一元二次方程根与系数的关系式 教案设计

合集下载

一元二次方程的根与系数的关系 优秀教学设计(教案)

一元二次方程的根与系数的关系  优秀教学设计(教案)

一元二次方程的根与系数的关系教学时间课题课型新授教学媒体多媒体教学目标知识技能1.熟练掌握一元二次方程的根与系数关系。

2.灵活运用一元二次方程的根与系数关系解决实际问题。

3.提高学生综合运用基础知识分析解决较复杂问题的能力。

过程方法学生经历探索,尝试发现韦达定理,感受不完全归纳验证以及演绎证明。

情感态度培养学生观察,分析和综合,判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神。

教学重点一元二次方程的根与系数关系。

教学难点对根与系数关系的理解和推导。

【教学过程】教学程序及教学内容师生行为设计意图一、复习引入导语:一元二次方程的根与系数有着密切的关系,早在16世纪法国的杰出数学家韦达发现了这一关系,你能发现吗?二、探究新知1.课本思考。

分析:将(x- x1)(x-x²)=0化为一般形式x²-( x1+x²)x+ x1x²=0与x²+px+ q=0对比,易知p=-( x1+x²),q= x1 x²。

即二次项系数是1的一元二次方程如果有实教师出示问题,引出课题学生初步了解本课所要研究的问题学生通过去括号、合并得到一般形式的创设问题情境,激发学生好奇心,求知欲通过思考问题,让学生知道二次项系数根,则一次项系数等于两根和的相反数,常数项等于两根之积。

2.跟踪练习。

求下列方程的两根x1、x²。

的和与积。

x²+3x+2=0; x²+2x-3=0; x²-6x+5=0; x²-6x-15=03.方程2x²-3x+1=0的两根的和、积与系数之间有类似的关系吗?分析:这个方程的二次项系数等于2,与上面情形有所不同,求出方程两根,再通过计算两根的和、积,检验上面的结论是否成立,若不成立,新的结论是什么?4.一般的一元二次方程a x²+bx+c=0(a≠0)中的a不一定是1,它的两根的和、积与系数之间有第3题中的关系吗?分析:利用求根公式,求出方程两根,再通过计算两根的和、积,得到方程的两个根x1、x²和系数a,b,c的关系,即韦达定理,也就是任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比。

2.5《一元二次方程的根与系数的关系》教案

2.5《一元二次方程的根与系数的关系》教案
2.一元二次方程的根与系数的关系:推导并证明一元二次方程ax²+bx+c=0的两根x1、x2与系数a、b、c之间的关系,即x1+x2=-b/a,x1x2=c/a。并通过实例说明这一关系在实际问题中的应用。
本节内容旨在帮助学生理解一元二次方程的根与系数之间的关系,为解决实际问题和进行后续学习打下基础。
最后,我感到欣慰的是,尽管存在一些挑战,但大多数学生还是能够跟上课程的节奏,并在小组讨论和实践中展现出积极的学习态度。我会根据今天的反思,调整教学方法,以期在下一节课中更好地帮助学生理解和掌握一元二次方程的根与系数关系。
三、教学难点与重点
1.教学重点
-核心知识:一元二次方程的根与系数的关系,特别是根的判别式Δ=b²-4ac的意义及其与根的关系。
-举例解释:重点讲解判别式Δ的应用,如何通过判别式判断方程有几个实数根、无实数根或有重根,以及如何利用根与系数的关系求出方程的根的和与积。
-核心内容强调:
a.判别式Δ的计算方法及其与一元二次方程根的数量的关系。
-难点突破方法:
a.通过具体的例子,逐步引导学生理解判别式的计算过程,并解释其在判断根的性质时的作用。
b.设计不同类型的实际问题,指导学生如何将问题转化为一元二次方程,并运用根与系数的关系解决问题。
c.采用直观的图表或动画辅助教学,帮助学生形象理解根与系数之间的关系。
d.组织小组讨论,让学生在合作交流中互相启发,共同解决难点问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的根与系数关系的基本概念。这是指在ax²+bx+c=0的一元二次方程中,根x1、x2与系数a、b、c之间的数学关系。这种关系在数学分析和问题解决中具有重要地位。

一元二次方程根与系数的关系式教案设计

一元二次方程根与系数的关系式教案设计

一元二次方程根与系数的关系式教案设计一、教学目标1.把握一元二次方程根与系数的关系式,能运用它由已知一元二次方程的一个根求出另一个根与未知系数;2.通过根与系数的教学,进一步培养学生分析、观看、归纳的能力和推理论证的能力;3.通过本节课的教学,向学生渗透由专门到一样,再由一样到专门的认识事物的规律。

教学重点和难点:二、重点难点疑点及解决方法1.教学重点:根与系数的关系及其推导。

2.教学难点:正确明白得根与系数的关系。

3.教学疑点:一元二次方程根与系数的关系是指一元二次方程两根的和,两根的积与系数的关系。

4.解决方法;在实数范畴内运用韦达定理,必须注意那个前提条件,而应用判别式的前提条件是方程必须是一元二次方程,即二次项系数,因此,解题时,要依照题目分析题中有没有隐含条件和。

三、教学步骤(一)教学过程1.复习提问(1)写出一元二次方程的一样式和求根公式。

(2)解方程①,②。

观看、摸索两根和、两根积与系数的关系。

在教师的引导和点拨下,由繁重得出结论,教师提问:所有的一元二次方程的两个根都有如此的规律吗?2.推导一元二次方程两根和与两根积和系数的关系。

设是方程的两个根。

由此得出,一元二次方程的根与系数的关系。

(一元二次方程两根和与两根积与系数的关系)结论1.假如的两个根是,那么。

假如把方程变形为。

我们就可把它写成的形式,其中。

从而得出:略写结论2.假如方程的两个根是,那么。

结论1具有一样形式,结论2有时给研究问题带来方便。

练习1.(口答)下列方程中,两根的和与两根的积各是多少?(1);(2);(3);(4);(5);(6)此组练习的目的是更加熟练把握根与系数的关系。

3.一元二次方程根与系数关系的应用。

(1)验根。

(口答)判定下列各方程后面的两个数是不是它的两个根。

验根是一元二次方程根与系数关系的简单应用,应用时要注意三个问题:(1)要先把一元二次方程化成一样形式,(2)不要漏除二次项系数,(3)还要注意中的负号。

一元二次方程的根与系数的关系教案

一元二次方程的根与系数的关系教案

一元二次方程的根与系数的关系主备人 宋化第一课时 教学内容:1、根与系数的关系。

2、根与系数的关系的应用。

(1)求已知方程的两根的平方和、倒数和、两根差。

教学过程:1、一元二次方程的根与系数关系:(1)复习:一元二次方程的求根公式。

得出方程的根由其系数决定。

(2)填表并找出其中的规律:得出结论:若x 1 、x 2为一元二次方程ax 2+bx+c=0(a ≠0)的两根,则有:a bx x -=+21,a c x x =∙21 (3)巩固练习:根据根与系数的关系写出下列方程的两根之和与两根之积(方程两根为x 1,x 2、k 是常数)(1)2x 2-3x+1=0 x 1+x 2=________ x 1x 2=_________ (2)3x 2+5x=0 x 1+x 2=________ x 1x 2=__________ (3)5x 2+x-2=0 x 1+x 2=_________ x 1x 2=__________ (4)5x 2+kx-6=0 x 1+x 2=_________ x 1x 2=__________ (5)3x 2 -kx=7 x 1+x 2=_________ x 1x 2=__________2、一元二次方程的根与系数关系的应用:例1:不解方程,利用根与系数的关系,求一元二次方程2x 2-3x-1=0的两个根的(1)平方和,(2)倒数和。

例2:若x 1 、x 2为一元二次方程5x 2+kx-6=0 的两根,利用根与系数的关系,求下列代数式的值(用含k 的代数式表示):(1)221221x x x x +(2)221)(x x -(3)21x x - (4)2112x x x x +拓展思维:已知实数满足关系式a 2-5a+6=0,b 2-5b+6=0,且a ≠b ,能否求a+b 与ab 的值?课堂练习:不解方程,利用根与系数的关系,解答下列问题: 若x 1 、x 2为一元二次方程3x 2-5x-1=0的两个根,则 (1)x 1+x 2=________ x 1x 2=_________ (2)2221x x + (3)212221x x x x -+(4)2221212x x x x +-回家作业: 1、已知方程的两根为,求下列代数式的值:(1);(2);(3)2、已知:是两个不相等的实数,且满足,那么求的值。

九年级数学上册《一元二次方程的根与系数的关系》教案、教学设计

九年级数学上册《一元二次方程的根与系数的关系》教案、教学设计
(二)过程与方法
1.通过引导学生在自主探究、合作交流的过程中发现一元二次方程的根与系数的关系,培养学生发现问题、分析问题和解决问题的能力。
2.利用具体的实例,让学生在实际操作中掌握一元二次方程的根与系数的关系,提高学生的实际操作能力和应用能力。
3.通过对一元二次方程根与系数关系的探究,培养学生数形结合的思想,让学生学会从多角度分析问题,形成严密的逻辑思维。
5.拓展延伸,提高思维:
-通过拓展延伸性问题的设置,引导学生运用一元二次方程根与系数关系解决更复杂的问题,提高学生的思维能力和创新能力。
6.总结反馈,反思提升:
-在课堂结束前,引导学生总结所学内容,进行自我反馈,发现不足,及时改进。
-教师对课堂教学进行反思,了解学生的学习情况,调整教学策略,提高教学质量。
-根据实际问题,列出一元二次方程,并运用根与系数关系求解。
3.拓展题:
-探究一元二次方程ax^2 + bx + c = 0(a≠0)的根与系数之间的关系,并给出证明。
-通过阅读教材或其他资料,了解一元二次方程根与系数关系在其他数学分支中的应用。
4.实践题:
-调查生活中的一元二次方程问题,例如:物品的定价与折扣、投资收益等,并运用所学知识解决实际问题。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,针对本节课所学的一元二次方程根与系数关系,讨论以下问题:
a.一元二次方程根与系数关系在实际问题中的应用;
b.如何运用根与系数关系解决具体问题;
c.根的判别式和韦达定理在解题过程中的作用。
2.教学方法:
-采用小组合作学习法,促进学生之间的交流与讨论。
四、教学内容与过程
(一)导入新课

八年级数学下册《一元二次方程的根与系数的关系》教案、教学设计

八年级数学下册《一元二次方程的根与系数的关系》教案、教学设计
三、教学重难点和教学设想
(一)教学重难点
1.重点:一元二次方程的根与系数的关系,求根公式的推导与应用,以及在实际问题中的运用。
2.难点:
-理解判别式的概念及其在一元二次方程根的性质判断中的应用。
-对求根公式的记忆和熟练运用,尤其是公式中各个符号的含义和它们之间的关系。
-将实际问题抽象成一元二次方程模型,运用数学知识解决实际问题。
-借助几何图形或动画,形象地展示求根公式的推导过程。
-通过实际例题,指导学生如何运用求根公式解题。
(三)学生小组讨论
1.将学生分成若干小组,针对以下问题进行讨论:
-一元二次方程的根与系数之间存在哪些关系?
-如何利用判别式判断方程的根的情况?
-求根公式在解题过程中的作用是什么?
2.各小组汇报讨论成果,老师进行点评和补充。
4.教学策略与方法:
-采用差异化教学,针对不同学生的学习风格和能力水平,提供个性化的指导和帮助。
-利用信息技术,如数学软件、在线平台等,为学生提供丰富的学习资源和工具,提高学习效率。
-定期进行学习反馈,通过作业、小测验等形式,及时了解学生的学习情况,调整教学进度和方法。
5.情感态度与价值观的培养:
-在教学过程中,注重鼓励学生,增强他们的自信心,培养面对困难的勇气和解决问题的毅力。
二、学情分析
八年级学生已经具备了一定的数学基础,掌握了一元一次方程的解法及其应用,对于一元二次方程也有初步的认识。在此基础上,学生对于本章节《一元二次方程的根与系数的关系》的学习,既有知识储备上的优势,也存在一定难度。大部分学生能够理解根与系数的关系,但可能在运用求根公式解题时,对公式的记忆和运用上存在困难。此外,学生在解决实际问题时,可能难以将问题抽象成一元二次方程模型。因此,在教学过程中,教师应关注以下几点:

一元二次方程的根与系数的关系教案

一元二次方程的根与系数的关系教案

一元二次方程的根与系数的关系教案一元二次方程的根与系数的关系教案一、教学目标(一)知识与技能通过观察、归纳、类比、讨论等活动,探索并掌握一元二次方程的根与系数的关系.(二)过程与方法通过对方程的求解过程进行回顾,渗透从特殊到一般的数学思想,并培养学生的观察、探究能力.(三)情感态度与价值观通过一元二次方程根与系数的关系的探究,培养学生初步形成对数学整体性的认识以及前后一致的逻辑推理能力.二、教学重难点教学重点:掌握一元二次方程的根与系数的关系.教学难点:将根的判别式由数值计算推广到字母运算,正确理解判别式的意义.三、教学过程(一)导入新课,明确目标师:同学们,上一节课我们学习了如何解一元二次方程,并且通过几道例题对解法进行了具体的阐述。

今天我们将在此基础上,探究一元二次方程的根与系数的关系。

那么什么是一元二次方程的根与系数呢?如何用数学语言描述呢?带着这些问题,我们一起学习今天的课题“一元二次方程的根与系数的关系”。

(二)自主探究,掌握新知定义一元二次方程的根与系数。

师:首先请同学们思考一下,一元二次方程的根是什么?系数又是什么?他们之间存在什么样的关系呢?现在我们一起来探讨一下。

假设ax²+bx+c=0(a≠0)是关于x的一元二次方程,那么x1,x2是它的两个实数根。

其中a、b、c分别是方程的系数。

那么,根与系数之间存在什么样的关系呢?我们可以通过以下步骤进行探究:(1)分别计算出x1+x2和x1x2的值;(2)根据计算结果,总结根与系数的关系。

通过实例探究根与系数的关系。

师:现在我们通过一个具体的实例来探究一元二次方程的根与系数的关系。

例如,方程2x²-4x-6=0的两个根分别为x1=x2=1,则x1+x2=2,x1x2=-3。

那么我们可以发现,对于任何一个一元二次方程ax²+bx+c=0(a≠0),它的根与系数之间都满足以下关系:x1+x2=-b/a,x1x2=c/a。

一元二次方程的根与系数的关系数学教案

一元二次方程的根与系数的关系数学教案

一元二次方程的根与系数的关系数学教案标题:一元二次方程的根与系数的关系I. 引言A. 课程目标B. 学习者背景C. 主题介绍II. 一元二次方程回顾A. 一元二次方程的定义B. 一元二次方程的标准形式C. 一元二次方程的解法(因式分解法、完全平方公式法、求根公式法)III. 根与系数的关系A. 定义:如果一元二次方程ax²+bx+c=0(a≠0)有两根x₁, x₂,则有如下关系:i. x₁+x₂=-b/aii. x₁x₂=c/aB. 推导过程C. 应用实例IV. 实践活动A. 分组讨论:通过实际问题引出一元二次方程,然后利用根与系数的关系解决问题B. 小组展示:每组分享自己的解决思路和方法C. 教师点评:对各小组的表现进行评价,并进一步强调根与系数的关系的重要性V. 总结与反馈A. 本节课的主要内容回顾B. 学生自我评估学习效果C. 教师给出下一节课程的学习建议以下是一个关于根与系数的关系应用实例的部分内容示例:实例:已知一元二次方程2x²-3x-5=0有两个实数根x₁, x₂,试求下列各式的值:a) (x₁²+x₂²)b) (x₁³+x₂³)解答:根据根与系数的关系,我们有:x₁+x₂=-(-3/2)=3/2x₁x₂=-5/2对于a),我们有:x₁²+x₂²=(x₁+x₂)²-2x₁x₂=(3/2)²-2(-5/2)=9/4+5=29/4对于b),我们有:x₁³+x₂³=(x₁+x₂)(x₁²-x₁x₂+x₂²)=(3/2)[(3/2)²-2(-5/2)+x₁²+x₂²]=(3/2)[9/4+5+29/4]=67/2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、教学目标1.掌握一元二次方程根与系数的关系式,能运用它由已知一元二次方程的一个根求出另一个根与未知系数;2.通过根与系数的教学,进一步培养学生分析、观察、归纳的能力和推理论证的能力;3.通过本节课的教学,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。

教学重点和难点:二、重点难点疑点及解决办法1.教学重点:根与系数的关系及其推导。

2.教学难点:正确理解根与系数的关系。

3.教学疑点:一元二次方程根与系数的关系是指一元二次方程两根的和,两根的积与系数的关系。

4.解决办法;在实数范围内运用韦达定理,必须注意这个前提条件,而应用判别式的前提条件是方程必须是一元二次方程,即二次项系数,因此,解题时,要根据题目分析题中有没有隐含条件和。

三、教学步骤(一)教学过程1.复习提问(1)写出一元二次方程的一般式和求根公式。

(2)解方程①,②。

观察、思考两根和、两根积与系数的关系。

在教师的引导和点拨下,由沉重得出结论,教师提问:所有的一元二次方程的两个根都有这样的规律吗?2.推导一元二次方程两根和与两根积和系数的关系。

设是方程的两个根。

由此得出,一元二次方程的根与系数的关系。

(一元二次方程两根和与两根积与系数的关系)结论1.如果的两个根是,那么。

如果把方程变形为。

我们就可把它写成的形式,其中。

从而得出:略写结论2.如果方程的两个根是,那么。

结论1具有一般形式,结论2有时给研究问题带来方便。

练习1.(口答)下列方程中,两根的和与两根的积各是多少?(1);(2);(3);(4);(5);(6)此组练习的目的是更加熟练掌握根与系数的关系。

3.一元二次方程根与系数关系的应用。

(1)验根。

(口答)判定下列各方程后面的两个数是不是它的两个根。

①;②;③;④;⑤。

验根是一元二次方程根与系数关系的简单应用,应用时要注意三个问题:(1)要先把一元二次方程化成一般形式,(2)不要漏除二次项系数,(3)还要注意中的负号。

(2)已知方程一根,求另一根。

例:已知方程的根是2,求它的另一根及k的值。

解法1:设方程的另一根为,那么。

又∵。

答:方程的另一根是,k的值是-7。

此题的解法是依据一元二次方程根与系数的关系,设未知数列方程达到目的,还可以向学生展现下列方法,并且作比较。

方法(二) ∵ 2是方程的根,原方程可变为解此方程。

方法(三)∵ 2是方程的根,答:方程的另一根是,k的值是-7。

学生进行比较,方法(二)不如方法(一)和(三)简单,从而认识到根与系数关系的应用价值。

练习:教材P32中2。

学习笔答、板书,评价,体会。

(二)总结、扩展(12) 一元二次方程根与系数的关系的推导是在求根公式的基础上进行。

它深化了两根的和与积和系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。

2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。

四、布置作业教材P32中1 P33中A1。

五、板书设计。

相关文档
最新文档