2011第九届希望杯复赛六年级试题及解答word版

合集下载

第九届小学“希望杯”全国数学邀请赛六年级第1试 答案

第九届小学“希望杯”全国数学邀请赛六年级第1试 答案

x♦ y=x× y-x÷2, x⊕ y= x+ y÷ 2。
按此规则计算:3.6♦2=____________,
0. 12 ♦(7.5⊕4.8)=____________。
g g
4、在方框里分别填入两个相邻的自然数,使下式成立。 □<
1 1 1 1 ×3<□ 150 101 102 103
ห้องสมุดไป่ตู้
19、一批饲料可供 10 只鸭子和 10 只鸡共吃 6 天,或供 12 只鸭子和 6 只鸡共吃 7 天,则这批饲料可供 _________只鸭子吃 21 天。 20、小明从家出发去奶奶家,骑自行车每小时行 12 千米,他走后 2.5 小时,爸爸发现小明忘带作业,便 骑摩托车以每小时 36 千米的速度去追,结果小明到奶奶家后半小时爸爸就赶到了。小明家距离奶奶 家___________千米。
g
5、 在循环小数 0. 1 2345678 9 中, 将表示循环节的圆点移动到新的位置, 使新的循环小数的小数点后第 2011 位上的数字是 6,则新的循环小数是___________。 6、一条项链上共串有 99 颗珠子,如图 1,其中第 1 颗珠子是白色的,第 2、3 颗珠子是红色的,第 4 颗珠 子是白色的,第 5、6、7、8 颗珠子是红色的,第 9 颗珠子是白色的,„„。则这条项链中共有红色珠 子___________颗。
1
11、图 5 中一共有________个长方形(不包含正方形)。
12、图 6 中,每个圆圈内的汉字代表 1~9 中的一个数字,汉字不同,数字也不同,每个小三角形三个顶 点上的数字之和相等。若 7 个数字之和等于 12,则“杯”所代表的数字是____________。 13、如图 7,沿着圆周放置黑、白棋子各 100 枚,并且各自相邻排列。若将圆周上任意两枚棋子换位一次 称为一次交换,则最少经过____________次对换可使全部的黑棋子彼此不相邻。 14、人口普查员站在王阿姨门前问王阿姨:“您的年龄是 40 岁,您收养的三个孤儿的年龄各是多少岁?” 王阿姨说: “他们年龄的乘积等于我的年龄,他们年龄的和等于我家的门牌号。”普查员看了看门牌, 说:“我还是不能确定他们的年龄。”那么,王阿姨家的门牌号是____________。 15、196 名学生按编号从 1 到 196 顺次排成一列。令奇数号位(1,3,5…)上的同学离队,余下的同学顺 序不变,重新自 1 从小到大编号,再令新编号中奇数位上的同学离队,依次重复上面的做法,最后留 下一位同学。这位同学开始的编号是___________号。 16、 甲、 乙两人同时从 A 地出发到 B 地, 若两人都匀速行进,甲用 4 小时走完全程, 乙用 6 小时走完全程。 则当乙所剩路程是甲所剩路程的 4 倍时,他们已经出发了___________小时。 17、某电子表在 6 时 20 分 25 秒时,显示 6:20:25,那么从 5 时到 6 时这 1 个小时里,此表显示的 5 个 数字都不相同的情况共有__________种。 18、有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞。根据图 8 中的信息计算,若甲、乙、丙三只蚂蚁 共同搬运这堆粮食,那么,蚂蚁乙搬运粮食__________粒。

希望杯第4-11届小学六年级全国数学竞赛题及解答

希望杯第4-11届小学六年级全国数学竞赛题及解答

2006年第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×()=________。

2.900000-9=________×99999。

3.=________。

4.如果a=,b=,c=,那么a,b,c中最大的是________,最小的是________。

5.将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了______%。

6.小明和小刚各有玻璃弹球若干个。

小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。

”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。

”小明和小刚共有玻璃弹球________个。

7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。

这次测验共有________道题。

8.一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字之和的五分之三是____。

9.将一个数A的小数点向右移动两位,得到数B。

那么B+A是B-A的________倍。

(结果写成分数形式)10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。

11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。

小明的编号是30,他排在第3行第6列,则运动员共有________人。

12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l的小正方体。

则三个面涂漆的小正方体有________块。

13.如图,∠AOB的顶点0在直线l上,已知图中所有小于平角的角之和是400度,则∠AOB=________度。

14.如图,桌面上有A、B、C三个正方形,边长分别为6,8,10。

B的一个顶点在A的中心处,C的一个顶点在B的中心处,这三个正方形最多能盖住的面积是________。

2011年希望杯六年级二试试题和答案

2011年希望杯六年级二试试题和答案

2011年“希望杯”复赛真题及答案详解(六年级)一、填空题1. 计算:43.6250.451_________.11+-= 2. 对于任意两个数x 和y ,定义新运算◆和⊗,规则如下:223x y x y x y x y x y x y +⨯=⊗=++÷,,◆ 如 212412611212==121225551+3⨯+⨯==⊗=+⨯, ◆。

由此计算,10.36412⎛⎫⊗= ⎪⎝⎭◆ 。

3. 用4根火柴,在桌面上可以拼成一个在正方形;用13根火柴,可以拼成四个正方形;……如下图,拼成的图形中,若最下面一层有15个正方形,则需火柴 根。

4. 若自然数N 可以表示成3个连续自然数的和,也可以表示成11个连续自然数的和,还可以表示成12个连续自然数的和,则N 的最小值是 。

(注:最小的自然数是0)5. 十进制计数法,是逢10进1,如:21010242104136531061051=⨯+⨯=⨯+⨯+⨯, ;计算机使用的是二进制计数法,是逢2进1,如:2321021027121211111121202011100=⨯+⨯+⨯==⨯+⨯+⨯+⨯=,12。

如果一个自然数可以写成m 进制数45m ,也可以写成n 进制数54,那么最小的_______________m =,___________n =。

(注n n a a a a a a =⨯⨯⨯⨯个)6. 我国除了用公历纪年外,还采用干支纪年,根据图中的信息回答:公历1949年,按干纪年法是年4根火柴 13根火柴 26根火柴……7.盒子中装有很多相同的,但分红、黄、蓝三种颜色的玻璃球,每次摸出两个球。

为了保证有5次摸出的结果相同,则至少需要摸球次。

8.根据图中的信息回答,小狗和小猪同时读出的数是。

9.下图中的阴影部分的面积是平方厘米。

( 取3)10.甲、乙两人合买了n个篮球,每个篮球n元。

付钱时,甲先乙后,10元10元地轮流付钱,当最后要付的钱不足10元时,轮到乙付。

2011第九届小学“希望杯”全国数学邀请赛复赛六年级试题及解答word版

2011第九届小学“希望杯”全国数学邀请赛复赛六年级试题及解答word版

第九届小学“希望杯”全国数学邀请赛试题及解答六年级 第2试2011年4月10日上午9:00-11:00 一、填空题(5'×12=60')1、计算:=-+••114154.0625.3________________. 分析:原式=625.3+••54.0-••63.1=625.2+(••54.1-••63.1)=625.2+••90.0=••09715.2或 原式=8823911108291115115829=-=-+ 2、对于任意两个数x 和y ,定义新运算◆和⊗,规则如下:x ◆y =y x y x 22++,x ⊗y =3÷+⨯y x y x ;如 1◆2=221212⨯++⨯,1⊗2=5115632121==+⨯, 由此计算••63.0◆=⊗)2114(__________. 分析:=⊗)2114(345.465.045.14==+⨯,而11463.0=••,所以原式=25173211132112342114341142=++=⨯++⨯3、用4根火柴,在桌面上可以拼成一个正方形;用13根火柴可以拼成四个正方形;…,如图1,拼成的图形中,若最下面一层有15个正方形,则需火柴__________根。

分析:第二个图形比第一个图形多9根火柴,第三个图形比第二个图形多13根火柴,经尝试,第四个图形比第三个图形多17根火柴,而最下面一层有15根火柴的是第8个图形,所以共需要火柴4+(9+13+17+21+25+29+33)=151根。

4、若自然数N 可以表示城3个连续自然数的和,也可以表示成11个连续自然数的和,还可以表示成12个连续自然数的和,则N 的最小值是_________。

(注:最小的自然数是0)分析:因为奇数个连续自然数之和等于中间数乘以数的个数,所以N 能被3和11整除,也就是能被33整除;因为偶数个连续自然数之和等于中间两个数的平均值乘以数的个数,所以N 等于一个整数加上0.5再乘以12,也就是被12除余6,最小为66。

2011 第九届小学“希望杯”全国数学邀请赛六年级 第一试 详细解析

2011 第九届小学“希望杯”全国数学邀请赛六年级 第一试 详细解析

第九届小学“希望杯”全国数学邀请赛六年级 第I 试1.计算: 831-5.75+316-7.625 =___________. 解析:分数和小数的简便混合运算。

原式325=316-5.75+1.375-7.625= 2.计算: .513.963.54.32118.2949.642⨯⨯+⨯⨯⨯⨯+⨯⨯=__________. 解析:分数巧算。

原式742271.54.321819.642333.54.321.54.3212229.6429.642=+⨯⨯⨯+⨯⨯⨯=⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯=)()( 3.对于任意两个数x, y 定义新运算,运算规则如下:x ♦ y=x ×y –x ÷2,x y =x+y÷2,按此规则计算,3.6 ♦ 2=_________,∙∙21.0♦ (7.5 4.8) = __________.解析:定义新运算和循环小数与分数的互化。

3.6 ♦ 2=3.6×2-3.6÷2=5.4,∙∙21.0=9912;7.5 4.8=7.5+4.8÷2=9.9,∙∙21.0♦ (7.5 4.8)= 9912♦9.9 9912♦9.9=16523116510-165331332-.212334-.99334===÷⨯ 4.在方框里分别填入两个相邻的自然数,使下式成立。

解析:极限法估算求值1501×50<1501103110211011++++ <1001×50 即1<31501103110211011⨯++++)( <23 所以方框内填1和2.5.在循环小数∙∙923456781.0中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是__________.解析:循环小数。

易想新循环小数的循环节的末位是9,第2011位上的数字是6,则第2012位上的数字是7,第2013位上的数字是8,2014位上的数字是9。

第九届小学希望杯6年级解析

第九届小学希望杯6年级解析

第九届小学“希望杯”全国数学邀请赛六年级第I试1.计算:=___________.【解析】这道题目考的是同门母的分数相加减。

2.计算:=__________.【解析】这道题目考的是提取公因数的方法分子和分母当中都能够提出6个2.3来,进行约分2.3(361816)2.3 4.5(127)⨯+⨯⨯⨯+==4.58644.528⨯+⨯()=1873.对于任意两个数x, y定义新运算,运算规则如下:x ♦ y=x × y – x ÷2,x y =x + y ÷ 2,按此规则计算,3.6 ♦ 2=_________,♦ (7.5 4.8) = __________.【解析】这道题目考的是定义新运算的方法,理解例题的算法就好算了,计算时注意细心。

4.在方框里分别填入两个相邻的自然数,使下式成立。

【解析】这道题目考的是利用放缩的方法当全都取1150时,整体的值就缩小了,这样等于1,所以原式的值大于1,当全都取1101时,整体的值就放大了,这样也没有到达2,所以原式的值小于25.在循环小数中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是__________.【解析】这道题目考的是周期的问题6.一条项链上共有99颗珠子,如图1,其中第1颗珠子是白色的,第2,3颗珠子是红色的,第四颗珠子是白色的,第5,6,7,8颗珠子是红色的,第9颗珠子是白色的,……则这条项链中共有红色的珠子_______颗。

【解析】这道题目考的是数列问题最小是2 下一个是4 在下一个是6 在下一个是8 10 12 14 16 18所以中间补上9个白珠子正好是99颗珠子7.自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是________。

【解析】这道题目考的是最大公约数与最小公倍数问题要求a和b的和最大只有最大公约是其中一个数另一个数是最小公倍数的时候140+5=1458.根据图2计算,每块巧克力_______元(□内是一位数字)。

第九届小学“希望杯”全国数学邀请赛试卷(六年级第1试)

第九届小学“希望杯”全国数学邀请赛试卷(六年级第1试)

2011年第九届小学“希望杯”全国数学邀请赛试卷(六年级第1试)一、解答题(共20小题,满分0分)1.计算:7.625﹣6+5.75﹣1=.2.计算:=.3.对于任意两个数x,y定义新运算,运算规则如下:x♦y=x×y﹣x÷2,x⊕y=x+y÷2,按此规则计算,3.6♦2=,0.♦(7.5⊕4.8)=.4.在方框里分别填入两个相邻的自然数,使下式成立.□<(+++…+)×3<□5.在循环小数0.2345678中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是.6.一条项链上共有99颗珠子,如图,其中第1颗珠子是白色的,第2,3颗珠子是红色的,第四颗珠子是白色的,第5,6,7,8颗珠子是红色的,第9颗珠子是白色的,…则这条项链中共有红色的珠子颗.7.自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是.8.根据图计算,每块巧克力元(□内是一位数字).9.手工课上,小红用一张直径是20cm的圆形纸片剪出如图所示的风车图案(空白部分),则被剪掉的纸片(阴影部分)的面积是cm2.(π取3.14)10.用若干棱长为1cm的小正方体码放成如图所示的立体,则这个立体的表面积(含下底面面积)等于cm2.11.图中一共有个长方形.(不包含正方形)12.图中,每个圆圈内的汉字代表1~9中的一个数字,汉字不同,数字也不同,每个小三角形三个顶点上的数字之和相等.若7个数字之和等于12,则“杯”所代表的数字是.13.如图,沿着圆周放置黑、白棋子各100枚,并且各自相邻排列.若将圆周上任意两枚棋子换位一次称为一次对换,则至少经过次对换可使全部的黑棋子彼此不相邻.14.人口普查员站在王阿姨家门前问王阿姨:“您的年龄是40岁,您收养的三个孤儿的年龄各是多少岁?”王阿姨说:“他们的年龄的乘积等于我的年龄,他们的年龄的和等于我们家的门牌号.”普查员看了看门牌,说:“我还是不能确定他们的年龄.”那么,王阿姨家的门牌号是.15.196名学生按编号从1到196顺次排成一列.令奇数号位(1,3,5…)上的同学离队,余下的同学顺序不变,重新自1从小到大编号,再令新编号中奇数上的同学离队,依次重复上面的做法,最后留下一位同学.这位同学开始的编号是号.16.甲、乙两人同时从A地出发到B地,若两人都匀速行进,甲用4小时走完全程,乙用6小时走完全程.则当乙所剩路程是甲所剩路程的4倍时,他们已经出发了小时.17.某电子表在6时20分25秒时,显示6:20:25,那么从5时到6时这1个小时里,此表显示的5个数字都不相同的情况共有种.18.有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞.根据图8中的信息计算,若甲、乙、丙三只蚂蚁共同搬运这堆粮食,那么,蚂蚁乙搬运粮食粒.19.一批饲料可供10只鸭子和15只鸡共吃6天,或供12只鸭子和6只鸡共吃7天.则这批饲料可供只鸭子吃21天.20.小明从家出发去奶奶家,骑自行车每小时12千米,他走后2.5小时,爸爸发现小明忘带作业,便骑摩托车以每小时36千米的速度去追.结果小明到奶奶家后半小时爸爸就到了.小明家距离奶奶家千米.2011年第九届小学“希望杯”全国数学邀请赛试卷(六年级第1试)参考答案与试题解析一、解答题(共20小题,满分0分)1.计算:7.625﹣6+5.75﹣1=5.【解答】解:7.625﹣6+5.75﹣1=﹣+5﹣1,=7﹣1+5﹣,=6+﹣6,=12﹣6,=5.2.计算:=.【解答】解:=====.故答案为:.3.对于任意两个数x,y定义新运算,运算规则如下:x♦y=x×y﹣x÷2,x⊕y=x+y÷2,按此规则计算,3.6♦2= 5.4 ,0.♦(7.5⊕4.8)=.【解答】解:(1)3.6♦2=3.6×2﹣3.6÷2=7.2﹣1.8=5.4,(2)7.5⊕4.8=7.5+4.8÷2=7.5+2.4=9.9,0.♦(7.5⊕4.8),=0.×9.9﹣0.÷2,=0.×9.4,=×9.4,=故答案为:5.4,.4.在方框里分别填入两个相邻的自然数,使下式成立.□<(+++…+)×3<□【解答】解:,,,…,,所以,×3<3<×3,整理,得这个值在1和1.5之间,所以填入的两个相邻的自然数是1和2.故答案为:1,2.5.在循环小数0.2345678中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是0.1234678.【解答】解:当循环小数为:0.1234678时,不循环的小数位数有4位,循环节的位数有5位,(2011﹣4)÷5=401…2,余数2表示循环节的第2位上的数字,即6,所以当循环小数为0.1234678时,小数点后第2011位上的数字是6.故答案为:0.1234678.6.一条项链上共有99颗珠子,如图,其中第1颗珠子是白色的,第2,3颗珠子是红色的,第四颗珠子是白色的,第5,6,7,8颗珠子是红色的,第9颗珠子是白色的,…则这条项链中共有红色的珠子90 颗.【解答】解:红珠子的数量是2,4,6,8,10这样的规律增加;它们的和在100之内求解.若有9组红珠子,它们的和是:2+4+…+16+18=90(颗);中间补上9个白珠子,正好是99颗珠子;所以红珠子有90颗.故答案为:90.7.自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是145 .【解答】解,由分析知:a和b其中一个是140,一个是5,所以:a+b的最大值就是5+140=145;故答案为:145.8.根据图计算,每块巧克力 5.11 元(□内是一位数字).【解答】解:72×5.11=367.92(元),故答案为:5.11.9.手工课上,小红用一张直径是20cm的圆形纸片剪出如图所示的风车图案(空白部分),则被剪掉的纸片(阴影部分)的面积是157 cm2.(π取3.14)【解答】解:大圆的半径为:20÷2=10(厘米),小圆的半径为:10÷2=5(厘米),3.14×102﹣2×3.14×52,=314﹣175,=157(平方厘米),答:阴影部分的面积为157平方厘米.10.用若干棱长为1cm的小正方体码放成如图所示的立体,则这个立体的表面积(含下底面面积)等于60 cm2.【解答】解:根据题干分析可得:(11×4+8×2)×1×1=60(平方厘米),答:这个立方体的表面积是60平方厘米.故答案为:60.11.图中一共有58 个长方形.(不包含正方形)【解答】解:因为图中长边有5个分点(包括端点),所以长边上不同的线段有:1+2+3+4=10(条);又因为宽边有4个分点(包括端点),所以宽边上不同的线段有:1+2+3=6(条),因此图中一共有长方形:10×6=60(个).由图知正方形个数只有边长为1和3两个,所以长方形个数60﹣2=58(个)答:图中一共有58个长方形(不包含正方形).故答案为:58.12.图中,每个圆圈内的汉字代表1~9中的一个数字,汉字不同,数字也不同,每个小三角形三个顶点上的数字之和相等.若7个数字之和等于12,则“杯”所代表的数字是 3 .【解答】解:假设“杯”所代表的数字是a,每个小三角形三个顶点上的数字之和相等为k,由已知列式为:6k=12×2+4a,k==4+,k必须是自然数,a为1~9中一个自然数.当a=1、2、4、5、7、8时k都无解;a=6和9时,则7个数字和会大于12,所以不行.只有当a=3时,k=4+2=6;1+2+3=6,1+2+1+2+1+2+3=12,符合题意;答:则“杯”所代表的数字是 3.故答案为:3.13.如图,沿着圆周放置黑、白棋子各100枚,并且各自相邻排列.若将圆周上任意两枚棋子换位一次称为一次对换,则至少经过50 次对换可使全部的黑棋子彼此不相邻.【解答】解:从黑白珠子相交的地方为起点,分别数白棋子和黑棋子,只要交换偶数位置的棋子就可以;这样就需要交换:100÷2=50(次);故答案为:50.14.人口普查员站在王阿姨家门前问王阿姨:“您的年龄是40岁,您收养的三个孤儿的年龄各是多少岁?”王阿姨说:“他们的年龄的乘积等于我的年龄,他们的年龄的和等于我们家的门牌号.”普查员看了看门牌,说:“我还是不能确定他们的年龄.”那么,王阿姨家的门牌号是14 .【解答】解:由40的约数可知,三个孤的年龄及相加的和为:40=1×1×40,1+1+40=42;40=1×2×20,1+2+20=23;40=1×4×10,1+4+10=15;40=1×5×8,1+5+8=14;40=2×2×10,2+2+10=14;40=2×4×5,2+4+5=11;通过这些因数的和可以发现,同时等于14的有两种情况.王阿姨家的门牌号普查员是知道的,但还是不能确定几个孩子的年龄,说明这几个孩子的年龄和有两种情况,并且和都等于门牌号.所以,此题的答案是14.答:王阿姨家的门牌号是14.故答案为:14.15.196名学生按编号从1到196顺次排成一列.令奇数号位(1,3,5…)上的同学离队,余下的同学顺序不变,重新自1从小到大编号,再令新编号中奇数上的同学离队,依次重复上面的做法,最后留下一位同学.这位同学开始的编号是128 号.【解答】解:据题意可知,剩下的同学的新编号就是上一次的编号除以2,因此含2因数最多的编号就是最后剩下的,196内的数中,27=128含因数2最多,所以这位同学的编号是128.故答案为:128.16.甲、乙两人同时从A地出发到B地,若两人都匀速行进,甲用4小时走完全程,乙用6小时走完全程.则当乙所剩路程是甲所剩路程的4倍时,他们已经出发了 3.6 小时.【解答】解:甲乙两人的速度比是6:4=3:2;把全程看作10份,甲走了9份,则乙要走6份;9×4÷10,=36÷10,=3.6(小时).答:他们已经出发了3.6小时.故答案为:3.6.17.某电子表在6时20分25秒时,显示6:20:25,那么从5时到6时这1个小时里,此表显示的5个数字都不相同的情况共有840 种.【解答】解:据题意可知,最高位为5一种情况;分钟和秒的十位数,只可能是0、1、2、3、4这几种情况,而且还不能相同,共有5×4=20种情况;分钟和秒的个位数,有7×6=42种情况,所以,此题的结论是:20×42=840(种).故答案为:840.18.有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞.根据图8中的信息计算,若甲、乙、丙三只蚂蚁共同搬运这堆粮食,那么,蚂蚁乙搬运粮食42 粒.【解答】解:①甲乙丙的效率之比是:(﹣):()=12:7:8;②24÷(12﹣8)×7,=6×7,=42(粒).答:蚂蚁乙搬运粮食42粒.19.一批饲料可供10只鸭子和15只鸡共吃6天,或供12只鸭子和6只鸡共吃7天.则这批饲料可供 5 只鸭子吃21天.【解答】解:设1只鸭子每天吃饲料x,1只鸡每天吃饲料y,根据题干可得:(10x+15y)×6=(12x+6y)×7,60x+90y=84x+42y,24x=48y,x=2y,把2y=x代入:(12x+6y)×7=(12x+3x)×7=105x,105x÷21x=5(只),答:这批饲料可供5只鸭子吃21天.故答案为:5.20.小明从家出发去奶奶家,骑自行车每小时12千米,他走后2.5小时,爸爸发现小明忘带作业,便骑摩托车以每小时36千米的速度去追.结果小明到奶奶家后半小时爸爸就到了.小明家距离奶奶家36 千米.【解答】解:设小明的爸爸行驶了x小时,可得方程:12×(2.5﹣0.5+x)=36x,24+12x=36x,24x=24,x=1;则小明家距奶奶家:36×1=36(千米).答:小明家距离奶奶家36千米.故答案为:36.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 15:49:27;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

第九届希望杯-六年级-第1试试卷及解析

第九届希望杯-六年级-第1试试卷及解析

第九届小学“希望杯”全国数学邀请赛六年级第1试以下每题6分,共120分.1、计算:-613+-138=_______________.2、计算:2 4.6949.2181 2.3 4.53 6.913.5⨯⨯+⨯⨯⨯⨯+⨯⨯=_______________.3、对于任意两个数x,y定义新运算,运算规则如下:x♦y=x×y-x÷2,x⊕y=x+y÷2.按此规则计算:♦2=____________, 0.12♦⊕=____________.4、在方框里分别填入两个相邻的自然数,使下式成立.~□<1111 101102103150⎛⎫+++⋅⋅⋅⋅⋅⋅+⎪⎝⎭×3<□5、在循环小数19中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是___________.6、一条项链上共串有99颗珠子,如图1,其中第1颗珠子是白色的,第2、3颗珠子是红色的,第4颗珠子是白色的,第5、6、7、8颗珠子是红色的,第9颗珠子是白色的,…….则这条项链中共有红色珠子___________颗.图17、自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是___________.8、根据图2计算,每块巧克力___________元.(□内是一位数字))9、手工课上,小红用一张直径是20㎝的圆形纸片剪出如图3所示的风车图案(空白部分),则被剪掉的纸片(阴影部分)的面积是___________cm2.(π取10、用若干个棱长为1 cm的小正方体码放成如图4所示的立体,则这个立体的表面积(含下底面积)等于___________ cm2.11、图5中一共有________个长方形(不包含正方形).12、图6中,每个圆圈内的汉字代表1~9中的一个数字,汉字不同,数字也不同,每个小三角形三个顶点上的数字之和相等.若7个数字之和等于12,则“杯”所代表的数字是____________.13、如图7,沿着圆周放置黑、白棋子各100枚,并且各自相邻排列.若将圆周上任意两枚棋子换位一次称为一次交换,则最少经过____________次对换可使全部的黑棋子彼此不相邻.14、人口普查员站在王阿姨门前问王阿姨:“您的年龄是40岁,您收养的三个孤儿的年龄各是多少岁”王阿姨说:“他们年龄的乘积等于我的年龄,他们年龄的和等于我家的门牌号.”普查员看了看门牌,说:“我还是不能确定他们的年龄.”那么,王阿姨家的门牌号是____________.)15、196名学生按编号从1到196顺次排成一列.令奇数号位(1,3,5…)上的同学离队,余下的同学顺序不变,重新自1从小到大编号,再令新编号中奇数位上的同学离队,依次重复上面的做法,最后留下一位同学.这位同学开始的编号是___________号.16、甲、乙两人同时从A地出发到B地,若两人都匀速行进,甲用4小时走完全程,乙用6小时走完全程.则当乙所剩路程是甲所剩路程的4倍时,他们已经出发了___________小时.17、某电子表在6时20分25秒时,显示6:20:25,那么从5时到6时这1个小时里,此表显示的5个数字都不相同的情况共有__________种.18、有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞.根据图8中的信息计算,若甲、乙、丙三只蚂蚁共同搬运这堆粮食,那么,蚂蚁乙搬运粮食__________粒.19、一批饲料可供10只鸭子和10只鸡共吃6天,或供12只鸭子和6只鸡共吃7天,则这批饲料可供_________只鸭子吃21天.20、小明从家出发去奶奶家,骑自行车每小时行12千米,他走后小时,爸爸发现小明忘带作业,便骑摩托车以每小时36千米的速度去追,结果小明到奶奶家后半小时爸爸就赶到了.小明家距离奶奶家___________千米.(961参考答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九届小学“希望杯”全国数学邀请赛试题及解答
一、填空题(5'×12=60')
1、计算:
分析:原式=625.3+∙∙54.0-∙∙63.1=625.2+(∙∙54.1-∙∙63.1)=625.2+∙∙90.0=∙∙09715.2
或 原式=88
23911108291115115829=-=-+ 2、分析:=⊗)2114(345.465.045.14==+⨯,而11463.0=∙∙,所以原式=25173
211132112342114341142=++=⨯++⨯
3、分析:第二个图形比第一个图形多9根火柴,第三个图形比第二个图形多13根火柴,经尝试,第四个图形比第三个图形多17根火柴,而最下面一层有15根火柴的是第8个图形,所以共需要火柴4+(9+13+17+21+25+29+33)=151根。

4、分析:因为奇数个连续自然数之和等于中间数乘以数的个数,所以N 能被3和11整除,也就是能被33整除;因为偶数个连续自然数之和等于中间两个数的平均值乘以数的个数,所以N 等于一个整数加上0.5再乘以12,也就是被12除余6,最小为66。

(66可以表示成0到11的和)
5、分析:4m +5=5n +4,也就是说4(m -1)=5(n -1),如果m -1=5,n -1=4,则m =6,n =5,但此时n 进制中不能出现数字5;如果m -1=10,n -1=8,则m =11,n =9,符合题意。

6、分析:干支纪年法60年一循环,1949+60=2009,而2009年是己丑年,所以1949年是己丑年
7、分析:每次摸出的结果可能是两个球颜色相同,有3种可能;或颜色不同,也有3种可能,共6种可能。

最不利情况是每种可能各出现4次,则再摸一次就保证有5次相同,6×4+1=25
8、分析:相当于分别从1和1002处以2:5的速度比进行相遇问题,(1002-1)÷7×2+1=287
9、分析:分别连接两个正方形的"\"的对角线,发现它们平行,所以阴影部分的面积就等于一个扇形的面积,为15×15×3÷4=168.75
10、分析:总共价格为2n 元,最后乙付说明2n 的十位数字为奇数,所以个位为6,乙最后一次付了6元,应该给甲2元
11、分析:前5位队员的平均身高比前8位队员的平均身高多3厘米,也就是说,加入第6~8名后,平均身高减少了3厘米,因此第6~8名的平均身高比前5名的平均身高少3÷3×8=8厘米。

第9~23位队员的平均身高比第6~23位队员的平均身高少0.5厘米,也就是说,加入第6~8名后,平均身高增加了0.5厘米,因此第6~8名的平均身高比第9~23名的平均身高多0.5÷3×18=3厘米。

因此,前8名的平均身高比第9~23名的平均身高多8-3+3=8厘米
12、分析:根据对称性,丙先带谁没有区别。

设先带甲,返回接乙。

设乙步行的路程为x ,丙骑车返回的路程为y ,甲步行的路程为z 。

乙比骑车从A 地到B 地多用时间(5x -12x ),甲比骑车从A 地到B 地多用时间(4z -12z ),
丙比骑车从A 地到B 地多用时间122y 。

三人同时到达即这三个相等时,5x -12x =4z -12z =12
2y ,求得x :y :z =10:7:7,所求路程比为7:10
二、解答题(15'×4=60')
13、分析:车速提高20%,也就是变成原来的
56,则时间变成原来的6
5,减少25分钟,原定时间为25×6=150分钟;车速提高25%,也就是变成原来的45,则时间变成原来的54,减少10分钟,则这段路程的原定时间为10÷5=50分钟。

因此,原速行驶100千米需要150-50=100分钟,距离为150÷100×100=150千米
14、分析:两次的空白部分体积相等,而第二次的空白部分的横截面积为第一次的87811=-
,所以第一次的空白部分的高度为第二次的8
7,即7厘米。

正方体的底面积为20×20=400平方厘米,所以圆柱体的底面积为400÷8=50平方厘米,高度为20-7=13厘米,体积为50×13=650立方厘米
15、分析:全胜的队得7分,而最后四队之间赛6场至少共得6分,所以第二名的队得分至少为6分。

如果第一名全胜,则第二名只输给第一名,得6分;如果第二名得6.5分,则第二名6胜1负,第一名最好也只能是6胜1负,与题目中得分互不相同不符。

所以,第二名得分为6分
16、→分析:(45,80)→(45,35)→(10,35)→(10,25)→(10,15)→(10,5)→(5,5)。

这就是用辗转相除法求最大公约数的运算,所以两个四位数的最大公约数为17,9999÷17=588……3,所以最大的四位数是9999-3=9996,第二大的四位数是9996-17=9979,和为19975。

相关文档
最新文档