价格出售,但消费者只能整袋购买).受各种因素的影响,与上个月相比,泰国青柚的进价下降40%,进货量下降6%5a,售价上涨2%a.两种柚子卖完后,该水果店今年9月份销售两种柚子的总利润比上个月上涨415,求a的值.25.如图,在ABCD 中,过点A 作AE BC ⊥于点E .点F 是线段CE 上一点,连结AF ,AB AF =.以AF 为直角边作等腰Rt AFG ∆,FA FG =,90AFG ∠=.连结DG 并延长DG 交BC 于点H .(1)若AG =,3AE =,求tan B 的值; (2)若AE HE =,求证:HF HC =.HGF E DCBA四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答.题卡..中对应的位置上. 26.如图1,在平面直角坐标系中,抛物线2163y x x =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)连接BC ,点M 是直线BC 上方抛物线上的一点,连接CM ,BM .过点M 作MD BC ⊥于点D ,点E 是线段CO 上一点,连接DE .当MBC ∆的面积取得最大值时,求MD DE ++的最小值; (2)如图2,将抛物线2163y x x =-++沿射线AC 方向平移,当它经过原点O 时停止平移.设点B 平移后的对应点为点B ',平移后的抛物线交x 轴的正半轴于点F ,交原抛物线2163y x x =-++于点G .点P 是直线OB '上一点,连接PG ,PF ,FG ,当PFG ∆是直角三角形时,直接写出点P 的坐标.图1 图2。

2019-2020学年重庆八中九年级(下)第一次强化训练数学试卷 解析版

2019-2020学年重庆八中九年级(下)第一次强化训练数学试卷 解析版

2019-2020学年重庆八中九年级(下)第一次强化训练数学试卷一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A.B.C.D的四个答案,其中只有一-个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑.1.4的相反数是()A.4B.﹣4C.D.2.下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.7×10﹣7B.0.7×10﹣8C.7×10﹣8D.7×10﹣94.如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8B.10C.11D.135.估计(2﹣)×的值应在()A.﹣1和0之间B.0和1之间C.1和2之间D.2和3之间6.如图,AB是圆O的直径.点P是BA延长线上一点,PC与圆O相切,切点为C,连接OC,BC,如果∠P=40°,那么∠B的度数为()A.40°B.25°C.35°D.45°7.下列命题是真命题的是()A.同旁内角相等,两直线平行B.对角线互相平分的四边形是平行四边形C.相等的两个角是对顶角D.菱形的对角线相等且互相垂直8.如图,以O为位似中心,将△OAB放大后得到△OCD,OA=3,AC=6,AB=2,则CD =()A.6B.4C.8D.4.59.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米10.使得关于x的分式方程﹣2=有正整数解,且关于x的不等式组至少有2个整数解,那么符合条件的所有整数a的和为()A.﹣17B.﹣9C.﹣7D.﹣511.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为()cmA.6﹣2B.6﹣2C.D.12.如图,点B在反比例函数y=(k≠0,x>0)的图象上,连接OB,AB⊥BO,且AB =BO,线段AB交y轴于点C,若AC:BC=2:3,△COA的面积为,则k的值为()A.﹣B.﹣C.﹣15D.﹣30二.填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案且接明任管起下中对应的横找上13.计算:﹣(π﹣3)0+(﹣)﹣2=.14.把多项式a(x﹣y)+b(y﹣x)因式分解的结果是.15.如图,矩形ABCD中.DB=4.以CD为直径的半圆O与AB相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.在三张分别标有数字﹣1,﹣2,3的不透明卡片,它们除数字不同外其余均相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a后放回,再次洗匀从中任取一张,将数字记为b,则方程x2+ax+b=0有解的概率是.17.已知A、B、C三地顺次在同一直线上,甲、乙两人均骑车从A地出发,向C地匀速行驶.甲比乙早出发5分钟,甲到达B地并休息了2分钟后,乙追上了甲.甲、乙同时从B地以各自原速继续向C地行驶.当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,到达C地就停止.若甲、乙间的距离y(米)与甲出发的时间t(分)之间的函数关系如图所示,则当甲到达C地时,乙距A地米.18.和平药店出售A、B、C三种口罩,A、B、C的单价分别是2元/个、3元/个、6元/个,工作日期间,每天上货量是固定的,且能全部售出,其中,A口罩的数量(单位:个)是B口罩数量的2倍,B口罩的数量(单位:个)是C口罩数量的3倍.某个周六,A、B、C三种口罩的上货量分别比一个工作日的上货量增加了50%,60%,10%,且全部售出,但是由于软件问题,发生了一起错单(即消费者买某种口罩的时候,收款机显示的是另一种口罩的价格并按照这个价格进行了收费),在结算的时候发现这起错单的数量是1个,结果这个周六的销售收入比一个工作日的销售收入多了364元,则这个药店一个工作日出售口罩的销售收入是元.三、解答题:(本大题共8小题.第26题8分,其余每小题0分.共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:(1)(2x+1)(1﹣2x)+(x﹣4)2;(2)÷﹣.20.如图,在平行四边形ABCD中,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是平行四边形;(2)若BD=BC=5,CD=6,求平行四边形AEBD的面积.21.某品牌服装为了解某件衣服的销售情况,对线上、线下两种销售模式进行了抽样调查,从线上、线下两种销售模式中分别随机抽取20个店,记录下某一周各自的销售情况(单位:件)如下:线上:76 88 93 65 78 99 89 68 95 5089 88 89 89 77 97 87 88 98 97线下:74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74(1)整理、描述数据:对销售件数进行分组,各组的频数如下:销售件数50≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100线上123a6线下011018(2)分析数据:两组样本数据的平均数、中位数如下表所示:销售模式平均数中位数众数线上8588.5c线下84.2b74请根据以上信息,回答下列问题:(1)填空:a=,b=,c=.(2)线上,线下两种销售模式目前销售该品牌服装的店面共2000个(线上、线下的门店数差不多),估计该品牌服装每周销售的件数约为多少?(3)根据以上数据,你认为线上、线下两种销售该品牌服装的销售模式哪种情况比较好?并说明理由.22.请阅读下列材料,并解决相应的问题:一个四位数t的千位数字为a,百位数字为b,十位数字为c,个位数字为d.则t=1000a+100b+10c+d.若a+d=n(b+c),b=c+2(n为正整数a≥d),则称这个四位数为“倍多分数”.(1)请直接判断2200、3031是不是“倍多分数“;(2)对一个四位数t,记F(t)=,求F(t)为整数的“倍多分数”t的个数.23.已知函数y=a|x﹣1|﹣x﹣b,其中当x=1时y=﹣3,当x=﹣1时,y=3.(1)根据给定的条件.则a=,b=.(2)在给出的平面直角坐标系中画出函数图象;(3)①结合所画的图象,写出函数图象的一条性质:.②图中已给出y=||的图象,直接写出方程||=a|x﹣1|﹣x﹣b的解,解为.(精确到十分位)24.随着人们生活水平的提高,越来越多的人更注重生活品质.人们喜欢用美丽的鲜花装点屋子,也增添了生活情趣.姜荷花形态出众、开花繁密、花期长,是很好的室内观赏植物,某花市老板发现今年姜荷花很受欢迎,二月份试购了两个品种荷兰红、玉如意,荷兰红每盆的进价比玉如意每盆的进价便宜2元,用3200元购进荷兰红的数量和用3360元购进玉如意的数量相同.(1)荷兰红和玉如意每盆的进价各是多少元?(2)三月份该花市老板决定加大进货量,三月份购进两个品种共1000盆,由于市场需求较大,两个品种进价均涨至上个月玉如意进价,花市老板将荷兰红以每盆80元、玉如意以每盆64元的价格销售.三月份全部售出且总获利为33200元,四月份玉如意花型饱满,在进价维持三月不变的情况下,该老板决定调整价格,将荷兰红的售价在三月份的基础上下调a%(降价后售价不低于进价),玉如意的价格上调a%,同时荷兰红的销量较三月份销量下降了a%,玉如意的销量较三月份销量上升了40%,结果四月份的销售额比三月份增加了3520元,求a的值.25.如图,抛物线y=ax2+bx+3与x轴交于A,B两点,且点B的坐标为(2,0),与y轴交于点C,抛物线对称轴为直线x=﹣.连接AC,BC,点P是抛物线上在第二象限内的一个动点.过点P作x轴的垂线PH,垂足为点H,交AC于点Q.过点P作PG⊥AC 于点G.(1)求抛物线的解析式.(2)求△PQG周长的最大值及此时点P的坐标.(3)在点P运动的过程中,是否存在这样的点Q,使得以B,C,Q为顶点的三角形是等腰三角形?若存在,请写出此时点Q的坐标;若不存在,请说明理由.26.已如△ABC是等边三角形,CD⊥AB交AB于M,DB⊥BC,E是AC上一点,EH⊥BC,垂足为H,EH与CD交于点F,连接BE.(1)如图1,若EC=AC,EH=6,求BE的长;(2)如图2,连接AF,将AF绕点A顺时针旋转,使F点落在BD边上的G点处,AG 交CD于Q,求证:BG=CF;(3)如图3,在(2)的条件下,连接FG,交BE于N,连接MN,若=,△AGF 的面积为49,求MN的长.2019-2020学年重庆八中九年级(下)第一次强化训练数学试卷参考答案与试题解析一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A.B.C.D的四个答案,其中只有一-个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑.1.4的相反数是()A.4B.﹣4C.D.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4.故选:B.2.下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、既是轴对称图形,又是中心对称图形,故此选项符合题意;C、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.3.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.7×10﹣7B.0.7×10﹣8C.7×10﹣8D.7×10﹣9【分析】由科学记数法知0.000000007=7×10﹣9;【解答】解:0.000000007=7×10﹣9;故选:D.4.如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8B.10C.11D.13【分析】利用基本作图得到MN垂直平分AB,利用线段垂直平分线的定义得到DA=DB,然后利用等线段代换得到△BDC的周长=AC+BC.【解答】解:由作法得MN垂直平分AB,∴DA=DB,∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=8.故选:A.5.估计(2﹣)×的值应在()A.﹣1和0之间B.0和1之间C.1和2之间D.2和3之间【分析】直接利用二次根式乘法运算法则化简,进而估算无理数的大小即可.【解答】解:(2﹣)×=﹣2∵2<<3,∴0<﹣2<1.故选:B.6.如图,AB是圆O的直径.点P是BA延长线上一点,PC与圆O相切,切点为C,连接OC,BC,如果∠P=40°,那么∠B的度数为()A.40°B.25°C.35°D.45°【分析】由切线的性质可得∠OCP=90°,求出∠POC的度数,由等腰三角形的性质可得出答案.【解答】解:∵PC与圆O相切,切点为C,∴OC⊥PC,∴∠OCP=90°,∵∠P=40°,∴∠POC=90°﹣∠P=90°﹣40°=50°,∵OB=OC,∴∠B=∠OCB,∵∠POC=∠B+∠C,∴∠B=POC=25°.故选:B.7.下列命题是真命题的是()A.同旁内角相等,两直线平行B.对角线互相平分的四边形是平行四边形C.相等的两个角是对顶角D.菱形的对角线相等且互相垂直【分析】根据平行线的判定定理、平行四边形的判定定理、菱形的性质判断即可.【解答】解:A、同旁内角互补,两直线平行,本选项说法是假命题;B、对角线互相平分的四边形是平行四边形,本选项说法是真命题;C、相等的两个角不一定是对顶角,本选项说法是假命题;D、菱形的对角线互相垂直,但不一定相等,本选项说法是假命题;故选:B.8.如图,以O为位似中心,将△OAB放大后得到△OCD,OA=3,AC=6,AB=2,则CD =()A.6B.4C.8D.4.5【分析】根据位似变换的概念得到△OAB∽△OCD,根据相似三角形的性质列式计算,得到答案.【解答】解:∵以O为位似中心,将△OAB放大后得到△OCD,∴△OAB∽△OCD,∴=,即=,解得,CD=6,故选:A.9.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【分析】过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.【解答】解:过点O作OE⊥AC于点E,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=x tan65°,∴BF=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.10.使得关于x的分式方程﹣2=有正整数解,且关于x的不等式组至少有2个整数解,那么符合条件的所有整数a的和为()A.﹣17B.﹣9C.﹣7D.﹣5【分析】不等式组变形后,根据无解确定出a的范围,再表示出分式方程的解,由分式方程有正整数解,确定出满足条件a的值,进而求出之和.【解答】解:解不等式组,得,∵不等式组至少有2个整数解,∴a+7≤3,∴a≤﹣4.解分式方程﹣2=,得x=,∵x=为正整数,a≤﹣4,∴a=﹣4或﹣5或﹣8,∵a=﹣8时,x=1,原分式方程无解,故将a=﹣8舍去,∴符合条件的所有整数a的和是﹣4﹣5=﹣9,故选:B.11.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为()cmA.6﹣2B.6﹣2C.D.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=2.根据折叠的性质可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(2﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=2﹣2.则FC=4﹣x=6﹣2.故选:A.12.如图,点B在反比例函数y=(k≠0,x>0)的图象上,连接OB,AB⊥BO,且AB =BO,线段AB交y轴于点C,若AC:BC=2:3,△COA的面积为,则k的值为()A.﹣B.﹣C.﹣15D.﹣30【分析】过B作BM⊥轴于M,作CN⊥BM,交MB延长线于N,根据AC:BC=2:3,△COA的面积为,易求得S△BOC=,进而求得S△BOM+S△BNC=S△BOC=,通过证得△OBM∽△BCN,得出=,即可求得S△OBM=,根据反比例函数系数k的几何意义,即可求得k的值.【解答】解:过B作BM⊥轴于M,作CN⊥BM,交MB延长线于N,∵AC:BC=2:3,△COA的面积为,∴S△BOC=S△COA=,∵四边形OMNC是矩形,∴S△BOM+S△BNC=S△BOC=,∵AB⊥BO,且AB=BO,∴∠CBN+∠OBM=90°,∵∠BOM+∠OBM=90°,∴∠BOM=∠CBN,∵∠BMO=∠CNB=90°,∴△OBM∽△BCN,∴,∵AC:BC=2:3,∴AB:BC=5:3,∴OB:BC=5:3,∴=,∴S△OBM=,∵点B在反比例函数y=(k≠0,x>0)的图象上,∴S△OBM=|k|=,∴图象在第三象限,∴k=﹣,故选:B.二.填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案且接明任管起下中对应的横找上13.计算:﹣(π﹣3)0+(﹣)﹣2=1.【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【解答】解:原式=﹣2﹣1+4=1.故答案为:1.14.把多项式a(x﹣y)+b(y﹣x)因式分解的结果是(x﹣y)(a﹣b).【分析】原式变形后,提取公因式即可.【解答】解:原式=a(x﹣y)﹣b(x﹣y)=(x﹣y)(a﹣b).故答案为:(x﹣y)(a﹣b).15.如图,矩形ABCD中.DB=4.以CD为直径的半圆O与AB相切于点E,连接BD,则阴影部分的面积为4π.(结果保留π)【分析】如图,设DC=2x,连接OE,利用切线的性质得OE⊥AB,易得四边形OEAD 为正方形,由勾股定理求得OD=BC=4,先利用扇形面积公式,利用S正方形OEAD﹣S扇形EOD计算由弧DE、线段AE、AD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE,如图,设DC=2x,∵以CD为直径的半圆O与AB相切于点E,∴OD=x,OE⊥BC,∵∠EBC=∠OCB=90°,OE=OC,∴四边形OEAD为正方形,∴BC=x,∵DC2+BC2=BD2,∴,解得x=4.∴由弧DE、线段AE、AD所围成的面积S=S正方形OEAD﹣S扇形ODE=16﹣=16﹣4π,∴阴影部分的面积:S△ABD﹣S=×4×8﹣(16﹣4π)=4π,故答案为:4π.16.在三张分别标有数字﹣1,﹣2,3的不透明卡片,它们除数字不同外其余均相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a后放回,再次洗匀从中任取一张,将数字记为b,则方程x2+ax+b=0有解的概率是.【分析】画出树状图,共有9种等可能结果,能使a2﹣4b≥0的结果有6种,由概率公式即可得出答案.【解答】解:画树状图如下:共有9种等可能结果,能使a2﹣4b≥0的结果有:(﹣1,﹣1)、(﹣1,﹣2)、(﹣2,﹣1)、(﹣2,﹣2)、(3,﹣1)、(3,﹣2)这6种,故方程x2+ax+b=0有解的概率为=;故答案为:.17.已知A、B、C三地顺次在同一直线上,甲、乙两人均骑车从A地出发,向C地匀速行驶.甲比乙早出发5分钟,甲到达B地并休息了2分钟后,乙追上了甲.甲、乙同时从B地以各自原速继续向C地行驶.当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,到达C地就停止.若甲、乙间的距离y(米)与甲出发的时间t(分)之间的函数关系如图所示,则当甲到达C地时,乙距A地6075米.【分析】根据题意和函数图象中的数据,可以分别求得甲乙刚开始的速度和后来的速度,也可求得A、B两地的距离、A、C两地的距离,然后即可求得甲到达C地时,乙距A地距离.【解答】解:由题意可得,甲乙两人刚开始的速度之差为:900÷(23﹣14)=100(米/分),设甲刚开始的速度为x米/分,乙刚开始的速度为(x+100)米/分,12x=(14﹣5)×(x+100),解得,x=300,则x+100=400,则A、B两地之间的距离为:300×12=3600(米),A、C两地之间的距离为:400×(23﹣5)=7200(米),∵当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,∴后来乙的速度为:400×=500(米/分),甲的速度为300×=400(米/分),甲到达C地的时间为:23+[7200﹣(23﹣2)×300]÷400=25(分钟),∴当甲到达C地时,乙距A地:7200﹣(25﹣23)×500=6075(米),故答案为:6075.18.和平药店出售A、B、C三种口罩,A、B、C的单价分别是2元/个、3元/个、6元/个,工作日期间,每天上货量是固定的,且能全部售出,其中,A口罩的数量(单位:个)是B口罩数量的2倍,B口罩的数量(单位:个)是C口罩数量的3倍.某个周六,A、B、C三种口罩的上货量分别比一个工作日的上货量增加了50%,60%,10%,且全部售出,但是由于软件问题,发生了一起错单(即消费者买某种口罩的时候,收款机显示的是另一种口罩的价格并按照这个价格进行了收费),在结算的时候发现这起错单的数量是1个,结果这个周六的销售收入比一个工作日的销售收入多了364元,则这个药店一个工作日出售口罩的销售收入是810元.【分析】设这个药店一个工作日销售x个C口罩,则一个工作日销售3x个B口罩,一个工作日销售6x个A口罩,根据“某个周六正常销售口罩的收入小于一个工作日销售口罩的收与364之和,某个周六正常销售口罩的收入加上多出错误一单的最大差值不小于一个工作日销售口罩的收与364之和.“列出不等式组求出x的整数解,便可求得最后结果.【解答】解:设这个药店一个工作日销售x个C口罩,则一个工作日销售3x个B口罩,一个工作日销售6x个A口罩,于是这个药店一个工作日出售口罩的销售收入是:2×6x+3×3x+6x=27x(元),∵某个周六,A、B、C三种口罩的上货量分别比一个工作日的上货量增加了50%,60%,10%,且全部售出,∴该周六正常出售的收入是:2×1.5×6x+3×1.6×3x+6×1.1x=39x(元),根据题意得不等式组,解得,30≤x<30,∵x为整数,∴x=30,∴这个药店一个工作日出售口罩的销售收入是:27x=810(元),故答案为:810.三、解答题:(本大题共8小题.第26题8分,其余每小题0分.共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:(1)(2x+1)(1﹣2x)+(x﹣4)2;(2)÷﹣.【分析】(1)根据平方差公式和完全平方公式可以解答本题;(2)根据分式的除法和减法可以解答本题.【解答】解:(1)(2x+1)(1﹣2x)+(x﹣4)2=1﹣4x2+x2﹣8x+16=﹣3x2﹣8x+17;(2)÷﹣=====.20.如图,在平行四边形ABCD中,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是平行四边形;(2)若BD=BC=5,CD=6,求平行四边形AEBD的面积.【分析】(1)由平行四边形的性质得出AD∥BC,AD∥BE,由平行线的性质得出∠ADF =∠BEF,由AAS证明△ADF≌△BEF得出AD=BE,即可得出结论;(2)作DG⊥BC于G,BH⊥CD于H,由等腰三角形的性质得出CH=DH=CD=3,由勾股定理得出BH==4,由△BCD的面积得出DG==,由平行四边形的性质得出E=AD,得出BE=BC=5,由平行四边形面积公式即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD∥BE,∴∠ADF=∠BEF,∵点F是AB的中点,∴AF=BF,在△ADF和△BEF中,,∴△ADF≌△BEF(AAS),∴AD=BE,又∵AD∥BE,∴四边形AEBD是平行四边形;(2)解:作DG⊥BC于G,BH⊥CD于H,如图所示:∵BD=BC=5,CD=6,∴CH=DH=CD=3,∴BH===4,∵△BCD的面积=BC×DG=CD×BH,∴DG===,∵四边形AEBD是平行四边形,∴BE=AD,∴BE=BC=5,∴平行四边形AEBD的面积=BE×DG=5×=24.21.某品牌服装为了解某件衣服的销售情况,对线上、线下两种销售模式进行了抽样调查,从线上、线下两种销售模式中分别随机抽取20个店,记录下某一周各自的销售情况(单位:件)如下:线上:76 88 93 65 78 99 89 68 95 5089 88 89 89 77 97 87 88 98 97线下:74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74(1)整理、描述数据:对销售件数进行分组,各组的频数如下:销售件数50≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100线上123a6线下011018(2)分析数据:两组样本数据的平均数、中位数如下表所示:销售模式平均数中位数众数线上8588.5c线下84.2b74请根据以上信息,回答下列问题:(1)填空:a=8,b=77,c=89.(2)线上,线下两种销售模式目前销售该品牌服装的店面共2000个(线上、线下的门店数差不多),估计该品牌服装每周销售的件数约为多少?(3)根据以上数据,你认为线上、线下两种销售该品牌服装的销售模式哪种情况比较好?并说明理由.【分析】(1)根据题意和题目中的数据,可以得到a的值;根据中位数与众数的定义可得b、c的值;(2)利用样本估计总体,用2000乘以样本中20个店线上、线下该品牌服装每周销售的平均数即可;(3)根据题目中的数据,可以从平均数、中位数、众数来说明理由.【解答】解:(1)由题意,可得a=20﹣(1+2+3+6)=8,∵线上20个数据中,89出现了4次,次数最多,∴众数c=89,∵线下20个数据从小到大排列为:69,72,72,73,74,74,74,74,76,76,78,89,96,97,97,98,98,99,99,99,第10、11个数分别是76,78,∴中位数b=(76+78)÷2=77.故答案为8,77,89;(2)2000×=169200(件).答:估计该品牌服装每周销售的件数约为169200件;(3)根据以上数据,我认为线上、线下两种销售该品牌服装的销售模式线上情况比较好,理由:线上、线下比较,线上的平均数、中位数、众数均高于线下,所以线上销售模式比较好.22.请阅读下列材料,并解决相应的问题:一个四位数t的千位数字为a,百位数字为b,十位数字为c,个位数字为d.则t=1000a+100b+10c+d.若a+d=n(b+c),b=c+2(n为正整数a≥d),则称这个四位数为“倍多分数”.(1)请直接判断2200、3031是不是“倍多分数“;(2)对一个四位数t,记F(t)=,求F(t)为整数的“倍多分数”t的个数.【分析】(1)根据“倍多分数”的定义进行判断即可.(2)根据四位数是9的倍数且是倍多分数进行判断t的个数即可.【解答】解:(1)2200是“倍多分数”,∵a=2,b=2,c=0,d=0,且a+d=2,b+c=2,∴此时,n=1,b=c+2,∴2200是“倍多分数”;3031不是“倍多分数”,∵a=3,b=0,c=3,d=1,且a+d=4,b+c=3,∴不存在整数n,使得a+d=n(b+c),故3031不是“倍多分数”;(2)设四位数t为1000a+100b+10c+d,由F(t)=知F(t)为9的倍数,且为“倍多分数”,∴b=c+2,∴t=1000a+100b+10c+d=999a+(110+2n)c+200+2n,∴F(t)=110a+,∴(110+2n)c+200+2n为9的倍数,∵a+d=n(b+c)=n(2c+2)=2n(c+1),∴,∴,当c=0时,n可为1,2,3,4,5,6,7,8,9,∴(110+2n)c+200+2n=200+2n,一一代入得,当n=8时,符合题意;当c=1时,n可为1,2,3,4,∴(110+2n)c+200+2n=310+4n,一一代入得,无n的值符合题意;以此类推,可知当c=0时,n=8;c=2时,n=2符合题意:若c=0,n=8,则b=2,a=9,d=7或b=2,a=8,d=8;若c=2,n=2,则b=4,a=6,d=6或b=4,a=7,d=5或b=4,a=8,d=4或b=4,a=9,d=3,∴综上所述,共有6个.23.已知函数y=a|x﹣1|﹣x﹣b,其中当x=1时y=﹣3,当x=﹣1时,y=3.(1)根据给定的条件.则a=2,b=2.(2)在给出的平面直角坐标系中画出函数图象;(3)①结合所画的图象,写出函数图象的一条性质:函数有最小值﹣3.②图中已给出y=||的图象,直接写出方程||=a|x﹣1|﹣x﹣b的解,解为x=﹣0.6或x=4.7.(精确到十分位)【分析】(1)将x=0,y=1;x=﹣1,y=3分别代入函数y=|2x+b|+kx(k≠0)得关于k 和b的二元一次方程组,解得k和b的值,则可得函数的解析式;(2)分别按照当2x+1≥0时和当2x+1<0,求得函数的解析式,再根据解析式的特点画出图象,然后结合图象得出其一条性质即可;(3)由(2)中函数图象可直接得出不等式的解集.【解答】解:(1)将x=1,y=﹣3,当x=﹣1,y=3分别代入函数y=a|x﹣1|﹣x﹣b得:解得:故答案为2,2;(2)如图:这个函数的一条性质为:函数有最小值﹣3,故答案为函数有最小值﹣3.(3)由(2)中图象可知方程||=a|x﹣1|﹣x﹣b的解为x=﹣0.6或x=4.7,故答案为x=﹣0.6或x=4.7.24.随着人们生活水平的提高,越来越多的人更注重生活品质.人们喜欢用美丽的鲜花装点屋子,也增添了生活情趣.姜荷花形态出众、开花繁密、花期长,是很好的室内观赏植物,某花市老板发现今年姜荷花很受欢迎,二月份试购了两个品种荷兰红、玉如意,荷兰红每盆的进价比玉如意每盆的进价便宜2元,用3200元购进荷兰红的数量和用3360元购进玉如意的数量相同.(1)荷兰红和玉如意每盆的进价各是多少元?(2)三月份该花市老板决定加大进货量,三月份购进两个品种共1000盆,由于市场需求较大,两个品种进价均涨至上个月玉如意进价,花市老板将荷兰红以每盆80元、玉如意以每盆64元的价格销售.三月份全部售出且总获利为33200元,四月份玉如意花型饱满,在进价维持三月不变的情况下,该老板决定调整价格,将荷兰红的售价在三月份的基础上下调a%(降价后售价不低于进价),玉如意的价格上调a%,同时荷兰红的销量较三月份销量下降了a%,玉如意的销量较三月份销量上升了40%,结果四月份的销售额比三月份增加了3520元,求a的值.【分析】(1)设荷兰红每盆的进价是x元,则玉如意每盆的进价是(x+2)元,根据数量=总价÷单价结合用3200元购进荷兰红的数量和用3360元购进玉如意的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设三月份购进荷兰红m盆,则购进玉如意(1000﹣m)盘,根据总利润=每盆的利润×销售数量(购进数量),即可得出关于m的一元一次方程,解之即可得出三月份购进两种花的数量,根据四月份的销售额比三月份增加了3520元,即可得出关于a的一元二次方程,解之即可得出a的值,再结合荷兰红降价后售价不低于进价,即可确定a值.【解答】解:(1)设荷兰红每盆的进价是x元,则玉如意每盆的进价是(x+2)元,依题意,得:=,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴x+2=42.答:荷兰红每盆的进价是40元,玉如意每盆的进价是42元.(2)设三月份购进荷兰红m盆,则购进玉如意(1000﹣m)盘,依题意,得:(80﹣42)m+(64﹣42)(1000﹣m)=33200,解得:m=700,∴1000﹣m=300.∵四月份的销售额比三月份增加了3520元,∴80(1﹣a%)×700(1﹣a%)+64(1+a%)×300(1+40%)=80×700+64×300+3520,整理,得:a2﹣72a+1040=0,解得:a1=20,a2=52.当a=20时,80(1﹣a%)=64,∵64>42,∴符合题意;当a=52时,80(1﹣a%)=38.4,∵38.4<42,∴不符合题意,舍去.答:a的值为20.25.如图,抛物线y=ax2+bx+3与x轴交于A,B两点,且点B的坐标为(2,0),与y轴交于点C,抛物线对称轴为直线x=﹣.连接AC,BC,点P是抛物线上在第二象限内的一个动点.过点P作x轴的垂线PH,垂足为点H,交AC于点Q.过点P作PG⊥AC 于点G.(1)求抛物线的解析式.(2)求△PQG周长的最大值及此时点P的坐标.(3)在点P运动的过程中,是否存在这样的点Q,使得以B,C,Q为顶点的三角形是等腰三角形?若存在,请写出此时点Q的坐标;若不存在,请说明理由.【分析】(1)将已知点B(2,0)代入,抛物线对称轴为直线x=﹣,即,联立方程组,求出a,b,即可确定二次函数的解析式;(2)首先根据△PQG是等腰直角三角形,设P(m,﹣m2﹣m+3)得到F(m,m+3),进而得到PQ=﹣m2﹣m+3﹣m﹣3=﹣m2﹣m,从而得到△PQG周长=﹣m2。

2020-2021重庆第八中学九年级数学下期中一模试题(带答案)

2020-2021重庆第八中学九年级数学下期中一模试题(带答案)

2020-2021重庆第八中学九年级数学下期中一模试题(带答案) 一、选择题1.如图所示,在△ABC中, cos B=22,sin C=35,BC=7,则△ABC的面积是()A.212B.12C.14D.212.如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=3x(x>0)、y=kx(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A.﹣1B.1C.12-D.123.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果12C EAFC CDF=VV,那么S EAFS EBCVV的值是()A.12B.13C.14D.194.对于反比例函数y=1x,下列说法正确的是()A.图象经过点(1,﹣1)B.图象关于y轴对称C.图象位于第二、四象限D.当x<0时,y随x的增大而减小5.如图,在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣1(k为常数,且k>0)的图象可能是()A .B .C .D .6.已知两个相似三角形的面积比为 4:9,则周长的比为 ( ) A.2:3B.4:9C.3:2D.2:37.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=8.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)9.如图,在△ABC中,M是AC的中点,P,Q为BC边上的点,且BP=PQ=CQ,BM与AP,AQ分别交于D,E点,则BD∶DE∶EM等于A.3∶2∶1B.4∶2∶1C.5∶3∶2D.5∶2∶110.如图,一张矩形纸片ABCD的长BC=xcm,宽AB=ycm,以宽AB为边剪去一个最大的正方形ABEF,若剩下的矩形ECDF与原矩形ABCD相似,则xy的值为()A.512-B.512+C.2D.212+11.如图所示,在△ABC 中,AB=6,AC=4,P 是AC 的中点,过 P 点的直线交AB 于点Q,若以 A、P、Q 为顶点的三角形和以A、B、C为顶点的三角形相似,则AQ 的长为 ( )A.3B.3或43C.3或34D.4312.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x<2二、填空题13.利用标杆CD测量建筑物的高度的示意图如图所示,使标杆顶端的影子与建筑物顶端的影子恰好落在地面的同一点E.若标杆CD的高为1.5米,测得DE=2米,BD=16米,则建筑物的高AB为_____米.14.已知一个反比例函数的图象经过点(2,3)--,则这个反比例函数的表达式为________.15.反比例函数y =k x 的图象经过点P(a 、b ),其中a 、b 是一元二次方程x 2+k x +4=0的两根,那么点P 的坐标是________. 16.如图,矩形ABCD 的顶点,A C 都在曲线k y x= (常数0k ≥,0x >)上,若顶点D 的坐标为()5,3,则直线BD 的函数表达式是_.17.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左侧墙上与地面成60°角时,梯子顶端距离地面23米,若保持梯子底端位置不动,将梯子斜靠在右端时,与地面成45°,则小巷的宽度为_____米(结果保留根号).18.如果a c e b d f===k (b+d+f≠0),且a+c+e=3(b+d+f ),那么k=_____. 19.如图所示,在Rt △ABC 中,∠C=90°,BC=1,AC=4,把边长分别为1x ,2x ,3x ,…,n x 的n ()1n ≥个正方形依次放入△ABC 中,则第n 个正方形的边长n x =_______________(用含n 的式子表示).20.若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 三、解答题21.已知四边形ABCD 中,E ,F 分别是AB ,AD 边上的点,DE 与CF 交于点G.(1)如图①,若四边形ABCD 是矩形,且DE ⊥CF ,求证:DE AD CF CD= ; (2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得DE ADCF CD成立?并证明你的结论.22.如图,∠ABD=∠BCD=90°,AB•CD=BC•BD,BM∥CD交AD于点M.连接CM交DB于点N.(1)求证:△ABD∽△BCD;(2)若CD=6,AD=8,求MC的长.23.如图,在矩形ABCD中,E为AD边上的一点,过C点作CF⊥CE交AB的延长线于点F.(1)求证:△CDE∽△CBF;(2)若B为AF的中点,CB=3,DE=1,求CD的长.24.如图,直线y=12x+2与双曲线y=kx相交于点A(m,3),与x轴交于点C.(1)求双曲线的解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.25.如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE∽△DFE.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】【详解】试题分析:过点A作AD⊥BC,∵△ABC中,cosB=22,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴CD=4,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选A.考点:1.解直角三角形;2.压轴题.2.A解析:A【解析】【分析】连接OC、OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB=S△OCB,再利用反比例函数系数k的几何意义得到12×|3|+12•|k|=2,然后解关于k的绝对值方程可得到满足条件的k的值.【详解】连接OC、OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=1 2×|3|+12•|k|,∴12×|3|+12•|k|=2,而k<0,∴k=﹣1,故选A.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.3.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCCVV,=∴12AFDF=,∴11123AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAFEBCSS⎛⎫==⎪⎝⎭VV,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.解析:D 【解析】A选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=1x的图象上,故本选项错误;B选项:反比例函数的图象关于原点中心对称,故本选项错误;C选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;D选项:∵k=1>0,∴当x<0时,y随x的增大而减小,故是正确的.故选B.5.B解析:B【解析】当k>0时,直线从左往右上升,双曲线分别在第一、三象限,故A、C选项错误;∵一次函数y=kx-1与y轴交于负半轴,∴D选项错误,B选项正确,故选B.6.A解析:A【解析】【分析】由于相似三角形的面积比等于相似比的平方,已知了两个相似三角形的面积比,即可求出它们的相似比;再根据相似三角形的周长比等于相似比即可得解.【详解】∵两个相似三角形的面积之比为4:9,∴两个相似三角形的相似比为2:3,∴这两个相似三角形的周长之比为2:3.故选:A【点睛】本题考查的是相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.7.D解析:D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此αβ=,所以B选项不成立;C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.8.A解析:A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C 点坐标.【详解】∵以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD , ∴A 点与C 点是对应点,∵C 点的对应点A 的坐标为(2,2),位似比为1:2,∴点C 的坐标为:(4,4)故选A .【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.9.C解析:C【解析】【分析】过A 作AF ∥BC 交BM 延长线于F ,设BC=3a ,则BP=PQ=QC=a ;根据平行线间的线段对应成比例的性质分别求出BD 、BE 、BM 的长度,再来求BD ,DE ,EM 三条线段的长度,即可求得答案.【详解】过A 作AF ∥BC 交BM 延长线于F ,设3BC a =,则BP PQ QC a ===;∵AM CM =,AF ∥BC , ∴1AF AM BC CM==, ∴3AF BC a ==,∵AF ∥BP , ∴133BD BP a DF AF a ===, ∴34DF BF BD ==,∵AF ∥BQ , ∴2233BE BQ a EF AF a ===, ∴23EF BE =,即25BF BE =, ∵AF ∥BC , ∴313BM BC a MF AF a===, ∴BM MF =,即2BF BM =, ∴235420BF BF BF DE BE BD =-=-=,22510BF BF BF EM BM BE =-=-=, ∴3::::?53242010BF BF BF BD DE EM ==::. 故选:C .【点睛】 本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.10.B解析:B【解析】【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】∵四边形ABCD 是矩形,∴AD =BC =xcm ,∵四边形ABEF 是正方形,∴EF =AB =ycm ,∴DF =EC =(x ﹣y )cm ,∵矩形FDCE 与原矩形ADCB 相似,∴DF :AB =CD :AD , 即:x y y y x-=∴x y =2, 故选B .【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.11.B解析:B【解析】 AP AQ AB AC =,264AQ =,AQ=43,AP AQ AC AB =,246AQ =,AQ =3.故选B.点睛:相似常见图形(1)称为“平行线型”的相似三角形(如图,有“A 型”与“X 型”图)(2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形,有“反A 共角型”、“反A 共角共边型”、 “蝶型”,如下图:12.C解析:C【解析】【分析】一次函数y 1=kx+b 落在与反比例函数y 2=c x图象上方的部分对应的自变量的取值范围即为所求. 【详解】∵一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x (c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y 1>y 2的解集是﹣3<x <0或x >2,故选C .【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.二、填空题13.5【解析】【分析】根据同一时刻同一地点物高与影长成正比列式求得CD 的长即可【详解】解:∵AB∥CD∴△EBA∽△ECD∴即∴AB=135(米)故答案为:135【点睛】此题主要考查相似三角形的性质解题解析:5【解析】【分析】根据同一时刻同一地点物高与影长成正比列式求得CD 的长即可.【详解】解:∵AB ∥CD ,∴△EBA ∽△ECD , ∴CD ED AB EB =,即1.52216AB =+, ∴AB =13.5(米).故答案为:13.5【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的判定与性质.14.【解析】【分析】把已知点的坐标代入可求出k 值即得到反比例函数的解析式【详解】设这个反比例函数的表达式为了则所以这个反比例函数的表达式为故答案是:【点睛】考查的是用待定系数法求反比例函数的解析式解题关 解析:6y x =【解析】【分析】把已知点的坐标代入可求出k 值,即得到反比例函数的解析式.【详解】 设这个反比例函数的表达式为了(0)k y k x=≠,则(2)(3)6k =-⨯-=, 所以这个反比例函数的表达式为6y x =. 故答案是:6y x=. 【点睛】考查的是用待定系数法求反比例函数的解析式,解题关键是设关系式、再将已知点坐标代入,从而求解即可. 15.(-2-2)【解析】【分析】先根据点P (ab )是反比例函数y=的图象上的点把点P 的坐标代入解析式得到关于abk 的等式ab=k ;又因为ab 是一元二次方程x2+kx+4=0的两根得到a+b=-kab=4解析:(-2,-2).【解析】【分析】先根据点P (a ,b )是反比例函数y=k x的图象上的点,把点P 的坐标代入解析式,得到关于a 、b 、k 的等式ab=k ;又因为a 、b 是一元二次方程x 2+kx+4=0的两根,得到a+b=-k ,ab=4,根据以上关系式求出a 、b 的值即可.【详解】把点P (a ,b )代入y=k x得,ab=k , 因为a 、b 是一元二次方程x 2+kx+4=0的两根,根据根与系数的关系得:a+b=-k ,ab=4, 于是有:a b 4{ab 4+=-=, 解得a 2 {b 2=-=-, ∴点P 的坐标是(-2,-2).16.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3)C (5)所以B ()然后利用待定系数法求直线BD 的解析式【详解】∵D(53)∴A(3)C (5)∴B()设直线BD 的解析式为y=m 解析:35y x =【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3k ,3),C (5,5k ),所以B (3k ,5k ),然后利用待定系数法求直线BD 的解析式. 【详解】 ∵D (5,3),∴A (3k ,3),C (5,5k ), ∴B (3k ,5k ), 设直线BD 的解析式为y=mx+n , 把D (5,3),B (3k ,5k )代入得 5335m n k k m n ==+⎧⎪⎨+⎪⎩,解得350m n ⎧⎪⎨⎪⎩==, ∴直线BD 的解析式为35y x =. 故答案为35y x =. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了矩形的性质.17.【解析】【分析】本题需要分段求出巷子被分成的两部分再加起来即可先在直角三角形ABC 中用正切和正弦分别求出BC 和AC (即梯子的长度)然后再在直角三角形DCE 中用∠DCE 的余弦求出DC 然后把BC 和DC 加解析:2+【解析】【分析】本题需要分段求出巷子被分成的两部分,再加起来即可.先在直角三角形ABC 中,用正切和正弦,分别求出BC 和AC (即梯子的长度),然后再在直角三角形DCE 中,用∠DCE 的余弦求出DC ,然后把BC 和DC 加起来即为巷子的宽度.【详解】解:如图所示:3米,∠ACB=60°,∠DCE=45°,AC=CE.则在直角三角形ABC中,ABBC=tan∠ACB=tan60°3AB AC =sin∠ACB=sin60°=32,∴BC3233=2,AC32332=4,∴直角三角形DCE中,CE=AC=4,∴CDCE=cos45°=22,∴CD=CE×22=4×22=2,∴BD=2,故答案为:2【点睛】本题需要综合应用正切、正弦.余弦来求解,注意梯子长度不变,属于中档题.18.3【解析】∵=k∴a=bkc=dke=fk∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3解析:3【解析】∵a c eb d f===k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),∵a+c+e=3(b+d+f),∴k=3,故答案为:3.19.【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长同理利用前两个小正方形上方的三角形相似根据相似三角形对应边成比例列出比例式解析:4()5n 【解析】【分析】根据正方形的对边平行证明△BDF ∽△BCA ,然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长,同理利用前两个小正方形上方的三角形相似,根据相似三角形对应边成比例列出比例式即可求出前两个小正方形的边长的关系,以此类推,找出规律便可求出第n 个正方形的边长.【详解】解:如下图所示,∵四边形DCEF 是正方形,∴DF ∥CE ,∴△BDF ∽△BCA ,∴DF :AC=BD :BC ,即x 1:4=(1-x 1):1解得x 1= 45, 同理,前两个小正方形上方的三角形相似,112121-=-x x x x x 解得x 2=x 12同理可得,113231,-=-x x x x x 解得:33121==x x x x以此类推,第n 个正方形的边长1n 45=⎛⎫= ⎪⎝⎭n n x x . 故答案为:4()5n【点睛】本题考查了正方形的性质,相似三角形的判定与性质,解题的关键是根据相似三角形对应边成比例找出后面正方形的边长与第一个正方形的边长的关系. 20.3【解析】【分析】把分式方程化为整式方程进而把可能的增根代入可得m 的值【详解】去分母得3x-(x-2)=m+3当增根为x=2时6=m+3∴m=3故答案为3【点睛】考查分式方程的增根问题;增根问题可按解析:3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.三、解答题21.(1)详见解析;(2)当∠B+∠EGC=180°时,DE ADCF DC=成立,理由详见解析.【解析】【分析】(1)根据矩形的性质可得∠A=∠ADC=90°,由DE⊥CF可得∠ADE=∠DCF,即可证得△ADE∽△DCF,从而证得结论;(2)在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM.根据平行线的性质可得∠A=∠CDM,再结合∠B+∠EGC=180°,可得∠AED=∠FCB,进而得出∠CMF=∠AED即可证得△ADE∽△DCM,从而证得结论;【详解】解:(1)∵四边形ABCD是矩形,∴∠A=∠ADC=90°,∵DE⊥CF,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴DE AD CF DC=(2)当∠B+∠EGC=180°时,DE ADCF DC=成立,证明如下:在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM.∵AB∥CD.∴∠A=∠CDM.∵AD∥BC,∴∠CFM=∠FCB.∵∠B+∠EGC=180°,∴∠AED=∠FCB,∴∠CMF=∠AED,∴△ADE∽△DCM,∴DE ADCM DC=,即DE ADCF DC=.【点睛】本题是相似形综合题目,考查了相似三角形的判定与性质、等腰三角形的性质以及平行线的性质,熟练掌握等腰三角形的性质,证明三角形相似是解决问题的关键.22.(1)见解析;(2)MC=.【解析】【分析】(1)由两组边成比例,夹角相等来证明即可;(2)由相似三角形的性质得边成比例,进而利用勾股定理求得BC,再判定∠MBC=90°,最后由勾股定理求得MC的值即可.【详解】(1)证明:∵AB•CD=BC•BD∴ABBC=BDCD在△ABD和△BCD中,∠ABD=∠BCD=90°∴△ABD∽△BCD;(2)∵△ABD∽△BCD∴ADBD=BDCD,∠ADB=∠BDC又∵CD=6,AD=8∴BD2=AD•CD=48∴BC∵BM∥CD∴∠MBD=∠BDC,∠MBC=∠BCD=90°∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∴MC.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理与勾股定理的运用.23.(1)证明见解析;(2)【解析】【分析】(1)如图,通过证明∠D=∠1,∠2=∠4即可得;(2)由△CDE∽△CBF,可得CD:CB=DE:BF,根据B为AF中点,可得CD=BF,再根据CB=3,DE=1即可求得.【详解】(1)∵四边形ABCD是矩形,∴∠D=∠1=∠2+∠3=90°,∵CF⊥CE,∴∠4+∠3=90°,∴∠2=∠4,∴△CDE∽△CBF;(2)∵四边形ABCD是矩形,∴CD=AB,∵B为AF的中点,∴BF=AB,∴设CD=BF=x,∵△CDE∽△CBF,∴CD DE CB BF=,∴13xx =,∵x>0,∴3即:3【点睛】本题考查了相似三角形的判定与性质:有两组角对应相等的两个三角形相似;两个三角形相似对应角相等,对应边的比相等.也考查了矩形的性质24.(1)6yx=(2)(-6,0)或(-2,0).【解析】分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t 的方程,则可求得P点坐标.详解:(1)把A点坐标代入y=12x+2,可得:3=12m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=6x;(2)在y=12x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=12×3|t+4|.∵△ACP的面积为3,∴12×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.25.(1) FD=5; (2)证明见解析.【解析】【分析】(1)利用三角形中位线的性质得出DE∥AB,进而得出∠DEC =∠B,即可得出FD=DE,即可得出答案;(2)利用等腰三角形的性质和平行线的性质得出∠B=∠A=∠CED=∠CDE,即可得出∠CDE=∠F,即可得出△CDE∽△DFE.【详解】解:(1)∵D、E分别是AC、BC的中点,∴DE//AB,DE=12AB=5又∵DE//AB,∴∠DEC= ∠B.而∠F= ∠B,∴∠DEC =∠B,∴FD=DE=5;(2)∵AC=BC,∴∠A=∠B.又∠CDE=∠A,∠CED= ∠B,∴∠CDE=∠B.而∠B=∠F,∴∠CDE=∠F,∠CED=∠DEF,∴△CDE∽△DFE.【点睛】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质和平行线的性质等知识,熟练利用相关性质是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年重庆八中九年级(下)第一次月考数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将请将答题卡上对应题目的正确答案标号涂黑.1.(4分)若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱B.圆锥C.球D.正方体2.(4分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.3.(4分)下列各线段中,能与长为4,6的两线段组成三角形的是()A.2B.8C.10D.124.(4分)下列命题正确的是()A.若锐角α满足sinα=,则α=60°B.在平面直角坐标系中,点(2,1)关于x轴的对称点为(2,﹣1)C.两条直线被第三条直线所截,同旁内角互补D.相似三角形周长之比与面积之比一定相等5.(4分)中国明代数学著作《算法统宗》中有这样一首古诗:“巍巍古寺在山中,不知寺内几多僧?三百六十四只碗,恰好用尽不用争.三人共餐一碗饭,四人共尝一碗羹,请问先生能算者,算出寺内几多僧?”其大意是,某古寺用餐,3个和尚合吃一碗饭,4个和尚合分一碗汤,一共用了364只碗,问有多少个和尚?根据题意,可以设和尚的个数为x,则得到的方程是()A.3x+4x=364B.x+x=364C.x+4x=364D.3x+x=3646.(4分)如果2x﹣y=,那么代数式(﹣4x)÷的值为()A.﹣B.C.2D.﹣27.(4分)若点A(﹣2,m),B(3,n)都在二次函数y=ax2﹣2ax+5(a为常数,且a>0)的图象上,则m和n 的大小关系是()A.m>n B.m=nC.m<n D.以上答案都不对8.(4分)最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的小正方形组成的.设直角三角形的两直角边长为a,b,且满足(a+b)2=23,若小正方形的面积为11,则大正方形的面积为()A.15B.17C.30D.349.(4分)重庆移动为了提升新型冠状肺炎“停课不停学”期间某片区网络信号,保证广大师生网络授课、听课的质量,临时在坡度为i=1:2.4的山坡上加装了信号塔PQ(如图所示),信号塔底端Q到坡底A的距离为3.9米.同时为了提醒市民,在距离斜坡底A点4.4米的水平地面上立了一块警示牌MN.当太阳光线与水平线成53°角时,测得信号塔PQ落在警示牌上的影子EN长为3米,则信号塔PQ的高约为()(结果精确到十分位,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)A.10.4B.11.9C.11.4D.13.410.(4分)如图,在△ABC中,∠B=2∠C,以点A为圆心,AB长为半径作弧,交BC于点D,交AC于点G;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线AE交BC于点F,若以点G 为圆心,GC长为半径作两段弧,一段弧过点C,而另一段弧恰好经过点D,则此时∠F AC的度数为()A.54°B.60°C.66°D.72°11.(4分)已知,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发4分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则下列结论错误的是()A.A、B两地相距2480米B.甲的速度是60米/分钟,乙的速度是80米/分钟C.乙出发17分钟后,两人在C地相遇D.乙到达A地时,甲与A地相距的路程是300米12.(4分)若整数a既使得关于x的分式方程﹣2=有整数解,又使得关于x,y的方程组的解为正数,则符合条件的所有a的个数为()A.1B.2C.3D.4二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:﹣()﹣1﹣3tan30°+|﹣2|=.14.(4分)正多边形的一个外角是72°,则这个多边形的内角和的度数是.15.(4分)如图,四边形OABC的顶点O为坐标原点,以O为位似中心,作出四边形OA1B1C1与四边形OABC位似,若A(6,0)的对应点为A1(4,0),四边形OABC的面积为27,则四边形OA1B1C1的面积为.16.(4分)如图,在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,任意三个格点组成的三角形面积如果不小于1,则称为“离心三角形”,而如果面积恰好等于1,则称为“环绕三角形”.A,B是网格图形中已知的两个格点,点C是另一格点,且满足△ABC是“离心三角形”,则△ABC是“环绕三角形”的概率是.17.(4分)如图,在平面直角坐标系内,O为坐标原点,点A为直线y=2x+1上一动点,过A作AC⊥x轴,交x 轴于点C(点C在原点右侧),交双曲线y=于点B,且AC+BC=4,则当△OAB存在时,其面积为.18.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=16,将Rt△ABC绕点B顺时针旋转一定角度后得到Rt△A1B1C1,连接CC1,AA1,过点A作AM⊥AC交A1C1于点D,若CC1=AA1,BC1=C1D,且AD<BC,则AD 的长为.三、解答题:(本大题共8小题,第26题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.(10分)(1)解不等式组:;(2)化简:(x ﹣2y )2﹣3x (x ﹣y ).20.(10分)如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,CD =4,连接OC ,OE =2EB ,F 为圆上一点,过点F 作圆的切线交AB 的延长线于点G ,连接BF ,BF =BG . (1)求⊙O 的半径; (2)求证:AF =FG ; (3)求阴影部分的面积.21.(10分)据第四次全国经济普査的数据表明,中国经济已经开始由高速度增长转向高质量发展,供给侧结构性改革初见成效.各地产品质量监管部门也严抓质量,整顿生产,促进经济更好发展.某质量监管部门对甲、乙两家工厂生产的同种产品进行检测,分别随机抽取50件产品,并对产品的某项关键质量指标做检测,获得质量指标检测值t ,对数据整理分析的部分信息如下: 【1】甲、乙两工厂的样本数据频数分布表如下: 工厂类别75≤t <85 85≤t <95 95≤t <105 105≤t <115115≤t <125 合计甲工厂频数 0 a 10 3 50 频率0.000.24b0.061.00乙工厂频数3151318150频率0.060.300.260.360.02 1.00其中,乙工厂样品质量指标检测值在95≤t<105范围内的数据分别是:100,98.98,99,102,97,95,101,98,100,98,102,104.【2】两工厂样本数据的部分统计数据如下:平均数中位数众数方差甲工厂97.399.59678.3乙工厂97.3c107135.4根据以上信息,回答下列问题:(1)表格中,a=,b=,c=;(2)已知质量指标检测值在85≤t<115内,属于合格产品.若乙工厂某批产品共1万件,估计该批产品中不合格的有多少件?(3)若质量指标检测值为100时为优秀,偏离100越小,产品质量越高.现有一家公司需大量采购该种产品,根据题目给定的数据,你认为选择哪家工厂的产品更好?并请说明理由.22.(10分)如图,已知矩形ABCD,AB=3cm,AD=6cm,点M为线段BC上一动点,沿线段BC由B向C运动,连接AM,以AM为边向右侧作正方形AMNP,连接CN,DN.设M的路程即BM的长为xcm,C、N间的距离为y1cm,D、N间的距离为y2cm.数学兴趣小组的小刚根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行探究,过程如下:(1)根据表中自变量x的取值进行取点,画图,测量,分别得到几组对应值,请将表格补充完整:x/cm0123456y1/cm3 2.22a3 4.11 5.39 6.72y2/cm 4.24 2.81 1.390b 2.84 4.26其中,a=,b=;(2)在同一平面直角坐标系中,描点(x,y1),(x,y2),并画出y1,y2的函数图象;(3)当△CDN为等腰三角形时,BM的长度约为.23.(10分)随着人们的生活水平不断提高,人们越来越注重生活品质,注重食物营养水果罐头在保存鲜度和营养方面得天独厚,仅次于现摘水果,水果罐头不仅果肉好吃,水果的本色本味完全融入到糖水中,罐头水的风味甚至比果汁还要浓郁.某车间生产以甲、乙两种水果为原料的某种罐头,在一次进货中得知,花费1.8万元购进的甲种水果与2.4万元购进的乙种水果质量相同,乙种水果每千克比甲种水果多2元.(1)求甲、乙两种水果的单价;(2)车间将水果制成罐头投入市场进行售卖,已知一听罐头需要甲乙水果各0.5千克,而每听罐头的成本除了水果成本之外,其他所有成本是水果成本的的还要多3元,调查发现,以28元的定价进行销售,每天只能卖出3000听,超市对它进行促销,每降低1元,平均每天可多卖出1000听,当售价为多少元时,利润最大?最大利润为多少?(3)若想使得该种罐头的销售利润每天达到6万元,并且保证降价的幅度不超过定价的15%,每听罐头的价钱应为多少钱?24.(10分)如图,抛物线y=ax2﹣x+c与x轴交于A,B两点,与y轴交于C点,连结AC,已知B(﹣1,0),且抛物线经过点D(2,﹣2).(1)求抛物线的解析式;(2)若点E是抛物线上位于x轴下方的一点,且S△ACE=S△ABC,求E的坐标;(3)若点P是y轴上一点,以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标.25.(10分)请阅读下列材料:问题:已知方程x2+x﹣3=0,求一个一元二次方程,使它的根分别是已知方程根的2倍解:设所求方程的根为y,则y=2x,所以x=.把x=代入已知方程,得化简,得y2+2y﹣12=0故所求方程为y2+2y﹣12=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.(1)已知方程x2+x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的3倍,则所求方程为(2)已知关于x的一元二次方程ax2+bx+c=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数;(3)已知关于x的方程x2﹣mx+n=0有两个实数根,求一个方程,使它的根分别是已知方程根的平方.26.(8分)在△ABC,△CDE中,∠BAC=∠DEC=90°,连接BD,F为BD中点,连接AF,EF.(1)如图1,若A,C,E三点在同一直线上,∠ABC=∠EDC=45°,已知AB=3,DE=5,求线段AF的长;(2)如图2,若∠ABC=∠EDC=45°,求证:△AEF为等腰直角三角形;(3)如图3,若∠ABC=∠EDC=30°,请判断△AEF的形状,并说明理由.2019-2020学年重庆八中九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将请将答题卡上对应题目的正确答案标号涂黑.1.【解答】解:主视图、俯视图和左视图都是圆的几何体是球.故选:C.2.【解答】解:由题意得:x+2>0,解得:x>﹣2,在数轴上表示为:,故选:B.3.【解答】解:设组成三角形的第三边长为x,由题意得:6﹣4<x<6+4,即:2<x<10,故选:B.4.【解答】解:A、若锐角α满足sinα=,则α=30°,故本选项错误;B、在平面直角坐标系中,点(2,1)关于x轴的对称点为(2,﹣1),正确;C、两条平行直线被第三条直线所截,同旁内角互补,故本选项错误;D、相似三角形面积之比等于周长比的平方,故本选项错误;故选:B.5.【解答】解:设和尚的个数为x,根据题意得,,故选:B.6.【解答】解:(﹣4x)÷=•=•=y﹣2x,∵2x﹣y=,∴原式=﹣(2x﹣y)=﹣.故选:A.7.【解答】解:二次函数y=ax2﹣2ax+5(a为常数,且a>0)可知,抛物线开口向上,抛物线的对称轴为直线x =1,∵1+2>3﹣1∴m>n.故选:A.8.【解答】解:如图所示:∵(a+b)2=23,∴a2+2ab+b2=23,∴2ab=23﹣(a2+b2).∵小正方形的面积为11,∴11=a2+b2﹣2ab=a2+b2﹣23+(a2+b2).∴a2+b2=17,∴大正方形的面积为17.故选:B.9.【解答】解:过点E作EF⊥PQ于点F,延长PQ交BA于点G,可得QG⊥BA,∵QA=3.9m,QG:AG=1:2.4,∴设QG=x,则AG=2.4x,∴x2+(2.4x)2=3.92,解得:x=1.5,则AG=2.4x=3.6,∴EF=NG=3.6+4.4=8(m),故tan53°==≈1.3,解得:PF=10.4(m),∵FQ=EN﹣QG=3﹣1.5=1.5(m),∴信号塔PQ的高约为:PQ=10.4+1.5=11.9(m).故选:B.10.【解答】解:如图,连接AD,根据作图过程可知:AE是BD的垂直平分线,DG=CG,AB=AD=AG,设∠C=x,则∠CDG=x,∠AGD=2x,∴∠ADG=∠AGD=2x,∵∠B=2∠C,∴∠B=2x,∴∠ADB+∠ADG+∠GDC=2x+2x+x=180°,∴x=36°,∴∠F AC=90°﹣36°=54°.故选:A.11.【解答】解:由图象可知,A、B两地相距2480米,故选项A不合题意;甲的速度为(2480﹣2240)÷4=60(米/分钟),乙的速度为(2240﹣840)÷(14﹣4)﹣60=80(米/分钟),故选项B不合题意;甲、乙相遇的时间为4+2240÷(60+80)=20(分钟),故选项C符合题意;A、C两地之间的距离为60×20=1200(米),乙到达A地时,甲与A地相距的路程为1200﹣1200÷80×60=300(米).故选项D不合题意.故选:C.12.【解答】解:解方程﹣2=得,x=,∵分式方程﹣2=有整数解,且x≠1,∴a﹣3=﹣4或﹣2或﹣1或1或2或4,且a≠7,∴a=﹣1或1或2或4或5,解方程组得,,∵方程组的解为正数,∴,解得,a,综上,a=4或5,故选:B.二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.【解答】解:原式=2﹣2﹣3×+2=故答案为.14.【解答】解:多边形的边数:360°÷72°=5,正多边形的内角和的度数是:(5﹣2)•180°=540°.故答案为:540°.15.【解答】解:∵以O为位似中心,作出四边形OA1B1C1与四边形OABC位似,A(6,0)的对应点为A1(4,0),∴四边形OA1B1C1与四边形OABC的位似比为:4:6=2:3,∴四边形OA1B1C1与四边形OABC的面积比为:4:9,∵四边形OABC的面积为27,∴四边形OA1B1C1的面积为:27×=12.故答案为:12.16.【解答】解:满足△ABC是“离心三角形”的C点有11个,而△ABC是“环绕三角形”的C点有5,所以△ABC是“环绕三角形”的概率=.故答案为.17.【解答】解:根据题意设点A(m,2m+1),B(m,),所以AC=2m+1,BC=.∵AC+BC=4,∴可列方程2m+1+=4,即2m2﹣3m+1=0解得:m=或1,∴A(,2)或(1,3),B(,2)或(1,1),∵△OAB存在,∴m=舍去,∴AB=3﹣1=2.∴△OAB的面积=×2×1=1.故答案为1.18.【解答】解:过点C1作C1Q⊥BC于Q,交AM于P.由题意:△ABC≌△ABC1,∴AB=A1B,BC=BC1,∠ABC=∠A1BC1,∴∠A1BA=∠C1BC,=,∴△A1BA∽△C1BC,∵CC1=AA1,∴BC=AB,∴sin∠BAC=sin∠BA1D=,设AB=5x,BC=3c,则AC=4x,∴4x=16,∴x=4,∴BC=BC1=12,AC=A1C1=16,设PC1=x,CQ=y,则有,解得或,∴AD=12+4或12﹣4,∵AD<BC,∴AD=12﹣4.故答案为12﹣4.三、解答题:(本大题共8小题,第26题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.【解答】解:(1)由不等式①得:x≥由不等式②得:x<6∴不等式组的解集为(2)解:原式=x2﹣4xy+y2﹣3x2+3xy=﹣2x2﹣xy+4y220.【解答】(1)解:设⊙O的半径为r,则OE=r,∵CD⊥AB,∴CE=DE=CD=2,在Rt△OCE中,OC2=OE2+CE2,即r2=(r)2+(2)2,解得,r=6,答:⊙O的半径为6;(2)证明:连接OF,∵CF是⊙O的切线,∴∠OFG=90°,即∠OFB+∠BFG=90°,∵AB为⊙O的直径,∴∠AFB=90°,即∠F AB+∠OBF=90°,∵OB=OF,∴∠OFB=∠OBF,∴∠F AB=∠BFG,∵BF=BG,∴∠G=∠BFG,∴∠G=∠F AB,∴AF=FG;(3)解:∵OA=OF,∴∠OAF=∠OF A,∴∠OF A=∠BFG,在△AOF和△GBF中,,∴△AOF≌△GBF(ASA)∴OF=BF,∴△OBF为等边三角形,∴∠BOF=60°,BF=OB=6,由勾股定理得,AF===6,∴阴影部分的面积=π×62﹣×6×6=18π﹣18.21.【解答】解:(1)∵甲工厂85≤t<95的频数50×0.24=12,∴甲工厂95≤t<105的频数为a=50﹣12﹣10﹣3=25,甲工厂105≤t<115的频率b==0.20,甲工厂在95≤t<105范围内的数据从小大大排列95,97,98,98,98.98,99,100,100,101,102,102,104.中位数c==99.5.故答案为25,0.20,99.5;(2)由题,乙工厂产品抽查中,样品中不合格的占,10000×=800(件),答:大约有800件不合格.(3)选择甲工厂的产品.因为在质量指标检测中,甲工厂产品高质量件数多于乙工厂的.说明甲工厂产品质量更高,样品质量指标检测值的平均数相同时,甲的方差更小,说明产品质量更稳定.22.【解答】解:(1)当BM=2时,以AM为边向右侧构造正方形AMNP,连接NC,测得NC的长约为2.23,所以a约为2.23.当BM=4时,以BM为边向右侧构造正方形AMNP,连接ND,测得ND的长约为1.42,所以b约为1.42;故答案为:2.23、1.42;(2)如图所示,即为y1,y2的函数图象;(3)当DN=NC时,由图可得,BM约为1.50;当DN=DC时,因为DC=3,由图可得,BM约为0.89或5.12;当NC=DC时,因为DC=3,由图可得,BM=0或3,但是当BM=3时,DN=0,不能构成三角形,需舍去.综上所述:BM约为0或1.50或0.89或5.12.故答案为:0或1.50或0.89或5.12.23.【解答】解:(1)设甲种水果的单价为x元/千克,乙种水果的单价为(x+2)元/千克,根据题意得,=,解得:x=6,经检验,x=6是方程的根,∴x+2=8,答:甲、乙两种水果的单价分别为6元/千克,8元/千克;(2)由(1)知每听罐头的水果成本为:6×0.5+8×0.5=7元,每听罐头的总成本为:7+7×+3=15元,设降价m元,则利润W=(28﹣m﹣15)(3000+1000m)=﹣1000m2+10000m+39000=﹣1000(m﹣5)2+64000,∵﹣1000<0,∴当m=5时,W有最大值为64000,∴当售价为23元时,利润最大,最大利润为64000元;(3)由(2)知,W=﹣1000(m﹣5)2+64000=60000,解得:m=7或m=3,但是降价的幅度不超过定价的15%,∴m=3,∴售价为28﹣3=25元,答:每听罐头的价钱应为25元.24.【解答】解:(1)把B(﹣1,0),D(2,﹣2)代入y=ax2﹣x+c得,解得:.故抛物线的解析式为y=x2﹣x﹣2;(2)当y=0时,x2﹣x﹣2=0,解得x1=﹣1,x2=3,∴A(3,0),∴AB=4,当x=0时,y=﹣2,∴C(0,﹣2),∴OC=2,∴S△ABC=×4×2=4,设AC的解析式为y=kx+b,把A(3,0),C(0,﹣2)代入y=kx+b得,解得.∴y=x﹣2,如图1,过点E作x轴的垂线交直线AC于点F,设点F(a,a﹣2),点E(a,a2﹣a﹣2),其中﹣1<a<3,∴S△ACE=EF|x A﹣x C|=|a2﹣a|=,∵S△ACE=S△ABC,∴a2﹣3a=2或﹣a2+3a=2,解得a1=(舍去),a2=,a3=1,a4=2,∴E1(,),E2(1,﹣),E3(2,﹣2);(3)在y=ax2+bx﹣2中,当x=0时,y=﹣2,∴C(0,﹣2),∴OC=2,如图2,设P(0,m),则PC=m+2,OA=3,AC==,①当P A=CA时,则OP1=OC=2,∴P1(0,2);②当PC=CA=时,即m+2=,∴m=﹣2,∴P2(0,﹣2);③当PC=P A时,点P在AC的垂直平分线上,则△AOC∽△P3EC,∴=,∴P3C=,∴m=,∴P3(0,),④当PC=CA=时,m=﹣2﹣,∴P4(0,﹣2﹣).综上所述,P点的坐标(0,2)或(0,﹣2)或(0,)或(0,﹣2﹣).25.【解答】解:(1)设所求方程的根为y,则y=3x,所以x=.把x=代入已知方程,得化简,得y2+3y﹣9=0,故所求方程为y2+3y﹣9=0.故答案是:y2+3y﹣9=0;(2)设所求方程的根为y,则y=(x≠0),于是x=(y≠0)把x=代入方程ax2+bx+c=0,得a()2+b•+c=0去分母,得a+by+cy2=0.若c=0,有ax2+bx=0,于是方程ax2+bx+c=0有一个根为0,不符合题意,∴c≠0,故所求方程为cy2+by+a=0(c≠0);(3)设所求方程的根为y,则y=x2,所以x=±.①当x=时,把x=代入已知方程,得﹣m+n=0,即y﹣m+n=0;②当x=﹣时,把x=﹣代入已知方程,得+m+n=0,即y+m+n=0.26.【解答】解:(1)连接CF,∵在Rt△ABC,Rt△CDE中,A∠ABC=∠EDC=45°,∴∠ACB=∠ECD=45°,AB=BC,ED=EC,∵A,C,E三点在同一直线上,∴∠BCD=90°,∵F为BD的中点,∴CF=DF=BF,∵,∴△ACF≌△ABF(SSS),∴∠CAF=∠CAB=45°,同理:△ECF≌△EDF(SSS),=45°,∴△AEF为等腰直角三角形,∵AC=AB=3,CE=DE=5,∴.(2)证明:取BC的中点M,CD的中点N,连接AM,MF,EN,FN,∵F为BD的中点,∴FM为△BCD的一条中位线,∴FM∥CD,FM=,∴四边形MCNF为平行四边形,CM=FN,MF=CN,∠CMF=∠FNC,∵在Rt△ABC中,M为BC的中点,∴∠AMC=90°,AM=CM,同理:∠ENC=90°,EN=CN,∴AM=FN,MF=EN,∠AMF=∠AMC+∠CMF=∠ENC+∠CNF=∠FNE.∵,∴△AMF≌△FNE(SAS),∴AF=EF,∠AFM=∠FEN,∵∠AFE=∠MFN﹣∠AFM﹣∠EFN=180°﹣∠FNC﹣∠FEN﹣∠EFN=∠ENC=90°.∴△AEF为等腰直角三角形;(3)证明:取BC的中点M,CD的中点N,连接AM,MF,EN,FN,∵F为BD的中点,∴FM为△BCD的一条中位线,∴FM∥CD,FM=,∴四边形MCNF为平行四边形,CM=FN,MF=CN,∠CMF=∠FNC,∵在Rt△ABC中,M为BC的中点,∴∠AMC=60°,AM=CM,同理:∠ENC=60°,EN=CN,∴AM=FN,MF=EN,∠AMF=∠AMC+∠CMF=∠ENC+∠CNF=∠FNE.∵,∴△AMF≌△FNE(SAS),∴AF=EF,∠AFM=∠FEN,∵∠AFE=∠MFN﹣∠AFM﹣∠EFN=180°﹣∠FNC﹣∠FEN﹣∠EFN=∠ENC=60°.∴△AEF为等边三角形.。

相关文档
最新文档