2017-2018年浙江省杭州市大江东区八年级上学期期中数学试卷及参考答案

合集下载

2017-2018学年度八年级第一学期中段考数学试题

2017-2018学年度八年级第一学期中段考数学试题

2017-2018学年度第一学期教学质量自查期中考试八年级数学一、选择题(每小题2分,共20分)1、过一个多边形的顶点可作5条对角线,则这个多边形是( ) A 、六边形 B 、七边形C 、八边形D 、九边形2、一个三角形的两边长分别是3和7,则第三边长可能是( ) A 、2 B 、3 C 、9 D 、103、一个多边形的内角和是720°,这个多边形的边数是( ) A 、4 B 、5C 、6D 、74、如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( ) A 、SSS B 、SAS C 、AAS D 、ASA5、下列计算正确的是( ). A 、()236aa = B 、22a a a ∙= C 、326a a a += D 、()3339a a =6、已知3=ma ,4=na ,则nm a+的值为( )A 、7B 、12C 、43 D 、34 7、如图,在△ABC 中,∠B=40°,∠C=30°,延长BA 到D ,则∠CAB 的度数为( ) A 、110° B 、80° C 、70° D 、60°8、如图,△ABC ≌△DEF ,∠A=50°,∠B=100°,则∠F 的度数是( ) A 、30° B 、50° C 、60° D 、100° 9、如图,AC=BD ,AB=CD ,图中全等的三角形的对数是( ) A 、2 B 、3 C 、4、 D 、510、如图,已知△ABC 中,75A ∠=︒,则12∠+∠=( ).A 、335°B 、255°C 、155°D 、150°B9题图A8题图D7题图4题图10题图二、填空题(每小题3分,共15分)11、因式分解=+-121232a a ; 12、23()4a a -∙= ;13、已知一个多边形的内角和等于1620°,则这个多边形的边数是 ; 14、如图4,AC 、BD 交于O ,且AB=CD ,请添加一个条件: ,使得△ABO ≌△CDO ;15、已知等腰三角形的一个内角为50°,那么该等腰三角形的另外两个角的度数分别为 .三、解答题(每小题5分,共25分)16、先化简,再求值:()()122142--+x x x ,其中21-=x .17、如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E ,∠A=35°,∠D=42°,求∠ACD 的度数.18、 如图,CA=CD ,∠BCE=∠ACD ,BC=EC ,求证:∠A=∠D .B14题图17题图DCBA 18题图CB19、如图,AD ,AE 分别是△ABC 的中线和高,若AE=5,BC=8,求△ACD 的面积.20、如图,点B 、E 、C 、F 在同一直线上,∠A=∠D ,∠B=∠DEF ,AB=DE ,求证:BE=CF.四、解答题(每小题8分,共40分)21、如图,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,AD=5cm ,DE=3cm ,求BE 的长.22、如图,已知四边形ABCD 中,∠D=∠B=90°. (1)填空:∠DAB+∠BCD= °;(2)若AE 平分∠DAB ,CE 平分∠BCD ,求证:AE ∥CF.AB19题图B20题图21题图CBAB 22题图23、如图,△ACB 和△ECD 都是等边三角形,点A 、D 、E 在同一直线上,连接BE. (1)求证:△ACD ≌△BCE ; (2)若CE=16,BE=21,求AE 的长.24、如图,AD 为△ABC 的中线,BE 为△ABD 的中线. (1)∠ABE=15°,∠BAD=26°,求∠BED 的度数;(2)若△ABC 的面积为40,BD=5,则△BDE 中BD 边上的高为多少.25、从边长为a 的正方形中剪掉一个边长为b 的正方形(如图11),然后将剩余部分拼成一个长方形(如图12).图11 图12 (1)上述操作能验证的等式是 ;(请选择正确的一个)A 、()2222b a b ab a -=+- B 、()()b a b a b a -+=-22 C 、()b a a ab a +=+2(2)应用你从(1)选出的等式,完成下列各题:①已知12422=-y x ,42=+y x ,求y x 2-的值.②计算:⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2222220111911...411311211.b23题图24题图。

2017年八年级(上)数学期中考试试卷与答案

2017年八年级(上)数学期中考试试卷与答案

2017 年八年级(上)数学期中考试试卷(考试时间 100 分钟,试卷总分 100 分)一、选择题 (每小题 2 分,计 16 分.将正确答案的序号填写在下面的表格中 ) 1.以下轴对称图形中,对称轴条数最少的是(▲)AB C D2. 9 的平方根是( ▲ )A . 3B .± 3C .- 3D . 813.下列各数中,有理数是( ▲ )A . 8B .223D .7C . 424.下列各组线段能构成直角三角形的一组是( ▲ )A .3,4,5B .2,3,4C .1, 2, 3D .4, 5,65.根据下列已知条件,能够画出唯一△ABC 的是( ▲ )A .AB =5,BC =6,∠ A =70°B .AB =5,BC =6,AC =13C .∠ A = 50°,∠ B = 80°, AB = 8,D .∠ A = 40°,∠ B = 50°,∠ C =90°AABDE CBDC第 7 题第 6 题6.如图,△ ABD ≌△ ACE ,∠ AEC = 110°,则∠ DAE 的度数为( ▲ )A .40°B .30°C . 50°D . 60°7.如图,△ ABC 中, AB =AC , AD 是∠ BAC 的平分线,已知 AB =5, AD =3,则 BC 的长为( ▲ )A . 5B . 4C . 10D . 88. 规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:① AB=A 1B 1, AD=A 1D 1,∠ A= ∠A 1,∠ B= ∠ B 1,∠ C=∠ C 1;② AB=A 1B 1, AD=A 1D 1,∠ A= ∠A 1,∠ B= ∠ B 1,∠ D=∠ D 1 ;③AB=A 1B 1, AD=A 1D 1,∠ B= ∠B 1,∠ C=∠ C1,∠ D=∠ D1;④ AB=A 1B 1, CD=C1D 1,∠ A= ∠A 1,∠ B= ∠ B1,∠ C=∠ C1.其中能判定四边形ABCD 和四边形 A 1B1C1D 1全等有(▲)个A . 1B. 2C. 3D. 4A A1D D1第 8 题B CB1C1二、填空题(每小题2分,共 20分)9.化简:16=▲,8▲.3=2711+ 3 10.比较大小:2▲.(用“>”、“=”或“<”填空).411.太阳的半径约是696000 千米,用科学计数法表示(精确到万位)约是 _____▲ ____千米.12.如图, PD⊥ AB, PE⊥ AC,垂足分别为 D 、 E,要使△ APD ≌△ APE,可添加的条件是▲. ( 写出一个即可 )BDC AAP DM O N(第 12题)E C A B B C第 13题第14题13.如图 ,在△ ABC 中,∠ C= 90°, AD 平分∠ BAC 交 BC 于点 D ,若 AD= 13, AC= 12,则点D 到 AB 的距离为 ______▲ _______14.如图,在△ ABC 中,∠ ABC、∠ ACB 的角平分线交于点O,MN 过点 O,且 MN∥ BC,分别交 AB、 AC 于点 M、N. 若 MN = 5cm, CN= 2cm,则 BM =▲cm15.如图,△ ABC 为等边三角形, BD 为中线,延长BC 至 E,使 CE=CD =1,连接 DE,则 DE=▲.AAA BDDP EC DB C-1O12B E C(第 15 题)第 16题第18题16.如图,正方形OABC 的边 OC 落在数轴上,点 C 表示的数为 1,点 P 表示的数为- 1,以 P 点为圆心, PB 长为半径作圆弧与数轴交于点D,则点 D 表示的数为▲.17.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程 .已知:直线 l 和 l外一点 P.P求作:直线 l 的垂线,使它经过点Pl作法:如图,( 1)在直线 l 上任意两点 A、B;P( 2)分别以点 A, B 为圆心, AP, BP 长为l半径作弧,两弧相交于点Q;A B( 3)作直线 PQ,Q所以直线 PQ 就是所求作的垂线。

浙江省杭州市2017-2018学年八年级上学期期中考试数学试题(含解析)

浙江省杭州市2017-2018学年八年级上学期期中考试数学试题(含解析)

2.下列判断正确的是(
) . B.斜边相等的两个等腰直角三角形全等 D.两个锐角对应相等的两个直角三角形全等
A.有一直角边相等的两个直角三角形全等 C.腰相等的两个等腰三角形全等 【答案】 B
【解析】 A 选项应为一直角边和斜边相等的直角三角形全等;
C 选项应有一角相等才能使两个三角形全等;
D 选项还缺少边的对应关系才能使三个三角形全等.
10.已知 △ ABC 中, AC BC , C 90 ,如图,将 △ ABC 进行折叠,使点 A 落在线段 BC 上, (包括点 B 和点 C ) ,设点 A 的落点为 D ,折痕为 EF ,当 △DEF 是等腰三角形时,点 D 可能的位 置共有( ) .
A F E C
A. 2 种 【答案】B 【解析】依题意将 ∥ ABC 折叠,使 A 落在 BC 上,落点为 D ,使 ∥ DEF 为等腰三角形, 点 D 可能的位置共有: ①点 A 与 D 点重合时, ∵ AC BC , AE DE , ∴ EF DE .
C.
5 x5 2
5 D. ≤ x ≤ 5 2
10 5, 2
又∵三角两边之和大于第三边, 有 2 x 10 2 x , ∴x ∴
10 5 , 4 2
5 x5. 2
x 1 8.已知不等式组 只有一个整数解,则 a 的取值范围一定只能为( x a
) . D. 0 a 1
故选 B .
3.已知 △ ABC 中, A A. 1:1: 2 【答案】B
1 1 B C ,则它的三条边之比为( 2 3
B. 1: 3 : 2 C. 1: 2 : 3
) . D. 1: 4 :1
1 1 【解析】已知 A B C , 2 3

浙江省杭州市 八年级(上)期中数学试卷(含答案)

浙江省杭州市  八年级(上)期中数学试卷(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图案中,是轴对称图形的有()个.A. 1B. 2C. 3D. 42.下列语句是命题的是()A. 作直线AB的垂线B. 在线段AB上取点CC. 同旁内角互补D. 垂线段最短吗?3.已知等腰△两条边的长分别是3和6,则它的周长是()A. 12B. 15C. 12或15D. 15或184.如图,OD⊥AB于D,OP⊥AC于P,且OD=OP,则△AOD与△AOP全等的理由是()A. SSSB. ASAC. SSAD. HL5.若a<b,则下列各式中一定成立的是()A. a−1<b−1B. a3>b3C. −a<−bD. ac<bc6.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是()A. 5B. 2C. 4D. 87.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB、下列确定P点的方法正确的是()A. P为∠A、∠B两角平分线的交点B. P为AC、AB两边上的高的交点C. P为∠A的角平分线与AB的垂直平分线的交点D. P为AC、AB两边的垂直平分线的交点8.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,下列结论:①∠ACD=∠B;②CH=CE=EF;③AC=AF;④CH=HD.其中正确的结论为()A. ①②④B. ①②③C. ②③D. ①③9.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A. 4.8B. 4.8或3.8C. 3.8D. 510.如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A. 23B. 10C. 22D. 6二、填空题(本大题共6小题,共24.0分)11.等腰三角形的一个外角等于130°,则顶角是______ .12.写出“对顶角相等”的逆命题______ .13.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为______.14.不等式组x>−1x<m有3个整数解,则m的取值范围是______ .15.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=______.16.如图,在锐角△ABC中,∠BAC=45°,AB=2,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.三、计算题(本大题共1小题,共6.0分)17.解不等式1−7x−18>3x−24,并把它的解集在数轴上表示出来.四、解答题(本大题共6小题,共60.0分)18.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.20.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?21.如图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BP=BQ,连结CQ.(1)观察并猜想AP与CQ之间的大小关系,并说明理由.(2)若PA=3,PB=4,PC=5,连结PQ,判断△PQC的形状并说明理由.22. 阅读下列材料:解答“已知x -y =2,且x >1,y <0,试确定x +y 的取值范围”有如下解法:解:∵x -y =2,x >1,∴y +2>1,即y >-1,又y <0,∴-1<y <0.…①同理得:1<x <2.…②由①+②得-1+1<y +x <0+2,∴x +y 的取值范围是0<x +y <2.请按照上述方法,完成下列问题:已知关于x 、y 的方程组 x +2y =5a −82x−y =−1的解都为非负数.(1)求a 的取值范围;(2)已知2a -b =1,求a +b 的取值范围;(3)已知a -b =m (m 是大于1的常数),且b ≤1,求2a +b 最大值.(用含m 的代数式表示)23. 如图,△ABC 中,∠C =90°,AB =5cm ,BC =3cm ,若动点P 从点C 开始,按C →A →B →C 的路径运动,且速度为每秒1cm ,设出发的时间为t 秒.(1)出发2秒后,求△ABP 的周长.(2)问t 满足什么条件时,△BCP 为直角三角形?(3)另有一点Q ,从点C 开始,按C →B →A →C 的路径运动,且速度为每秒2cm ,若P 、Q 两点同时出发,当P 、Q 中有一点到达终点时,另一点也停止运动.当t 为何值时,直线PQ把△ABC 的周长分成相等的两部分?答案和解析1.【答案】B【解析】解:根据轴对称图形的定义,可知第2个,第4个是轴对称图形,而第1个、第3个、第5个都不是轴对称图形.故选B.判断一个图形是否是轴对称图形,就是看是否可以存在一条直线,使得这个图形的一部分沿着这条直线折叠,能够和另一部分互相重合.本题考查轴对称图形的识别,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.【答案】C【解析】解:A、是作图语言,不符合命题的定义,不是命题;B、是作图语言,不符合命题的定义,不是命题;C、符合命题的定义,是命题;D、是一个问句,不符合命题的定义,不是命题.故选C.根据命题的定义作答.一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.一般说来,对于仸何一个命题,都可以加上“是”或“不是”,如C,可以说同旁内角是互补的.注意,作图语言与问句都不是命题.3.【答案】B【解析】解:①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选B.由于等腰三角形的两边长分别是3和6,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的三边关系与三角形周长的定义求解即可.本题考查了等腰三角形的性质与三角形的三边关系,利用分类讨论思想求解是解答本题的关键.4.【答案】D【解析】解:∵OD⊥AB,OP⊥AC,∴△ADO和△APO是直角三角形,又∵OD=OP,AO=AO,∴Rt△AOD≌△Rt△AOP(HL).故选D.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.本题考查直角三角形全等的判定方法HL.5.【答案】A【解析】解:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方向不变.A、a-1<b-1,故A选项是正确的;B、a>b,不成立,故B选项是错误的;C、a>-b,不一定成立,故C选项是错误的;D、c的值不确定,故D选项是错误的.故选A.根据不等式的性质分析判断.主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.【答案】B【解析】解:A.5,∵5不是偶数,且也不是4的倍数,∴不能作为假命题的反例;故答案A错误;B.2,∵2不是4的倍数,∴可以用来说明命题“仸何偶数都是4的倍数”是假命题的反例是2,故答案B正确;C.4,∵4是偶数,且是4的倍数,∴不能作为假命题的反例;故答案C错误;D.8,∵8是偶数,且也是4的倍数,∴不能作为假命题的反例;故答案D错误;故选:B.反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.此题主要考查了反证法的意义,在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.【答案】C【解析】解:∵P到∠A的两边的距离相等,∴P为∠A的角平分线;∵PA=PB,∴P为AB的垂直平分线,∴P为∠A的角平分线与AB的垂直平分线的交点.故选:C.首先根据P到∠A的两边的距离相等,应用角平分线的性质,可得P为∠A的角平分线;然后根据PA=PB,应用线段垂直平分线的性质,可得P为AB的垂直平分线,所以P为∠A的角平分线与AB的垂直平分线的交点,据此判断即可.此题主要考查了角平分线的性质的应用,以及线段垂直平分线的性质和应用,要熟练掌握.8.【答案】B【解析】解:∵∠B和∠ACD都是∠CAB的余角,∴∠ACD=∠B,故①正确;∵CD⊥AB,EF⊥AB,∴EF∥CD,∴∠AEF=∠CHE,∴∠CEH=∠CHE,∴CH=CE=EF,故②正确;∵角平分线AE交CD于H,∴∠CAE=∠BAE,在△ACE和△AEF中,,∴△ACE≌△AFE(AAS),∴AC=AF,故③正确;CH=CE=EF>HD,故④错误.故正确的结论为①②③.故选B.根据等角的余角相等可判断①;先判断CD∥EF,根据平行线的性质得出∠CEH=∠CHE,再由角平分线的性质可判断②;用AAS判定△ACE≌△AFE,可判断③;根据②,结合图形可判断④.本题考查了全等三角形的判定与性质及角平分线的性质,是一道综合性较强的题目,需要同学们把直角三角形的性质和三角形全等的判定等知识结合起来解答.9.【答案】A【解析】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.10.【答案】C【解析】解:∵AD∥BC,DE⊥BC,∴DE⊥AD,∠CAD=∠ACB,∠ADE=∠BED=90°,又∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB=2∠CAD,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中,DE==2.故选:C.根据直角三角形斜边上的中线的性质可得DG=AG,根据等腰三角形的性质可得∠GAD=∠GDA,根据三角形外角的性质可得∠CGD=2∠GAD,再根据平行线的性质和等量关系可得∠ACD=∠CGD,根据等腰三角形的性质可得CD=DG,再根据勾股定理即可求解.综合考查了勾股定理,等腰三角形的判定与性质和直角三角形斜边上的中线,解题的关键是证明CD=DG=3.11.【答案】80°或50°【解析】解:当50°为顶角时,其他两角都为65°、65°,当50°为底角时,其他两角为50°、80°,所以等腰三角形的顶角可以是50°,也可以是80°.故填50°或80°等腰三角形的一个外角等于130°,则等腰三角形的一个内角为50°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.12.【答案】相等的角是对顶角【解析】解:∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两个角是对顶角,简化后即为:相等的角是对顶角.将原命题的条件及结论进行交换即可得到其逆命题.此题主要考查学生对命题及逆命题的理解及运用能力.13.【答案】4【解析】解:如右图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故答案为:4.根据角平分线的性质定理,解答出即可;本题主要考查了角平分线的性质,角平分线上的点到角两边的距离相等.14.【答案】2<m≤3【解析】解:不等式的整数解是0,1,2.则m的取值范围是2<m≤3.故答案是:2<m≤3.首先确定不等式组的整数解,然后根据只有这三个整数解即可确定.本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【答案】9【解析】解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45°,…,∴9°n<90°,解得n<10.由于n为整数,故n=9.故答案为:9.根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.考查了等腰三角形的性质:等腰三角形的两个底角相等;三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和.16.【答案】2【解析】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=2,∠BAC=45°,∴BH=AB•sin45°=2×=,∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=.故答案为:.作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值,再根据AD是∠BAC的平分线可知M′H=M′N′,再由锐角三角函数的定义即可得出结论.本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.17.【答案】解:去分母得,8-(7x-1)>2(3x-2),去括号得,8-7x+1>6x-4,移项得,-7x-6x>-4-8-1,合并同类项得,-13x>-13,系数化为1得,x<1.在数轴上表示如下:【解析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错,去分母时没有分母的项也要乘以分母的最小公倍数.18.【答案】解:(1)如图所示:点D即为所求;(2)在Rt△ABC中,∠B=37°,∴∠CAB=53°,又∵AD=BD,∴∠BAD=∠B=37°,∴∠CAD=53°-37°=16°.【解析】(1)利用线段垂直平分线的作法得出D 点坐标即可;(2)利用线段垂直平分线的性质得出,∠BAD=∠B=37°,进而求出即可.此题主要考查了复杂作图以及线段垂直平分线的性质,正确利用线段垂直平分线的性质得出∠BAD=∠B=37°是解题关键.19.【答案】①证明:在△ABE 和△CBD 中,AB =CB∠ABC =∠CBD =90°BE =BD,∴△ABE ≌△CBD (SAS );②解:∵在△ABC 中,AB =CB ,∠ABC =90°,∴∠BAC =∠ACB =45°,由①得:△ABE ≌△CBD ,∴∠AEB =∠BDC ,∵∠AEB 为△AEC 的外角,∴∠AEB =∠ACB +∠CAE =30°+45°=75°,则∠BDC =75°.【解析】①利用SAS 即可得证;②由全等三角形对应角相等得到∠AEB=∠CDB ,利用外角的性质求出∠AEB 的度数,即可确定出∠BDC 的度数.此题考查了全等三角形的判定与性质,以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解本题的关键.20.【答案】解:(1)设A 种商品的单价为x 元、B 种商品的单价为y 元,由题意得: 50x +20y =88060x +30y =1080,解得 y =4x =16.答:A 种商品的单价为16元、B 种商品的单价为4元.(2)设购买A 商品的件数为m 件,则购买B 商品的件数为(2m -4)件,由题意得:16m +4(2m −4)≤296m +2m−4≥32,解得:12≤m ≤13,∵m 是整数,∴m =12或13,故有如下两种方案:方案(1):m =12,2m -4=20 即购买A 商品的件数为12件,则购买B 商品的件数为20件;方案(2):m=13,2m-4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.【解析】(1)设A种商品的单价为x元、B种商品的单价为y元,根据等量关系:①购买60件A商品的钱数+30件B商品的钱数=1080元,②购买50件A商品的钱数+20件B商品的钱数=880元分别列出方程,联立求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m-4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值范围,进而讨论各方案即可.此题考查了一元一次不等式组及二元一次方程组的应用,解答此类应用类题目的关键是仔细审题,得出等量关系,从而转化为方程或不等式解题,难度一般,第二问需要分类讨论,注意不要遗漏.21.【答案】解:(1)AP=CQ.理由如下:∵∠PBQ=60°,且BQ=BP,∴△BPQ为等边三角形,∵∠ABP+∠CBP=60°,∠CBQ+∠CBP=60°,∴∠CBQ=∠ABP,在△ABP和△CBQ中,AB=CB∠ABP=∠CBQ,BP=BQ∴△ABP≌△CBQ(SAS),∴AP=CQ;(2)∵等边△ABC和等边△BPQ中,PB=PQ=4,PA=QC=3,∵PQ2+CQ2=PC2,∴△PQC为直角三角形(勾股定理逆定理).【解析】(1)易证△ABP≌△CBQ,可得AP=CQ;(2)根据PA=CQ,PB=BQ,即可判定△PQC为直角三角形.本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了勾股定理逆定理的运用,本题中求证△ABP ≌△CBQ 是解题的关键.22.【答案】解:(1)解方程组 x +2y =5a −82x−y =−1得:y =2a −3x =a−2, ∴ 2a −3≥0a−2≥0,解得:a ≥2; (2)由2a -b =1,a ≥2,可得:1+b 2≥2,解得:b ≥3,∴a +b ≥5;(3)由a -b =m ,a ≥2,可得m +b ≥2,∴b ≥2-m ,∴2-m ≤b ≤1,同理可得:2≤a ≤1+m ,∴6-m ≤2a +b ≤3+2m ,∴最大值为3+2m .【解析】(1)先把a 当作已知求出x 、y 的值,再根据x 、y 的取值范围得到关于a 的一元一次不等式组,求出a 的取值范围即可;(2)根据阅读材料所给的解题过程,分别求得a 、b 的取值范围,然后再来求a+b 的取值范围;(3)根据阅读材料所给的解题过程,分别求得a 、b 的取值范围,然后再来求2a+b 的取值范围,即可得到最大值.本题考查了一元一次不等式(组)的应用,解答本题的关键是仔细阅读材料,理解解题过程.23.【答案】解:(1)∵∠C =90°,AB =5cm ,BC =3cm , ∴AC =4cm ,动点P 从点C 开始,按C →B →A →C 的路径运动,速度为每秒1cm , ∴出发2秒后,则CP =2cm ,∵∠C =90°,∴PB = 22+32= 13cm ,∴△ABP 的周长为:AP +PB +AB =2+5+ 13=7+ 13(cm );(2)∵AC =4,动点P 从点C 开始,按C →A →B →C 的路径运动,且速度为每秒1cm , ∴P 在AC 上运动时△BCP 为直角三角形,∴0<t ≤4,当P 在AB 上时,CP ⊥AB 时,△BCP 为直角三角形,∵12×AB ×CP =12×AC ×BC ,∴1 2×5×CP=12×3×4,解得:CP=125cm,∴AP= AC2−CP2=165cm,∴AC+AP=365cm,∵速度为每秒1cm,∴t=365,综上所述:当0<t≤4或t=365,△BCP为直角三角形;(3)当P点在AC上,Q在AB上,则PC=t,BQ=2t-3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t-3=3,∴t=2;当P点在AB上,Q在AC上,则AC=t-4,AQ=2t-8,∵直线PQ把△ABC的周长分成相等的两部分,∴t-4+2t-8=6,∴t=6,∴当t=2或6秒时,直线PQ把△ABC的周长分成相等的两部分.【解析】(1)首先利用勾股定理计算出AC长,根据题意可得CP=2cm,再利用勾股定理计算出PB的长,进而可得△ABP的周长;(2)当P在AC上运动时△BCP为直角三角形,由此可得0<t≤4;当P在AB上时,CP⊥AB时,△BCP为直角三角形,首先计算出CP的长,然后再利用勾股定理计算出AP长,进而可得答案.(3)分类讨论:当P点在AC上,Q在AB上,则PC=t,BQ=2t-3,t+2t-3=3;当P 点在AB上,Q在AC上,则AC=t-4,AQ=2t-8,t-4+2t-8=6.此题主要考查了勾股定理以及其逆定理等知识,利用分类讨论的思想求出是解题关键.。

2017-2018学年八年级数学上学期期中考试原(含答案)

2017-2018学年八年级数学上学期期中考试原(含答案)

2017-2018学年上学期期中原创卷A卷八年级数学(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:人教版第11~13章。

第Ⅰ卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C .四边形的内角和与外角和相等D .角是轴对称图形6.如图,ABC BAD △≌△,点A 和点B ,点C 和点D 是对应点.如果AB =6厘米,BD =5厘米,AD =4厘米,那么BC 的长是 A .6 cmB .5 cmC .4 cmD .不能确定7.如图,ABC △中,AB AC =,点D 在AC 边上,且BD BC AD ==,则A ∠的度数为 A .36°B .45°C .54°D .72°8.如图,在ABC △中,∠BAC =56°,∠ABC =74°,BP 、CP 分别平分∠ABC 和∠ACB ,则∠BPC =A .102°B .112°C .115°D .118°9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',,11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36 cm,BC =24 cm, 2120cm ABC S =△,DE 长是A .4 cmB . 4.8 cmC . 5 cmD .无法确定12.使两个直角三角形全等的条件是A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 13.如图,已知40AOB ∠=︒,在AOB ∠的两边OA OB 、上分别存在点Q 、点P ,过点Q 作直线QR OB ∥,当OP QP =时,∠PQR 的度数是 A .60°B .80°C .100°D .120°14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 215.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.17.一个四边形,截一刀后得到的新多边形的内角和为__________. 18.若等腰三角形的一个角为80︒,则顶角为__________.19.已知点A (2a +3b ,−2)和A '(−1,3a +b )关于y 轴对称,则a +b 的值为__________.20.如图,ABC △中,90C ∠=︒,60BAC ∠=︒,AD 是角平分线,若8BD =,则CD 等于__________.21.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是ABC △的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.23.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.24.(本题满分8分)已知:如图,在ABC △中, D 为BC 上的一点, AD 平分EDC ∠,且E B ∠=∠, DE DC =.求证: AB AC =.25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△; (2)线段CC ′被直线l ; (3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.27.(本小题满分9分)如图,在Rt ABC △中,∠A =90°,AB=AC=4 cm ,若O 是BC 的中点,动点M 在AB 上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.△边AB上一动点(不与A,B重合)分别过点A,B向直线CD作垂28.(本小题满分9分)已知点D是ABC线,垂足分别为E,F,O为边AB的中点.(1)如图1,当点D与点O重合时,AE与BF的位置关系是____________,OE与OF的数量关系是__________;(2)如图2,当点D在线段AB上不与点O重合时,试判断OE与OF的数量关系,并给予证明;(3)如图3,当点D在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.(备注:直角三角形中,斜边上的中线等于斜边的一半)2017-2018学年上学期期中原创卷A卷八年级数学答案一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm【答案】B2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D【答案】C△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.【答案】D4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形【答案】B5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C.四边形的内角和与外角和相等D.角是轴对称图形【答案】A△≌△,点A和点B,点C和点D是对应点.如果AB=6厘米,BD=5厘米,AD=4厘米,6.如图,ABC BAD那么BC的长是A.6 cm B.5 cm C.4 cm D.不能确定【答案】B解:∵△ABC≌△BAD,对应为点A对点B,点C对点D,∴AC=BD∵BD=5cm(已知)∴AC=5cm故选B.7.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A为A.36° B.45° C.54° D.72°【答案】A∵BD=BC=AD,AC=AB,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°∵∠A+∠C+∠ABC=180°∴x+2x+2x= 180,∴x=36,∴∠A=36° .故选B .△中,∠BAC=56°,∠ABC=74°,BP、CP分别平分∠ABC和∠ACB,则∠BPC= 8.如图,在ABCA.102°B.112°C.115°D.118°【答案】D∵∠BAC=56°,∠A+∠ABC+∠ACB= 180°,∴∠ABC+∠ACB2=62°∵BP 、CP 分别平分∠ABC 和∠ACB , ∴∠BPC +∠ABC+∠ACB2= 180°∴∠BPC=118° .9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个【答案】A10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',, 【答案】C11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36cm ,BC =24cm ,2120cm ABC S =△,DE 长是( )A .4 cmB . 4.8 cmC . 5 cmD .无法确定【答案】A12.使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 【答案】D13.如图,已知∠AOB=40°,在∠AOB 的两边OA 、OB 上分别存在点Q 、点P ,过点Q 作直线QR ∥OB ,当OP=QP 时,∠PQR ∠的度数是( ) A .60°B .80°C .100°D .120°【答案】C14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 2【答案】B15.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC【答案】B第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.【答案】117°解:∵∠1是OABC 的外角,且∠B=45°,∠C=72° ∴∠1=∠A+∠B=45°+72°=117° . 故答案为: 117°17.一个四边形,截一刀后得到的新多边形的内角和为__________.【答案】180°或360°或540°解:∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和为180°或360°或540°故答案为:180°或360°或540°18.若等腰三角形的一个角为80 ,则顶角为__________.【答案】80°或20°解:(1 )当80°的角是顶角时,顶角是80°;(2 )当80°的角是底角时,顶角的度数是:180°-80°- 80°= 100°- 80°=20°综上,可得等腰三角形的顶角是20°或80°故选:C.19.已知点A(2a+3b,−2)和A'(−1,3a+b)关于y轴对称,则a+b的值为__________.【答案】0解:∵点A( 2a+3b,−2 )和点A′ (−1 ,3a+b )关于y轴对称∴2a+3b=1,3a+b=−2∴2 ( 2a+3b ) +3a+b=1×2+ (−2 ) =0∴a+b=020.如图,△ABC中,∠C =90°,∠BAC=60°,AD是角平分线,若BD=8,则CD等于__________.【答案】4解:∵∠C=90°,∠BAC=60°∴∠B=30°∵AD是角平分线∴∠DAB=∠CAD=∠B=30°∴AD=BD=8∴CD=12AB=4 故答案为:421.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.【答案】4解:根据垂线段最短,当DP ⊥BC 的时候, DP 的长度最小,∵BD ⊥CD ,即∠BDC=90°,又∠A=90°∴∠A=∠BDC ,又∠ADB=∠C∴∠ABD=∠CBD ,又DA ⊥BA , DP ⊥BC∴AD=DP ,又AD=4∴DP=4故答案为: 4三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是△ABC 的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.【答案】解: ∵ (b −3)2≥0,|c −4|≥0且(b −3)2 +|c −4|=0 ,∴(b −3)2=0,|c −4|=0,∴b =3 , c =4∵4−3<a <4+3且a 为奇数,∴a =3或5当a =3时,△ABC 的周长是3+4+3=10当a =5时,△ABC 的周长是3+4+5=1223.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.【答案】解:设∠1=5x °,∠2=7x °,在△ABE 中,∠B =180°−∠A −∠2=180°−100°−7x °=80°−7x °在△CDE 中,∠CDE =180°−∠C −∠1−∠2=180°−75°−5x °−7x °=105°− 12x °, ∵AB//CD ,∴∠B=∠CDE ,∴80°−7x°=105°− 12x°解得:x =5,∴∠B =80°−7x °=45°24.(本题满分8分)已知:如图,在△ABC 中, D 为BC 上的一点, AD 平分∠EDC ,且E B ∠=∠, DE DC =.求证: AB AC =.【答案】证明:∵AD 平分∠EDC∴∠ADE=∠ADC ,在△AED 和△ACD 中{DE =DC∠ADE =∠ADC AD =AD∴△AED ≌△ACD ( SAS )∴∠C=∠E又∵∠E=∠B∴∠C=∠B∴AB=AC25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△;(2)线段CC ′被直线l ;(3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.【答案】( 1 )无(2)垂直平分(3) 3(4)无26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.【答案】解: ∵∠BCE=∠ACD=90°∴∠3+∠4=∠4+∠5∴∠3=∠5在△ABC 和△DEC 中,{∠l =∠D∠3=∠5BC =CE∴△ABC ≌△DEC ( AAS ),∴AC=CD ;(2 ) ∵∠ACD=90°,AC=CD ,∴∠2=∠D=45°∵AE=AC∴∠4=∠6=67.5°∴∠DEC=180°-∠6=112.5°.27.(本小题满分9分)如图,在Rt ABC△中,∠A=90°,AB=AC=4 cm,若O是BC的中点,动点M在AB上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.【答案】解:(1)连接OA∵∠A=90°,AB=AC又∵O是BC的中点∴OA=OB=OC,(直角三角形中,斜边上的中线是斜边的一半)∴∠CAO=∠BAO=45°在△ONA和△OMB中{OA=OB∠CAO=∠BAO AN=BM∴△ONA≌△OMB ( SAS)∴OM=ON ( 全等三角形的对应边相等)(2)不变,理由如下:由上知△ONA≌△OMB∴S△ONA=S△OMB∴S四边形ANOM=S△ONA+S△OMA=S△OMB+S△OMA=S△OAB∴S四边形ANOM=S△OAB=12S△ABC=4(cm2)28.(本小题满分9分)已知点D 是ABC △边AB 上一动点(不与A ,B 重合)分别过点A ,B 向直线CD 作垂线,垂足分别为E ,F ,O 为边AB 的中点.(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是____________,OE 与OF 的数量关系是__________;(2)如图2,当点D 在线段AB 上不与点O 重合时,试判断OE 与OF 的数量关系,并给予证明;(3)如图3,当点D 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路. (备注:直角三角形中,斜边上的中线等于斜边的一半)【答案】解:(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是AE//BF , OE 与OF 的数量关系是OE=OF ,理由是:∵O 为AB 的中点∴AQ=BO∵AE ⊥CO, BF ⊥CO∴AE//BF ,∠AEO=∠BFO=90°在△AEO 和△BFO 中{∠AOE =∠BOF∠AEO =∠BFO AO =BO∴△AEO ≌△BFO ,∴OE=OF ,故答案:AE//BF ;OE=OF(2)OE=OF证明:延长EO 交BF 于M∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO 和△BMO 中{∠AOE =∠BOM∠AEO =∠BMO AO =BO∴△AEO ≌△BMO∴EO=MO∵∠BFE=90°∴OE=OF(3)当点D在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EO交FB于M,∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO和△BMO中{∠AOE=∠BOM∠AEO=∠BMOAO=BO∴△AEO≌△BMO∴EO=DO∵∠BFE=90°∴OE=OF。

2018学年浙江省杭州市人教版八年级数学上学期期中考试试卷(有答案和详细解析)

2018学年浙江省杭州市人教版八年级数学上学期期中考试试卷(有答案和详细解析)

2018学年浙江省杭州市人教版八年级数学上学期期中考试试卷(有答案和详细解析)一、单选题(共10题;共20分)1. ( 2分) 下面4个汽车标志图案,其中不是轴对称图形的是()A. B. C. D.2. ( 2分) 下列长度的三条线段首尾连接不能组成三角形的是( )A. 2,3,5B. 5,5,5C. 6,6,8D. 7,8,93. ( 2分) 某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()A. 4种B. 3种C. 2种 D. 1种4. ( 2分) 如图,工人师傅安装门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.三角形的稳定性5. ( 2分) 如果一个多边形的内角和是其外角和的两倍,那么这个多边形是()A. 六边形B. 五边形C. 四边形 D. 三角形6. ( 2分) 如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A. 6 个B. 7 个C. 8个 D. 9个7. ( 2分) 点M(3,﹣2)关于y轴对称的点的坐标为()A. (﹣3,2)B. (﹣3,﹣2)C. (3,﹣2)D. (2,﹣3)8. ( 2分) 如图,已知AC与BD相交于点O,OA=OC,OB=OD,则图中有多少对三角形全等()A. 1B. 2C. 3 D . 49. ( 2分) 如图,AB=AC,添加下列条件,不能使△ABE≌△ACD的是()A. ∠B=∠CB. ∠AEB=∠ADCC. AE=AD D . BE=DC10. ( 2分) 如果AD是△ABC的中线,那么下列结论一定成立的有()①BD=CD;②AB=AC;③S△ABD= S△ABC.A.3个B.2个C.1个D.0个二、填空题(共6题;共6分)11. ( 1分) 如图,将△ABC沿直线AB向右平移到达△BDE的位置,若∠CAB=55°,∠ABC=100°,则∠CBE的度数为________.12. ( 1分) 已知△ABC的两条边的长度分别为3cm,6cm,若△ABC的周长为偶数,则第三条边的长度是________ cm.13. ( 1分) 如果点P(4,﹣5)和点Q(a,b)关于y轴对称,则a+b=________.14. ( 1分) 一个n边形的每一个外角都是60°,则这个n边形的内角和是________15. ( 1分) 如图,DE是三角形ABC的边AB的垂直平分线,分别交AB、BC于D、E,AE平分∠BAC,若∠B=30度,则∠C=________ 度.16. ( 1分) 如图,已知△ABC的周长为27cm,AC=9cm,BC边上中线AD=6cm,△ABD 周长为19cm,AB=________.三、解答题(共10题;共65分)17. ( 5分) 先化简,再求值,其中.18. ( 5分) 已知等腰三角形的周长是14cm.若其中一边长为4cm,求另外两边长.19. ( 5分) 如图,在△ABC中,D是BC的中点,,DE⊥AB于E,DF⊥AC于F,BE=CF.求证:AD是△ABC的角平分线.20. ( 5分) 如图,已知DA⊥AB,DE平分∠ADC,CE平分∠BCD,∠1+ ∠2=90°.求证:BC ⊥ AB.21. ( 5分) 如图,∠AOB=30°,点P是∠AOB内一点,PO=8,在∠AOB的两边分别有点R、Q(均不同于O),求△PQR周长的最小值.22. ( 5分) 如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线。

浙江省杭州市--八年级(上)期中数学试卷(含答案)

浙江省杭州市--八年级(上)期中数学试卷(含答案)

八年级(上)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列图案中,是轴对称图形的有()个.A. 1B. 2C. 3D. 42.下列语句是命题的是()A. 作直线AB的垂线B. 在线段AB上取点CC. 同旁内角互补D. 垂线段最短吗?3.已知等腰△两条边的长分别是3和6,则它的周长是()A. 12B. 15C. 12或15D. 15或184.如图,OD⊥AB于D,OP⊥AC于P,且OD=OP,则△AOD与△AOP全等的理由是()A.SSSB. ASAC. SSAD. HL5.若a<b,则下列各式中一定成立的是()A. a−1<b−1B. a3>b3C. −a<−bD. ac<bc6.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是()A. 5B. 2C. 4D. 87.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB、下列确定P点的方法正确的是()A. P为∠A、∠B两角平分线的交点B. P为AC、AB两边上的高的交点C. P为∠A的角平分线与AB的垂直平分线的交点D. P为AC、AB两边的垂直平分线的交点8.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,下列结论:①∠ACD=∠B;②CH=CE=EF;③AC=AF;④CH=HD.其中正确的结论为()A. ①②④B. ①②③C. ②③D. ①③9.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC 于点E,则PD+PE的长是()A.4.8B. 4.8或3.8C. 3.8D. 510.如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A.2√3B. √10C. 2√2D. √6二、填空题(本大题共6小题,共24.0分)11.等腰三角形的一个外角等于130°,则顶角是______ .12.写出“对顶角相等”的逆命题______ .13.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为______.14.不等式组{x>−1x<m有3个整数解,则m的取值范围是______ .15.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=______.16.如图,在锐角△ABC中,∠BAC=45°,AB=2,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.三、计算题(本大题共1小题,共6.0分)17.解不等式1−7x−18>3x−24,并把它的解集在数轴上表示出来.四、解答题(本大题共6小题,共60.0分)18.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.20.某商店购买60件A 商品和30件B 商品共用了1080元,购买50件A 商品和20件B 商品共用了880元.(1)A 、B 两种商品的单价分别是多少元?(2)已知该商店购买B 商品的件数比购买A 商品的件数的2倍少4件,如果需要购买A 、B 两种商品的总件数不少于32件,且该商店购买的A 、B 两种商品的总费用不超过296元,那么该商店有哪几种购买方案?21.如图,P 是等边三角形ABC 内的一点,连结PA ,PB ,PC ,以BP 为边作∠PBQ =60°,且BP =BQ ,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并说明理由. (2)若PA =3,PB =4,PC =5,连结PQ ,判断△PQC 的形状并说明理由.22.阅读下列材料:解答“已知x -y =2,且x >1,y <0,试确定x +y 的取值范围”有如下解法: 解:∵x -y =2,x >1,∴y +2>1,即y >-1, 又y <0,∴-1<y <0.…① 同理得:1<x <2.…②由①+②得-1+1<y +x <0+2,∴x +y 的取值范围是0<x +y <2. 请按照上述方法,完成下列问题:已知关于x 、y 的方程组{x +2y =5a −82x−y=−1的解都为非负数.(1)求a 的取值范围;(2)已知2a -b =1,求a +b 的取值范围;(3)已知a -b =m (m 是大于1的常数),且b ≤1,求2a +b 最大值.(用含m 的代数式表示)23.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C 的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t满足什么条件时,△BCP为直角三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?答案和解析1.【答案】B【解析】解:根据轴对称图形的定义,可知第2个,第4个是轴对称图形,而第1个、第3个、第5个都不是轴对称图形.故选B.判断一个图形是否是轴对称图形,就是看是否可以存在一条直线,使得这个图形的一部分沿着这条直线折叠,能够和另一部分互相重合.本题考查轴对称图形的识别,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.【答案】C【解析】解:A、是作图语言,不符合命题的定义,不是命题;B、是作图语言,不符合命题的定义,不是命题;C、符合命题的定义,是命题;D、是一个问句,不符合命题的定义,不是命题.故选C.根据命题的定义作答.一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.一般说来,对于任何一个命题,都可以加上“是”或“不是”,如C,可以说同旁内角是互补的.注意,作图语言与问句都不是命题.3.【答案】B【解析】解:①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选B.由于等腰三角形的两边长分别是3和6,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的三边关系与三角形周长的定义求解即可.本题考查了等腰三角形的性质与三角形的三边关系,利用分类讨论思想求解是解答本题的关键.4.【答案】D【解析】解:∵OD⊥AB,OP⊥AC,∴△ADO和△APO是直角三角形,又∵OD=OP,AO=AO,∴Rt△AOD≌△Rt△AOP(HL).故选D.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.本题考查直角三角形全等的判定方法HL.5.【答案】A【解析】解:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方向不变.A、a-1<b-1,故A选项是正确的;B、a>b,不成立,故B选项是错误的;C、a>-b,不一定成立,故C选项是错误的;D、c的值不确定,故D选项是错误的.故选A.根据不等式的性质分析判断.主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.【答案】B【解析】解:A.5,∵5不是偶数,且也不是4的倍数,∴不能作为假命题的反例;故答案A错误;B.2,∵2不是4的倍数,∴可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是2,故答案B正确;C.4,∵4是偶数,且是4的倍数,∴不能作为假命题的反例;故答案C错误;D.8,∵8是偶数,且也是4的倍数,∴不能作为假命题的反例;故答案D错误;故选:B.反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.此题主要考查了反证法的意义,在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.【答案】C【解析】解:∵P到∠A的两边的距离相等,∴P为∠A的角平分线;∵PA=PB,∴P为AB的垂直平分线,∴P为∠A的角平分线与AB的垂直平分线的交点.故选:C.首先根据P到∠A的两边的距离相等,应用角平分线的性质,可得P为∠A的角平分线;然后根据PA=PB,应用线段垂直平分线的性质,可得P为AB的垂直平分线,所以P为∠A的角平分线与AB的垂直平分线的交点,据此判断即可.此题主要考查了角平分线的性质的应用,以及线段垂直平分线的性质和应用,要熟练掌握.8.【答案】B【解析】解:∵∠B和∠ACD都是∠CAB的余角,∴∠ACD=∠B,故①正确;∵CD⊥AB,EF⊥AB,∴EF∥CD,∴∠AEF=∠CHE,∴∠CEH=∠CHE,∴CH=CE=EF,故②正确;∵角平分线AE交CD于H,∴∠CAE=∠BAE,在△ACE和△AEF中,,∴△ACE≌△AFE(AAS),∴AC=AF,故③正确;CH=CE=EF>HD,故④错误.故正确的结论为①②③.故选B.根据等角的余角相等可判断①;先判断CD∥EF,根据平行线的性质得出∠CEH=∠CHE,再由角平分线的性质可判断②;用AAS判定△ACE≌△AFE,可判断③;根据②,结合图形可判断④.本题考查了全等三角形的判定与性质及角平分线的性质,是一道综合性较强的题目,需要同学们把直角三角形的性质和三角形全等的判定等知识结合起来解答.9.【答案】A【解析】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.10.【答案】C【解析】解:∵AD∥BC,DE⊥BC,∴DE⊥AD,∠CAD=∠ACB,∠ADE=∠BED=90°,又∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB=2∠CAD,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中,DE==2.故选:C.根据直角三角形斜边上的中线的性质可得DG=AG,根据等腰三角形的性质可得∠GAD=∠GDA,根据三角形外角的性质可得∠CGD=2∠GAD,再根据平行线的性质和等量关系可得∠ACD=∠CGD,根据等腰三角形的性质可得CD=DG,再根据勾股定理即可求解.综合考查了勾股定理,等腰三角形的判定与性质和直角三角形斜边上的中线,解题的关键是证明CD=DG=3.11.【答案】80°或50°【解析】解:当50°为顶角时,其他两角都为65°、65°,当50°为底角时,其他两角为50°、80°,所以等腰三角形的顶角可以是50°,也可以是80°.故填50°或80°等腰三角形的一个外角等于130°,则等腰三角形的一个内角为50°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.12.【答案】相等的角是对顶角【解析】解:∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两个角是对顶角,简化后即为:相等的角是对顶角.将原命题的条件及结论进行交换即可得到其逆命题.此题主要考查学生对命题及逆命题的理解及运用能力.13.【答案】4【解析】解:如右图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故答案为:4.根据角平分线的性质定理,解答出即可;本题主要考查了角平分线的性质,角平分线上的点到角两边的距离相等.14.【答案】2<m≤3【解析】解:不等式的整数解是0,1,2.则m的取值范围是2<m≤3.故答案是:2<m≤3.首先确定不等式组的整数解,然后根据只有这三个整数解即可确定.本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【答案】9【解析】解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45°,…,∴9°n<90°,解得n<10.由于n为整数,故n=9.故答案为:9.根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.考查了等腰三角形的性质:等腰三角形的两个底角相等;三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和.16.【答案】√2【解析】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=2,∠BAC=45°,∴BH=AB•sin45°=2×=,∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=.故答案为:.作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值,再根据AD是∠BAC的平分线可知M′H=M′N′,再由锐角三角函数的定义即可得出结论.本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.17.【答案】解:去分母得,8-(7x-1)>2(3x-2),去括号得,8-7x+1>6x-4,移项得,-7x-6x>-4-8-1,合并同类项得,-13x>-13,系数化为1得,x<1.在数轴上表示如下:【解析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错,去分母时没有分母的项也要乘以分母的最小公倍数.18.【答案】解:(1)如图所示:点D即为所求;(2)在Rt△ABC中,∠B=37°,∴∠CAB=53°,又∵AD=BD,∴∠BAD=∠B=37°,∴∠CAD=53°-37°=16°.【解析】(1)利用线段垂直平分线的作法得出D 点坐标即可;(2)利用线段垂直平分线的性质得出,∠BAD=∠B=37°,进而求出即可.此题主要考查了复杂作图以及线段垂直平分线的性质,正确利用线段垂直平分线的性质得出∠BAD=∠B=37°是解题关键.19.【答案】①证明:在△ABE 和△CBD 中,{AB =CB ∠ABC =∠CBD =90°BE =BD,∴△ABE ≌△CBD (SAS );②解:∵在△ABC 中,AB =CB ,∠ABC =90°,∴∠BAC =∠ACB =45°,由①得:△ABE ≌△CBD ,∴∠AEB =∠BDC ,∵∠AEB 为△AEC 的外角,∴∠AEB =∠ACB +∠CAE =30°+45°=75°,则∠BDC =75°.【解析】①利用SAS 即可得证;②由全等三角形对应角相等得到∠AEB=∠CDB ,利用外角的性质求出∠AEB 的度数,即可确定出∠BDC 的度数.此题考查了全等三角形的判定与性质,以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解本题的关键.20.【答案】解:(1)设A 种商品的单价为x 元、B 种商品的单价为y 元,由题意得: {50x +20y =88060x+30y=1080,解得{y =4x=16.答:A 种商品的单价为16元、B 种商品的单价为4元.(2)设购买A 商品的件数为m 件,则购买B 商品的件数为(2m -4)件,由题意得: {16m +4(2m −4)≤296m+2m−4≥32,解得:12≤m ≤13,∵m 是整数,∴m =12或13,故有如下两种方案:方案(1):m =12,2m -4=20 即购买A 商品的件数为12件,则购买B 商品的件数为20件;方案(2):m=13,2m-4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.【解析】(1)设A种商品的单价为x元、B种商品的单价为y元,根据等量关系:①购买60件A商品的钱数+30件B商品的钱数=1080元,②购买50件A商品的钱数+20件B商品的钱数=880元分别列出方程,联立求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m-4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值范围,进而讨论各方案即可.此题考查了一元一次不等式组及二元一次方程组的应用,解答此类应用类题目的关键是仔细审题,得出等量关系,从而转化为方程或不等式解题,难度一般,第二问需要分类讨论,注意不要遗漏.21.【答案】解:(1)AP=CQ.理由如下:∵∠PBQ=60°,且BQ=BP,∴△BPQ为等边三角形,∵∠ABP+∠CBP=60°,∠CBQ+∠CBP=60°,∴∠CBQ=∠ABP,在△ABP和△CBQ中,{AB=CB∠ABP=∠CBQ BP=BQ,∴△ABP≌△CBQ(SAS),∴AP=CQ;(2)∵等边△ABC和等边△BPQ中,PB=PQ=4,PA=QC=3,∵PQ2+CQ2=PC2,∴△PQC为直角三角形(勾股定理逆定理).【解析】(1)易证△ABP≌△CBQ,可得AP=CQ;(2)根据PA=CQ,PB=BQ,即可判定△PQC为直角三角形.本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了勾股定理逆定理的运用,本题中求证△ABP ≌△CBQ 是解题的关键. 22.【答案】解:(1)解方程组{x +2y =5a −82x−y=−1得:{y =2a −3x=a−2,∴{2a −3≥0a−2≥0,解得:a ≥2;(2)由2a -b =1,a ≥2,可得:1+b 2≥2,解得:b ≥3,∴a +b ≥5;(3)由a -b =m ,a ≥2,可得m +b ≥2,∴b ≥2-m ,∴2-m ≤b ≤1,同理可得:2≤a ≤1+m ,∴6-m ≤2a +b ≤3+2m ,∴最大值为3+2m .【解析】(1)先把a 当作已知求出x 、y 的值,再根据x 、y 的取值范围得到关于a 的一元一次不等式组,求出a 的取值范围即可;(2)根据阅读材料所给的解题过程,分别求得a 、b 的取值范围,然后再来求a+b 的取值范围;(3)根据阅读材料所给的解题过程,分别求得a 、b 的取值范围,然后再来求2a+b 的取值范围,即可得到最大值.本题考查了一元一次不等式(组)的应用,解答本题的关键是仔细阅读材料,理解解题过程.23.【答案】解:(1)∵∠C =90°,AB =5cm ,BC =3cm , ∴AC =4cm ,动点P 从点C 开始,按C →B →A →C 的路径运动,速度为每秒1cm , ∴出发2秒后,则CP =2cm ,∵∠C =90°,∴PB =√22+32=√13cm ,∴△ABP 的周长为:AP +PB +AB =2+5+√13=7+√13(cm );(2)∵AC =4,动点P 从点C 开始,按C →A →B →C 的路径运动,且速度为每秒1cm , ∴P 在AC 上运动时△BCP 为直角三角形,∴0<t ≤4,当P 在AB 上时,CP ⊥AB 时,△BCP 为直角三角形,∵12×AB ×CP =12×AC ×BC ,∴12×5×CP =12×3×4, 解得:CP =125cm ,∴AP =√AC 2−CP 2=165cm ,∴AC +AP =365cm ,∵速度为每秒1cm ,∴t =365,综上所述:当0<t ≤4或t =365,△BCP 为直角三角形;(3)当P 点在AC 上,Q 在AB 上,则PC =t ,BQ =2t -3,∵直线PQ 把△ABC 的周长分成相等的两部分,∴t +2t -3=3,∴t =2;当P 点在AB 上,Q 在AC 上,则AC =t -4,AQ =2t -8,∵直线PQ 把△ABC 的周长分成相等的两部分,∴t -4+2t -8=6,∴t =6,∴当t =2或6秒时,直线PQ 把△ABC 的周长分成相等的两部分.【解析】 (1)首先利用勾股定理计算出AC 长,根据题意可得CP=2cm ,再利用勾股定理计算出PB 的长,进而可得△ABP 的周长;(2)当P 在AC 上运动时△BCP 为直角三角形,由此可得0<t≤4;当P 在AB 上时,CP ⊥AB 时,△BCP 为直角三角形,首先计算出CP 的长,然后再利用勾股定理计算出AP 长,进而可得答案.(3)分类讨论:当P 点在AC 上,Q 在AB 上,则PC=t ,BQ=2t-3,t+2t-3=3;当P 点在AB 上,Q 在AC 上,则AC=t-4,AQ=2t-8,t-4+2t-8=6.此题主要考查了勾股定理以及其逆定理等知识,利用分类讨论的思想求出是解题关键.。

浙江省杭州市八年级数学上册期中考试试卷

浙江省杭州市八年级数学上册期中考试试卷

浙江省杭州市八年级数学上册期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·和平模拟) 在平面直角坐标系中,点(3,﹣4)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2分) (2017八下·海淀期末) 如图是某一天北京与上海的气温(单位:)随时间(单位:时)变化的图象.根据图中信息,下列说法错误的是()A . 12时北京与上海的气温相同B . 从8时到11时,北京比上海的气温高C . 从4时到14时,北京、上海两地的气温逐渐升高D . 这一天中上海气温达到的时间大约在上午10时3. (2分) (2016七下·河源期中) 要画一个面积为20cm2的长方形,其长为xcm,宽为ycm,在这一变化过程中,常量与变量分别为()A . 常量为20,变量为x,yB . 常量为20、y,变量为xC . 常量为20、x,变量为yD . 常量为x、y,变量为204. (2分) (2019八下·左贡期中) 下列各点中在函数y=2x+1的图象上的是()A . (1,-2)B . (-1,-1)C . (0,2)D . (2,0)5. (2分)已知函数y=(k-1)为正比例函数,则()A . k≠±1B . k=±1C . k=-1D . k=16. (2分)已知点A(1,2),AC⊥x轴于点C,则点C的坐标为()A . (1,0)B . (2,0)C . (0,2)D . (0,1)7. (2分) (2017九上·信阳开学考) 点A(﹣2,y1),B(3,y2)都在一次函数y=﹣2x+3的图象上,则y1 ,y2的大小关系是()A . y1>y2B . y1=y2C . y1<y2D . 不能确定8. (2分)在平面直角坐标系中,若点P(x-2,x)在第二象限,则x的取值范围是()A . 0<x<2B . x<2C . x>0D . x>29. (2分) (2017七下·东明期中) 远通工程队承建一条长30km的乡村公路,预计工期为120天,若每天修建公路的长度保持不变,则还未完成的公路长度y(km)与施工时间x(天)之间的关系式为()A . y=30﹣ xB . y=30+ xC . y=30﹣4xD . y= x11. (2分)(2017·蓝田模拟) 若一个正比例函数的图象经过点(﹣2,1),则这个图象也一定经过点()A . (﹣,1)B . (2,﹣1)C . (﹣1,2)D . (1,)12. (2分)(2017·营口模拟) 二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a+b+c<0;②c>1;③b2﹣4ac>0;④2a﹣b<0,其中正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)13. (1分)(2017·广元) 在函数y= 中,自变量x的取值范围是________.14. (1分) (2017八下·闵行期末) 函数y=﹣ x+1的图象不经过第________象限.15. (1分)(2018·新乡模拟) 一次函数y=(k−2)x+3−k的图象经过第一、二、三象限,则k的取值范围是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年浙江省杭州市大江东区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列图形中,是轴对称图形的是()A. B.C.D.2.(3分)下列不等式中是一元一次不等式的是()A.y+3≥x B.3﹣4<0 C.2x2﹣4≥1 D.2﹣x≤43.(3分)做一个三角形的木架,以下四组木棒中,符合条件的是()A.3cm,2cm,1cm B.3cm,4cm,5cm C.5cm,12cm,6cm D.6cm,6cm,12cm4.(3分)下列命题为假命题的是()A.全等三角形对应边相等,对应角相等B.角平分线上的点到角两边距离相等C.到线段两端点距离相等的点在这条线段的垂直平分线上D.等腰三角形一边上的中线、高线和所对角的角平分线互相重合5.(3分)如图,把△ABC纸片的∠A沿DE折叠,点A落在四边形CBDE外,则∠1、∠2与∠A的关系是()A.∠1﹣∠A=2∠2 B.∠2+∠1=2∠A C.∠1﹣∠2=2∠A D.2∠2+2∠A=∠1 6.(3分)如图,Rt△ABC中,∠C=90°,AC=4,BC=3,DE是AC边的中垂线,分别交AC,AB于点E,D,则△DBC的周长为()A.6 B.7 C.8 D.97.(3分)如图,点P是∠BAC的平分线上一点,PB⊥AB于B,且PB=5cm,AC=12,则△APC的面积是()A.30cm2B.40cm2C.50cm2D.60cm28.(3分)如果不等式组有解,那么m的取值范围是()A.m>8 B.m<8 C.m≥8 D.m≤89.(3分)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4等于()A.4 B.5 C.6 D.1410.(3分)如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=3,EM+CM的最小值为()A.4 B.C.D.3二、填空题(共6小题,每小题4分,满分24分)11.(4分)把命题“对顶角相等”改写成“如果…那么…”的形式:.12.(4分)不等式|3x﹣7|≤10的所有整数解之和是.13.(4分)圆周率π=3.1415926…,取近似值3.142,是精确到位;近似数2.428×105精确到位.14.(4分)如图,A、B、C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积.15.(4分)一块直角三角形绿地,两直角边长分别为3m,4m,斜边长为5m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则共有种扩充方法,其中面积最大的为m2.16.(4分)如图:长方形ABCD中,AD=10,AB=4,点Q是BC的中点,点P在AD边上运动,当△BPQ是等腰三角形时,AP的长为.三、解答题(共7小题,满分66分)17.(6分)尺规作图:已知AB=3,BC=4,AC=5(单位长度线段已知),请画出这个三角形,保留痕迹,不写画法,并求出AC边上的高.18.(8分)解不等式(1)6x﹣3>2x﹣7;(2)1﹣≤;(3),将解在数轴上表示.19.(8分)如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于D,且BC=CD.(1)求证:△BCE≌△DCF;(2)若DF=5,BC=13,求CE的长.20.(10分)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?21.(10分)已知:如图,在△ABC中,AB=AC,∠BAC=90°,D是BC上一点,EC⊥BC,EC=BD,DF=FE.求证:(1)△ABD≌△ACE;(2)AF⊥DE.22.(12分)如图,把长方形ABCD沿AC折叠,AD落在AD′处,AD′交BC于点E,已知AB=2cm,BC=4cm.(长方形的对边相等,四个角都为直角)(1)求证:AE=EC;(2)求EC的长;(3)求重叠部分的面积.23.(12分)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D 运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.2017-2018学年浙江省杭州市大江东区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列图形中,是轴对称图形的是()A. B.C.D.【解答】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:A.2.(3分)下列不等式中是一元一次不等式的是()A.y+3≥x B.3﹣4<0 C.2x2﹣4≥1 D.2﹣x≤4【解答】解:下列不等式中是一元一次不等式的是2﹣x≤4,故选:D.3.(3分)做一个三角形的木架,以下四组木棒中,符合条件的是()A.3cm,2cm,1cm B.3cm,4cm,5cm C.5cm,12cm,6cm D.6cm,6cm,12cm【解答】解:根据三角形的三边关系,知:A中,1+2=3,排除;B中,3+4>5,可以;C中,5+6<12,排除;D中,6+6=12,排除.故选:B.4.(3分)下列命题为假命题的是()A.全等三角形对应边相等,对应角相等B.角平分线上的点到角两边距离相等C.到线段两端点距离相等的点在这条线段的垂直平分线上D.等腰三角形一边上的中线、高线和所对角的角平分线互相重合【解答】解:A、全等三角形对应边相等,对应角相等,真命题,正确;B、角平分线上的点到角两边距离相等,真命题,正确;C、到线段两端点距离相等的点在这条线段的垂直平分线上,此选项正确;D、应该是:等腰三角形底边上的中线、高线与顶角的角平分线互相重合,故此选项错误;故选:D.5.(3分)如图,把△ABC纸片的∠A沿DE折叠,点A落在四边形CBDE外,则∠1、∠2与∠A的关系是()A.∠1﹣∠A=2∠2 B.∠2+∠1=2∠A C.∠1﹣∠2=2∠A D.2∠2+2∠A=∠1【解答】解:解:∵△A′ED是△AED翻折变换而成,∴∠A=∠A′,∵∠AFD是△A′EF的外角,∴∠AFD=∠A′+∠2,∵∠1是△ADF的外角,∴∠1=∠A+∠AFD,即∠1=∠A+∠A′+∠2=2∠A′+∠2,∴∠1﹣∠2=2∠A,故选:C.6.(3分)如图,Rt△ABC中,∠C=90°,AC=4,BC=3,DE是AC边的中垂线,分别交AC,AB于点E,D,则△DBC的周长为()A.6 B.7 C.8 D.9【解答】解:∵∠C=90°,AC=4,BC=3,∴AB==5,∵DE是AC边的中垂线,∴DA=DC,△DBC的周长=BD+CD+BC=BD+AD+BC=5+3=8,故选:C.7.(3分)如图,点P是∠BAC的平分线上一点,PB⊥AB于B,且PB=5cm,AC=12,则△APC的面积是()A.30cm2B.40cm2C.50cm2D.60cm2【解答】解:过P作PD⊥AC于D,∵点P是∠BAC的平分线上一点,PB⊥AB于B,∴PD=PB=5cm,=AC•PD=12×5=30cm2,∴S△APC故选:A.8.(3分)如果不等式组有解,那么m的取值范围是()A.m>8 B.m<8 C.m≥8 D.m≤8【解答】解:由x﹣1>5,得:x>6,所以不等式组的解集为x>8和x<m的公共部分,∴m>8.故选:A.9.(3分)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4等于()A.4 B.5 C.6 D.14【解答】解:∵在△CDE和△ABC中,,∴△CDE≌△ABC(AAS),∴AB=CD,BC=DE,∴AB2+DE2=DE2+CD2=CE2=3,同理可证FG2+LK2=HL2=1,∴S1+S2+S3+S4=CE2+HL2=1+3=4.故选:A.10.(3分)如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=3,EM+CM的最小值为()A.4 B.C.D.3【解答】解:连接BE,与AD交于点M.∵AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴B、C关于AD对称,∴BE就是EM+CM的最小值.∵等边△ABC的边长为6,∴AD=3,∵AE=3,∴CE=AC﹣AE=6﹣3=3,∴BE是AC的垂直平分线,∴BE=AD=3,∵EM+CM=BE∴EM+CM的最小值为3.故选:D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.12.(4分)不等式|3x﹣7|≤10的所有整数解之和是15.【解答】解:当3x﹣7≥0时,不等式转化为:3x﹣7≤10,解得:x≤,则≤x≤,整数解是:3,4,5.当3x﹣7<0时,不等式转化为:﹣3x+7≤10,解得:x≥﹣1,则﹣1≤x<,整数解是:0,1,2.则原不等式的整数解是3,4,5,0,1,2,则和是15.故答案为:15.13.(4分)圆周率π=3.1415926…,取近似值3.142,是精确到千分位;近似数2.428×105精确到百位.【解答】解:圆周率π=3.1415926…,取近似值3.142,是精确到千分位;近似数2.428×105精确到百位,故答案为:千分;百.14.(4分)如图,A、B、C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积7.【解答】解:如图,连接AB1,BC1,CA1,∵A、B分别是线段A1B,B1C的中点,=S△ABC=1,∴S△ABB1S△A1AB1=S△ABB1=1,=S△A1AB1+S△ABB1=1+1=2,∴S△A1BB1=2,S△A1AC1=2,同理:S△B1CC1∴△A1B1C1的面积=S△A1BB1+S△B1CC1+S△A1AC1+S△ABC=2+2+2+1=7.故答案为:7.15.(4分)一块直角三角形绿地,两直角边长分别为3m,4m,斜边长为5m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则共有4种扩充方法,其中面积最大的为12m2.【解答】解:由题意,可得直角△ABC中,BC=3m,AC=4m,AB=5m.如果要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,可分四种情况:①如图1:当AC=CD=8m时;∵AC⊥CB,此时等腰三角形绿地的面积:×4×4=8(m2);②如图2中,延长BC到D使CD等于3m,此时BD=6m,此时等腰三角形绿地的面积:×6×4=12(m2);综上所述,扩充后等腰三角形绿地的面积为8m2或12m2.③BD=BA时,此时等腰三角形绿地的面积:×5×4=10(m2);④DA=DB时,设DA=DB=x,在Rt△ADC中,有x2=42+(x﹣3)2,解得x=,此时等腰三角形绿地的面积:××4=(m2);面积最大的为12m2.故答案为:4,12.16.(4分)如图:长方形ABCD中,AD=10,AB=4,点Q是BC的中点,点P在AD边上运动,当△BPQ是等腰三角形时,AP的长为2或2.5或3或8.【解答】解:∵四边形ABCD为矩形,且AD=10,∴BQ=5,当BP=PQ时,过P作PM⊥BQ,交BQ于点M,如图1,则BM=MQ=2.5,且四边形ABMP为矩形,∴AP=BM=2.5,当BQ=BP时,则BP=5,在Rt△ABP中,AB=4,由勾股定理可求得AP=3,当PQ=BQ时,以点Q为圆心,BQ为半径作圆,于AD交于R、S两点,如图2,过Q作QN⊥RS,交RS于点N,则可知RN=SN,在Rt△RNQ中,可求得RN=SN=3,则AR=2,AS=8,即R、S为满足条件的P点的位置,∴AP=2或8,综上可知AP为2或2.5或3或8,故答案为:2或2.5或3或8.三、解答题(共7小题,满分66分)17.(6分)尺规作图:已知AB=3,BC=4,AC=5(单位长度线段已知),请画出这个三角形,保留痕迹,不写画法,并求出AC边上的高.【解答】解:△ABC如图所示,BD截取△ABC的AC边上的高.18.(8分)解不等式(1)6x﹣3>2x﹣7;(2)1﹣≤;(3),将解在数轴上表示.【解答】解:(1)6x﹣3>2x﹣7,移项得:6x﹣2x>﹣7+3,合并同类项得:4x>﹣4,系数化为1得:x>﹣1.(2)去分母得:6﹣3(x﹣2)≤2(x+1),去括号得:6﹣3x+6≤2x+2,移项得:﹣3x﹣2x≤2﹣6﹣6,合并同类项得:﹣5x≤﹣10系数化为1:x≥2.(3)解不等式①得:x≤3,解不等式②得:x>﹣2.不等式组的解集为﹣2≤x≤3.不等式组的解集在数轴上表示为:19.(8分)如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于D,且BC=CD.(1)求证:△BCE≌△DCF;(2)若DF=5,BC=13,求CE的长.【解答】(1)证明:∵AC平分∠BAD,CE⊥AB,CF⊥AD,∴∠CFD=∠CEB=90°(垂直的定义),CE=CF(角平分线的性质),在Rt△BCE和Rt△DCF中,,∴△BCE≌△DCF(HL);(2)解:由(1)知,△BCE≌△DCF,∴BE=DF=5,在Rt△BCE中,根据勾股定理得,CE===12.20.(10分)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?【解答】解:(1)设A种商品的单价为x元、B种商品的单价为y元,由题意得:,解得.答:A种商品的单价为16元、B种商品的单价为4元.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,由题意得:,解得:12≤m≤13,∵m是整数,∴m=12或13,故有如下两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.21.(10分)已知:如图,在△ABC中,AB=AC,∠BAC=90°,D是BC上一点,EC⊥BC,EC=BD,DF=FE.求证:(1)△ABD≌△ACE;(2)AF⊥DE.【解答】证明:(1)∵AB=AC,∠BAC=90°,∴∠B=∠BCA=45°,∵EC⊥BC,∴∠ACE=90°﹣45°=45°,∴∠B=∠ACE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)由(1)知,△ABD≌△ACE,∴AD=AE,等腰△ADE中,∵DF=FE,∴AF⊥DE.22.(12分)如图,把长方形ABCD沿AC折叠,AD落在AD′处,AD′交BC于点E,已知AB=2cm,BC=4cm.(长方形的对边相等,四个角都为直角)(1)求证:AE=EC;(2)求EC的长;(3)求重叠部分的面积.【解答】解:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠B=90°,AD∥BC,∴∠DAC=∠BCA.∵△ADC与△AD′C关于AC成轴对称∴△ADC≌△AD′C,∴∠DAC=∠D′AC,∴∠D′AC=∠ACB,∴AE=EC;(2)∵AB=2cm,BC=4cm,∴CD=2cm,AD=4cm.设EC=x,就有AE=x,BE=4﹣x,在Rt△ABE中,由勾股定理,得4+(4﹣x)2=x2,解得:x=2.5.答:EC的长为2.5cm;(3)∵S=,△AECS△AEC==2.5cm2.答:重叠部分的面积为2.5cm2.23.(12分)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D 运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【解答】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,则,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,则,解得:;综上所述,存在或,使得△ACP与△BPQ全等.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

相关文档
最新文档