2019年高考一轮复习1-6讲义及配套训练题(共136页)
2019届高考一轮复习备考资料之数学江苏专版讲义:第一

§1.1集合及其运算考情考向分析集合的交、并、补运算及两集合间的包含关系是考查的重点,在集合的运算中经常与不等式、函数相结合,解题时常用到数轴和Venn图,考查学生的数形结合思想和计算推理能力,题型是填空题,低档难度.1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.集合间的基本关系A B (或B A )3.集合的基本运算知识拓展1.若有限集合A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1. 2.A ⊆B ⇔A ∩B =A ⇔A ∪B =B .3.A ∩(∁U A )=∅;A ∪(∁U A )=U ;∁U (∁U A )=A .题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)任何一个集合都至少有两个子集.( × )(2){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( × ) (3)若{x 2,1}={0,1},则x =0,1.( × ) (4){x |x ≤1}={t |t ≤1}.( √ )(5)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立.( √ )(6)若A ∩B =A ∩C ,则B =C .( × ) 题组二 教材改编2.[P18复习T3]已知U ={α|0°<α<180°},A ={x |x 是锐角},B ={x |x 是钝角},则∁U (A ∪B )=________. 答案 {x |x 是直角}3.[P13练习T5]已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为________. 答案 2解析 集合A 表示以(0,0)为圆心,1为半径的单位圆,集合B 表示直线y =x ,圆x 2+y 2=1与直线y =x 相交于两点⎝⎛⎭⎫22,22,⎝⎛⎭⎫-22,-22,则A ∩B 中有两个元素. 题组三 易错自纠4.若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为________. 答案 3解析 当x =-1,y =0时,z =-1;当x =-1,y =2时,z =1;当x =1,y =0时,z =1;当x =1,y =2时,z =3,故集合{z |z =x +y ,x ∈A ,y ∈B }中的元素个数为3.5.已知集合A ={x |x 2-2x -3≤0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是____________. 答案 (3,+∞)解析 A ={x |x 2-2x -3≤0}={x |-1≤x ≤3}, ∵A ⊆B ,B ={x |x <a },∴a >3.6.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =________. 答案 0或98解析 若a =0,则A =⎩⎨⎧⎭⎬⎫23,符合题意;若a ≠0,则由题意得Δ=9-8a =0,解得a =98.综上,a 的值为0或98.题型一 集合的含义1.若集合A ={a -3,2a -1,a 2-4},且-3∈A ,则实数a =________. 答案 0或1解析若a-3=-3,则a=0,此时集合A中含有元素-3,-1,-4,满足题意;若2a-1=-3,则a=-1,此时集合A中的三个元素为-4,-3,-3,不满足集合中元素的互异性;若a2-4=-3,则a=±1,当a=1时,集合A中的三个元素为-2,1,-3,满足题意;当a=-1时,集合A中的三个元素为-4,-3,-3,不符合题意.综上可知,a=0或a=1.2.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q ={1,2,6},则P+Q中元素的个数是________.答案8解析当a=0时,a+b=1,2,6;当a=2时,a+b=3,4,8;当a=5时,a+b=6,7,11.由集合中元素的互异性,知P+Q中有1,2,3,4,6,7,8,11,共8个元素.题型二集合的基本关系典例(1)(2017·徐州模拟)已知集合A={-1,1,2},B={0,1,2,7},则集合A∪B中元素的个数为________.答案 5解析A∪B={-1,0,1,2,7},∴A∪B中元素个数为5.(2)已知集合A={x|x2-2 019x+2 018<0},B={x|x<a},若A⊆B,则实数a的取值范围是________________.答案[2 018,+∞)解析由x2-2 019x+2 018<0,解得1<x<2 018,故A={x|1<x<2 018}.又B={x|x<a},A⊆B,如图所示,可得a≥2 018.引申探究本例(2)中,若将集合B改为{x|x≥a},其他条件不变,则实数a的取值范围是____________.答案(-∞,1]解析A={x|1<x<2 018},B={x|x≥a},A⊆B,如图所示,可得a≤1.思维升华(1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.跟踪训练 (1)(2015·江苏)已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________. 答案 5解析 ∵A ={1,2,3},B ={2,4,5},∴A ∪B ={1,2,3,4,5}.故A ∪B 中元素的个数为5.(2)已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1},若A ⊆B ,则实数m 的取值范围是________________________. 答案 ⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞ 解析 因为y =⎝⎛⎭⎫x -342+716,x ∈⎣⎡⎦⎤34,2, 所以y ∈⎣⎡⎦⎤716,2.又因为A ⊆B ,所以1-m 2≤716, 解得m ≥34或m ≤-34.题型三 集合的基本运算命题点1 集合的运算典例 (1)设全集U =R ,A ={x |2x -10≥0},B ={x |x 2-5x ≤0,且x ≠5}. 求:①∁U (A ∪B ); ②(∁U A )∩(∁U B ).(2)已知集合A ={a 2,a +1,-3},B ={a -3,a -2,a 2+1},且A ∩B ={-3},求A ∪B . 解 (1)①A ={x |x ≥5},B ={x |0≤x <5}, 则A ∪B ={x |x ≥0},于是∁U (A ∪B )={x |x <0}. ②∁U A ={x |x <5},∁U B ={x |x <0或x ≥5}, 于是(∁U A )∩(∁U B )={x |x <0}. (2)由A ∩B ={-3}知-3∈B .又a 2+1≥1,故有a -3=-3或a -2=-3. ①当a -3=-3时,a =0,此时A ={0,1,-3},B ={-3,-2,1}. 由于A ∩B ≠{-3},故a =0舍去. ②当a -2=-3时,a =-1,此时A ={1,0,-3},B ={-4,-3,2}.满足A ∩B ={-3},从而A ∪B ={-4,-3,0,1,2}. 命题点2 利用集合的运算求参数典例 (1)已知q ≠0,集合A ={x |x 2+px +q =0},B ={x |qx 2+px +1=0}. ①当t ∈A 时,求证:1t∈B ;②当A ∪B =⎩⎨⎧⎭⎬⎫12,1,2时,求p ,q 的值.(2)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪y =1-2x +1x +1,B ={x |[x -(a +1)][x -(a +4)]<0}.分别根据下列条件,求实数a 的取值范围: ①A ∩B =A ; ②A ∩B ≠∅.(1)①证明 因为t ∈A ,所以t 2+pt +q =0. 由q ≠0知t ≠0,从而q ⎝⎛⎭⎫1t 2+p ·1t +1=t 2+pt +q t2=0, 即1t∈B . ②解 由①可知,集合A 与B 中的相应元素互为倒数,故由A ∪B =⎩⎨⎧⎭⎬⎫12,1,2,知A =⎩⎨⎧⎭⎬⎫12,1或A ={1,2}.当A =⎩⎨⎧⎭⎬⎫12,1时,12+1=-p 且12×1=q ,得p =-32,q =12;当A ={1,2}时,同理可得p =-3,q =2. 综上,p =-32,q =12或p =-3,q =2.(2)解 由1-2x +1x +1≥0,得xx +1≤0,解得-1<x ≤0,故A =(-1,0],B =(a +1,a +4).①A ∩B =A ,即A ⊆B ,故⎩⎪⎨⎪⎧a +1≤-1,a +4>0,得-4<a ≤-2,故a 的取值范围是(-4,-2].②若A ∩B ≠∅,则⎩⎪⎨⎪⎧a +4>-1,a +1<0,得-5<a <-1,故a 的取值范围是(-5,-1).思维升华 (1)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化. 跟踪训练 (1)(2014·江苏)已知集合A ={-2,-1,3,4},B ={-1,2,3},则A ∩B =________. 答案 {-1,3}解析 A ∩B ={-2,-1,3,4}∩{-1,2,3}={-1,3}.(2)已知集合A ={x |x 2-x -12≤0},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为________. 答案 [-1,+∞)解析 由x 2-x -12≤0,得(x +3)(x -4)≤0, 即-3≤x ≤4,所以A ={x |-3≤x ≤4}. 又A ∩B =B ,所以B ⊆A .①当B =∅时,有m +1≤2m -1,解得m ≥2; ②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上,m 的取值范围为[-1,+∞). 题型四 集合的新定义问题典例 已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A B 中元素的个数为________. 答案 45 解析 如图,集合A 表示如图所示的所有圆点“”,集合B 表示如图所示的所有圆点“”+所有圆点“”,集合A B 显然是集合{(x ,y )||x |≤3,|y |≤3,x ,y ∈Z }中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A B 表示如图所示的所有圆点“”+所有圆点“”+所有圆点“”,共45个.故A B 中元素的个数为45.思维升华 解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.跟踪训练定义一种新的集合运算△:A△B={x|x∈A,且x∉B}.若集合A={x|x2-4x+3<0},B={x|2≤x≤4},则按运算△,B△A=________.答案{x|3≤x≤4}解析A={x|1<x<3},B={x|2≤x≤4},由题意知,B△A={x|x∈B,且x∉A}={x|3≤x≤4}.1.(2017·无锡模拟)已知集合A={1,2,4},B={2,4},则A∪B=________.答案{1,2,4}2.(2016·江苏)已知集合A={-1,2,3,6},B={x|-2<x<3},则A∩B=________.答案{-1,2}解析由于B={x|-2<x<3}.对集合A中的4个元素逐一验证,-1∈B,2∈B,3∉B,6∉B.故A∩B={-1,2}.3.(2017·江苏)已知集合A={1,2},B={a,a2+3},若A∩B={1},则实数a的值为________.答案 1解析∵A∩B={1},A={1,2},∴1∈B且2∉B.若a=1,则a2+3=4,符合题意.又a2+3≥3≠1,故a=1.4.(2017·苏锡常镇一模)已知集合U={1,2,3,4,5,6,7},M={x|x2-6x+5≤0,x∈Z},则∁U M =________.答案{6,7}解析由M={x|x2-6x+5≤0,x∈Z}={x|1≤x≤5,x∈Z},可得M={1,2,3,4,5},即∁U M ={6,7}.5.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥2},则图中阴影部分所表示的集合为________.答案{1}解析因为A∩B={2,3,4,5},而图中阴影部分为集合A去掉A∩B部分,所以阴影部分所表示的集合为{1}.6.已知复数f(n)=i n(n∈N*),则集合{z|z=f(n)}中元素的个数是________.答案 4解析 复数f (n )=i n (n ∈N *), 可得f (n )=⎩⎪⎨⎪⎧i ,n =4k +1,-1,n =4k +2,-i ,n =4k +3,1,n =4k +4,k ∈N .集合{z |z =f (n )}中元素的个数是4.7.(2017·全国Ⅱ改编)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =________. 答案 {1,3}解析 ∵A ∩B ={1},∴1∈B . ∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.8.已知集合A ={x |-1<x <0},B ={x |x ≤a },若A ⊆B ,则a 的取值范围为________. 答案 [0,+∞)解析 用数轴表示集合A ,B (如图),由A ⊆B ,得a ≥0.9.若全集U =R ,集合A ={x |x 2-x -2≥0},B ={x |log 3(2-x )≤1},则A ∩(∁U B )=________________. 答案 {x |x <-1或x ≥2}解析 集合A ={x |x 2-x -2≥0}={x |x ≤-1或x ≥2}, ∵log 3(2-x )≤1=log 33,∴0<2-x ≤3, ∴-1≤x <2,∴B ={x |-1≤x <2}, ∴∁U B ={x |x <-1或x ≥2}, ∴A ∩(∁U B )={x |x <-1或x ≥2}.10.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为__________. 答案 -32解析 ∵3∈A ,∴m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,不符合集合的互异性,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),当m =-32时,m +2=12≠3,符合题意,∴m =-32.11.设全集U =R ,集合A ={x |y =x 2-2x -3},B ={y |y =e x +1},则A ∪B =__________. 答案 (-∞,-1]∪(1,+∞)解析 因为A ={x |x ≥3或x ≤-1},B ={y |y >1}, 所以A ∪B ={x |x >1或x ≤-1}.12.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________. 答案 [1,+∞)解析 由题意,知A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ⊆B ,画出数轴,如图所示,得c ≥1.13.已知集合A ={x |1<x <3},B ={x |2m <x <1-m },若A ∩B =∅,则实数m 的取值范围是________. 答案 [0,+∞) 解析 ∵A ∩B =∅,①若当2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若当2m <1-m ,即m <13时,需满足⎩⎪⎨⎪⎧ m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,解得0≤m <13或∅,即0≤m <13.综上,实数m 的取值范围是[0,+∞).14.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =______,n =________. 答案 -1 1解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n ),可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.15.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.答案 6解析 依题意可知,由S 的3个元素构成的所有集合中,不含“孤立元”时,这三个元素一定是连续的三个自然数.故这样的集合共有6个.16.设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ m ≤x ≤m +34,N =⎩⎨⎧⎭⎬⎫x ⎪⎪n -13≤x ≤n ,且M ,N 都是集合{x |0≤x ≤1}的子集,如果把b -a 叫做集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是________.答案 112解析 由已知,可得⎩⎪⎨⎪⎧ m ≥0,m +34≤1,即0≤m ≤14; ⎩⎪⎨⎪⎧n -13≥0,n ≤1,即13≤n ≤1,当集合M ∩N 的长度取最小值时,M 与N 应分别在区间[0,1]的左、右两端.取m 的最小值0,n 的最大值1,可得M =⎣⎡⎦⎤0,34,N =⎣⎡⎦⎤23,1,所以M ∩N =⎣⎡⎦⎤0,34∩⎣⎡⎦⎤23,1=⎣⎡⎦⎤23,34,此时集合M ∩N 的“长度”的最小值为34-23=112.。
最新2019年高考物理一轮复习名师讲义及配套试题(共528页 附解析)

例1
(多选)以下关于质点和参考系的说法正确的是(
)
A.研究“嫦娥二号”卫星在绕月球飞行的轨迹时,卫星可以看成质点 B.研究在平直公路上汽车的行驶速度时,可以将汽车看成质点 C.参考系是在描述物体运动时,用来作参考的物体,必须选静止的物体 D.参考系可以任意选择,并且选择不同的物体作参考系来描述同一个物体的运动时,结果是相同的
2.速度和速率 (1)平均速度:物体的位移与发生这个位移所用时间的比值。公式 v= Δx ,单位:m/s。 Δt
平均速度是矢量,方向就是物体位移的方向,表示物体在时间Δt 内的平均快慢程度。 (2)瞬时速度:运动物体在某一位置或某一时刻的速度,表示物体在某一位置或某一时刻的快慢程度,瞬时速 度是矢量,方向即物体的运动方向。 (3)速率:瞬时速度的大小叫速率,是标量。 (4)平均速率指物体通过的路程和所用时间的比值,是标量。 【知识点 3】 1.定义 速度的变化量与发生这一变化所用时间的比值。 2.定义式 加速度 Ⅱ
第1讲
【知识点 1】 1.参考系 参考系、质点 Ⅰ
描述运动的基本概念
主干梳理·夯实基础
板块一
(1)定义:在描述物体的运动时,用来作参考的物体。 (2)参考系的选取 ①参考系的选取是任意的,既可以是运动的物体,也可以是静止的物体,通常选地面为参考系。 ②比较两物体的运动情况时,必须选同一参考系。 ③对于同一物体,选择不同的参考系结果一般不同。 2.质点 (1)定义:用来代替物体的有质量的点。 (2)把物体看作质点的条件:物体的大小和形状对研究的问题的影响可以忽略不计。 【知识点 2】 1.位移和路程 位移、速度 Ⅱ
第 3 页 共 525 页
(1)明确题目中要研究的问题是什么。如例 1 A 选项中研究的是卫星绕月球飞行的轨迹。 (2)分析物体的大小和形状对所研究的问题能否忽略不计。当物体的大小和形状对所研究的问题影响很小,可 以忽略不计时,可将其视为质点。如“嫦娥二号”卫星绕月飞行中月球本身大小与轨迹半径相比可忽略不计。 [跟踪训练] 如图所示,我国空军在进行空中加油训练,大型加油机与受油机在空中以同样的速度沿同一方 ) 向水平飞行。下列说法中正确的是(
2019高考化学一轮复习选训习题1含解析新人教版.docx

人教化学2019高考一轮选训习题(1)李仕才一、选择题K (2018 •江西九江联考)设佩为阿伏加德罗常数的值。
下列说法正确的是(C )A.0.5 mol Cu与足量的S反应转移的电子数为佩B.在粗铜精炼的实验中,阳极质量减少6.4 g,则电解过程中转移的电子数为0.2加C. 2 g D2O和也%的混合物中含有的中子数为加D.46 g有机物GHeO中含有极性共价键的数0 一定为7抠解析Cu与S反应生成Cu2S, 0. 5 mol Cu与足量的S反应转移的电子数为0. 5加,A项错误;精炼铜时,阳极减少的不都是Cu,还有Zn、Fe、Ni等杂质金属,所以阳极质量减少6. 4 g时转移的电子数不是0.2僦,B项错误;D2O和出叱的摩尔质量相同,均为20g・ mol"1, 中子数也相同,均为10,故2 g址0和山"0的混合物的物质的量是0. 1 mol,所含中子数为汕,C项正确;CJIcO可以是乙醇,也可以是二甲(CIh—0—CIh),若是二甲醛,则46 g CzHsO 中含有的极性共价键的数目是8批,D项错误。
2、下列离子方程式书写正确的是(B )A.CL通入水中:Cl2+H20=2H++Cr+C10'B.双氧水加入稀硫酸和KI溶液:H202+2H+ + 2r=I2+2H20C.用铜作电极电解CuSOj溶液:2Cu2+ + 2H20^S2Cu+02 t +4H+D.NQ2S2O3溶液中加入稀硫酸:2S20r + 4H+=S0r + 3S ! +2H203、某校化学兴趣小组用如图所示过程除去AlCls溶液中含有的Mg2\广杂质离子并尽可能减少A1C13的损失。
|->Mg(OH)2沉淀足就NaOH溶液厶-严液,盐酸「沉淀a邑空A1C1;溶液ci-丄介" L溶液b下列说法正确的是(D )A.NaOH溶液可以用氨水来代替B.溶液a 中含有Alt K\ Cl"> NaS 0H_C.溶液b中只含有NaClD.向溶液a中滴加盐酸筒控制溶液的pll解析A项,用氨水将会使Al:,\ Mg2+均沉淀下来,达不到分离的目的;B项,溶液a屮,A13 +已转化为A10;; C项,b中含有KChNaCKHCl等物质;D项,若不控制pH,沉淀a[Al(0H)3] 将不能分离出来。
2019届高考一轮复习备考资料之数学江苏专版讲义:第一章 集合与常用逻辑用语 1-2 含答案 精品

§1.2命题及其关系、充分条件与必要条件考情考向分析命题的真假判断和充分、必要条件的判定是考查的主要形式,多与集合、函数、不等式、立体几何中的线面关系相交汇,考查学生的推理能力,题型为填空题,低档难度.1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念qpp q知识拓展从集合的角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为:(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分又不必要条件.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)“对顶角相等”是命题.(√)(2)命题“若p,则q”的否命题是“若p,则綈q”.(×)(3)当q是p的必要条件时,p是q的充分条件.(√)(4)当p是q的充要条件时,也可说成q成立当且仅当p成立.(√)(5)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.(√)题组二教材改编2.[P8习题T2]下列命题是真命题的是________.(填序号)①矩形的对角线相等;②若a>b,c>d,则ac>bd;③若整数a是素数,则a是奇数;④命题“若x2>0,则x>1”的逆否命题.答案①3.[P7例1]“x-3=0”是“(x-3)(x-4)=0”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案充分不必要题组三易错自纠4.命题“若x2>y2,则x>y”的逆否命题是________.答案若x≤y,则x2≤y2解析根据原命题和其逆否命题的条件和结论的关系,得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.5.“sin α>0”是“α是第一象限角”的________条件.答案必要不充分解析由sin α>0,可得α是第一或第二象限角及终边在y轴正半轴上;若α是第一象限角,则sin α>0,所以“sin α>0”是“α是第一象限角”的必要不充分条件.6.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是____________. 答案 (2,+∞)解析 A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2.题型一 命题及其关系1.下列命题是真命题的是________.(填序号) ①若1x =1y ,则x =y ;②若x 2=1,则x =1; ③若x =y ,则x =y ; ④若x <y ,则x 2<y 2. 答案 ①2.某食品的广告词为“幸福的人们都拥有”,这句话的等价命题是________. 答案 不拥有的人们不幸福 3.下列命题:①“若a 2<b 2,则a <b ”的否命题; ②“全等三角形的面积相等”的逆命题;③“若a >1,则ax 2-2ax +a +3>0的解集为R ”的逆否命题; ④“若3x (x ≠0)为有理数,则x 为无理数”的逆否命题. 其中正确的命题是________. 答案 ③④解析 对于①,否命题为“若a 2≥b 2,则a ≥b ”,为假命题;对于②,逆命题为“面积相等的三角形是全等三角形”,为假命题;对于③,当a >1时,Δ=-12a <0,原命题正确,从而其逆否命题正确,故③正确;对于④,原命题正确,从而其逆否命题正确,故④正确. 4.设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是__________. 答案 若方程x 2+x -m =0没有实根,则m ≤0 思维升华 (1)写一个命题的其他三种命题时,需注意: ①对于不是“若p ,则q ”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例即可.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二充分必要条件的判定典例(1)(2017·浙江改编)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的________条件.答案充要解析方法一∵数列{a n}是公差为d的等差数列,∴S4=4a1+6d,S5=5a1+10d,S6=6a1+15d,∴S4+S6=10a1+21d,2S5=10a1+20d.若d>0,则21d>20d,10a1+21d>10a1+20d,即S4+S6>2S5.若S4+S6>2S5,则10a1+21d>10a1+20d,即21d>20d,∴d>0.∴“d>0”是“S4+S6>2S5”的充要条件.方法二∵S4+S6>2S5等价于S4+S4+a5+a6>2(S4+a5)等价于a6>a5等价于a5+d>a5等价于d>0,∴“d>0”是“S4+S6>2S5”的充要条件.(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的______条件.答案充分不必要解析由5x-6>x2,得2<x<3,即q:2<x<3.所以q⇒p,p q,所以綈p⇒綈q,綈q綈p,所以綈p是綈q的充分不必要条件.思维升华充分条件、必要条件的三种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.跟踪训练(1)已知α,β均为第一象限角,那么“α>β”是“sin α>sin β”的________条件.答案既不充分又不必要解析 取α=7π3,β=π3,α>β成立,而sin α=sin β,sin α>sin β不成立.∴充分性不成立;取α=π3,β=13π6,sin α>sin β,但α<β,必要性不成立.故“α>β”是“sin α>sin β”的既不充分又不必要条件.(2)设向量a =(sin 2θ,cos θ),b =(cos θ,1),则“a ∥b ”是“tan θ=12成立”的______________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 必要不充分解析 a ∥b 等价于sin 2θ=cos 2θ等价于cos θ=0或2sin θ=cos θ等价于cos θ=0或tan θ=12,所以“a ∥b ”是“tan θ=12成立”的必要不充分条件. 题型三 充分必要条件的应用典例 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10}.由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. 引申探究若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,方程组无解, 即不存在实数m ,使x ∈P 是x ∈S 的充要条件.思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.跟踪训练 (1)设p :|2x +1|<m (m >0);q :x -12x -1>0.若p 是q 的充分不必要条件,则实数m 的取值范围为__________.答案 (0,2]解析 由|2x +1|<m (m >0),得-m <2x +1<m , ∴-m +12<x <m -12.由x -12x -1>0,得x <12或x >1.∵p 是q 的充分不必要条件,又m >0, ∴m -12≤12,∴0<m ≤2.(2)设n ∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________. 答案 3或4解析 由Δ=16-4n ≥0,得n ≤4, 又n ∈N *,则n =1,2,3,4. 当n =1,2时,方程没有整数根; 当n =3时,方程有整数根1,3,当n =4时,方程有整数根2.综上可知,n =3或4.等价转化思想在充要条件中的应用典例 已知p :⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),綈p 是綈q 的必要不充分条件,则实数m 的取值范围为________.思想方法指导 等价转化思想是指在解题中将一些复杂的、生疏的问题转化成简单的、熟悉的问题.本题中既有对题目中条件的化简,又有充分必要条件和集合间关系的转化. 解析 ∵綈p 是綈q 的必要不充分条件, ∴q 是p 的必要不充分条件. 即p 是q 的充分不必要条件, 由x 2-2x +1-m 2≤0(m >0), 得1-m ≤x ≤1+m (m >0).∴q 对应的集合为{x |1-m ≤x ≤1+m ,m >0}. 设M ={x |1-m ≤x ≤1+m ,m >0}. 又由⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10,∴p 对应的集合为{x |-2≤x ≤10}. 设N ={x |-2≤x ≤10}.由p 是q 的充分不必要条件知,N M ,∴⎩⎪⎨⎪⎧m >0,1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m >10,解得m ≥9.∴实数m 的取值范围为[9,+∞). 答案 [9,+∞)1.一个命题的逆否命题是“若1∈A,1∈B ,则A ∩B ={1}”,那么该命题是________命题.(填“真”或“假”) 答案 假2.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中假命题的个数为________. 答案 2解析 原命题正确,从而其逆否命题也正确;其逆命题为“若a >-6,则a >-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个假命题. 3.“(2x -1)x =0”是“x =0”的________条件. 答案 必要不充分4.已知命题p :若a <1,则a 2<1,则下列说法正确的是________.(填序号) ①命题p 是真命题; ②命题p 的逆命题是真命题;③命题p 的否命题是“若a <1,则a 2≥1”; ④命题p 的逆否命题是“若a 2≥1,则a <1”. 答案 ②解析 若a =-2,则(-2)2>1,∴命题p 为假命题, ∴①不正确;命题p 的逆命题是“若a 2<1,则a <1”,为真命题, ∴②正确;命题p 的否命题是“若a ≥1,则a 2≥1”,∴③不正确; 命题p 的逆否命题是“若a 2≥1,则a ≥1”,∴④不正确. 5.“x >1”是“12log (x +2)<0”的________条件.答案 充分不必要解析 由x >1,得x +2>3,即12log (x +2)<0,12log (x +2)<0,得x +2>1,即x >-1,故“x >1”是“12log (x +2)<0”成立的充分不必要条件.6.若实数a ,b 满足a >0,b >0,则“a >b ”是“a +ln a >b +ln b ”的________条件. 答案 充要解析 设f (x )=x +ln x ,显然f (x )在(0,+∞)上单调递增, ∵a >b ,∴f (a )>f (b ),∴a +ln a >b +ln b ,故充分性成立; ∵a +ln a >b +ln b ,∴f (a )>f (b ),∴a >b ,故必要性成立,故“a >b ”是“a +ln a >b +ln b ”的充要条件.7.已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的________条件. 答案 充分不必要解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交.8.在△ABC 中,角A ,B 均为锐角,则“cos A >sin B ”是“△ABC 为钝角三角形”的________条件. 答案 充要解析 因为cos A >sin B ,所以cos A >cos ⎝⎛⎭⎫π2-B , 因为角A ,B 均为锐角,所以π2-B 为锐角,又因为余弦函数y =cos x 在(0,π)上单调递减, 所以A <π2-B ,所以A +B <π2,在△ABC 中,A +B +C =π,所以C >π2,所以△ABC 为钝角三角形;若△ABC 为钝角三角形,角A ,B 均为锐角, 则C >π2,所以A +B <π2,所以A <π2-B ,所以cos A >cos ⎝⎛⎭⎫π2-B , 即cos A >sin B .故“cos A >sin B ”是“△ABC 为钝角三角形”的充要条件.9.“若a ≤b ,则ac 2≤bc 2”,则原命题及命题的逆命题、否命题和逆否命题中真命题的个数是________. 答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.10.设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充分不必要解析 当x >1,y >1时,x +y >2一定成立,即p ⇒q , 当x +y >2时,可令x =-1,y =4,即q ⇏p , 故p 是q 的充分不必要条件.11.已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________. 答案 (0,3)解析 令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}. ∵p 是q 的充分不必要条件,∴M N ,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3. 12.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________. 答案 ②③解析 ①原命题的否命题为“若a ≤b ,则a 2≤b 2”,错误; ②原命题的逆命题为“若x ,y 互为相反数,则x +y =0”,正确; ③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”,正确.13.已知p :函数f (x )=|x +a |在(-∞,-1)上是单调函数,q :函数g (x )=log a (x +1)(a >0,且a ≠1)在(-1,+∞)上是增函数,则綈p 是q 的________条件. 答案 充要解析 易知p 成立等价于a ≤1,q 成立等价于a >1,所以綈p 成立等价于a >1,则綈p 是q 的充要条件.14.已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.答案 ⎣⎡⎦⎤0,12 解析 方法一 命题p 为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <12, 綈q 对应的集合B ={x |x >a +1或x <a }. ∵綈p 是綈q 的必要不充分条件, ∴⎩⎪⎨⎪⎧ a +1>1,a ≤12或⎩⎪⎨⎪⎧ a +1≥1,a <12,∴0≤a ≤12.方法二 命题p 为A =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤1, 命题q 为B ={x |a ≤x ≤a +1}.∵綈p 是綈q 的必要不充分条件,∴p 是q 的充分不必要条件,即A B . ∴⎩⎪⎨⎪⎧a +1≥1,a <12或⎩⎪⎨⎪⎧a +1>1,a ≤12,∴0≤a ≤12.15.若“数列a n =n 2-2λn (n ∈N *)是递增数列”为假命题,则λ的取值范围是________________. 答案 ⎣⎡⎭⎫32,+∞解析 若数列a n =n 2-2λn (n ∈N *)为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是可得3>2λ,即λ<32.故所求λ的取值范围是⎣⎡⎭⎫32,+∞. 16.设a ,b 为正数,则“a -b >1”是“a 2-b 2>1”的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充分不必要解析 ∵a -b >1,即a >b +1.又∵a ,b 为正数,∴a 2>(b +1)2=b 2+1+2b >b 2+1,即a 2-b 2>1成立;反之,当a =3,b =1时,满足a 2-b 2>1,但a -b >1不成立.所以“a -b >1”是“a 2-b 2>1”的充分不必要条件.。
2019高考物理一轮优级备、讲、练全国经典版讲义:第6

板块一主干梳理·夯实基础【知识点1】动量Ⅱ1.定义:运动物体的质量m和它的速度v的乘积m v叫做物体的动量。
动量通常用符号p来表示,即p=m v。
2.单位:在国际单位制中,动量的单位是千克米每秒,符号为kg·m/s。
说明:动量既有大小,又有方向,是矢量。
我们讲物体的动量,是指物体在某一时刻的动量,动量的方向与物体瞬时速度的方向相同。
有关动量的运算,一般情况下用平行四边形定则进行运算。
如果物体在一条直线上运动,则选定一个正方向后,动量的运算就可以转化为代数运算。
3.动量的三个性质(1)动量具有瞬时性。
物体的质量是物体的固有属性,是不发生变化的,而物体的速度是与时刻相对应的,由动量的定义式p=m v 可知,动量是一个状态量,具有瞬时性。
(2)动量具有相对性。
选用不同的参考系时,同一运动物体的动量可能不同,通常在不说明参考系的情况下,指的是物体相对于地面的动量。
在分析有关问题时要先明确相应的参考系。
(3)矢量性。
动量是矢量,方向与速度的方向相同,遵循矢量运算法则。
【知识点2】动量的变化Ⅱ1.因为p=m v是矢量,只要m的大小、v的大小和v的方向三者中任何一个发生变化,动量p就发生了变化。
2.动量的变化量Δp是矢量,其方向与速度的改变量Δv的方向相同。
3.动量的变化量Δp的大小,一般用末动量p′减去初动量p进行计算,也称为动量的增量。
即Δp=p′-p,此式为矢量式,若p′、p不在同一直线上,则要用平行四边形定则(或矢量三角形定则)求矢量差;若在同一直线上,则应先规定正方向,再用正、负表示p、p′的方向,最后用Δp=p′-p=m v′-m v进行代数运算。
【知识点3】动量、动能、动量变化量的比较Ⅱ【知识点4】冲量、动量定理Ⅱ1.冲量(1)定义:力和力的 作用时间的乘积。
(2)表达式:I= Ft。
单位:牛秒(N·s)。
(3)矢量性:冲量是矢量,它的方向由 力的方向决定。
(4)物理意义:表示力对 时间的积累。
2019高三数学一轮复习+教师讲义(word版)

第一节集合1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合的关系及运算.授课提示:对应学生用书第1页◆教材通关◆1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)集合中元素与集合的关系有且仅有两种:属于(用符号“∈”表示)和不属于(用符号“∉”表示).(3)集合的表示法:列举法、描述法、图示法.2.集合间的基本关系A B[必记结论]集合的子集、真子集个数的规律为:含n 个元素的集合有2n 个子集,有2n -1个真子集(除集合本身),有2n -1个非空子集,有2n -2个非空真子集(除集合本身和空集,此时n ≥1).3.集合的基本运算(1)A ∩∅=∅,A ∪∅=A ;(2)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅;(3)A ∪(∁U A )=U ,A ∩(∁U A )=∅,∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[小题诊断]1.(2017·高考全国卷Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪x <32B .A ∩B =∅C .A ∪B =⎩⎨⎧⎭⎬⎫x ⎪⎪ x <32D .A ∪B =R解析:因为A ={x |x <2},B ={x |3-2x >0}=⎩⎨⎧⎭⎬⎫x ⎪⎪x <32,所以A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪x <32,A ∪B ={x |x <2}.故选A.答案:A2.设集合M ={-1,1},N ={x |x 2-x <6},则下列结论正确的是( ) A .N ⊆M B .N ∩M =∅ C .M ⊆ND .M ∩N =R解析:由已知得集合M ={-1,1},N ={x |x 2-x <6}={x |-2<x <3},所以M ⊆N ,故选C.答案:C3.(2018·唐山模拟)已知全集U ={1,2,3,4,5},A ={1,2,4},B ={2,5},则(∁U A )∪B =( ) A .{3,4,5} B .{2,3,5} C .{5}D .{3}解析:因为U ={1,2,3,4,5},A ={1,2,4},所以∁U A ={3,5},又B ={2,5},所以(∁U A )∪B={2,3,5}.答案:B4.(2018·衡水中学联考)若集合B={x|x≥0},且A∩B=A,则集合A可能是()A.{1,2} B.{x|x≤1}C.{-1,0,1} D.R解析:由A∩B=A得A⊆B,因为B={x|x≥0},所以集合A可能是{1,2},故选A.答案:A5.已知全集U=R,集合A={0,1,2,3,4,5},B={x∈R|x≥2},则图中阴影部分所表示的集合为()A.{0,1} B.{1}C.{1,2} D.{0,1,2}解析:由Venn图可知,阴影部分的元素由属于A且不属于B的元素构成,所以用集合表示为A∩∁U B.∵U=R,A={0,1,2,3,4,5},B={x∈R|x≥2},∴A∩∁U B={0,1},故选A.答案:A6.已知集合A={(x,y)|x,y∈R,x2+y2=1},B={(x,y)|x,y∈R,y=4x2-1},则A∩B 的元素个数是________.解析:集合A是以原点为圆心,半径等于1的圆周上的点的集合,集合B是抛物线y=4x2-1上的点的集合,观察图象可知,抛物线与圆有3个交点,因此A∩B中含有3个元素.答案:3◆易错通关◆1.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身.2.运用数轴图示法易忽视端点是实心还是空心.3.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[小题纠偏]1.设全集U=R,集合A={x|7-6x≤0},集合B={x|y=lg(x+2)},则(∁U A)∩B等于()A.⎝⎛⎭⎫-2,76 B .⎝⎛⎭⎫76,+∞ C.⎣⎡⎭⎫-2,76 D .⎝⎛⎭⎫-2,-76 解析:依题意得A =⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≥76,∁U A =⎩⎨⎧⎭⎬⎫x ⎪⎪x <76;B ={x |x +2>0}={x |x >-2},因此(∁U A )∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪-2<x <76. 答案:A2.若集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A ,则由m 的可取值组成的集合为________.解析:当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ;若B ≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.故m <2或2≤m ≤3,即所求集合为{m |m ≤3}.答案:{m |m ≤3}3.已知集合A ={x ∈N |x 2-2x ≤0},则满足A ∪B ={0,1,2}的集合B 的个数为________. 解析:由A 中的不等式解得0≤x ≤2,x ∈N ,即A ={0,1,2}.∵A ∪B ={0,1,2},∴B 可能为{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},∅,共8个.答案:8授课提示:对应学生用书第2页考点一 集合的概念与关系 自主探究 基础送分考点——自主练透[题组练通]1.已知集合A ={1,-1},B ={1,0,-1},则集合C ={a +b |a ∈A ,b ∈B }中元素的个数为( )A .2B .3C .4D .5解析:由题意,当a =1,b =1时,a +b =2;当a =1,b =0时,a +b =1;当a =1,b =-1时,a +b =0;当a =-1,b =1时,a +b =0;当a =-1,b =0时,a +b =-1;当a =-1,b =-1时,a +b =-2.因此集合C ={2,1,0,-1,-2},共有5个元素.故选D.答案:D2.(2018·兰州模拟)已知集合A ={x |y =ln(x +3)},B ={x |x ≥2},则下列结论正确的是( ) A .A =B B .A ∩B =∅ C .A ⊆BD .B ⊆A解析:A ={x |x >-3},B ={x |x ≥2},结合数轴可得:B ⊆A . 答案:D3.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k π4+π4,k ∈Z ,集合N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π8-π4,k ∈Z ,则( ) A .M ∩N =∅ B .M ⊆N C .N ⊆MD .M ∪N =N解析:由题意可知,M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =(2k +4)8π-π4,k ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪x =2n π8-π4,n ∈Z ,N =⎩⎨⎧ x ⎪⎪ x =2k π8-π4或⎭⎪⎬⎪⎫x =(2k -1)8π-π4,k ∈Z ,所以M ⊆N ,故选B.答案:B4.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.解析:由log 2x ≤2,得0<x ≤4, 即A ={x |0<x ≤4}, 而B =(-∞,a ),由于A ⊆B ,如图所示,则a >4,即c =4. 答案:41.集合中元素的互异性常常容易被忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.如题组中1易错.2.已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的条件,解决这类问题常常要合理利用数轴、Venn 图帮助分析.如题组中2,4均用了数轴进行分析求解.考点二 集合的基本运算 多维探究 题点多变考点——多角探明[锁定考向] 集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力.常见的命题角度有:(1)集合的基本运算;(2)利用集合运算求参数或范围. 角度一 集合的基本运算1.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B2.设集合A ={x ∈Z ||x |≤2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪32x≤1,则A ∩B =( ) A .{1,2} B .{-1,2} C .{-2,1,2}D .{-2,-1,0,2}解析:A ={-2,-1,0,1,2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪2x -32x≥0=⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥32或x <0,所以A ∩B ={-2,-1,2},故选C.答案:C3.已知集合A ={y |y =x 2-1},B ={x |y =lg(x -2x 2)},则∁R (A ∩B )=( ) A.⎣⎡⎭⎫0,12 B .(-∞,0)∪⎣⎡⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D .(-∞,0]∪⎣⎡⎭⎫12,+∞ 解析:A ={y |y =x 2-1}=[0,+∞), B ={x |y =lg(x -2x 2)}=⎝⎛⎭⎫0,12, 所以A ∩B =⎝⎛⎭⎫0,12, 所以∁R (A ∩B )=(-∞,0]∪⎣⎡⎭⎫12,+∞. 答案:D解决集合运算的两个方法角度二 利用集合运算求参数或范围4.(2017·高考全国卷Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}解析:因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.答案:C5.已知集合A ={x |log 2x <1},B ={x |0<x <c },若A ∪B =B ,则c 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,2]D .[2,+∞)解析:A ={x |log 2x <1}={x |0<x <2},因为A ∪B =B ,所以A ⊆B ,所以c ≥2,所以c ∈[2,+∞),故选D.答案:D6.(2017·合肥模拟)已知A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎡⎦⎤12,1 C.⎣⎡⎭⎫23,+∞ D .(1,+∞)解析:因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A. 答案:A根据集合运算的结果确定参数的取值范围解决此类问题的步骤一般为:(1)化简所给集合;(2)用数轴表示所给集合;(3)根据集合端点间关系列出不等式(组);(4)解不等式(组);(5)检验,通过返回代入验证端点是否能够取到.解决此类问题多利用数形结合的方法,结合数轴或Venn 图进行求解.[即时应用]1.(2017·高考全国卷Ⅱ)设集合A ={1,2,3},B ={2,3,4},则A ∪B =( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4}D .{1,3,4}解析:由题意得A ∪B ={1,2,3,4}. 答案:A2.(2017·高考浙江卷)已知集合P ={x |-1<x <1},Q ={x |0<x <2},则P ∪Q =( ) A .(-1,2) B .(0,1) C .(-1,0)D .(1,2) 解析:P ∪Q =(-1,2). 答案:A3.(2017·高考山东卷)设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1) 解析:由4-x 2≥0,解得-2≤x ≤2,由1-x >0,解得x <1,∴A ∩B ={x |-2≤x <1}.故选D.答案:D4.(2018·长沙模拟)已知集合A ={1,2,3},B ={x |x 2-3x +a =0,a ∈A },若A ∩B ≠∅,则a 的值为( )A .1B .2C.3 D.1或2解析:当a=1时,B中元素均为无理数,A∩B=∅;当a=2时,B={1,2},A∩B={1,2}≠∅;当a=3时,B=∅,则A∩B=∅,所以a的值为2,故选B.答案:B5.设集合A={0,1},集合B={x|x>a},若A∩B=∅,则实数a的取值范围是() A.a≤1 B.a≥1C.a≥0 D.a≤0解析:由A∩B=∅知0∉B,1∉B,∴a≥1,故选B.答案:B考点三集合的新定义问题创新探究交汇创新考点——突破疑难与集合有关的新定义问题属于信息迁移类问题,它是化归思想的具体运用,是近几年高考的热点问题,这类试题的特点是:通过给出的新的数学概念或新的运算法则,在新的情境下完成某种推理证明,或在新的运算法则下进行运算.常见的有定义新概念、新公式、新运算和新法则等类型.解决此类题型的关键是理解问题中的新概念、新公式、新运算、新法则等的含义,然后分析题目中的条件,设法进行套用.[典例]设A是自然数集的一个非空子集,对于k∈A,如果k2∉A,且k∉A,那么k是A 的一个“酷元”,给定S={x∈N|y=lg(36-x2)},设M⊆S,集合M中有两个元素,且这两个元素都是M的“酷元”,那么这样的集合M有()A.3个B.4个C.5个D.6个解析:由36-x2>0可解得-6<x<6,又x∈N,故x可取0,1,2,3,4,5,故S={0,1,2,3,4,5}.由题意可知:集合M不能含有0,1,且不能同时含有2,4.故集合M可以是{2,3}、{2,5}、{3,5}、{3,4}、{4,5}.答案:C[即时应用]1.设A,B是两个非空集合,定义集合A-B={x|x∈A,且x∉B}.若A={x∈N|0≤x≤5},B={x|x2-7x+10<0},则A-B=()A.{0,1} B.{1,2}C.{0,1,2} D.{0,1,2,5}解析:∵A ={x ∈N |0≤x ≤5}={0,1,2,3,4,5},B ={x |x 2-7x +10<0}={x |2<x <5},A -B ={x |x ∈A 且x ∉B },∴A -B ={0,1,2,5}.故选D. 答案:D2.设P ,Q 为两个非空实数集合,定义集合P ⊗Q ={z |z =a ÷b ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P ⊗Q 中元素的个数是( )A .2B .3C .4D .5解析:当a =0时,无论b 取何值,z =a ÷b =0; 当a =-1,b =-2时,z =12;当a =-1,b =2时,z =-12;当a =1,b =-2时,z =-12;当a =1,b =2时,z =12.故P ⊗Q =⎩⎨⎧⎭⎬⎫0,-12,12,该集合中共有3个元素,所以选B.答案:B课时作业单独成册 对应学生用书第187页A 组——基础对点练1.(2017·高考天津卷)设集合A ={1,2,6},B ={2,4},C ={1,2,3,4},则(A ∪B )∩C =( ) A .{2} B .{1,2,4} C .{1,2,4,6}D .{1,2,3,4,6}解析:由题意知A ∪B ={1,2,4,6}, ∴(A ∪B )∩C ={1,2,4}. 答案:B2.(2018·成都市模拟)设集合A ={0,1},B ={x |(x +2)(x -1)<0,x ∈Z },则A ∪B =( ) A .{-2,-1,0,1} B .{-1,0,1} C .{0,1}D .{0} 解析:因为集合A ={0,1},B ={x |(x +2)(x -1)<0,x ∈Z }={-1,0},所以A ∪B ={-1,0,1}.故选B.答案:B3.设集合A ={x |x <2},B ={y |y =2x -1},则A ∩B =( ) A .(-∞,3) B .[2,3) C .(-∞,2)D .(-1,2)解析:A ={x |x <2},因为y =2x -1>-1,所以B ={y |y =2x -1}=(-1,+∞),所以A ∩B =(-1,2),故选D.答案:D4.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2解析:根据题意,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,又∵a ≠0,∴a +b =0,即a =-b ,∴ba=-1,b =1.故a =-1,b =1,则b -a =2.故选C. 答案:C5.已知集合A ={-2,-1,0,1,2,3},B ={x |x +1x -2<0},则A ∩B =( )A .{-2,-1,0,1,2,3}B .{-1,0,1,2}C .{-1,2}D .{0,1}解析:由题意,得B ={x |-1<x <2},所以A ∩B ={0,1},故选D. 答案:D6.已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =( ) A .{1} B .{4} C .{1,3}D .{1,4}解析:由题意,得B ={1,4,7,10},∴A ∩B ={1,4}. 答案:D7.(2018·长沙市模拟)已知集合P ={x |-2 016≤x ≤2 017},Q ={x | 2 017-x <1},则P ∩Q =( )A .(2 016,2 017)B .(2 016,2 017]C .[2 016,2 017)D .(-2 016,2 017)解析:由已知可得Q ={x |0≤2 017-x <1}=(2 016,2 017],则P ∩Q =(2 016,2 017]. 答案:B8.(2018·石家庄模拟)函数y =x -2与y =ln(1-x )的定义域分别为M ,N ,则M ∪N =( )A.(1,2] B.[1,2]C.(-∞,1]∪[2,+∞) D.(-∞,1)∪[2,+∞)解析:使x-2有意义的实数x应满足x-2≥0,∴x≥2,∴M=[2,+∞),y=ln(1-x)中x应满足1-x>0,∴x<1,∴N=(-∞,1),所以M∪N=(-∞,1)∪[2,+∞),故选D.答案:D9.(2018·沈阳市模拟)设全集U=R,集合A={x|x≥2},B={x|0≤x<6},则集合(∁U A)∩B =()A.{x|0<x<2} B.{x|0<x≤2}C.{x|0≤x<2} D.{x|0≤x≤2}解析:∵U=R,A={x|x≥2},∴∁U A={x|x<2}.又B={x|0≤x<6},∴(∁U A)∩B={x|0≤x <2}.故选C.答案:C10.(2017·天津模拟)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=()A.{1} B.{2}C.{0,1} D.{1,2}解析:N={x|x2-3x+2≤0}={x|1≤x≤2},又M={0,1,2},所以M∩N={1,2}.答案:D11.已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3}C.{9,16} D.{1,2}解析:n=1,2,3,4时,x=1,4,9,16,∴集合B={1,4,9,16},∴A∩B={1,4}.答案:A12.(2018·长春市模拟)已知集合A={x|x2-x+4>x+12},B={x|2x-1<8},则A∩(∁R B )=()A.{x|x≥4} B.{x|x>4}C.{x|x≥-2} D.{x|x<-2或x≥4}解析:由题意易得,A={x|x<-2或x>4},B={x|x<4},则A∩(∁R B)={x|x>4}.故选B.答案:B13.已知集合A={-1,2,3,6},B={x|-2<x<3},则A∩B=________.答案:{-1,2}14.已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=________.解析:∁U B={2},∴A∪∁U B={1,2,3}.答案:{1,2,3}15.集合{-1,0,1}共有__________个子集.解析:集合{-1,0,1}的子集有∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1},共8个.答案:816.已知集合U ={1,2,3,4,5},A ={1,3},B ={1,3,4},则A ∪(∁U B )=__________. 答案:{1,2,3,5}B 组——能力提升练1.已知全集U ={0,1,2,3},∁U M ={2},则集合M =( ) A .{1,3} B .{0,1,3} C .{0,3}D .{2}解析:M ={0,1,3}. 答案:B2.已知集合A ={0,1,2},B ={1,m }.若A ∩B =B ,则实数m 的值是( ) A .0 B .2C .0或2D .0或1或2 解析:∵A ∩B =B ,∴B ⊆A ,∴m =0或m =2. 答案:C3.(2018·南昌市模拟)已知集合A ={x ∈R |0<x ≤5},B ={x ∈R |log 2x <2},则(∁A B )∩Z =( )A .{4}B .{5}C .[4,5]D .{4,5}解析:∵集合A ={x ∈R |0<x ≤5},B ={x ∈R |log 2x <2}={x |0<x <4},∴∁A B ={x |4≤x ≤5},∴(∁A B )∩Z ={4,5},故选D.答案:D4.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x +2≤0,B ={x |y =lg(-x 2+4x +5)},则A ∩(∁R B )=( ) A .(-2,-1] B .[-2,-1] C .(-1,1]D .[-1,1]解析:依题意,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x +2≤0={x |-2<x ≤1},B ={x |y =lg(-x 2+4x +5)}={x |-x 2+4x +5>0}={x |-1<x <5},∴∁R B ={x |x ≤-1或x ≥5},A ∩(∁R B )=(-2,-1],选A.答案:A5.(2018·惠州模拟)已知集合A ={0,1},B ={z |z =x +y ,x ∈A ,y ∈A },则集合B 的子集的个数为()A.3 B.4C.7 D.8解析:由题意知,B={0,1,2},则集合B的子集的个数为23=8.故选D.答案:D6.(2018·太原市模拟)已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图所示的阴影部分表示的集合是()A.(-2,1)B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1]D.[0,1]解析:因为集合A={x|x(x+2)<0},B={x||x|≤1},所以A={x|-2<x<0},B={x|-1≤x≤1},所以A∪B=(-2,1],A∩B=[-1,0),所以阴影部分表示的集合为∁A∪B(A∩B)=(-2,-1)∪[0,1],故选C.答案:C7.(2018·郑州质量预测)设全集U={x∈N*|x≤4},集合A={1,4},B={2,4},则∁U(A∩B)=()A.{1,2,3} B.{1,2,4}C.{1,3,4} D.{2,3,4}解析:因为U={1,2,3,4},A∩B={4},所以∁U(A∩B)={1,2,3},故选A.答案:A8.(2018·广雅中学测试)若全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是()解析:由题意知,N={x|x2+x=0}={-1,0},而M={-1,0,1},所以N M,故选B.答案:B9.已知集合A满足条件{1,2}⊆A{1,2,3,4,5},则集合A的个数为()A.8 B.7C.4 D.3解析:由题意可知,集合A中必含有元素1和2,可含有3,4,5中的0个、1个、2个,则集合A 可以为{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},共7个.故选B.答案:B10.已知集合A ={2,0,1,4},B ={k |k ∈R ,k 2-2∈A ,k -2∉A },则集合B 中所有的元素之和为( )A .2B .-2C .0D . 2解析:若k 2-2=2,则k =2或k =-2,当k =2时,k -2=0,不满足条件,当k =-2时,k -2=-4,满足条件;若k 2-2=0,则k =±2,显然满足条件;若k 2-2=1,则k =±3,显然满足条件;若k 2-2=4,得k =±6,显然满足条件.所以集合B 中的元素为-2,±2,±3,±6,所以集合B 中的元素之和为-2,故选B.答案:B11.给出下列四个结论: ①{0}是空集; ②若a ∈N ,则-a ∉N ;③集合A ={x |x 2-2x +1=0}中有两个元素;④集合B =⎩⎨⎧⎭⎬⎫x ∈Q ⎪⎪6x∈N 是有限集. 其中正确结论的个数是( ) A .0 B .1 C .2D .3解析:对于①,{0}中含有元素0,不是空集,故①错误; 对于②,比如0∈N ,-0∈N ,故②错误;对于③,集合A ={x |x 2-2x +1=0}={1}中有一个元素,故③错误;对于④,当x ∈Q 且6x ∈N 时,6x 可以取无数个值,所以集合B =⎩⎨⎧⎭⎬⎫x ∈Q ⎪⎪6x ∈N 是无限集,故④错误.综上可知,正确结论的个数是0.故选A. 答案:A12.已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A B 中元素的个数为( )A .77B .49C .45D .30解析:集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },所以集合A中有5个元素(即5个点),即图中圆内及圆上的整点.集合B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z }中有25个元素(即25个点),即图中正方形ABCD 内及正方形ABCD 上的整点.集合A B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B }中的元素可看作正方形A 1B 1C 1D 1内及正方形A 1B 1C 1D 1上除去四个顶点外的整点,共7×7-4=45个.答案:C13.设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________. 解析:依题意得U ={1,2,3,4,5,6,7,8,9,10},∁U A ={4,6,7,9,10},(∁U A )∩B ={7,9}. 答案:{7,9}14.集合A ={x ∈R ||x -2|≤5}中的最小整数为________.解析:由|x -2|≤5,得-5≤x -2≤5,即-3≤x ≤7,所以集合A 中的最小整数为-3. 答案:-315.若集合A ={x |(a -1)x 2+3x -2=0,x ∈R }有且仅有两个子集,则实数a 的值为________.解析:由题意知,方程(a -1)x 2+3x -2=0,x ∈R ,有一个根,∴当a =1时满足题意,当a ≠1时,Δ=0,即9+8(a -1)=0,解得a =-18.答案:1或-18第二节 命题及其关系、充分条件与必要条件1.理解命题的概念.2.了解“若p ,则q ”形式的命题及其逆命题、 否命题与逆否命题,会分析四种命题的相互关系. 3.理解必要条件、充分条件与充要条件的意义.授课提示:对应学生用书第4页◆ 教材通关 ◆1.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.[必记结论]由于互为逆否命题的两个命题具有相同的真假性,因而当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.[提醒]易混否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.充分条件、必要条件与充分必要条件的概念qpp1.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是() A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3解析:同时否定原命题的条件和结论,所得命题就是它的否命题.答案:A2.命题“若a2<b,则-b<a<b”的逆否命题为()A.若a2≥b,则a≥b或a≤-bB.若a2>b,则a>b或a<-bC.若a≥b或a≤-b,则a2≥bD.若a>b或a<-b,则a2>b解析:因为“a 2<b ”的否定为“a 2≥b ”,“-b <a <b ”的否定为“a ≥b 或a ≤-b ”,所以逆否命题为“若a ≥b 或a ≤-b ,则a 2≥b ”. 答案:C3.(2018·唐山模拟)已知a ,b 为实数,则“a 3<b 3”是“2a <2b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件解析:由于函数y =x 3,y =2x 在R 上单调递增,所以a 3<b 3⇔a <b ⇔2a <2b ,即“a 3<b 3”是“2a <2b ”的充要条件.答案:C4.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定解析:命题p :“正数a 的平方不等于0”写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.答案:B5.(2016·高考四川卷)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵⎩⎪⎨⎪⎧x >1,y >1,∴x +y >2,即p ⇒q .而当x =0,y =3时,有x +y =3>2,但不满足x >1且y >1,即q p .故p 是q 的充分不必要条件.答案:A6.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1D .a >1解析:要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,∴a >4是命题为真的充分不必要条件.答案:B◆ 易错通关 ◆1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且BA )与A 的充分不必要条件是B (B ⇒A 且A B )两者的不同.[小题纠偏]1.设a ,b 均为非零向量,则“a ∥b ”是“a 与b 的方向相同”的________条件. 答案:必要不充分2.“在△ABC 中,若C =90°,则A ,B 都是锐角”的否命题为:________. 解析:原命题的条件:在△ABC 中,C =90°, 结论:A ,B 都是锐角.否命题是否定条件和结论, 即“在△ABC 中,若C ≠90°,则A ,B 不都是锐角”. 答案:在△ABC 中,若C ≠90°,则A ,B 不都是锐角授课提示:对应学生用书第5页考点一 命题及其关系 自主探究 基础送分考点——自主练透[题组练通]1.命题“若△ABC 有一内角为π3,则△ABC 的三个内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:原命题显然为真,原命题的逆命题为“若△ABC 的三个内角成等差数列,则△ABC有一内角为π3”,它是真命题.答案:D2.(2018·焦作质检)设等比数列{a n }的公比为q ,前n 项和为S n .给出命题s :若|q |=2,则S 6=7S 2,则在命题s 的逆命题、否命题、逆否命题中,错误命题的个数是( )A .3B .2C .1D .0解析:若|q |=2,则q 2=2,S 6=a 1(1-q 6)1-q =a 1(1-q 2)(1+q 2+q 4)1-q =7·a 1(1-q 2)1-q=7S 2,所以原命题为真,从而逆否命题为真;而当S 6=7S 2时,显然q ≠1,这时a 1(1-q 6)1-q =7·a 1(1-q 2)1-q ,解得q =-1或|q |=2,因此,逆命题为假,否命题为假,故错误命题的个数为2.答案:B3.命题“若a >b ,则a +c >b +c ”的否命题是( ) A .若a ≤b ,则a +c ≤b +c B .若a +c ≤b +c ,则a ≤b C .若a +c >b +c ,则a >b D .若a >b ,则a +c ≤b +c解析:否命题是将原命题的条件和结论都否定,故命题“若a >b ,则a +c >b +c ”的否命题是“若a ≤b ,则a +c ≤b +c ”,故选A.答案:A1.判断命题真假的方法(1)判定一个命题是真命题,需经过严格推理证明,而要说明它是假命题,只需举出一个反例即可.(2)利用原命题与逆否命题、逆命题与否命题具有相同的真假性对所给命题的真假进行间接判断.2.由原命题写出其他三种命题的方法由原命题写出其他三种命题,关键要分清原命题的条件和结论,将原命题的条件与结论互换即得到逆命题,将原命题的条件与结论同时否定即得否命题,将原命题的条件与结论互换的同时进行否定即得逆否命题.考点二 充分必要条件的判定 互动探究 重点保分考点——师生共研[典例] (1)(2018·合肥教学质检)“x ≥1”是“x +1x ≥2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件(3)(2018·衡阳联考)设p :x 2-x -20>0,q :log 2(x -5)<2,则p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:(1)由题意得x +1x ≥2⇔x >0,所以“x ≥1”是“x +1x≥2”的充分不必要条件,故选A.(2)设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A 的补集C ={(x ,y )|x =y },B 的补集D ={(x ,y )|cos x =cos y },显然C D ,所以B A .于是“x ≠y ”是“cos x ≠cos y ”的必要不充分条件.(3)∵x 2-x -20>0,∴x >5或x <-4,∴p :x >5或x <-4.∵log 2(x -5)<2,∴0<x -5<4,即5<x <9,∴q :5<x <9,∵{x |5<x <9}{x |x >5或x <-4},∴p 是q 的必要不充分条件.故选B.答案:(1)A (2)C (3)B充要条件的3种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的某种条件,即可转化为判断“x =1且y =1”是“xy =1”的某种条件.[即时应用]1.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:设命题a :“若p ,则q ”,可知命题a 是祖暅原理的逆否命题,则a 是真命题.故p 是q 的充分条件.设命题b :“若q ,则p ”,若A 比B 在某些等高处的截面积小一些,在另一些等高处的截面积大一些,且大的总量与小的总量相抵,则它们的体积还是一样的.所以命题b 是假命题,即p 不是q 的必要条件.综上所述,p 是q 的充分不必要条件.故选A.答案:A2.设a ,b ∈R ,则“log 2a >log 2b ”是“2a -b >1”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:log 2a >log 2b ⇔a >b >0,2a -b >1⇔a >b ,所以“log 2a >log 2b ”是“2a -b >1”的充分不必要条件.故选A.答案:A3.已知命题甲是“⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x 2+x x -1≥0”,命题乙是“{x |log 3(2x +1)≤0}”,则( ) A .甲是乙的充分条件,但不是乙的必要条件B .甲是乙的必要条件,但不是乙的充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件解析:由x 2+x x -1≥0,即x (x +1)(x -1)≥0且x ≠1,解得-1≤x ≤0或x >1.∵log 3(2x +1)≤0,∴0<2x +1≤1,解得-12<x ≤0.∴甲是乙的必要条件,但不是乙的充分条件.故选B. 答案:B考点三 根据充分、必要条件求参数的取值范围 变式探究 母题变式考点——多练题型[典例] (2018·济南月考)已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.是否存在实数m ,使得x ∈P 是x ∈S 的充分必要条件?若存在,求出m 的取值范围.解析:P ={x |x 2-8x -20≤0}={x |-2≤x ≤10}.要使x ∈P 是x ∈S 的充分必要条件,则P =S ,即{x |-2≤x ≤10}={x |1-m ≤x ≤1+m }.∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,此时,m 不存在,即不存在实数m ,使得x ∈P 是x ∈S 的充分必要条件.[变式探究1]母题条件若改为“x ∈P 是x ∈S 的必要条件”,问题不变.解析:∵x ∈P 是x ∈S 的必要条件,即x ∈S ⇒x ∈P ,∴S P ,∴1-m >1+m 或⎩⎪⎨⎪⎧ 1-m ≥-2,1+m ≤10,1-m ≤1+m ,∴m ≤3.[变式探究2] 母题条件若改为“綈P 是綈S 的必要不充分条件”,问题不变.解析:∵綈P 是綈S 的必要不充分条件,∴S 是P 的必要不充分条件,∴P 是S 的充分不必要条件,∴P S ⇔⎩⎪⎨⎪⎧ 1+m >1-m ,1-m ≤-2,1+m ≥10,∴m ≥9.利用充要条件求参数的值或范围的关键点和注意点(1)关键点:是合理转化条件,准确将每个条件对应的参数的范围求出来,然后转化为集合的运算.(2)注意点:注意区间端点值的检验.[即时应用]1.(2018·日照模拟)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.解析:由2x 2-3x +1≤0,得12≤x ≤1, ∴命题p 为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤1. 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,∴命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <12, 綈q 对应的集合B ={x |x >a +1或x <a }.∵綈p 是綈q 的必要不充分条件,∴a +1≥1且a ≤12,∴0≤a ≤12, 即实数a 的取值范围是⎣⎡⎦⎤0,12.答案:⎣⎡⎦⎤0,12 2.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.答案:(2,+∞)课时作业单独成册 对应学生用书第189页A 组——基础对点练1.(2017·高考天津卷)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:由|x -1|≤1,得0≤x ≤2,∵0≤x ≤2⇒x ≤2,x ≤20≤x ≤2, 故“2-x ≥0”是“|x -1|≤1”的必要而不充分条件,故选B.2.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数解析:由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C.答案:C3.已知命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”,则下列结论正确的是( )A .否命题“若函数f (x )=e x -mx 在(0,+∞)上是减函数,则m >1”是真命题B .逆命题“若m ≤1,则函数f (x )=e x -mx 在(0,+∞)上是增函数”是假命题C .逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上是减函数”是真命题D .逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上不是增函数”是真命题 解析:命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.答案:D4.“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件,故选A.答案:A5.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析:由原命题和逆否命题的关系可知D正确.答案:D6.(2018·惠州市调研)设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析:设f(x)=x2,y=|f(x)|是偶函数,但是不能推出y=f(x)的图象关于原点对称.反之,若y=f(x)的图象关于原点对称,则y=f(x)是奇函数,这时y=|f(x)|是偶函数,故选C.答案:C7.(2018·南昌十校模拟)命题“已知a,b,c为实数,若abc=0,则a,b,c中至少有一个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为() A.0 B.1C.2 D.3解析:原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.答案:D8.(2018·石家庄模拟)已知向量a =(1,m ),b =(m,1),则“m =1”是“a ∥b ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:向量a =(1,m ),b =(m,1),若a ∥b ,则m 2=1,即m =±1,故“m =1”是“a ∥b ”的充分不必要条件,选A.答案:A9.(2018·武汉市模拟)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:a 1>0,a 2n -1+a 2n =a 1q 2n -2(1+q )<0⇒1+q <0⇒q <-1⇒q <0,而a 1>0,q <0,取q =-12,此时a 2n -1+a 2n =a 1q 2n -2(1+q )>0.故“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要不充分条件.答案:B10.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“a ⊥b ”是“α⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为α⊥β,b ⊥m ,所以b ⊥α,又直线a 在平面α内,所以a ⊥b ;但直线a ,m 不一定相交,所以“a ⊥b ”是“α⊥β”的必要不充分条件,故选B.答案:B11.(2018·南昌市模拟)a 2+b 2=1是a sin θ+b cos θ≤1恒成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为a sin θ+b cos θ=a 2+b 2sin(θ+φ)≤a 2+b 2,所以由a 2+b 2=1可推得a sin θ+b cos θ≤1恒成立.反之,取a =2,b =0,θ=30°,满足a sin θ+b cos θ≤1,但不满足a 2+b 2=1,即由a sin θ+b cos θ≤1推不出a 2+b 2=1,故a 2+b 2=1是a sin θ+b cos θ≤1恒成立的充分不必要条件.故选A.答案:A12.(2018·洛阳统考)已知集合A ={1,m 2+1},B ={2,4},则“m =3”是“A ∩B ={4}”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析:若A ∩B ={4},则m 2+1=4,∴m =±3,而当m =3时,m 2+1=4,∴“m =3”是“A ∩B ={4}”的充分不必要条件.答案:A13.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的__________条件.解析:由正弦定理,得a sin A =b sin B,故a ≤b ⇔sin A ≤sin B .答案:充要14.“x >1”是“log 12(x +2)<0”的__________条件. 解析:由log 12(x +2)<0,得x +2>1,解得x >-1,所以“x >1”是“log 12(x +2)<0”的充分不必要条件.答案:充分不必要15.命题“若x >1,则x >0”的否命题是__________.答案:若x ≤1,则x ≤016.如果“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为__________.解析:由x 2>1,得x <-1,或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.答案:-1B 组——能力提升练1.(2018·湖南十校联考)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若A =B =0,则S n =0,故数列{a n }不是等比数列;若数列{a n }是等比数列,则a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2,由a 3a 2=a 2a 1,得A =-B .故选B. 答案:B2.已知函数f (x )=3ln(x +x 2+1)+a (7x +7-x ),x ∈R ,则“a =0”是“函数f (x )为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由题意知f (x )的定义域为R ,易知y =ln(x +x 2+1)为奇函数,y =7x +7-x 为偶函数.当a =0时,f (x )=3ln(x +x 2+1)为奇函数,充分性成立;当f (x )为奇函数时,则a =0,必要性成立.因此“a =0”是“函数f (x )为奇函数”的充要条件.故选C.答案:C3.l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线;q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充要条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:两直线异面,则两直线一定无交点,即两直线一定不相交;而两直线不相交,有可能是平行,不一定异面,故两直线异面是两直线不相交的充分不必要条件,故选A.答案:A4.“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:x 1>3,x 2>3⇒x 1+x 2>6,x 1x 2>9;反之不成立,例如x 1=12,x 2=20.故选A. 答案:A5.若a ,b 为正实数,且a ≠1,b ≠1,则“a >b >1”是“log a 2<log b 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件。
高考复习-2019届高考物理一轮总复习配套练习题全集(49套有答案)

2019高考物理(人教)一轮编练习题(1)李仕才一、选择题1、如图所示,在一个倾角为θ的斜面上,有一个质量为m,带负电的小球P(可视为点电荷),空间存在着方向垂直斜面向下的匀强磁场,带电小球与斜面间的摩擦力不能忽略,它在斜面上沿图中所示的哪个方向运动时,有可能保持匀速直线运动状态( )A.v1方向B.v2方向C.v3方向D.v4方向解析:选C 若小球的速度沿v1方向,滑动摩擦力与v1的方向相反,即沿图中v3方向,由左手定则知,小球受到的洛伦兹力方向在斜面平面内与v1垂直向下,重力的分力mg sin θ沿斜面向下,则知球在斜面平面内所受的合外力不为零,小球不可能做匀速直线运动,故A错误;同理可知B、D错误;若小球的速度沿v3方向,滑动摩擦力与v3的方向相反,即沿图中v1方向,由左手定则知,小球受到的洛伦兹力方向在斜面平面内与v3垂直向上,即沿v2方向,重力的分力mg sin θ沿斜面向下,则知斜面平面内的合外力可能为零,小球有可能做匀速直线运动,故C正确。
2、[多选]光滑斜面上,当系统静止时,挡板C与斜面垂直,弹簧、轻杆均与斜面平行,A、B质量相等。
在突然撤去挡板的瞬间( )A.两图中两球加速度均为g sin θB.两图中A球的加速度均为零C.图甲中B球的加速度为2g sin θD.图乙中B球的加速度为g sin θ解析:选CD 撤去挡板前,对整体分析,挡板对B球的弹力大小为2mg sin θ,因弹簧弹力不能突变,而杆的弹力会突变,所以撤去挡板瞬间,图甲中A球所受合力为零,加速度为零,B球所受合力为2mg sin θ,加速度为2g sin θ;图乙中杆的弹力突变为零,A、B球所受合力均为mg sin θ,加速度均为g sin θ,故C、D正确,A、B错误。
3、一位网球运动员以拍击球,使网球沿水平方向飞出,第一只球落在自己一方场地的B点,弹跳起来后,刚好擦网而过,落在对方场地的A点,如图所示,第二只球直接擦网而过,也落在A点,设球与地面的碰撞没有能力损失,其运动过程中阻力不计,则两只球飞过网C 处时水平速度之比为( )A .1∶1B .1∶3C .3∶1D .1∶9解析:选B 两种情况下抛出的高度相同,所以第一种情况下落到B 点所用的时间等于第二种情况下落到A 点所用时间,根据竖直上抛和自由落体的对称性可知第一种情况下所用时间为t 1=3t ,第二种情况下所用时间为t 2=t ,由于两球在水平方向均为匀速运动,水平位移大小相等,设它们从O 点出发时的初速度分别为v 1、v 2,由x =v 0t 得v 2=3v 1,即v 1v 2=13,B 正确。
打包下载:2019年高考一轮复习专题讲练测Word版含解析(共16套)

第10讲牛顿第一定律牛顿第三定律——测【满分:110分时间:90分钟】一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中. 1~8题只有一项符合题目要求; 9~12题有多项符合题目要求。
全部选对的得5分,选对但不全的得3分,有选错的得0分。
)1.下列说法中,不符合物理学史的是()A.亚里士多德认为,必须有力作用在物体上,物体才能运动。
B.牛顿认为,力是物体运动状态改变的原因,而不是物体保持运动的原因C.行星在圆周轨道上保持匀速率运动的性质是惯性D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动【答案】 C2.如图所示,在竖直平面内用轻质细线悬挂一个小球,将小球拉至A点,使细线处于拉直状态,由静止开始释放小球,不计摩擦,小球可在A、B两点间来回摆动.当小球摆到B 点时,细线恰好断开,则小球将()A.在B点保持静止 B.沿BE方向运动C.沿BC方向运动 D.沿BD方向运动【答案】 B【解析】由于小球被静止释放,不计摩擦,它可在A、B两点间来回摆动。
当小球摆到B点时,小球速度恰好为零,此时若细线恰好断开,则小球只受重力作用而竖直下落。
所以,将沿BE方向运动。
故选B。
【点睛】此题考查了学生力和运动之间的关系,力可以改变物体的形状或运动状态。
在此题中,小球由于重力作用将由静止下落。
解决此题的关键是判断出在B点的运动状态。
3.一列以速度v匀速行驶的列车内有一水平桌面,桌面上的A处有一小球。
若车厢内的旅客突然发现(俯视图)小球沿如图所示的曲线从A点运动到B点,则由此可以判断列车的运行情况是( )A.减速行驶,向北转弯 B.减速行驶,向南转弯C.加速行驶,向南转弯 D.加速行驶,向北转弯【答案】 B点晴:解决本题的关键知道小球具有惯性,保持以前的运动状态,向前运动,是因为列车减速,向北偏转,是因为列车向南拐弯。
4.2013年1月1日,新交通法规开始实施,其中“闯黄灯扣6分”被部分网友称为违背牛顿第一定律,导致各地追尾事故频发.在紧急刹车过程中关于汽车的惯性和速度变化,下列说法正确的是( )A.惯性不变,速度减小 B.惯性不变,速度不变C.惯性减小,速度减小 D.惯性减小,速度不变【答案】 A【解析】质量是物体惯性大小唯一的量度,与物体的运动状态无关,所以惯性不变,刹车时速度减小,动能减小,故A正确,BCD错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考一轮复习1-6讲义及配套训练题目录第1讲走近细胞第2讲细胞中的无机物、糖类和脂质第3讲蛋白质和核酸第4讲细胞膜和细胞核第5讲细胞器和生物膜系统第6讲细胞的物质输入和输出第1讲走近细胞[考纲要求] 1.原核细胞和真核细胞的异同(Ⅱ)。
2.细胞学说的建立过程(Ⅰ)。
3.实验:用显微镜观察多种多样的细胞。
考点一细胞是最基本的生命系统1.生命活动离不开细胞2.生命系统的结构层次(1)最基本和最大的生命系统分别是:[①]细胞和[⑦]生物圈。
(2)植物没有[③]系统层次;单细胞生物没有[②]组织、器官、[③]系统这三个层次。
(3)地球上最早的生命形式是:单细胞生物。
最简单的生命形式且不属于生命系统的是病毒。
(4)生物繁殖和进化的基本单位是[④]种群;[⑥]生态系统由[⑤]群落及其所处的无机环境构成。
3.多角度整合病毒的相关知识1.判断细胞是最基本的生命系统的有关叙述(1)生命系统中最基本和最大的层次分别是细胞和生物圈( √ )(2)原子、分子都是一个系统,但不能独立完成生命活动,不是生命系统( √ )(3)一个酵母菌与一个西瓜所属的生命系统层次相同( × )(4)池塘中的水、阳光等也是生命系统的一部分( √ )2.判断生命活动离不开细胞的有关叙述(1)HIV由蛋白质和核酸组成能支持“生命活动离不开细胞”的观点( × )(2)单细胞生物以个体间的团结协作完成各项生命活动( × )(3)因为细胞具有全能性,所以每个细胞都能独立完成各项生命活动( × )据图分析病毒的结构和特点(1)HIV和T4噬菌体分别主要由什么成分构成?这些成分的合成场所在哪里?提示 HIV主要由RNA和蛋白质组成;T4噬菌体由DNA和蛋白质组成。
这些物质都是利用宿主细胞的原料和相关结构合成的。
(2)HIV和T4噬菌体相比,变异性更大,原因是什么?提示 HIV的RNA是单链结构,不稳定,容易发生变异。
(3)HIV的最外层有脂膜包被,推测其进入宿主细胞的方式是怎样的?提示依靠脂膜和细胞膜的融合,以类似胞吞的方式进入细胞。
(4)噬菌体是专一侵染细菌的病毒,如果想用放射性同位素标记法标记T4噬菌体,该如何操作?请写出基本思路。
提示先用含有放射性的培养基培养细菌,再用标记后的细菌培养T4噬菌体。
命题点一辨析生命活动与细胞的关系1.“细胞是生命活动的基本单位”,下面哪一项叙述不符合这一观点( )A.各种细胞的生命活动只有在细胞这个统一的整体中才能完成B.多细胞生物的生命活动是以每个细胞的生命活动为基础的C.病毒无细胞结构,病毒的生命活动只能在寄主细胞内完成D.细胞是生物体结构的基本单位,但不是生物体代谢和遗传的基本单位答案 D解析细胞是生命活动的结构单位和功能单位,病毒没有细胞结构,不能独立生活,必须寄生在活细胞内才能生存;生命活动离不开细胞是指单细胞生物的细胞能完成各种生命活动,多细胞生物通过各种分化的细胞共同协调完成各种复杂的生命活动,A、B、C项正确;细胞既是生物体结构和功能的基本单位,也是生物体代谢和遗传的基本单位,D项错误。
2.中国疾病预防控制中心发布信息:“近期检测出三株NDM-1耐药基因阳性细菌。
其中,疾控中心实验室检出两株来自宁夏的新生儿,一株来自福建某老年患者”。
下列关于“NDM-1超级细菌”的叙述不正确的是( )A.“NDM-1超级细菌”具有与真核细胞相似的细胞膜、核糖体B.从生命系统的结构层次来看,“NDM-1超级细菌”既是细胞层次也是个体层次C.为获得大量的“NDM-1超级细菌”,可在体外用培养基培养D.与人体细胞相比,“NDM-1超级细菌”在结构上的最主要区别是有细胞壁答案 D解析“NDM-1超级细菌”是原核生物,没有以核膜为界限的细胞核,但具有与真核细胞相似的细胞膜、核糖体,A项正确;“NDM-1超级细菌”属于单细胞生物,从生命系统的结构层次来看,“NDM-1超级细菌”既是细胞层次也是个体层次,B项正确;“NDM-1超级细菌”属于原核生物,可以在体外用培养基培养,C项正确;“NDM-1超级细菌”是原核生物,与真核细胞相比,在结构上的最主要区别是没有以核膜为界限的细胞核,D项错误。
命题点二辨析病毒和细胞的关系3.困扰美洲及加勒比地区的寨卡(Zika)病毒,已在我国发现多例感染者,目前已证实在34个国家境内有确诊病例。
该病毒通过伊蚊叮咬进行传播,导致婴儿患上“小头症”,其结构模式图如图。
下列有关叙述正确的是( )A.图中M蛋白、E蛋白二聚体经过酶解后的氨基酸种类和数量均相同B.寨卡病毒的遗传物质彻底水解后可得到尿嘧啶和脱氧核糖等化合物C.寨卡病毒的RNA分子含有遗传信息,利用分子杂交技术可帮助诊断人体是否患“小头症”D.寨卡病毒体内的水是含量最多的化合物,其含量和比例既不断变化,又相对稳定答案 C解析图中M蛋白、E蛋白二聚体是两种蛋白质,水解产生的氨基酸的种类和数目可能不同,A项错误;寨卡病毒的遗传物质是RNA,RNA中的五碳糖是核糖,不是脱氧核糖,B项错误;由图分析可知,寨卡病毒的遗传物质是RNA,RNA中含有遗传信息,通过分子杂交技术可帮助诊断人体是否患“小头症”,C项正确;水是细胞中含量最多的化合物,病毒不具有细胞结构,因此水不是病毒含量最多的化合物,D项错误。
4.由A型流感病毒中的H5N1亚型引起的禽流感是一种高致病性禽类传染病,其发病率和死亡率都很高。
下列关于禽流感病毒的说法正确的是( )A.虽然能引发传染病,但是其没有细胞结构,因此它不是生物B.能引发传染病,必须寄生在活细胞内C.在人工配制的富含有机物的培养基上就可以培养D.不能进行新陈代谢答案 B解析病毒虽然没有细胞结构,但其可在宿主细胞内繁殖,是生物;病毒必须利用宿主细胞提供的原料、能量和物质合成场所,才能进行增殖等活动;病毒一旦离开活细胞,不再有任何生命活动;新陈代谢是生物体最基本的特征。
考点二细胞的多样性与统一性1.原核细胞与真核细胞(1)图1属于原核细胞,图2属于真核细胞(填“原核细胞”或“真核细胞”)。
(2)图1代表的细胞与图2代表的细胞最主要的区别是图1代表的细胞没有以核膜为界限的细胞核;两类细胞共有的细胞器是核糖体。
(3)写出图1细菌细胞中下列结构的名称:①拟核;③细胞壁;⑤核糖体;⑥鞭毛。
(4)图1蓝藻细胞中无图2细胞中的⑥叶绿体,但也能进行光合作用的原因是其细胞中含有藻蓝素和叶绿素及光合作用所需的酶。
(5)列表比较原核细胞和真核细胞知识拓展生物界常见生物类群的划分2.细胞学说的建立(1)细胞学说的建立过程(连线)(2)基本内容①细胞是一个有机体,一切动植物都由细胞发育而来,并由细胞和细胞产物所构成。
②细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命起作用。
③新细胞可以从老细胞中产生。
(3)意义:揭示了细胞统一性和生物体结构统一性;揭示了生物之间存在一定的亲缘关系。
知识归纳细胞统一性的“五个”表现1.判断有关原核细胞和真核细胞的叙述(1)蓝藻无叶绿体却可以进行光合作用,硝化细菌无线粒体却可以进行有氧呼吸( √ )(2)乳酸菌、衣藻、蘑菇和蓝藻都具有RNA、染色体和核膜( × )(3)在电子显微镜下,颤藻和水绵细胞中都能被观察到的细胞器是核糖体( √ )(4)所有的真核细胞都具有细胞核( × )2.判断关于细胞学说的描述(1)细胞学说揭示了生物界的多样性和统一性,认为细胞一定都是由细胞分裂产生的( × )(2)细胞学说不涉及原核细胞、真菌和病毒,仅涉及到动、植物细胞( √ )(3)细胞学说的创立完全是由施莱登和施旺完成的( × )分析原核细胞和真核细胞的结构模式图(1)蓝藻细胞与小麦细胞的主要区别是蓝藻细胞没有以核膜为界限的细胞核。
(2)蓝藻与小麦都是能进行光合作用的自养生物。
(3)这两类细胞都具有核糖体,其形成是否都与核仁有关?提示真核生物核糖体的形成与核仁有关,原核生物没有核仁。
(4)两种生物的细胞有差异,同一株小麦的不同细胞也有差异,从分子水平上分析,其直接原因和根本原因分别是什么?提示两种生物的细胞存在差异的直接原因是构成细胞的蛋白质分子结构不同,根本原因是不同个体的细胞中含有的DNA不同;同一株小麦的不同细胞存在差异的直接原因也是构成细胞的蛋白质分子结构不同,根本原因是基因的选择性表达。
命题点一真核生物、原核生物以及病毒的辨析1.下面关于绿藻和蓝藻的叙述,不正确的是( )A.绿藻和蓝藻都能进行光合作用,这与它们含有叶绿体有关B.绿藻和蓝藻合成蛋白质的场所都是核糖体C.绿藻有核膜、核仁,而蓝藻没有D.绿藻和蓝藻的大爆发与水体富营养化有关答案 A解析绿藻是真核生物,蓝藻是原核生物,绿藻和蓝藻都能进行光合作用,绿藻含有叶绿体,而蓝藻是依靠含有的叶绿素和藻蓝素进行光合作用;核糖体是合成蛋白质的场所,绿藻和蓝藻都含有核糖体;真核细胞有以核膜为界限的细胞核,即有核膜、核仁和染色体,原核细胞没有;富营养化是指生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶氧量下降,鱼类及其他水生生物大量死亡的现象。
2.(2017·大连一模)下列四种生物依次可表示噬菌体、肺炎双球菌、植物和动物的是( )A.甲、丁、丙、乙B.甲、乙、丙、丁C.乙、丁、丙、甲 D.甲、丙、丁、乙答案 A解析噬菌体没有细胞结构,由蛋白质和DNA组成,故甲为噬菌体;肺炎双球菌、植物细胞和动物细胞都有DNA和RNA,都含有A、T、C、G、U五种碱基,但动物细胞没有细胞壁,故乙为动物细胞;肺炎双球菌没有线粒体,也没有染色体,不能进行减数分裂,不遵循孟德尔遗传定律,故丁为肺炎双球菌;则丙为植物,故选A。
3.(2017·哈尔滨六中模拟)下列关于“生物”的叙述,正确的是( )A.原核生物细胞无线粒体,所以不能进行有氧呼吸B.病毒没有细胞结构,所以不是生物C.真核生物和原核生物的遗传物质都是DNAD.原核生物细胞无叶绿体,所以都不能进行光合作用答案 C解析原核生物无线粒体,但有的含有与有氧呼吸有关的酶,所以能进行有氧呼吸,A项错误;病毒没有细胞结构,但因为能增殖所以是生物,B项错误;真核生物和原核生物都是细胞生物,所以遗传物质都是DNA,C项正确;原核生物无叶绿体,但有的含有叶绿素能进行光合作用,D项错误。
命题点二细胞结构与功能统一性的综合分析4.(2018·长沙调研)细胞作为生命活动的基本单位,其结构和功能是统一的。
下列有关叙述正确的是( )A.在蛋白质合成旺盛的细胞中,核糖体的数目较多,核仁较小B.哺乳动物成熟红细胞和精子的寿命都较短,它们的寿命短与结构没有关系C.小肠绒毛上皮细胞内有大量的线粒体,与小肠的吸收功能有关D.与人体的其他细胞相比,卵细胞的体积较大,相对表面积也大,有利于物质交换答案 C解析在蛋白质合成旺盛的细胞中,核糖体的数目较多,核仁较大;哺乳动物成熟红细胞和精子的寿命都较短,它们的寿命短与结构有直接关系;小肠绒毛上皮细胞内有大量的线粒体,与小肠的主动吸收功能有关;与人体的其他细胞相比,卵细胞的体积较大,相对表面积较小,不利于物质交换。