1.2.1任意角的三角函数(1)

合集下载

1.2.1任意角的三角函数(1)

1.2.1任意角的三角函数(1)

2 若a 0则r -17a, 于是
8a 8 15a 15 8a 8 sin , cos , tan 17a 17 17a 17 15a 15
3、已知角的终边在直线y 2 x上,求角的sin ,cos , tan 的值.
OP0 (3) 2 (4) 2 5
y
M0
M
Px, y
M 0 P0 4
OM 0 3
OM x MP y
O
x
OMP ∽ OM 0 P0
P0 3,4
于是, sin y y | MP | M 0 P0 4 ; 1 OP OP0 5 OM 0 x OM 3 cos x ; 1 OP OP0 5
P(a, b)
1
cos a
x

o
M
b tan a
同样的,我们可以利用单位圆来定 义任意角的三角函数。
任意角的三角函数定义
设 是一个任意角,它的终边与单位圆交于点P( x, y )
那么:(1)y 叫做
的正弦,记作 sin ,即 sin y ; (2)x 叫做 的余弦,记作 cos ,即 cos x ; y y tan (3) 叫做 的正切,记作 ,即 tan ( x 0)
y
MP b sin OP r
OM a cos OP r
﹒Pa, b

MP b tan OM a
o

M
x
问2:对于确定的角 ,这三个比值的大小和 P 点在角 的终边上的位置是否有关呢?
y
P
P(a,b)

M

1.2.1任意角的三角函数(一)

1.2.1任意角的三角函数(一)

R
例题与练习
例1. 求下列各角的四个三角函数值:
(1) ;
5 (2) . 3
例题与练习
例2. 已知角的终边经过点P(- 3,-4), 求角的四个三角函数值.
小结:若α的终边上任意一点的坐标为 P(x,y) ,其三角函数可转化为
y x y 2 2 sin , cos , tan , ( r x y ) r r x
我们把它们统称为三角函数.
说 明:
①的始边与轴的非负半轴重合, 的终边没有表明一定是正角或负角,以 及的大小,只表明与的终边相同的角 所在的位置;
x
②根据相似三角形的知识,对于确 定的角,四个比值不以点P(x, y)在的 终边上的位置的改变而改变大小;
说 明:
2 在y轴上,终边上任意一点 的横坐标x都 y 等于0,所以tan 无意义;同理当 x x k ( k Z ) 时, cot 无意义; y
1.2.1任意角的 三角函数
复习引入
锐角三角函数的定义:
斜边 对边

sin
邻边
对边 斜边 _____;cos

邻边 斜边 _____; tan

对边 邻边 _____
锐角三角函数坐标化
O 重 设锐角 的顶点与原点 y P(a,b) 合,始边与 x 轴的非负半轴重合. P(a,b) 在 的终边上任取一点 P(a, b) ,它 r 与原点的距离 r a2 b2 α
(1)y叫做α 的正弦,记作sinα , 即 y sinα =y; (2)x叫做α 的余弦,记作 cosα ,即cosα =x
P(x,y)
α
O
A(1,0) x
y (3) 叫做α 的正切,记作tanα ,即 x y

高一数学《1.2.1任意角的三角函数(一)》

高一数学《1.2.1任意角的三角函数(一)》

1.2.1任意角的三角函数(1)教学目的:知识目标:1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一)。

能力目标:(1)理解并掌握任意角的三角函数的定义;(2)树立映射观点,正确理解三角函数是以实数为自变量的函数;(3)通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。

德育目标: (1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;(2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;教学重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。

公式一是本小节的另一个重点。

教学难点:利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来.教学过程:一、复习引入:初中锐角的三角函数是如何定义的?角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。

二、讲解新课:1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么(1)比值y r叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r叫做α的余弦,记作cos α,即cos x r α=; (3)比值y x叫做α的正切,记作tan α,即tan y x α=; (4)比值x y 叫做α的余切,记作cot α,即cot x y α=; 说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ③当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0, 所以tan y x α=无意义;同理当()k k Z απ=∈时,yx =αcot 无意义; ④除以上两种情况外,对于确定的值α,比值y r 、x r 、y x 、x y分别是一个确定的实数, 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。

高一数学任意角的三角函数(一)

高一数学任意角的三角函数(一)

cos θ>0 由tan θ<0, 得角 θ 为第四象限角.
∴角θ为第三或第四象限角.
探究点四 诱导公式一
思考1 诱导公式一是什么? 答 由任意角的三角函数的定义可以知道,终边相同的角的同 一三角函数值相等.由此得到诱导公式一: sin(k·360°+α)=sin α,cos(k·360°+α)=cos α, tan(k·360°+α)=tan α,其中k∈Z, 或者:sin(2kπ+α)=sin α,cos(2kπ+α)=cos α, tan(2kπ+α)=tan α,其中k∈Z.
圆心,以单位长度为半径的圆为单位圆.锐角α
的终边与单位圆交于P(x,y)点,则有:sin α= y, y
cos α= x ,tan α= x .
探究点二 任意角三角函数的概念
y
yx
x
x2+y2
思考2 对于确定的角α,这三个比值是否会随点P在α的终边上的 位置的改变而改变呢? 答 由三角函数的定义知,三角函数值是一个比值,即一个实 数,它的大小只与角α的终边位置有关,即与角有关,与角α终边 上点P的位置无关.
思考2 诱导公式一的作用是什么? 答 把求任意角的三角函数值转化为求0°~360°的三角 函数值.
例如:sin 420°=sin 60°= 23;cos(-330°)=cos 30°= 23;
tan(-315°)=tan 45°=1.
例3 求下列各式的值.
(1)cos 253π+tan-154π;
45°-sin
90°+cos
30°=1-1+
3 2

3 2.
呈重点、现规律
1.三角函数值是比值,是一个实数,这个实数的大小和点P(x,y)在终边上的位 置无关,只由角α的终边位置确定.即三角函数值的大小只与角有关. 2.要善于利用三角函数的定义及三角函数的符号规律解题,并且注意掌握解题时 必要的分类讨论及三角函数值符号的正确选取. 3.要牢记一些特殊角的正弦、余弦、正切值.

1.2.1任意角的三角函数的定义(第一课时)

1.2.1任意角的三角函数的定义(第一课时)

第一章 三角函数 1.2 任意角的三角函数1.2.1 任意角的三角函数(第一课时)学习目标1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域及在各象限的符号.学习过程1.复习:初中锐角的三角函数是如何定义的?Rt △ABC 中,设A 的对边为a ,B 的对边为b ,C 的对边为c ,锐角A 的正弦、余弦、正切依次为sin A=,cos A= ,tan A= .2.探究:1.坐标法求三角函数.锐角α可放在坐标系中,在角α的终边上任取一点P (a ,b ),点P 与原点的距离r=,sin α= ;cos α= ;tan α= . 思考:对确定的锐角α,sin α,cos α,tan α的值是否随P 点在终边上的位置的改变而改变? 答案 不会.因为三角函数值是比值,其大小与点P (x ,y )在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关..思考:怎样适当地选取P 点使比值简化?其中,以原点为圆心,以 为半径的圆为单位圆. 新知:1.任意角的三角函数.设α为一个任意角,它的终边与单位圆交于点P (x ,y ): 那么:(1)y 叫做α的正弦,记作sin α,即sin α=y ; (2)x 叫作α的余弦,记作cos α,即 ;(3)叫作α的正切,记作 ,即tan α=(x ≠0).三角函数:对于确定的角α,上面三个函数值都是唯一确定的,所以,正弦、余弦、正切都是以角为 ,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.由于角的集合和实数集之间可以建立一一对应的关系,三角函数可以看成是自变量为实数的函数.3.正弦、余弦、正切函数值在各象限的符号思考 根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗? 答案 由三角函数定义可知,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx (x ≠0).当α为第一象限角时,y >0, x >0,故sin α>0,cos α>0,tan α>0,同理可得当α在其他象限时三角函数值的符号,如图所示.梳理 记忆口诀:“一全正,二正弦,三正切,四余弦”.4.思考 当角α分别为30°,390°,-330°时,它们的终边有什么特点?它们的三角函数值呢?答案 它们的终边重合.由三角函数的定义知,它们的三角函数值相等. 梳理 诱导公式一典型例题【例1】求π的正弦、余弦和正切值.解:在直角坐标系中,作∠AOB=,∠AOB 的终边与单位圆的交点坐标为(,-),所以sin=-,cos,tan=-.【例2】已知角α的终边过点P 0(-3,-4),求角α的正弦、余弦和正切值. 解:sin α==-,cos α==-,tan α=.【例3】求证:当下列不等式组成立时,角α为第三象限角,反之也对.证明:如果sin α<0成立,那么角α的终边可能位于第三或第四象限,也可能与y 轴的非负半轴重合;如果tan α>0,则角α的终边位于第一或第三象限.所以,角α的终边只能位于第三象限.【例4】确定下列三角函数值的符号.(1)cos250°; (2)sin(-4π); (3)tan(-672°); (4)tan3π. 解:(1)因为250°是第三象限角,所以 cos250°<0; (2)因为-是第四象限角,所以sin(-)<0;(3)因为tan(-672°)=tan(48°-2×360°)=tan48°,而48°是第一象限角,所以tan(-672°)>0; (4)因为tan3π=tan(π+2π)=tan π,而π的终边在x 轴上,所以tan π=0. 【例5】求下列三角函数值. (1)sin1480°10'; (2)cos; (3)tan(-).解:(1)sin1480°10'=sin(40°10'+4×360°)=sin40°10'≈0.645; (2)cos =cos(+2π)=cos ;(3)tan(-)=tan(-2π)=tan.【例6】 已知θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ. 考点 任意角的三角函数 题点 用定义求三角函数的值 解 由题意知r =|OP |=x 2+9, 由三角函数定义得cos θ=x r =xx 2+9.又∵cos θ=1010x ,∴x x 2+9=1010x . ∵x ≠0,∴x =±1. 当x =1时,P (1,3), 此时sin θ=312+32=31010,tan θ=31=3.当x =-1时,P (-1,3), 此时sin θ=3(-1)2+32=31010,tan θ=3-1=-3.反思与感悟 (1)已知角α终边上任意一点的坐标求三角函数值的方法在α的终边上任选一点P (x ,y ),设P 到原点的距离为r (r >0),则sin α=y r ,cos α=xr .当已知α的终边上一点求α的三角函数值时,用该方法更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.跟踪训练1 已知角α的终边过点P (-3a,4a )(a ≠0),求2sin α+cos α的值. 考点 任意角的三角函数 题点 用定义求三角函数的值 解 r =(-3a )2+(4a )2=5|a |.①若a >0,则r =5a ,角α在第二象限, sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,∴2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限, sin α=4a -5a =-45,cos α=-3a -5a =35,∴2sin α+cos α=-85+35=-1.综上所述,2sin α+cos α=±1.命题角度2 已知角α终边所在直线求三角函数值 【例7】 判断下列各式的符号: (1)sin145°cos(-210°);(2)sin3·cos4·tan5. 考点 三角函数值在各象限的符号 题点 三角函数值在各象限的符号 解 (1)∵145°是第二象限角,∴sin145°>0. ∵-210°=-360°+150°,∴-210°是第二象限角, ∴cos (-210°)<0,∴sin145°cos(-210°)<0. (2)∵π2<3<π<4<3π2<5<2π,∴sin3>0,cos4<0,tan5<0, ∴sin3·cos4·tan5>0.反思与感悟 角的三角函数值的符号由角的终边所在位置确定,解题的关键是准确确定角的终边所在的象限,同时牢记各三角函数值在各象限的符号,记忆口诀:一全正,二正弦,三正切,四余弦.跟踪训练3 已知点P (tan α,cos α)在第三象限,则α是第________象限角. 考点 三角函数值在各象限的符号 题点 三角函数值在各象限的符号 答案 二解析 由题意知tan α<0,cos α<0, ∴α是第二象限角. 类型三 诱导公式一的应用 例4 求下列各式的值:(1)sin(-1395°)cos1110°+cos(-1020°)sin750°;(2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan4π. 考点 诱导公式一 题点 诱导公式一解 (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin45°cos30°+cos60°sin30°=22×32+12×12=64+14=1+64. (2)原式=sin ⎝⎛⎭⎫-2π+π6+cos ⎝⎛⎭⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12. 反思与感悟 利用诱导公式一可把负角的三角函数化为0到2π间的三角函数,也可把大于2π的角的三角函数化为0到2π间的三角函数,即实现了“负化正,大化小”. 跟踪训练4 求下列各式的值: (1)cos 25π3+tan ⎝⎛⎭⎫-15π4; (2)sin810°+tan765°-cos360°. 考点 诱导公式一 题点 诱导公式一解 (1)原式=cos ⎝⎛⎭⎫8π+π3+tan ⎝⎛⎭⎫-4π+π4 =cos π3+tan π4=12+1=32.(2)原式=sin(90°+2×360°)+tan(45°+2×360°)-cos360°=sin90°+tan45°-1=1+1-1=1.一、选择题1.(2017·长沙检测)sin(-315°)的值是( ) A .-22B .-12C.22D.12答案 C解析 sin(-315°)=sin(-360°+45°)=sin45°=22. 2.(2017·山西太原外国语学校月考)如果角α的终边过点P (2sin30°,-2cos30°),则sin α等于( )A.12B .-12C .-32D .-33 答案 C解析 由题意得P (1,-3),它与原点的距离r =12+(-3)2=2,∴sin α=-32. 3.已知sin θ<0,且tan θ<0,则θ为( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案 D4.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x 的值为( ) A.3 B .±3 C .- 2 D .- 3答案 D解析 ∵cos α=x r =x x 2+5=24x ,∴x =0或2(x 2+5)=16,∴x =0或x 2=3,∴x =0(∵α是第二象限角,∴舍去)或x =3(舍去)或x =- 3.故选D. 5.(2017·嘉兴模拟)sin2·cos3·tan4的值( ) A .小于0 B .大于0 C .等于0 D .不存在 答案 A解析 ∵sin2>0,cos3<0,tan4>0, ∴sin2·cos3·tan4<0.6.(2017·湖州期末)点P 从点(1,0)出发,沿单位圆顺时针方向运动5π6弧长到达Q 点,则Q 点的坐标是( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-12,-32C.⎝⎛⎭⎫-32,-12D.⎝⎛⎭⎫-32,12 答案 C解析 根据题意可得:x Q =cos ⎝⎛⎭⎫-5π6=-32, y Q =sin ⎝⎛⎭⎫-5π6=-12. 则Q 点的坐标是⎝⎛⎭⎫-32,-12. 7.如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案 C解析 由题意知sin θ+cos θ<0,且sin θcos θ>0,∴⎩⎪⎨⎪⎧sin θ<0,cos θ<0,∴θ为第三象限角. 二、填空题8.tan405°-sin450°+cos750°=________. 答案32解析 tan405°-sin450°+cos750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°)=tan45°-sin90°+cos30°=1-1+32=32. 9.(2017·绍兴柯桥区期末)已知α的顶点在原点,始边在x 轴上,终边与单位圆相交于点M ⎝⎛⎭⎫-32,12,则cos α=________. 答案 -3210.(2017·山东烟台一中期末)已知角α的终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则实数a 的取值范围是________. 答案 (-2,3]解析 ∵点(3a -9,a +2)在角α的终边上, sin α>0,cos α≤0,∴⎩⎪⎨⎪⎧a +2>0,3a -9≤0,解得-2<a ≤3. 11.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,则sin θ+cos θ=________. 答案 0或- 2解析 ∵θ的终边过点P (x ,-1)(x ≠0), ∴tan θ=-1x .又tan θ=-x , ∴x 2=1,即x =±1. 当x =1时,sin θ=-22,cos θ=22, 因此sin θ+cos θ=0; 当x =-1时,sin θ=-22,cos θ=-22, 因此sin θ+cos θ=- 2. 故sin θ+cos θ的值为0或- 2.12.已知角α的终边在直线y =3x 上,则sin α,cos α,tan α的值分别为________. 答案32,12,3或-32,-12, 3 解析 因为角α的终边在直线y =3x 上, 所以可设P (a ,3a )(a ≠0)为角α终边上任意一点, 则r =a 2+(3a )2=2|a |(a ≠0). 若a >0,则α为第一象限角,r =2a ,所以sin α=3a 2a =32,cos α=a 2a =12, tan α=3aa= 3. 若a <0,则α为第三象限角,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12,tan α=3aa= 3. 13.sin 72π+cos 52π+cos(-5π)+tan π4=________.答案 -1解析 原式=sin 32π+cos π2+cosπ+1=-1+0-1+1=-1.14.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x 的值域是________________.答案 {-4,0,2}解析 由sin x ≠0,cos x ≠0知,x 的终边不能落在坐标轴上, 当x 为第一象限角时,sin x >0,cos x >0, sin x cos x >0,y =0;当x 为第二象限角时,sin x >0,cos x <0, sin x cos x <0,y =2;当x 为第三象限角时,sin x <0,cos x <0, sin x cos x >0,y =-4;当x 为第四象限角时,sin x <0,cos x >0, sin x cos x <0,y =2.故函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x 的值域为{-4,0,2}.三、解答题15.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边与单位圆相交于点M ⎝⎛⎭⎫35,m ,求m 的值及sin α的值. 解 (1)∵1|sin α|=-1sin α, ∴sin α<0.①∵lg(cos α)有意义, ∴cos α>0.②由①②得角α的终边在第四象限. (2)∵点M ⎝⎛⎭⎫35,m 在单位圆上, ∴⎝⎛⎭⎫352+m 2=1,解得m =±45. 又α是第四象限角,∴m <0,∴m =-45.由三角函数定义知,sin α=-45.达标检测1.α是第四象限角,则下列数值中一定是正值的是( ) A.sin αB.cos αC.tan αD.2.已知点P (tan α,cos α)在第三象限,则角α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知角α的终边过点P (-1,2),则cos α的值为 .4.已知角α的终边过点(a ,2a )(a ≠0),求α的正弦、余弦和正切值.5.判断sin4·tan(-)的符号.参考答案复习:探究:1.坐标法求三角函数.锐角α可放在坐标系中,在角α的终边上任取一点P (a ,b ), 点P 与原点的距离r=,sin α=,cos α=,tan α=.由三角形相似,确定的α可对应相似的直角三角形,这三个比值对应相等,不会随P 在角的终边的位置改变而改变. 2.单位圆.不难想到,当r=1时形式上比较简单,即sin α=b ,cos α=a ,tan α=,而当r=1时,可构设一个以原点为圆心以单位长为半径的圆,角α的终边与圆的交点选为P 点.此时,点P 与原点的距离r=1.其中,以原点为圆心,以1个单位长度为半径的圆为单位圆. 新知:1.cos α=x ;tan α;自变量2.≠+k反思:在直角坐标系中,设α是一个任意角,α终边上任意一点P(除了原点)的坐标为(x,y),则sinα=,cosα=,tanα=.3.终边相同的角同一三角函数值相等.典型例题【例1】解:在直角坐标系中,作∠AOB=,∠AOB的终边与单位圆的交点坐标为(,-),所以sin=-,cos,tan=-.【例2】解:sinα==-,cosα==-,tanα=.【例3】证明:如果sinα<0成立,那么角α的终边可能位于第三或第四象限,也可能与y轴的非负半轴重合;如果tanα>0,则角α的终边位于第一或第三象限.所以,角α的终边只能位于第三象限.【例4】解:(1)因为250°是第三象限角,所以cos250°<0;(2)因为-是第四象限角,所以sin(-)<0;(3)因为tan(-672°)=tan(48°-2×360°)=tan48°,而48°是第一象限角,所以tan(-672°)>0;(4)因为tan3π=tan(π+2π)=tanπ,而π的终边在x轴上,所以tanπ=0.【例5】解:(1)sin1480°10'=sin(40°10'+4×360°)=sin40°10'≈0.645;(2)cos=cos(+2π)=cos;(3)tan(-)=tan(-2π)=tan.达标检测1.B2.B3.-4.当a>0时,sinα=,cosα=,tanα=2;当a<0时,sinα=-,cosα=-,tanα=2.5.略。

人教A版高中数学必修四课件1.2.1任意角的三角函数.ppt

人教A版高中数学必修四课件1.2.1任意角的三角函数.ppt

cos
2
3 2
6, 4
tan
3
15 3
.
(3) 当 y 5 时,P( 3 , 5),r 2 2 ,
cos 6 ,tan 15 .
4
3
综上所述:
(1) 当 y 0 时,cP(os 3,1, 0)ta,nr 03.
(2) 当 y 5 时 ,coP(s 3 ,6 ,5 )tan,r2 125,.
sin 5 3 ,
3
2
cos 5 1 ,
32
tan 5 3.
3
例1.求下列角的正弦、余弦和正切值:
(1) 5 ; (2) ; (3) 3 .
3
2
解:(2)∵ 当 时,在直角坐标系中, y 角 的终边与单位圆的交点坐标为 P(1, 0).
sin 0, cos 1, tan 0.
y
(1)正弦:sinα=y ;
P(x,y)
α
(2)余弦:cosα=x ;
0
A(1,0) x (3)正切:tanα= (yx≠0).
x
三角函数 sinα cosα tanα
定义域
正弦、余弦、正切都是以角(弧度)为自变量,以单位圆 上的点的坐标或坐标的比值为函数值的函数,我们将它们 统称为三角函数。
三角函数的定义域、值域
|
OP0
|5
P0(-3,-4)
x cos 3
三角函数的坐标定义 :(见教材13页)
一般地,设角α终边上任意一点(异于原点)P(x,y),它到原
点(顶点)的距离为r>0,则
sinα=y ;cosα= x ;tanα= .y
r
r
x
例2.已知角α终边上经过点P0(-3,-4), 求角的正弦、余弦和正切值.

1.2.1任意角三角函数

1.2.1任意角三角函数

1.2.1任意角三角函数(命题人:乔更云 审题人:郑伟锋自主预习认真阅读教材P 11-14,回答下列问题: 1.任意角的三角函数(1)单位圆:在直角坐标系中,称以 为圆心,以 为半径的圆为单位圆.(2)锐角的三角函数:如图所示,在Rt △OAB 中,∠OAB =90°,OA =a ,AB =b ,OB =r ,设∠BOA =α,则有:示,α是任意角,以α的顶点O 坐标原点,以α的始边为x 轴的非负半轴,建立平面直角坐标系.设P (x ,y )是α的终边与单位圆的交点,则有:(4)定义:当a = (k ∈Z )时,tan α无意义.除此之外,对于每一个确定的α,都分别有 确定的正弦值、余弦值、正切值与之对应,所以这三个对应法则都是以角α为 ,以单位圆上点的坐标或坐标的比值为函数值的函数,分别叫做正弦函数、余弦函数、正切函数,这三个函数统称为,分别记作y =sin x ,y =cos x ,y =tan x .典例讲解[例1] 已知角的终边落在直线y =2x 上,求sin α,cos α,tan α的值.变式1 (1)求2π3的正弦、余弦和正切值.(2)已知角α的终边经过点P (3,4),求sin α,cos α,tan α.(3)已知角α的终边过点P (5,a ),且tan α=-125,求sin α-cos α的值.[例2]确定下列各式的符号:(1)sin105°·cos230°;(2)sin 7π8·tan7π8;(3)cos6·tan6.变式2. (1)若sinθ>0且tanθ<0,则θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角(2)判断下列三角函数值的符号:(1)in(-670°)cos1230°;(2)sin8·cos8.[例3]求下列各式的值.(1)cos 253π+tan(-154π);(2)sin810°+tan765°-cos360°.变式3求下列三角函数值:(1)cos(-1050°);(2)tan19π3;(3)sin(-31π4).[例4]已知角α的终边上一点P(4t,-3t)(t≠0),求α的各三角函数值.例5已知sinα=12,求出角α的取值集合.变式5.利用单位圆,求使下列不等式成立的x的取值范围:(1)sin x≤12;(2)tan x≤1;(3)cos x≥22.1.2.1任意角三角函数 课后作业 1.若sin α<0且tan α>0,则α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限2.若角α的终边过点(-3,-2),则( )A .sin αtan α>0B .cos αtan α>0C .sin αcos α>0D .sin αcos α<0 3.cos1110°的值为( ) A.12 B.32 C .-12 D .-32 4.已知P (2,-3)是角θ终边上一点,则tan(2π+θ)等于( )A.32B.23 C .-32 D .-23 5.cos 2201.2°可化为( ) A .cos201.2° B .-cos201.2° C .sin201.2° D .tan201.2°6.已知角α的终边经过点P (m ,-3),且cos α=-45,则m 等于( )A .-114 B.114 C .-4 D .4P 在第二或三象限,所以m <0,则m =-4.7.如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限8.α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则sin α的值为( )A.104B.64C.24 D .-1049.如果α的终边过点P (2sin30°,-2cos30°),则sin α的值等于( )A.12 B .-12 C .-32 D .-33 10.函数y =|sin x |sin x +cos x |cos x |+|tan x |tan x 的值域是( )A .{-1,1,3}B .{1,3}C .{-1,3}D .R 11.已知11π6的正弦线为MP ,正切线为AT ,则有( )A .MP 与AT 的方向相同B .|MP |=|AT |C .MP >0,AT <0D .MP <0,AT >012已知sin α>0,tan α<0,则α的( ) A .余弦线方向向右,正切线方向向下 B .余弦线方向向右,正切线方向向上 C .余弦线方向向左,正切线方向向下 D .余弦线方向向上,正切线方向向左 13.使得lg(cos θ·tan θ)有意义的角θ是第________象限角.14.已知角α的终边过点(3a -9,a +2)且cos α≤0,sin α>0,求实数a 的取值范围.15.求下列各式的值: (1)sin 25π3+tan(-23π4);(2)sin 1170°+cos360°-tan 125°.16.已知1|sin α|=-1sin α,且lgcos α有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点是M (35,m ),且|OM |=1(O 为坐标原点),求m 的值及sin α的值.18.(2011~2012·黑龙江五校联考)已知角θ的终边上有一点P (-3,m ),且sin θ=24m ,求cos θ与tan θ的值.1.2.1任意角三角函数(第一课时)1.(1)原点,单位长度(2) (3)y, x y/x (4) 唯一,自变量,三角函数例 1 [解析] 当角的终边在第一象限时,在角的终边上取点P (1,2),由r =|OP |=12+22=5,得sin α=25=255,cos α=15=55,tan α=21=2.当角的终边在第三象限时,在角的终边上取点Q (-1,-2),由r =|OQ |=(-1)2+(-2)2=5,得:sin α=-25=-255,cos α=-15=-55,tan α=-2-1=2. 变式1(1) 因为角2π3的终边与单位圆的交点为(-12,32),所以sin 2π3=32,cos 2π3=-12,tan 2π3=- 3.(2)x =3,y =4,得 由r =32+42=5.∴sin α=y r =45,cos α=x r =35,tan α=y x =43. (3)由正切函数定义得: a 5=-125,∴a =-12,r =52+(-12)2=13 ∴sin α=a 13=-1213,cos α=513 ∴sin α-cos α=-1213-513=-1713.π2+k π例2(1)∵105°、230°分别为第二、第三象限角,∴sin105°>0,cos230°<0. 于是sin105°·cos230°<0. (2)∵π2<7π8<π,∴7π8是第二象限角,则sin 7π8>0,tan 7π8<0. ∴sin7π8·tan 7π8<0. (3)∵3π2<6<2π,∴6是第四象限角.变式2(1)B,(2) (1)∵-670°=-2×360°+50°,∴-670°是第一象限角,∴sin(-670°)>0.又1230°=3×360°+150°, ∴1230°是第二象限角,∴cos1230°<0,∴sin(-670°)cos1230°<0. (2)∵52π<8<3π,即8 rad 的角是第二象限角,∴sin8>0,cos8<0.∴sin8·cos8<0.例3(1)∵-670°=-2×360°+50°,∴-670°是第一象限角,∴sin(-670°)>0.又1230°=3×360°+150°, ∴1230°是第二象限角,∴cos1230°<0,∴sin(-670°)cos1230°<0. (2)∵52π<8<3π,即8 rad 的角是第二象限角,∴sin8>0,cos8<0.∴sin8·cos8<0.变式3(1)∵-1050°=-3×360°+30°, ∴cos(-1050°)=cos(-3×360°+30°)=cos30°=32. (2)∵19π3=3×2π+π3,∴tan 19π3=tan(3×2π+π3)=tan π3= 3.(3)∵-31π4=-4×2π+π4,∴sin(-31π4)=sin(-4×2π+π4)=sin π4=22.例4因为点P 的坐标是(4t ,-3t )且t ≠0, 所以r =|PO |=(4t )2+(-3t )2=5|t |. 当t >0时,α是第四象限角,r =|PO |=5t .sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t 4t =-34;当t <0时,α是第二象限角,r =|PO |=-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =-3t 4t =-34. 例5[解析] 已知角α的正弦值,可知MP =12,则P 点纵坐标为12.所以在y 轴上取点(0,12),过这点作x 轴的平行线y =12,交单位圆于P 1、P 2两点,则OP 1、OP 2是角α的终边,因而角α的集合为{α|α=2k π+π6或α=2k π+5π6,k ∈Z },如图:变式5[解析] (1)如图所示,在0~2π内作出正弦值等于12的角:π6和56π.在图中所示的阴影区域内的每一个角x ,其正弦值都满足sin x ≤12,所以不等式sin x ≤12的解集为:{x |5π6+2k π≤x ≤136π+2k π,k ∈Z }.(2)如图所示,在0~2π内作出正切值等于1的角:π4和5π4,则在图中所示的阴影区域内的每个角x (不包括终边在y 轴上的角)均满足tan x ≤1.课后作业答案1. C [解析] 由于sin α<0,则α的终边在第三或四象限,又tan α>0,则α的终边在第一或三象限,所以α的终边在第三象限.2 C [解析] ∵角α的终边过点(-3,-2),∴sin α<0,cos α<0,tan α>0,∴sin αcos α>0,故选C.3 B [解析] cos1110°=cos(3×360°+30°)=cos30°=32. 4 C [解析] tan(2π+θ)=tan θ=-32=-32. 5 B [解析] ∵201.2°是第三象限角,∴cos201.2°<0,6 C [解析] 由题意得cos α=mm 2+9=-45,解得m =±4.又cos α=-45<0,则α的终边在第二或三象限,则点P 在第二或三象限,所以m <0,则m =-4.7. C [解析] 由于点P (sin θ+cos θ,sin θcos θ)位于第二象限,则⎩⎪⎨⎪⎧sin θ+cos θ<0,sin θcos θ>0,所以有sin θ<0,cos θ<0,所以θ是第三象限角.8 A [解析] ∵|OP |=x 2+5,∴cos α=xx 2+5=24x ,又因为α是第二象限角,∴x <0,得x =- 3∴sin α=5x 2+5=104,故选A.9 C [解析] ∵P (1,-3),∴r =12+(-3)2=2,∴sin α=-32.10 C [解析] ∵该函数的定义域是{x |x ∈R 且x ≠k π2,k ∈Z},∴当x 是第一象限角时,y =3;当x 是第二象限角时,y =1-1-1=-1;当x 是第三象限角时,y =-1-1+1=-1;当x 是第四象限角时,y =-1+1-1=-1.综上,函数的值域是{-1,3}. 11[答案] A[解析] 三角函数线的方向和三角函数值的符号是一致的.MP =sin 11π6<0,AT =tan11π6<0.12[答案] C[解析] ∵sin α>0,tan α<0,∴α是第二象限角.∴cos α<0.∴余弦线方向向左,正切线方向向下.13 一或二,12 -33, 13 ±2在角α终边上任取一点P (x ,y ),则y =x ,当x >0时,r =x 2+y 2=2x ,sin α+cos α=y r +x r =22+22=2,当x <0时,r =x 2+y 2=-2x ,sin α+cos α=y r +x r =-22-22=- 2.,14 ∵cos α≤0,sin α>0,∴角α的终边在第二象限或y 轴非负半轴上,∵α终边过(3a -9,a +2),∴⎩⎪⎨⎪⎧3a -9≤0a +2>0,∴-2<a ≤3. 15(1)sin25π3+tan(-23π4)=sin(8π+π3)+tan(-6π+π4)=sin π3+tan π4=32+1=3+22.(2)sin1170°+cos360°-tan1125° =sin(3×360°+90°)+cos(0°+360°)-tan(3×360°+45°)=sin90°+cos0°-tan45°=1+1-1=1.16(1)由1|sin α|=-1sin α可知sin α<0,∴α是第三或第四象限角或终边在y 轴的负半轴上的角.由lgcos α有意义可知cos α>0, ∴α是第一或第四象限角或终边在x 轴的正半轴上的角.综上可知角α是第四象限的角. (2)∵|OM |=1,∴(35)2+m 2=1,解得m =±45. 又α是第四象限角,故m <0, 从而m =-45.由正弦函数的定义可知 sin α=y r =m |OM |=-451=-45.18 (1)当m =0时,cos θ=-1,tan θ=0; (2)当m =5时,cos θ=-64,tan θ=-153; (3)当m =-5时,cos θ=-64,tan θ=153.。

任意角的三角函数-1

任意角的三角函数-1
O
M
x
MP tan OM
M P OP OM OP M P OM
1、角度一定时,角的终边上任意一点的纵 我们发现: 坐标与该点到原点的距离的比值就一定。 非空数集上的 2、当角度变化时,角的终边上任意一点的 映射!即是一 纵坐标与该点到原点的距离的比值就变化。 个函数! 3、当角的终边相同时,角的终边上任意一点 的纵坐标与该点到原点的距离的比值就相同。 y 对应法则 1 r y 角 2 6 r 的 取 取 1 值 值 4
A.4 3 C. 4 3
B. 4 3 D. 3
1.2.1任意角的三角函数
初中:在直角三角形中锐角A的三角函数定义:
BC a sin A AB c
AC b cos A AB c BC a tan A AC b
c
A
B
a b C
上述定义只限于直角三角形中的锐角,而
现在角的定义已经拓广到任意角.
如:
2 sin ? 3 cos ? t an(
α 的终边 P(x,y)
O
x
三角函数的定义域:
三角函数 定义域
y sin
y cos
R R
y tan
{ |

2
k , k Z }
说明
正切函数.以上三种函数都称为三角函数;
(2)由于角的集合与实数集之间可以建立一一对应关系, 三角函数可以看成是自变量为实数的函数.

3
ቤተ መጻሕፍቲ ባይዱ
)?
任意角是 在直角坐 标平面内 给出定义
正弦、余弦、正切 是在直角三角形中 给出定义
思考:如何定义任意角的三角函数?
新课引入
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

荥阳市实验高中 必修2导学案
1
1.2.1任意角的三角函数(1)
年 级: 一 学科: 数 学 班 级:_______________ 姓 名:________________ 编写人:张慧 审核人:任伟锋 审批人: 黑红运 使用时间: 【学习目标】
1.掌握任意角三角函数的定义,并能借助单位圆理解任意角三角函数的定义;
2.掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号;
3.会用定义求特殊角的三角函数值,会求已知终边位置的角的三角函数值。

【学习重点、难点】
任意角的正弦、余弦、正切的定义。

【自主学习】
一、复习旧知,导入新课:
在初中,我们学过的锐角三角函数是如何定义的?
角的范围已经推广,那么对任意角α是否也能定义其三角函数呢?
二、新课导学:
1. 第一定义:设角α终边上任意一点的坐标为(,)P x y ,
它与原点的距离||OP r ==,则
sin α=______, cos α=______,tan α=______
第二定义:在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交与点(,)P x y ,那么 ⑴ _____叫做α的正弦,记作_______,即______=_______; ⑵_____叫做α的余弦,记作_______,即______=_______; ⑶_____叫做α的正切,记作_______,即______=_______.
2.当α=_________________时, α的终边在y 轴上,这时点P 的横坐标等于________,所以__________无意义.除此之外,对于确定的角α,上面三个值都是______________.所以, 正弦、余弦、正切都是以______为自变量,以________ __为函数值的函数,我们将它们统称为_______________.
3.由于______________与___________之间可以建立一一对应关系,三角函数可以看成是自变量为
_________的函数.
4.其中,sin y x =和cos y x =的定义域分别是_______;而tan y x =的定义域是__ __.
5.根据任意角的三角函数定义将这三种函数的值在各象限的符号填入括号。

=y sin α
=y cos α =y tan α
三.典型例题 例1.求43
π 的正弦,余弦和正切值. 变式1. 求23
6π- 的正弦,余弦和正切值.
例2.已知角α的终边经过点()4,3P -,求α的正弦、余弦、正切的值。

变式2:已知角α的终边在直线x y 3-=上,求α的正弦、余弦、正切的值
四.随堂检测: 1、填表:
2.已知角α的终边经过点()()4,30P a a a ≠,求α的正弦、余弦、正切的值。

五.【课堂小结】
六.【布置作业】课本第15页练习1,2。

相关文档
最新文档