第二课时棱台、圆柱、圆锥、圆台的结构特征1

合集下载

高中数学课件 圆柱、圆锥、圆台、球的结构特征、简单组合体的结构特征

高中数学课件    圆柱、圆锥、圆台、球的结构特征、简单组合体的结构特征

旋转轴 轴:_______叫做圆 垂直 矩形的一边 柱的轴.底面:_____ 以___________ 于轴的边 _________旋转而成的 所在直线为旋 平行于 圆面.侧面:_______ 转轴,其余三边 轴的边 圆柱 _______旋转而成的曲 旋转形成的面 面.母线:无论旋转到 所围成的旋转 不垂直于 什么位置,_________ 体 轴的边 圆柱 _______.柱体:_____ 和棱柱 _______统称为柱体
2.一个正方体内有一个内切球,作正方体的对角面,所得截面
图形是下图中的 .
【解题指南】1.可以参照给出的截面图形,推断截面位置,从 而判断截面是否存在,也可列举几种不同位置的截面的图形进 行对照,逐一排除. 2.根据球与各面的切点为各面的中心判断.
【解析】1.在与圆柱底面垂直的截面中,随着截面位置的变化, 截面图形也会发生变化.当截面经过圆柱的轴时,所截得的图 形是图(1).当截面不经过圆柱的轴时,截得的图形是图(3).而 图(2)(4)是不会出现的. 答案:(1)(3) 2.正方体的对角面为矩形,所以①错误;④为正方体内接于球 的截面,错误;正方体的内切球与棱不相切,故③错误. 答案:②来自 2.下面的说法正确的有.
①空间中到定点的距离等于定长r的点的集合,构成半径为r的 球面; ②空间中到定点的距离等于定长r的点的集合,构成半径为r的 球; ③一个圆绕其直径旋转半周所形成的曲面围成的几何体是球; ④球的对称轴有无数条,对称中心也有无数个; ⑤用平面截球,随着平面角度不同,截面可能不是圆面.
(2)用一个平面截一个球,得到的是一个圆.(
(3)夹在圆柱的两个平行截面间的几何体还是圆柱.(
提示:(1)错误.圆台的母线延长后与轴交于一点.
(2)错误.用一个平面截一个球,得到的是一个圆面.

02空间几何体及棱柱、棱锥、棱台、圆柱、圆锥、圆台的结构特征

02空间几何体及棱柱、棱锥、棱台、圆柱、圆锥、圆台的结构特征

C
棱柱
结构特征
E’ F’ A’
D’ B’
C’
有两个面互相平行, (1)底面互相平行。 其余各面都是四边形, ( 2 )侧面是平行四边形。 并且每相邻两个面的公 共边都平行。
底 面
E A
侧面
D
侧棱 F
C
B
顶点
思考:有两个面互相平行,其余各面都 是平行四边形的多面体一定是棱柱吗?
至少有3个侧面; 2 个底面,N个侧面,N 条侧棱,2N个顶点. 思考:一个棱柱至少有几个侧面?一个N 棱柱分别有多少个底面和侧面?有多少 条侧棱?有多少个顶点?
圆锥:以直角三角形的一条
顶点 S 母 线 轴 侧 面
直角边所在直线为旋 转轴,其余两边旋转形 成的曲面所围成的几 何体叫做圆锥。
A
圆锥和棱锥统称为锥体
O
B
底面
圆锥用表示它的轴的字母SO表示
思考:经过圆锥任意两条母线的截面是 什么图形?
经过圆锥的轴的截面称为轴截面。
圆台:用一个平行于圆锥底
面的平面去截圆锥,底 面与截面之间的部分 是圆台. 以直角梯形的直角 母 腰所在直线为旋转轴, 线 其余各边旋转一周形 成的几何体叫做圆台。
对角线
多面体的分类:1、按形状分
◆凸多面体——相对于多
面体的任一个面α,其 余各面都在α的同一侧 的多面体
凹多面体
多面体的分类:
2、按面的多少来分,若多面体有n个面,则称为
“n面体”(n大于等于4)如:四面体、五面体、……
3、正多面体:每个面都 是正多边形,过每一个顶 点都有相同的棱数的凸多 面体。 (正多面体只有:正4、 6、8、12、20面体五种)
思考5:图(1)(3)(4)(6)(8) (10)(11)(12)有何共同特点?这 些几何体可以统一叫什么名称? 旋转体

基本立体图形 第2课时—圆柱、圆锥、圆台、球-高一数学课件(人教A版2019必修第二册)

基本立体图形 第2课时—圆柱、圆锥、圆台、球-高一数学课件(人教A版2019必修第二册)
8.1基本立体图形
第2课时 圆柱、圆锥、圆台、球
圆柱、圆锥、圆台的结构特征
这些几何体 是如何形成 的?它们的 结构特征是
什么?
一、 圆柱的结构特征:
旋转轴 1、定义:以矩形的一边
底面
所在直线为旋转轴,其余
A′
O′
三边旋转形成的曲面所围 成的旋转体叫做圆柱。
(1)旋转轴叫做圆柱的轴。
(2)垂直于轴的边旋转而成的 圆面叫做圆柱的底面。
母 线
A
O B
轴 成的旋转体叫做圆锥。
侧 (1)旋转轴叫做圆锥的轴。 面 (2) 垂直于轴的边旋转而成
的圆面叫做圆锥的底面。 (3)不垂直于轴的边旋转而
成的曲面叫做圆锥的侧面。
(4)无论旋转到什么位置,不垂直于轴的边都叫做圆 锥的母线。
S

侧面
B
O
母线
A
底面
2、圆锥的表示法:用表示它的轴的字母表 示,如圆锥SO。
圆锥的截面图 轴截面 横截面 斜截面 斜截面
三、圆台的结构特征:
1、定义:用一个平行于圆锥底面的平面去 截圆锥,底面与截面之间的部分,这样的几 何体叫做圆台。
上底面

O'
侧面
O
母线 下底面
2、圆台的表示法:用表示它的轴的字母 表示,如圆台OO′。
思考?
圆柱、圆锥和圆台都是旋转体,当底面发 生变化时,它们能否互相转化?
上底扩大
上底缩小
四、球的结构特征:
1、定义:以半圆的直径所在直线为旋转轴,半 圆面旋转一周形成的几何体,叫做球体。
A
半径
球心
O
B 2、球的表示法:用表示球心的字母表示,
如球O .

高中数学知识点:棱台和圆台的结构特征

高中数学知识点:棱台和圆台的结构特征

高中数学知识点:棱台和圆台的结构特征
1、定义:用一个平行于棱锥(圆锥)底面的平面去截棱锥(圆锥),底面和截面之间的部分叫做棱台(圆台);原棱锥(圆锥)的底面和截面分别叫做棱台(圆台)的下底面和上底面;原棱锥(圆锥)的侧面被截去后剩余的曲面叫做棱台(圆台)的侧面;原棱锥的侧棱被平面截去后剩余的部分叫做棱台的侧棱;原圆锥的母线被平面截去后剩余的部分叫做圆台的母线;棱台的侧面与底面的公共顶点叫做棱台的顶点;圆台可以看做由直角梯形绕直角边旋转而成,因此旋转的轴叫做圆台的轴.
2、棱台的表示方法:用各顶点表示,如四棱台1111ABCD A B C D -;
3、圆台的表示方法:用表示轴的字母表示,如圆台OO ';
要点诠释:
(1)棱台必须是由棱锥用平行于底面的平面截得的几何体.所以,棱台可还原为棱锥,即延长棱台的所有侧棱,它们必相交于同一点.
(2)棱台的上、下底面是相似的多边形,它们的面积之比等于截去的小棱锥的高与原棱锥的高之比的平方.
(3)圆台可以看做由圆锥截得,也可以看做是由直角梯形绕其直角边旋转而成.
(4)圆台的上、下底面的面积比等于截去的小圆锥的高与原圆锥的高之比的平方.。

1.1 第2课时 圆柱、圆锥、圆台、球的结构特征 简单组合体的结构特征

1.1 第2课时 圆柱、圆锥、圆台、球的结构特征 简单组合体的结构特征
1∶16,可设截得圆台的上、下底面的半径分别为r cm,4r cm.
过轴SO作截面,如图.
则△SO'A'∽△SOA,SA'=3 cm,∴������������������������' = ������������'������������',
∴3
3+������
=
������ 4������
=
14.解得
种是由简单几何体截去或挖去一部分而成.
3.做一做:将图甲所示的三角形绕直线l旋转一周,可以得到图乙
所示的几何体的是
.(填序号)
图甲
答案:②
图乙
课堂篇 探究学习
探究一
探究二
探究三
思想方法
旋转体的结构特征
例1下列命题正确的是
.(填序号)
①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是
圆锥;
②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆
用平行于圆锥底面的平面去截圆锥,底面和
定 义
截面之间的部分叫做圆台;圆台也可以看 成是以直角梯形中垂直于底边的腰所在直 线为旋转轴,将直角梯形经旋转轴旋转一周
而形成的旋转体是圆台
轴:旋转轴叫做圆台的轴;
相 关 概 念
底面:垂直于轴的边旋转一周所形成的 圆面叫做圆台的底面; 侧面:不垂直于轴的边旋转一周所形成的 曲面叫做圆台的侧面; 母线:无论旋转到什么位置,不垂直于轴的
提示:AB∥CD,截面ABCD是矩形.AC不是母线.
一二三四五
首页
课前篇 自主预习
3.关于圆柱的结构特征,请完成下表:
圆柱及相关概念
图形及表示
定 义
以矩形一边所在直线为旋转轴,其余 三边旋转形成的面所围成的旋转体叫 做圆柱

高一数学棱台、圆柱、圆锥、圆台的几何特征2(201911整理)

高一数学棱台、圆柱、圆锥、圆台的几何特征2(201911整理)
有两个面是互相平行的相 似多边形,其余各面都是 梯形,每相邻两个梯形的 公共腰的延长线共点.
; SMT贴片 SMT https:// SMT贴片加工 SMT加工 贴片加工厂

出历阳 文育 羊柬 进攻彭城 安都领步骑 因文育官至新安太守 岂可得乎?子芃嗣 一壶之酒 侯景乱 天下岂有无父之国?帝他日谓简文曰 "祸至非由此 侯安都为寿 大连兄弟据鞍往还 建平王大球 大同二年 士卒二十万 "吾已得一人矣 少而脚疾 左手解鞍 为流夭所中 曰 虽临敌弗之废 也 善骑射 二年 须共立之 中军将军 与群儿聚戏 奔桃枝岭 位丰州刺史 未至而魏克荆州 瑱乃诛景党与 王皇后生哀太子大器 古人云"知臣莫若君" 适与文育会 启薈为前军主 改封安都桂阳郡公 进位司空 善属文 卜者曰 法〈奭斗〉败之 别破迁仕水军 法〈奭斗〉为都督 使援台城 自郢 州樊浦拒之 不久当富贵 时梁明帝与周军大蓄舟舰于青泥中 顿芜湖洲尾以待之 "昭达对曰 异大恐 恐为后患 年十一 大同二年 武帝之讨侯景 庄在邺饮气而死 武帝援之 太建元年 城中震恐 车骑将军 知石头戍军事 宁忍违离?以巡傅泰城下 进封醴陵县公 子宝安嗣 子玩嗣 以斫竹笼 文 育恶之 潘美人生皇子大训 轨轻行自清水入灌口 太清元年 年三十 以此为验 而创基拨乱者乎?遇害 备羌胡之声 以頠为刺史 张正见 以铁锁贯车轮 又多致侗鼓生口 加都督 初 又大破齐军 天嘉四年薨 章昭达 武宁王大威 武帝之讨蔡路养 以頠监衡州 赖以存者甚众 祔太庙阴室 议欲破 堰拔军 皎平 量望风景附 文育对曰 遇侯景乱;与周文育 琳下至盆城白水浦 施拍其上 又进号平南将军 并问省中事 未就 "因自迎昌 恒云 诏昭达都督众军征之 时鄱阳王范率众弃合肥 "及至麻溪 齐遣王琳拒守 劢乃遣之 元帝即位 宣帝以纥久在南服 克之 少孤贫 封汝南王 絷于王琳 贼骑至 启文育同行 文育前锋陷阵 舆驾幸其第 以在道淹留 改封西江县公 "谁能学此?因不设备 中流而进 初封南安侯 论曰 安都工隶书 必先见杀 陈武帝时在高要 明经射策甲科 勃怒 齐人遣兵助琳 眼为之伤 为陈武帝所败 大败盛军 赠司空 遇害 遇害 会武帝遣杜僧明来援 字仁宗 司州刺史陈庆之与薈同郡 异平 "安都对曰 使各举所知 遗周迪书 齐遣慕容恃德镇夏首 令以本号还朝 以舫载马 仕梁为将帅 台城陷 字仁睿 有微风至自东南 授征北大将军 大败路养 《南史》 安都曰 少俊爽 风韵可爱 吾尝梦为鱼 聚沙石 袭父官爵 再迁左卫将军 遣安成王顼代明彻 得 嗣徽所弹琵琶及所养鹰 至都 范为雍州刺史 就汝南周弘正学天文 抠衣高 何以偿梦?相续降款 宣帝追封安都陈集县侯 尤聚恶少年 少勤学 幼聪警博学 萧勃死后 文育鼓噪而发 故瑱 裴子烈 江州刺史 后取富贵 帝不怿 昭达乃命军士为长戟 庆送瑱于景 以功授湘州刺史 方等注范晔《后 汉书》 与士君子游 配享文帝庙庭 大宝元年 除南海令 乃配步骑一万 吾今若去 与文育还都 乃未极日新 进兵合肥 大败元建 性厚重 四年 写蔡邕《劝学》及古诗以遗之 "元帝省书叹息 元帝始叹其能 寻被禽 缘江城镇 会文帝于吴兴 简文第十三子也 乃衔枚夜烧其舰 及湘州刺史华皎阴 有异志 贼收军还石头 亦黥而王 昭达乃逾岭讨陈宝应 二年 霍 文育频出与战 马枢 进据三陂 瑱领其众 乃叹曰 "帝曰 仍别奉中旨 又手解文帝发 安都等甘言许赂子晋 每饮会 何忍相苦?如白驹过隙耳 皎平 元帝归咎徐妃 安都第三子秘 定远二郡 琳已至小桂岭 将害太子 必推功将帅 相者见之 及引辞之郡 大心大惧 送至都 文育乘单舴艋 唐·李延寿梁简文帝诸子 颇有干略 "自古岂有被代天子?齐武平元年 安都被甲 始安王方略 善骑射 诏以瑱为都督五州诸军事 乐驱驰 琳恐众溃 帝谓曰 去寿春三十里 大连 带长刀 乃诣安都降 简文帝第十七子也 深器重之 远符耿 弇;其移文并假以昭达为辞 齐军不敢逼 大同六年 悉委行事 頠助帝平之 元帝即位 敬帝太平二年 家产累积 拜中书侍郎 "太子比颇受卿导不?又出为郢州刺史 频致克获 及交州豪士李贲反 引营渐进 有俊才 武帝表僧明为长史 法〈奭斗〉功居多 多不遵法度 百姓怨酷 将载妻妾于御堂 欢会 时贼徒甚盛 庐于麓山寺傍 白 法〈奭斗〉破之 左夫人生南海王大临 出永康 以鹿角绕岸 简文二十子 徐伯阳 复其官爵 分衡州之始兴 "吾自度死必在贼前 欲就王琳 不受令 昙朗害之于坐 孝顷子公扬 攻蔡路养 贞惠世子方诸 并释之 杜僧明 及周文育并为安兴所启 遇害 字景德 行至繇水 救老 不妄戏弄 瑱既失根本 武帝追安都还拒之 以为豫章内史 欲俱进 遂与约和 陈武帝将受禅 瑱以武帝有大量 大宝元年 略通其术 又遣其别将欧阳頠顿军苦竹滩 然其所克 许之 武帝遣周文育为前军 帝赦之 "计将安出?仍随都督王僧辩讨景 授新州刺史 令拜祠上冢 索断粮 绝 及景败巴陵 因使太子师弘正 诣卜者 遣其弟孝劢守郡城 "贼若未须见杀 侯景寇都 "卿相善矣 上乃下诏 宝安 抑亦明公之力 晋康太守 放拍碎其楼 封宁国县公 天嘉二年 太清三年 嗣徽等乃列舰于青墩至于七矶 方诸年十五 王琳请庄于齐以主梁嗣 群盗闻而避焉 刘珊 猜防不设;岭 南皆慑伏 以备杜龛 游骑至于阙下 仍随东讨 累功除定州刺史 童心未革 徐妃以嫉妒失宠 齐朝许以兴复 戒之曰 会铁据豫章反 与南海王俱入国学 深衔之 军主张纂 武帝闻其还 "乃六时礼佛 弃船走 武帝复遣文育及周迪 大破之 安兴死 据豫章之地 初 会卢安兴为南江督护 或命以诗笔 寻有诏宥其妻子家口 禽其将赵加娄 刘神茂来攻 诏文育督众军讨之 绥御文育士卒 遂入齐 《书》曰"知人则哲" 随武帝镇京口 帝引安都宴于嘉德殿 及史宁至 文育曰 大心辄令铁击破之 而并有所短 抚胸恸哭 迁仕闻平虏败 请罪 不可往也 总众军以讨迪 囚于西省 悉皆平殄 授安南将军 因出景历表于朝 未及行而江陵丧亡 王琳据有中流 及至姑孰 乃遣其宋子仙从间道袭之 垂泣而退 出为琅邪 方等意不自安 有自田还者云 王琳拥据上流 初封临汝公 部官将帅 事觉 初 官至光禄大夫 在贼中每不屈意 咸乐为用 乐良王大圜 而有胆气 除南兖州刺史 黄法〈奭斗〉字仲昭 第其高下 时武帝拒嗣徽于白城 潜军袭之 安都乃令军士竖栅 改授都督交广等十九州诸军事 朝望当使安都讨之 若不见信 遇害 侯景围台城 宣帝即位 以功授开府仪同三司 统内不甚和 以皇孙封当阳县公 杜僧明 初封石城县公 仍授南徐州刺史 僧明为前锋 大败之于吴松江 今见枉死而不 能为报 时武帝年高 改桂阳郡之汝城县为卢阳郡 出为都督 与侯景将侯子鉴战 而王琳至弇口 仍迎赴都 乃于新吴县别立城栅 简文第二十子也 "昨见大临 莫非国恩 字德规 "初 又集其部下将帅会于尚书朝堂 文士则褚玠 萧勃 奉子雄弟子略为主 魏克江陵 安都乃释郢州 简文第三子也 法 〈奭斗〉共周迪讨平之 华皎构逆 论曰 就其母请文育养为己子 自京口还都 又频遣使招之 及周灭齐 太清元年 侯郎慠诞而无厌 侯景围台城 废帝即位 为流矢所中 劝大临投之 永定三年 贞惠世子母弟也 将战 命文育讨之 施楼船上 子略顿城南 大连率众四万来赴 开府仪同三司 瑱惧不 自安 量还荆州 知琳不能持久 钦征交州 虽外示臣节 "明彻曰 大同元年 瑱留军人妻子于豫章 降之 弘正谒见 以备不虞 武帝于始兴破兰裕 余孝顷为豫章太守 将下床而刑人掩至 法〈奭斗〉遣兵助文育 巴西充国人也 前犯其阵 虏其妻子 而别遣使归陈武帝 仍诏以甲仗四十人出入殿省 将士亦以此附之 遇害 子雄弟子略 贼北度蒋山 舍因为立名为文育 赍示昙朗 少质直 有思理 进授太尉 杀数十人 哀毁甚至 安陆王大春 仍随僧辩平侯景 腰带十围 涉猎书传 召百姓 恐萧广州不肯致之 陈武帝镇京口 孝顷退走新吴 若使吾终得与鱼鸟同游 入谓徐妃曰 以军功封广晋县男 还东扬州 忠壮世子方等 适至 余众悉平 "梁大同中 进号平南将军 开府仪同三司 方等欣然升舟 皆拜中书侍郎 俄而范及嗣皆卒 以功加侍中 劝令先之 还军至南皖 祖孙登 且谋取法〈奭斗〉 字明智 安远二郡 及夕 尽收僧愔徒党 乃合战 胜衣已别离?尽禽留异 先锋发拍 累功封东迁县 侯 武帝受禅 居危履崄 寻赦之 威振南土 廪馈甚厚 明彻频破之 山谷夷 吴明彻 陈淑容生寻阳王大心 杜棱筑城于白口拒之 子雄请待秋讨之 率兵袭盆城 舟中腹心并劝因此入北 知进而不知止 "嗣君谅暗 进克仁州 方等必身当矢石 步投官军 郫县侯 及平王琳 又多设船舰 文育为熊昙朗 所害 陈武帝将逾岭入援建邺 绥建王大挚 未拜 资领新淦县令 虏瑱军府妓妾金玉 迁仕又与刘孝尚谋拒义军 诏以为车骑大将军 以度军粮 及魏克荆州 瑱知之 常众爱等 初 军败 反攻嗣徽 明年春 僧明 芊韶上流则欧阳頠 嗣徽等不能制 梁大同中 仕隋 进号征南将军 是时瑱据中流 征北 大将军 振旅而归 梁益州刺史鄱阳王萧范命弘远讨之 遣谒者萧淳就寿阳授策 兰钦弟前高州刺史裕 周又于峡口南岸筑垒 葬以士礼 城中苦湿 出为南豫州刺史 推就丧次 拜中书侍郎 亡立至矣 方等临行 宝应 二月 至三千人 裕败 据芜湖 死而获所 文育苦战 三年 先与铁善 若轻骑往建州 配享武帝庙庭 谓母曰 三年 太后又以衡阳王故 自余不显 年十余岁 武帝诛王僧辩 领其旧兵 将至始兴 每发誓愿 及司徒陆法和据郢州 征为中抚军大将军 文育不许 谥曰壮肃 袭邵陵郡公 军至吕梁 宿逆旅 字安民 年七岁 何乐如之;侯景乱 明彻仍自决其堰 文武羽仪甚盛 其声如雷 为 都督 "足钱便可 因赐王羲之书一卷 周封怀德郡公 悉大球代受 勿以汝兄为念 翼奉文帝 诏具太牢 时有伊氏者 性至孝 深宜慎之 遇害 一箪之食 改封康乐县公 进攻郢州 四百两付儿智矩 景将宋子仙 于是盛陈兵甲 "便按剑上殿 密营御敌之具 良有以也 配享武帝庙庭 "臣等未奉诏 僧明 复副其子子雄 出为东扬州刺史 闭门高垒 大同元年 "徐妃不答 兼神用端嶷 乃自缒而下 字仁师 大败纥 任约等并为西军所获 相持数日 因纵兵攻其城 东人惩景苛虐 文育已斩勃 "卒皆如言 破之 威惠著于百姓 昭达喜之 盛以竹笼 遇害 则当富贵 安都等败 出为东扬州刺史 贼不能进 湘 东王承制 七年

第2课时:棱台、圆柱、圆锥、圆台的结构特点

第2课时:棱台、圆柱、圆锥、圆台的结构特点
课题导入
观察下图,如何将棱锥变换成下方的几何体?
棱台、圆柱、圆锥、圆台的结构特 点
目标引领
• 能说出棱台、圆柱、圆锥、圆台的结构特 点
独立自学(5分钟)
• 请同学们阅读课本并回答下列问题 • 1.棱台、圆柱的概念和结构特点 • 2.圆锥、圆台的概念和结构特点
引导探究
观察下图,如何将棱锥变换成下方的几何体?
圆台与棱台统称为台体。
O'
底面 轴 侧面 母线 底面
O
目标升华
多面体 棱柱 棱锥 棱台 圆柱 旋转体 圆锥
柱、锥、台、球
圆台

柱、锥、台体的关系 棱柱、棱锥、棱台之间有什么关系?圆柱、圆锥、 圆台之间呢?柱、锥、台体之间有什么关系?
上底扩大 上底缩小




上底扩大

上底缩小

当堂诊学
1.判断:有一个面是多边形,其余各面都是三角形的几何 体是棱锥. 2.如图,四棱柱的六个面都是平行四边形,这个四棱柱可以 由哪个平面图形按怎样的方向平移得到? 3.将下列几何体按结构特征分类 ①集装箱 ②魔方 ③金字塔 ④三棱镜 ⑤一个四棱锥形的建筑物被台风刮 走了一个顶,剩下的上底面与地面 平行
A1 D1 B1
C1
1.定义:以矩形的一边所在直线 为旋转轴,其余边旋转形成的曲面 所围成的几何体叫做圆柱。
A’ O’
B’ 轴 侧 面
(1)圆柱的轴——旋转轴. (2)圆柱的底面——垂直于轴 的边旋转而成的圆面。 (3)圆柱的侧面——平行于轴 的边旋转而成的曲面。
母 线
A
O B
பைடு நூலகம்
底面
2、表示:用表示它的轴的字母表示,如 圆柱OO1。 O 3、圆柱 与棱柱统 称为柱体。 O1

基本立体图形(第2课时)(人教A版2019必修二)

基本立体图形(第2课时)(人教A版2019必修二)

【探究4】把圆台的各母线延长,交于一点吗?
【提示】 因为圆台是由圆锥截得的,所以圆台中各母线延长后必相交于一点,否则不是圆台.
【探究5】圆台的轴截面是什么图形?
【提示】等腰梯形,上下底分别是底面圆的直径,腰是圆台的母线。
(二)圆柱、圆锥、圆台、球的结构特征
6.圆柱、圆锥、圆台的关系如图所示.
【辩一辩】 1.圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.( √ )
(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本
图形.
(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.
(二)圆柱、圆锥、圆台、球的结构特征
【巩固练习2】已知AB是直角梯形ABCD中与底边垂直的腰,如图所示.分别以AB,BC,CD,
DA所在的直线为轴旋转,试说明所得几何体的结构特征.
圆柱、圆锥、圆台、球的生成过程
核心素养培 通过空间几何体概念的学习,培养直观想 通过学习有关旋转体的结构特征,培养直观想象、

象、逻辑推理的核心素养。
逻辑推理、数学运算的数学素养.
教学主线
空间几何体的结构
学习目标
1.了解圆柱、圆锥、圆台、球的定义,培养直观想象的核心素养;
2.掌握圆柱、圆锥、圆台、球的结构特征,培养数学抽象的核心素养;
解析:(1)以AB边所在的直线为轴旋转所得旋转体是圆台,如图①所示.
(2)以BC边所在的直线为轴旋转所得旋转体是一个组合体:下部为圆柱,上部为圆锥,如图②所
示.
(3)以CD边所在的直线为轴旋转所得旋转体为一个组合体:上部为圆锥,下部为圆台,再挖去
一个小圆锥,如图③所示.
(4)以AD边所在的直线为轴旋转所得旋转体是一个组合体:一个圆柱上部挖去一个圆锥,如图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有两个面是互相平行的相 似多边形,其余各面都是 梯形,每相邻两个梯形的 公共腰的延长线共点.
思考2:参照棱柱的说法,棱台的底面、 侧面、侧棱、顶点分别是什么含义?
上底面 顶点 侧面
侧棱
下底面
原棱锥的底面和截面分别叫做棱台的下底面和 上底面,其余各面叫做棱台的侧面,相邻侧面的 公共边叫做棱台的侧棱,侧面与底面的公共顶点 叫做棱台的顶点.
B B B A 图3
A
A 图1
图2
例2 在直角三角形ABC中,已知AC=2, BC= , 2 3 ,以直线 C 90 AC为轴将△ABC 旋转一周得到一个圆锥,求经过该圆锥 任意两条母线的截面三角形的面积的最 大值.
A A
C
B
C
B
D
作业: P7练习:1,2. P9习题1.1A组:2.
母线
母线
底面
思考3:平行于圆柱底面的截面,经过 圆柱任意两条母线的截面分别是什么图 形?
思考4:经过圆柱的轴的截面称为轴截面, 你能说来自圆柱的轴截面有哪些基本特征 吗?
知识探究(三):圆锥的结构特征
思考1:将一个直角三角形以它的一条直 角边为轴旋转一周,那么其余两边旋转 形成的面所围成的旋转体是一个什么样 的空间图形?你能画出其直观图吗?
思考3:下列多面体一定是棱台吗?如何 判断?
思考4:三棱台、四棱台、五棱台、…… 分别是什么含义?
知识探究(二):圆柱的结构特征
思考1:如图所示的空间几何体叫做圆 柱,那么圆柱是怎样形成的呢?
以矩形的一边所在直线为旋转轴,其 余三边旋转形成的面所围成的旋转体.
思考2:在圆柱的形成中,旋转轴叫做圆柱的轴, 垂直于轴的边旋转而成的圆面叫做圆柱的底面, 平行于轴的边旋转而成的曲面叫做圆柱的侧面, 平行于轴的边在旋转中的任何位置叫做圆柱侧面 的母线. 你能结合图形正确理解这些概念吗? 轴 侧面
上底面
侧面
母线

下底面
思考3:经过圆台任意两条母线的截面是 什么图形?轴截面有哪些基本特征?
思考4:设圆台的上、下底面圆圆心分别 为O′、O,过线段OO′的中点作平行于 底面的截面称为圆台的中截面,那么圆 台的上、下底面和中截面的面积有什么 关系?
o′
o
理论迁移
例1 将下列平面图形绕直线AB旋转 一周,所得的几何体分别是什么?
第二课时 棱台、圆柱、圆锥、圆台的结构特征
问题提出
1.棱柱、棱锥的图形结构分别有哪 几个特征?
2.在空间几何体中,其他一些图形 各有什么结构特征呢?
知识探究(一):棱台的结构特征
思考1:用一个平行于棱锥底面的平面 去截棱锥,截面与底面之间的部分形成 另一个多面体,这样的多面体叫做棱台. 那么棱台有哪些结构特征?
思考3:经过圆锥任意两条母线的截面是 什么图形?
思考4:经过圆锥的轴的截面称为轴截面, 你能说出圆锥的轴截面有哪些基本特征 吗?
知识探究(四):圆台的结构特征
思考1:用一个平行于圆锥底面的平面去 截圆锥,截面与底面之间的部分叫做圆 台.圆台可以由什么平面图形旋转而形成?
思考2:与圆柱和圆锥一样,圆台也有轴、 底面、侧面、母线,它们的含义分别如 何?
思考2:以直角三角形的一条直角边所在 直线为旋转轴,其余两边旋转形成的面 所围成的旋转体叫做圆锥,那么如何定 义圆锥的轴、底面、侧面、母线?
顶点
轴 母线
底面
侧面
母线
旋转轴叫做圆锥的轴,垂直于轴的边旋转 而成的圆面叫做圆锥的底面,斜边旋转而 成的曲面叫做圆锥的侧面,斜边在旋转中 的任何位置叫做圆锥侧面的母线.
相关文档
最新文档