任意角的三角函数知识点
高一数学任意角的三角函数知识精讲.doc

高一数学任意角的三角函数【本讲主要内容】任意角的三角函数(三角函数的定义、单位圆与三角函数线)【知识掌握】 【知识点精析】1. 任意角的三角函数的定义:设P (x ,y )是角α的终边上任意一点,|OP|=r (r >0),则sin cos αα==y r xr, tan cot αα==y x x y , sec csc αα==r x r y, 正弦、余弦、正切、余切、正割、余割分别可以看成是从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数,这六个函数统称为三角函数。
注意:①一个角的三角函数值只与这个角的终边位置有关,而与P 点的选取无关。
②为计算方便,我们把半径为1的圆(单位圆)与角的终边的交点选为P 点的理想位置。
2. 三角函数的定义域、值域确定三角函数的定义域时,要抓住分母不为0这一关键,当角的终边在坐标轴上时,点P 的坐标中必有一个为0。
3. 三角函数值符号记忆口诀为:“一全正,二正弦,三两切,四余弦”。
(注:余割和正弦互为倒数关系,正割和余弦互为倒数关系。
) 4. 诱导公式(一):根据三角函数的定义知,角的三角函数值是由角的终边位置确定的,所以终边相同的角的同一三角函数的值相等。
即:sin()sin ()cos()cos ()tan()tan ()()k k Z k k Z k k Z ²°²°²°诱导公式一360360360+=∈+=∈+=∈⎫⎬⎪⎭⎪ααααααsin()sin ()cos()cos ()tan()tan ()()()222k k Z k k Z k k Z πααπααπαα+=∈+=∈+=∈⎫⎬⎪⎭⎪诱导公式一弧度制用途:使用诱导公式(一),可以把求任意角的三角函数值问题化为0~2π间三角函数值,具体求法是将任意角化为2k π+α,()k Z ∈,其中0≤α<2π,然后利用诱导公式(一)化简,再求值。
《任意角的三角函数》知识点总结及典型例题

任意角的三角函数模块一、角的概念及其推广要点一、角的相关概念 (1)角的概念角可以看成是由平面内一条射线(起始边)绕着端点旋转到一个新的位置(终边)所形成的图形。
(2)角的分类⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角要点二、终边相同角 (1)终边相同角的定义设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为{},360|Z k k S ∈︒⋅+==αββ。
集合S 的每一个元素都与α的终边相等,当0=k 时,对应元素为α。
(2)注意①相等的角终边一定相同,但终边相同的角不一定相等;终边相同的角有无数个,它们相差︒360的整数倍。
②角的集合表示形式是不唯一的。
要点三、象限角与轴线角(1)象限角定义:角α顶点与原点重合,角的始边与x 轴非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为: 第二象限角的集合为:第四象限角的集合为:终边落在x 轴正半轴上角的集合: 终边落在x 轴负半轴上角的集合: 终边在x 轴上的角的集合为: 终边落在y 轴正半轴上角的集合: 终边落在y 轴负半轴上角的集合: 终边在y 轴上的角的集合为: 终边落在坐标轴上角的集合:(2)注意:终边落在同一条直线上的角相差︒180的整数倍,终边落在同一条射线上的角相差︒360的整数倍。
要点四、区间角、区域角区间角是介于两个角之间的角的集合,区域角是介于某两角终边之间的角的集合。
区域角是无数个区间角的集合。
注意:锐角都是第一象限角,但第一象限角不都是锐角;小于90°的角不都是锐角,它还包括零角和负角,只有小于90°的正角才是锐角。
考点一、求终边相同的角的集合例1.(1)写出所有与︒-650终边相同的角的集合,并在︒︒360~0范围内,找出与︒-650角终边相同的角。
(2)把︒-2011写成)3600(360︒≤≤︒+⋅ααk 的形式。
三角函数任意角和弧度制知识点

三角函数任意角和弧度制知识点第一章三角函数任意角和弧度制知识点任意角知识点一、任意角b终边总结:任意角构成要素为顶点、始边、终边、旋转方向、旋转量大小。
α知识点二、直角坐标系则中角的分类始边o1、象限角与轴线角aβ2、终边相同的角与角α终边相同的角β子集为__________________c终边轴线角的表示:终边落到x轴非负半轴角的子集为_____________;终边落到x轴非正半轴角的子集为_______;终边落到x轴角的子集为____________________。
终边落在y轴非负半轴角的集合为_____________;终边落在y轴非正半轴角的集合为_______;终边落在y轴角的集合为____________________。
终边落在坐标轴角的集合为__________________。
象限角的则表示第一象限的角的子集为_________________第二象限的角的子集为_____________。
第三象限的角的集合为_________________;第四象限的角的集合为____________。
例题1、推论以下各角分别就是第几象限角:670°,480°,-150°,45°,405°,120°,-240°,210°,570°,310°,-50°,-315°例题2、以下角中与330°角终边相同的角是()a、30°b、-30°c、630°d-630°题型一、象限角的认定例1、已知角的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,指出他们是第几象限角,并指出在0°~360°范围内与其终边相同的角。
(1)420°(2)-75°(3)855°(4)1785°(5)-1785°(6)2021°(7)-2021°(8)1450°(9)361°(10)-361°例2、已知α是第二象限角,则180°-α是第_____象限角。
任意角的三角函数基本知识点(要)

任意角的三角函数知识点一、终边角:与α终边相同的角表示为。
分别写出终边在下列位置时的角α的集合:1.x轴上2.y轴上3.坐标轴上4.第一象限5.第二象限6.第三象限7.第四象限 8.直线y=x上二、弧度制:1、定义:2、公式:|α|=3、换算:①度换弧度:180°=弧度; 1°=弧度②弧度换度:1弧度=度;扇形:弧长L==,面积S==三、任意角的三角函数:①定义:角α终边的终边与单位圆的交点P(x,y),则sinα= cosα= tanα=角α终边上任意一点交点P(x,y),则r= ,则sinα= cosα= tanα=②三角函数线:角的终边与单位圆交于点P,过点P作轴的垂线,垂足为M,则正弦线是余弦线是即sinα= ,cosα= .过点A(1,0)作交于点T即tonα= .③同角三角函数关系式:④三角函数的符号:(1)商数关系:(2)平方关系:⑤诱导公式:2kπ+α与απ—α与απ+α与α)(βα+C )(βα-C)(βα+S )(βα-S )(βα+T )(βα-T⑧二倍角公式: α2Sα2C α2T三角函数的图象与性质答案一、终边角:与α终边相同的角表为k ·360° + α 。
分别写出终边在下列位置时的角α的集合: 1. x 轴上 {},k k Z ααπ=∈2. y 轴上 ,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭3. 坐标轴上,2k k Z ααπ⎧⎫=∈⎨⎬⎩⎭4. 第一象限22,2k k k Z παπαπ⎧⎫+∈⎨⎬⎩⎭5. 第二象限22,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭6. 第三象限322,2k k k Z παππαπ⎧⎫++∈⎨⎬⎩⎭7. 第四象限3222,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭8. 第一或第三象限,2k k k Z παπαπ⎧⎫+∈⎨⎬⎩⎭9. 第二或第四象限,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭10. 直线y =x 上,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭11. 直线y =-x 上3,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭二、 弧度制:1、定义:弧长等于半径的弧所对的圆心角叫一弧度的角.2、 公式:|α|=lr3、 换算:① 度换弧度:180°=π弧度;1°=180π弧度②弧度换度:1弧度=180π度;扇形: 弧长L =180n rπ= r α, 面积S =2360n r π=12lr三、 任意角的三角函数:①定义:角α终边上任意一点P(x ,y),则r =,六个三角函数的定义依次是sin y r α=、cos x r α=、tan y α=cot x α=sec r α=csc r α= ②三角函数线:角的终边与单位圆交于点P ,过点P 作x 轴的垂线,垂足为M ,则正弦线是MP 余弦线是OM即sin α=MP,cos α= OM.过点A(1,0)作 切线交 角的终边或反向延长线 于点T ,则正切线是AT 。
三角函数知识点总结

三角函数知识点总结一、任意角的三角函数及诱导公式1.任意角的概念角可以看作平面内一条射线绕着端点从一个边线转动至另一个边线阿芒塔的图形。
一条射线由原来的边线oa,绕着它的端点o按逆时针方向转动至中止边线ob,就构成角α。
转动已经开始时的射线oa叫作角的始边,ob叫做终边,射线的端点o叫作叫做α的顶点。
为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。
如果一条射线没有做任何旋转,我们称它形成了一个零角。
2.终边相同的角、区间角与象限角角的顶点与原点重合,角的始边与x轴的非负半轴重合。
那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。
要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角。
终边相同的角是指是某个角α具备同终边的所有角,它们彼此差距2kπ(k∈z),即为β∈{β|β=2kπ+α,k∈z},根据三角函数的定义,终边相同的角的各种三角函数值都成正比。
区间角是介于两个角之间的所有角,如α∈{α|π5ππ5π≤α≤}=[,]。
长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad,或1弧度,或1(单位可以省略不写)。
角存有正负零角之分后,它的弧度数也必须存有正负零之分后,例如-π,-2π等等,通常地,正角的弧度数就是一个正数,负角的弧度数就是一个负数,零角的弧度数就是0,角的差值主要由角的转动方向去同意。
角α的弧度数的绝对值是:=,其中,l就是圆心角面元的弧长,r就是半径。
r角度制与弧度制的换算主要抓住180=πrad。
弧度与角度交换公式:1rad=180°≈57.30°=57°18ˊ、1°=π≈0.01745(rad)。
弧长公式:l=|α|r(α是圆心角的弧度数),扇形面积公式:s=4.三角函数定义在α的终边上余因子一点p(a,b),它与原点的距离r过p作x轴的垂线,垂足为m,则线段om的长度为a,线段mp的长度为b.11lr=|α|r2。
1.2.1 任意角的三角函数重难点题型(举一反三)(解析版)

1.2.1任意角的三角函数重难点题型【举一反三系列】【知识点1 三角函数的定义】1.任意角的三角函数定义2.三角函数的定义域:【知识点2 三角函数值的符号】第一象限角的各三角函数值都为正;第二象限角的正弦值为正,其余均为负;第三象限角的正切值为正,其余均为负;第四象限角的余弦值为正,其余均为负.注:一全正,二正弦,三正切,四余弦.【知识点3 诱导公式一】由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一:【知识点4 单位圆的三角函数线定义】如图(1)PM表示α角的正弦值,叫做正弦线.OM表示α角的余弦值,叫做余弦线.如图(2)AT表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.【考点1 三角函数的定义】【分析】根据三角函数的定义,列方程求出m的值.【答案】解:角α的终边上一点(1,)P m,所以0m>,故选:B.【点睛】本题考查了三角函数的定义与应用问题,是基础题.A .4B .4±C .3D .3±【分析】由题意利用任意角的三角函数的定义,求得m 的值.故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.)【分析】由题意利用任意角的三角函数的定义,求得tan α的值.【答案】解:角故选:C .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.【变式1-3】(2019春•牡丹江期末)角α的终边上一点(P a ,2)(0)a a ≠,则2sin cos (αα-= )【分析】由题意利用任意角的三角函数的定义,分类讨论求得结果. 【答案】解:α的终边上一点(P a ,2)(0)a a ≠, 555a a =,22555a a =,555a a=-,2555a a=-故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题. 【考点2 利用象限角判断三角函数的符号】【例2】(2019春•湖北期中)下列命题成立的是( ) A .若θ是第二象限角,则cos tan 0θθ< B .若θ是第三象限角,则cos tan 0θθ> C .若θ是第四象限角,则sin tan 0θθ< D .若θ是第三象限角,则sin cos 0θθ>【分析】根据角所在的象限判断三角函数值的符号进行判断即可.【答案】解:若θ是第二象限角,则cos 0θ<,tan 0θ<,则cos tan 0θθ>,故A 错误, 若θ是第三象限角,则cos 0θ<,tan 0θ>,则cos tan 0θθ<,故B 错误, 若θ是第四象限角,则sin 0θ<,tan 0θ<,则sin tan 0θθ>,故C 错误, 若θ是第三象限角,则sin 0θ<,cos 0θ<,则sin cos 0θθ>,故D 正确, 故选:D .【点睛】本题主要考查三角函数值符号的判断,结合角的象限与三角函数值符号的关系是解决本题的关键. 【变式2-1】(2019春•珠海期末)已知点(sin ,tan )M θθ在第三象限,则角θ在( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】由题意可得sin 0θ<且tan 0θ<,分别求得θ的范围,取交集得答案. 【答案】解:由题意,00sin tan θθ<⎧⎨<⎩①②,由①知,θ为第三、第四或y 轴负半轴上的角; 由②知,θ为第二或第四象限角. 则角θ在第四象限. 故选:D .【点睛】本题考查三角函数的象限符号,是基础题.【变式2-2】(2019春•玉山县校级月考)若sin cos 0θθ<,则θ在( ) A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限【分析】判断三角函数的符号,然后判断角所在象限即可.【答案】解:sin cos 0θθ<,可知sin θ与cos θ异号,说明θ在第或第四象限. 故选:D .【点睛】本题考查三角函数的符号的判断,角所在象限,是基本知识的考查. 【变式2-3】(2018秋•安庆期末)式子sin1cos2tan4的符号为( )A.正B.负C.零D.不能确定【分析】由1,2,4分别表示第一、二、三象限的角,由此可得答案.【答案】解:1,2,4分别表示第一、二、三象限的角,<,tan40>.∴>,cos20sin10故选:B.【点睛】本题考查三角函数值的符号,是基础题.【考点3 利用诱导公式一判断三角函数的符号】【例3】(2019秋•武邑县校级期中)下列三角函数值的符号判断正确的是()【分析】根据角所在的象限、诱导公式、三角函数值的符号逐项判断即可.【答案】解:A、因为156︒在第二象限,所以sin1560︒>,故A错误;︒=︒+︒=︒,且196︒在第三象限,D、因为tan556tan(360196)tan196所以tan5560︒>,故D错误;故选:C.【点睛】本题考查了三角函数的诱导公式,及三角函数在各象限的符号的应用,属于基础题.【变式3-1】(2019秋•西陵区校级期末)下列三角函数值的符号判断错误的是() A.sin1650︒<︒>D.tan3100︒>B.cos2800︒>C.tan1700【分析】直接利用诱导公式化简,判断符号即可.【答案】解:sin1650︒=︒>,正确;︒>,正确;cos280cos800tan1700︒=-︒<,正确;︒>,错误;tan310tan500故选:C.【点睛】本题考查诱导公式的应用,三角函数值的符号的判断,是基础题.【变式3-2】(2019春•武功县期中)下列值①sin(1000)-︒;④sin2是负值-︒;②cos(2200)-︒;③tan(10)的为()A.①B.②C.③D.④【分析】根据终边相同的角的三角函数值相同,利用三角函数符号判断方法,即可得出结论.【答案】解:①sin(1000)sin1000sin 2800-︒=-︒=-︒>; ②cos(2200)cos2200cos400-︒=︒=︒>; ③tan(10)tan100-︒=-︒<;综上,是负值的序号为③. 故选:C .【点睛】本题考查了终边相同的角与三角函数符号判断问题,是基础题.【变式3-3】(2019秋•夷陵区校级月考)给出下列各函数值:①sin(1- 000)︒;②cos(2- 200)︒;③tan(10)-;A .①④B .②③C .③⑤D .④⑤【分析】利用诱导公式分别对五个选项进行化简整理,进而根据三角函数的性质判断正负. 【答案】解:①,sin(1000)sin(2360280)sin 280cos100-︒=-⨯︒-︒=-︒=︒>; ②,cos(2200)cos(636040)cos400-︒=-⨯︒-︒=︒>; ③,tan(10)tan(30.58)tan(0.58)0π-=-+=-<;,πsin2cos3tan40∴<.∴其中符号为负的是:③⑤.故选:C .【点睛】本题主要考查了运用诱导公式化简求值,解题时应正确把握好函数值正负号的判定,是基础题. 【考点4 三角函数定义域】【分析】列出使函数有意义的不等式组,即由被开方数不小于零,得三角不等式组,分别利用正弦函数和余弦函数图象解三角不等式组即可【答案】解:要使函数有意义,需解得: (k ∈Z )即2k π+≤x ≤2k π+π (k ∈Z )故答案为Z )【点睛】本题考查了函数定义域的求法,三角函数的图象和性质,解简单的三角不等式的方法 可.【答案】解:函数【点睛】本题考查了函数的概念,三角函数的定义域,解三角函数的不等式,属于中档题. 【分析】由绝对值的特点得到sin α-和0的关系,由正弦曲线和角的正弦值可以得到角的范围,写出角的范围后注意加上k 的取值. 【答案】解:|sin |sin αα=-,sin 0α∴-, sin 0α∴,由正弦曲线可以得到[2k αππ∈-,2]k π,k Z ∈, 故答案为:[2k ππ-,2]k π,k Z ∈【点睛】本题主要考查三角函数不等式,解题时最关键的是要掌握三角函数的图象,通过数形结合得到要求的角的范围,这个知识点应用非常广泛,可以和其他知识结合来考查.【变式4-3】求下列函数的定义域:(2)(2sin1)=-;y lg x【分析】利用函数的定义域以及三角函数线化简求解即可.【答案】解:(1)要使y=有意义,可得cos x≥0,解得{x|﹣,k∈Z};(2)要使y=lg(2sin x﹣1)有意义,可得2sin x﹣1>0,即:sin x,解得{x|,k∈Z};(3)要使y=有意义,可得sin x≠﹣1.所以函数的定义域为:{x|x=﹣+2kπ,k∈Z}.【点睛】本题考查三角函数的定义域的求法,三角函数线的应用,考查计算能力.【考点5 利用诱导公式一化简求值】【例5】(2019春•娄星区期中)求下列各式的值:(2)sin1170cos1440tan1845︒+︒-︒【分析】(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;【答案】(本题满分10分)(2)sin1170cos1440tan1845︒+︒-︒sin(336090)cos(43600)tan(536045)=⨯︒+︒+⨯︒+︒-⨯︒+︒ sin90cos0tan45=︒+︒-︒1=.【点睛】此题考查了运用诱导公式化简求值,以及特殊角的三角函数值,熟练掌握诱导公式是解本题的关键.【变式5-1】求下列各式的值(2)9cos2708cos03tan011sin180︒+︒+︒+︒.【分析】由特殊角的三角函数值即可计算得解.1(1)(1)=+-+-1=-.(2)9cos2708cos03tan011sin180︒+︒+︒+︒ 08100=+⨯++ 8=.【点睛】本题主要考查了特殊角的三角函数值在三角函数化简求值中的应用,属于基础题. 【变式5-2】(2019春•船营区校级月考)计算下列各式的值: (1)sin(1395)cos1140cos(1020)sin750-︒︒+-︒︒; tan 4ππ; 【分析】(1)原式中的角度变形后,利用诱导公式化简,再利用特殊角的三角函数值计算即可得到结果. (2)利用诱导公式即可计算得解.【答案】解:(1)原式sin(144045)cos(108060)cos(108060)sin(72030)=-︒+︒︒+︒+-︒+︒︒+︒ sin45cos60cos60sin30=︒︒+︒︒tan 4ππ )0【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键,属于基础题. 【变式5-3】(2019春•平罗县校级期中)求下列各式的值 )cos(570)cos(1140)tan(210)sin(690)︒-︒-︒-︒-︒【分析】(1)利用诱导公式以及特殊角的三角函数化简求值即可. (2)利用诱导公式以及特殊角的三角函数化简求值即可. )cos(570)cos(1140)tan(210)sin(690)-︒-︒=-︒-︒25)sin cos tan 463πππ=+-【点睛】本题考查诱导公式的应用,三角函数化简求值,考查计算能力. 【考点6 利用三角函数线解不等式】【例6】(2019春•泗县校级月考)利用单位圆,求适合下列条件的角的集合:【分析】在单位圆中画出三角函数线. (1)由[0,2π)内,,结合正弦线得的解集;(2)由[0,2π)内,,结合余弦线得的解集.【答案】解:在单位圆内作三角函数线如图:(1)∵在[0,2π)内,,OA,OB分别为的终边,由正弦线可知,满足的角的终边在劣弧AB内,∴的解集为{α|};(2))∵在[0,2π)内,,OC,OD分别为的终边,由余弦线可知,满足的终边在劣弧CD内,∴的解集为{α|}.【点睛】本题考查了三角函数线,考查了三角不等式的解法,训练了数形结合的解题思想方法,是中低档题.【变式6-1】求下列不等式的解集:【分析】作出单元圆,利用三角函数线进行求解即可.【答案】解:(1)正弦线大于0的角为x轴的上方,对应的角为2kπ<x<2kπ+π,k∈Z,则不等式的解集为(2kπ,2kπ+π),k∈Z.(2)余弦线小于0的角为y轴的左侧,对应的角为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(3)sin x>对应的区域在阴影部分,对应角的范围为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(4)cos x≤﹣对应的区域在阴影部分,对应角的范围为2kπ+≤x≤2kπ+,k∈Z,则不等式的解集为[2kπ+,2kπ+],k∈Z.【点睛】本题主要考查三角不等式的求解,利用三角函数的三角函数线是解决本题的关键.【变式6-2】利用三角函数线,写出满足下列条件的角x的集合:(2)tan x≥﹣1.【分析】根据三角函数线分别进行求解即可.【答案】解:(1)作出y=﹣,交单位圆于B,C,则sin x>﹣对应的区域为阴影部分,作出x=,交单位圆于E,D,则cos x>对应的区域为阴影部分OD,OE之间,则sin x>﹣且cos x>对应的区域为OC到OE之间,其中OC对应的角为﹣,OE对应的角为,则阴影部分对应的范围是2kπ﹣<x<2kπ+,k∈Z,即sin x>﹣且cos x>对应的范围是{x|2kπ﹣<x<2kπ+,k∈Z}(2)作出正切函数线AT=﹣1,则tan x≥﹣1对应的区域为阴影部分,OT对应的角为﹣,则阴影部分对应的角的范围是kπ﹣≤x<kπ+,即不等式的解集为{x|kπ﹣≤x<kπ+,k∈Z}【点睛】本题主要考查三角函数对应不等式的求解,利用三角函数线是解决本题的关键.【变式6-3】利用三角函数线,写出满足下列条件的角x的集合.(3)tan x≥﹣1;【分析】作出单位圆,由三角函数值先求出角在[0,2π]内的取值范围,再由终边相同的角的概念加上周期,由此能求出满足条件的角x的集合.【答案】解:(1)由sin x,作出单位圆,如下图,∵sin x,∴,∴满足sin x≥的角x的集合为{x|2kπ+,k∈Z}.(2)由cos x≤,作出单位圆,如下图,∵cos x≤,∴,∴满足cos x≤的角x的集合为{x|2kπ+≤x≤2kπ+,k∈Z}.(3)由tan x≥﹣1,作出单位圆,如下图,∵tan x ≥﹣1,∴﹣≤x <, ∴满足tan x ≥﹣1的角x 的集合为{x |k π﹣,k ∈Z }. (4)由sin x >且cos x >,作出单位圆,如下图,∵sin x >且cos x >,∴,∴满足sin x >且cos x >x 的集合为{x |2k π+,k ∈Z }. 【点睛】本题考查角的取值范围的求法,是基础题,解题时要注意单位圆和三角函数线的合理运用.【考点7 利用三角函数线比较大小】【例7】比较下列各组数的大小:【分析】(1)根据余弦函数单调性的大小进行比较(2)利用三角函数的诱导公式以及作差法进行比较即可.704π<-cos(π∴-02πα<<则0sin(cos <cos(sin )α222ππ-<【点睛】本题主要考查三角函数值的大小比较,结合三角函数的诱导公式以及三角函数的单调性是解决本题的关键.【变式7-1】利用三角函数线比较下列各组三角函数值的大小:【分析】根据题意,依次作出各个角的三角函数值对应的三角函数线,进而比较大小即可得答案.【点睛】本题考查的知识点是三角函数线,三角函数值的大小比较,关键是掌握三角函数线的定义.【变式7-2】比较大小:可知:21AT AT >,可知:BD BC >,【点睛】本题考察了诱导公式的化简运用,正切线的画法,属于三角函数线的基础题目.【变式7-3】比较下列各组数的大小:【分析】根据三角函数线进行比较即可.)5 cos7π=在单位圆中作出对应的三角函数线如图,则余弦线为OM,正弦线为MP,(2)在单位圆中作出对应的三角函数线如图,则正切线为AT,正弦线为MP,则AT MP>,【点睛】本题主要考查三角函数值的大小比较,根据三角函数线是解决本题的关键.。
三角函数知识点归纳

三角函数知识点归纳 一、任意角与弧度制 1.任意角 (I)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. J 按旋转方向不同分为正角、负角、零角. (2)分类[按终边位置不同分为象限角和轴线角(3)终边相同的角:所有与角a 终边相同的角,连同角a 在内,可构成一个集合S={缈=a+ 2kιt, Λ∈Z!.(3)象限角与轴线角 今1(第一象限角)卜| 第二致限角阳2A"专VaV2痴 2⅛π<α<2⅛π+-g-,⅛∈z} +π,⅛∈ZT 第三敛限角)卜性"τrVaV2"+等"刃 第四象限角]{α∣2⅛π+^<α<2⅛π+2π,⅛∈z}2.弧度制的定义和公式 角a 的弧度数公式 IaI=%/表示弧长)角度与弧度的换算 ①1。
=念 rad ;② 1 rad=, 弧长公式 l=∖a ∖r 扇形面积公式S=»=如/ (1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 3.任意角的三角函数 一、定义:设α是一个任意角,它的终边与单位圆交于点P(x, y),那么Sina=y, cos α=x, tan α=^(x≠()).二、常用结论汇总——规律多一点(1)一个口诀:三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦.(2)三角函数定义的推广:设点P(x, y)是角Q终边上任意一点且不与原点重合,r=∣OP∣,则• V X V,1八、sin a= , COSa=-, tanα=-(Xw0).r rχ∖ ,三、特殊角的三角函数:3.1 象限角及终边相同的角例1、若角。
是第二象限角,则辞()A.第一象限角B.第二象限角C.第一或第三象限角D.第二或第四象限角∩例2、一的终边在第三象限,则。
的终边可能在() 2A.第一、三象限B.第二、四象限C.第一、二象限或y轴非负半轴D.第三、四象限或y轴非正半轴3.2 三角函数的定义例1、已知角α的终边经过点P(一χ, — 6),且COSa=—/,则1;+%½= _________________ .1J SlIl (A IdIl (A例2、已知角α的终边经过点(3, -4),则Sin a+»^=.3.3 、三角函数符号的判定例1、已知Sina < 0旦cosa > 0,则a的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限3.4 扇形面积问题1.已知一个扇形的弧长和半径都等于2,则这个扇形的面积为().A. 2B. 3C. 4D. 6二、同角三角函数的基本关系与诱导公式1 .同角三角函数的基本关系(1)平方关系:siMα+cos2α=l; (2)商数关系:tan α=黑吃.同角三角函数的基本关系式的几种变形(l)sin2α= 1 — cos2α=(l + cos «)(1 —cos a); cos2a= 1 - sin2a=(l ÷sin a)(l — sin a); (sin a±cos a)2 =l±2sin acos a.(2)sin a=tan acos a(a≠5+E, &WZ).2 .诱导公式“奇变偶不变,符号看象限”公式一:sin(a+2⅛π)=sin a, cos(a÷2hc)=cos a»la∏(6Z + <λkτf)= t∏∏OC其中公式二:sin(π+ct)= ~sin a> cos(π+cc)=~cos ct> Ian(Tr+a)=Ian a.公式三:sin(π~a)=sin a,cos(π-a) = — cos ct, ta∏(^-6Z)= —ta∏ OC ∙公式四:sin(-ct)=—sin a, cost—«)=cos a,t<l∏) = -13∏ CX .公式五:Sine-a) =cos a, COSe—a) =Sina 公式六:SinC+a)=cos a,CoSC+«) = -sin a.诱导公式可概括为〃∙]±a的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指方的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把a看成锐角时,根据在哪个象限判断厚三曲函数值的符号,最后作为结果符号.8.方法与要点一个口诀I、诱导公式的记忆。
期末复习一——任意角的三角函数

期末复习一——(任意角的三角函数)一、知识点归纳(1)正角、负角、零角、象限角、终边相同的角、角度制、弧度制; (2)1弧度角的规定、弧长公式、扇形面积公式;(3)任意圆中圆心角弧度的算法; (4)三角函数值的定义; (5)三角函数线:正弦线、余弦线、正切线; (6)三角函数值的符号判定; (7)同角三角函数间的关系公式 ①平方关系:22sin cos 1αα+= 注意: ②商数关系sin tan cos ααα= 公式的逆向使用(8)特殊角的三角函数值。
(必须熟记);(9)诱导公式:奇变偶不变,符号看象限。
二、例题解析例1(1)若弧度数为2的圆心角所对的弦长也是2cm,则这个圆心角所对的弧长是 它们所构成的扇形面积是 。
(2)若角θ满足sin θcos θ<0,cos θ-sin θ<0,则θ为第 象限角例2.(1)角θ的顶点与坐标原点O 重合,其始边与x 轴的正半轴重合,角θ的终边上有一点P(2t, -4t)(其中t ≠0),求sin θ、cos θ、tan θ的值.(2)已知sin 2cos ,θθ=-求sin θ,cos θ,tan θ.例3.求值:(1)sin(-1740°)²cos1470°+cos(-660°)²sin750°+tan405°(2)22251172sin tan ()tan()434πππ+-∙-例4.已知3sin 2cos 0αα-=,求下列各式的值22cos sin cos sin (1);(2)2sin 2sin cos 4cos .cos sin cos sin αααααααααααα-++-++-例5化简44661cos sin ;;(3)1cos sin αααα----任意角的三角函数一、选择题:1.sin600°的值是( )A.21 B.-21 C.23 D.-232.下列转化结果错误的是 ( )A.0367' 化成弧度是π83radB.π310-化成度是-600度C. 150-化成弧度是π67rad D.12π化成度是15度3.扇形的半径变为原来的2倍,而弧长也增加到原来的2倍,则( )A .扇形的面积不变B .扇形的圆心角不变C .扇形的面积增大到原来的2倍D .扇形的圆心角增大到原来的2倍 4、如果sin θ= m,m<0,180°<θ<270°,那么tan θ等于( )A .21m m- B .-21m m- C .±21mm- D .-m m 21-5、若sin θ=53+-m m ,cos θ=524+-m m ,其中θ为第二象限角,则m 的取值范围是 ( )A .m = 8B .3<m<9C .m=0或m=8D .-5<m < 9 6、使0cos sin <⋅αα成立的角α是( )A .第三、四象限角 B.第一、三象限角 C.第二、四象限角 D.第一、四象限角 7、已知θ的终边过点P (4a ,-3a ),且53sin =θ,则=θtan ( )(A )43-(B )34-(C )43(D )34 8、若βα,的终边关于y 轴对称,则必有 ( ) A Z k k ∈+=+,)12(πβα B 2πβα=+C Z k k ∈=+,2πβαD Z k k ∈+=+,22ππβα9、y =xx x x x x tan |tan ||cos |cos sin |sin |++的值域是 ( )A .{1,-1}B . {-1,1,3}C . {-1,3}D .{1,3}二、填空题:10、已知扇形的圆心角是72︒,半径为20cm,则扇形的弧长为面积为11、比较下列大小: sin1、 cos1、 tan1 ; > >12、(1)已知600,sin cos,sin cos169απαααα<<∙=--=则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1任意角的三角函数
课前复习:
1. 特殊角的三角函数值记忆
新课讲解:
任意点到原点的距离公式:
1.三角函数定义
在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为2222(||||0)r r x y x y =+=+>,那么 (1)比值y r
叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r
叫做α的余弦,记作cos α,即cos x r α=; (3)比值y x
叫做α的正切,记作tan α,即tan y x α=; (4)比值x y
叫做α的余切,记作cot α,即cot x y α=; 说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α
的大小,只表明与α的终边相同的角所在的位置;
②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小;
③当()2k k Z π
απ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等
于0,所以tan y x α=
无意义;同理当()k k Z απ=∈时,y x =αcot 无意义; ④除以上两种情况外,对于确定的值α,比值
y r 、x r 、y x 、x y
分别是一个确定的实数。
正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。
当角的终边上一点(,)P x y 221x y +=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
有向线段:
坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。
规定:与坐标轴方向一致时为正,与坐标方向相反时为负。
有向线段:带有方向的线段。
2.三角函数线的定义:
设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点
P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .
由四个图看出:
当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有 sin 1y y y MP r α====, cos 1x x x OM r α====,tan y MP AT AT x OM OA α==== 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
o x y M T P A o x y M T
P A x y o M T P A x y o M T P A (Ⅳ) (Ⅰ) (Ⅲ)
说明:
(1)三条有向线段的位置:正弦线为α的终边与单位圆的交点到x 轴的垂直线段;余弦线 在x 轴上;正切线在过单位圆与x 轴正方向的交点的切线上,三条有向线段中两条在单位圆 内,一条在单位圆外。
(2)三条有向线段的方向:正弦线由垂足指向α的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与α的终边的交点。
(3)三条有向线段的正负:三条有向线段凡与x 轴或y 轴同向的为正值,与x 轴或y 轴反向的为负值。
(4)三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。
题型一:求解三角函数值
一般角:利用三角函数的定义
特殊角:先化为0至360度之间的角
)
Z (tan )2tan()Z (cos )2cos()
Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ
例1.求下列各角的四个三角函数值:
(1)0; (2)π; (3)
32
π.
例2.已知角α的终边经过点(2,3)P -,求α的四个函数值。
变式训练1:已知角α的终边过点(,2)(0)a a a ≠,求α的四个三角函数值。
变式训练2:角α的终边上有一点P (a ,a ),a ∈R ,a ≠0,则sin α的值是( ) A.
22 B.-22 C. 22或-22 D.1
例3.求下列三角函数的值:
(1)9cos
4π (2)11tan()6
π-,
变式训练1: .____________tan600o 的值是 D 3.D 3.C 3
3.B 33.A --
题型二:判断三角函数值在不同象限内的正负性
例4.确定下列三角函数值的符号:
(1)cos 250; (2)sin()4π
-; (3)tan(672)-; (4)11tan 3
π. 变式训练1: .________,0cos sin 在则若θθθ> B
第二、四象限 第一、四象限第一、三象限
第一、二象限.D .C .B .A
变式训练2: ____0sin20cos 的终边在则若 θθ<>θ,且 C
第二象限 第四象限 第三象限 第一象限.D .C .B .A 变式训练3: 若θ是第二象限角,则( ) A.sin 2θ>0 B.cos 2θ<0 C.tan 2θ>0 D.cot 2
θ<0 变式训练4: 若角α、β的终边关于y 轴对称,则下列等式成立的是( )
A.sin α=sin β
B.cos α=cos β
C.tan α=tan β
D.cot α=cot β
变式训练5: sin2·cos3·tan4的值( )
A.小于0
B.大于0
C.等于0
D.不存在 例5.求函数x x
x x y tan tan
cos cos +=的值域
变式训练1: 若x x sin |
sin |+|cos |cos x x +x x tan |
tan |=-1,则角x 一定不是( )
A.第四象限角
B.第三象限角
C.第二象限角
D.第一象限角
例6.作出下列各角的正弦线、余弦线、正切线。
(1)3π
; (2)56π; (3)23π-; (4)136π
-.
课上练习:
1.有下列命题:
①终边相同的角的三角函数值相同;
②同名三角函数的值相同的角也相同;
③终边不相同,它们的同名三角函数值一定不相同;
④不相等的角,同名三角函数值也不相同.
其中正确的个数是( )
A.0
B.1
C.2
D.3
2.若角α的终边经过P (-3,b ),且cos α=-5
3,则b =_________,sin α=_________. 3.在(0,2π)内满足x 2cos =-cos x 的x 的取值范围是_________.
4.已知角α的终边在直线y =-3x 上,则10sin α+3cos α=_________.
5.已知点P (tan α,cos α)在第三象限,则角α的终边在第_________象限.
6.计算
=-65sin π ,=413cos π ,=43sin π ,=-3
2sin π , 7.解答题: (1)若点(6,)P t 是角α终边上的一点,且满足0t >,3cos 5α=
,求sin α,tan α的值
(2)已知角α的终边上有一点(3,4)(0)P t t t -≠,求sin α,cos α,tan α的值;。