2020-2021郑州市高三数学上期末模拟试题(含答案)
2020-2021学年河南省天一大联考高三(上)期末数学试卷(文科) (解析版)

2020-2021学年河南省天一大联考高三(上)期末数学试卷(文科)一、选择题(共12小题).1.已知集合A={x|x2﹣5x<0},B=Z,则A∩B中元素的个数为()A.3B.4C.5D.62.若z+2=3﹣i,则|z|=()A.1B.C.D.23.在一个不透明的袋子中,装有若干个大小相同颜色不同的小球,若袋中有2个红球,且从袋中任取一球,取到红球的概率为,则袋中球的总个数为()A.5B.8C.10D.124.如图,位于西安大慈恩寺的大雁塔,是唐代玄奘法师为保存经卷佛像而主持修建的,是我国现存最早的四方楼阁式砖塔.塔顶可以看成一个正四棱锥,其侧棱与底面所成的角为45°,则该正四棱锥的一个侧面与底面的面积之比为()A.B.C.D.5.执行如图所示的程序框图,则输出的结果是()A.15B.29C.72D.1856.已知,则下列不等式:①;②|a|>|b|;③a3>b3;④.其中正确的是()A.①②B.③④C.②③D.①④7.已知函数f(x)=2sin(ωx+φ)(ω>0),点A,B是曲线y=f(x)相邻的两个对称中心,点C是f(x)的一个最值点,若△ABC的面积为1,则ω=()A.1B.C.2D.π8.已知函数f(x)=e x+e﹣x﹣x2,则不等式f(2m)>f(m﹣2)的解集为()A.B.C.D.9.在△ABC中,内角A,B,C的对边分别为a,b,c,若A,B,C的大小成等差数列,且b=7,a+c=13,则△ABC的面积为()A.B.C.D.10.已知球O的半径为5,球面上有A,B,C三点,满足AB=AC=2,则三棱锥O﹣ABC的体积为()A.B.C.D.11.已知定义在R上的奇函数f(x)满足f(x+3)=f(x+1),当0<x<1时,f(x)=2﹣x,则=()A.﹣8B.C.D.12.已知点A在直线3x+y﹣6=0上运动,点B在直线x﹣3y+8=0上运动,以线段AB为直径的圆C与x轴相切,则圆C面积的最小值为()A.B.C.D.二、填空题(共4小题).13.平面向量,若,则λ=.14.若实数x,y满足约束条件,则x﹣y的取值范围是.15.若函数f(x)=|e x﹣a|﹣1有两个零点,则实数a的取值范围是.16.设双曲线的左焦点是F,左、右顶点分别是A,B,过F且与x轴垂直的直线与双曲线交于P,Q两点,若AP⊥BQ,则双曲线的离心率为.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列{a n}的前n项和为S n,且和的等差中项为1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log4a n+1,求数列的前n项和T n.18.某企业招聘,一共有200名应聘者参加笔试,他们的笔试成绩都在[40,100]内,按照[40,50),[50,60),…,[90,100]分组,得到如图频率分布直方图:(Ⅰ)求图中a的值;(Ⅱ)求全体应聘者笔试成绩的平均数;(每组数据以区间中点值为代表)(Ⅲ)该企业根据笔试成绩从高到低进行录取,若计划录取150人,估计应该把录取的分数线定为多少.19.如图,直四棱柱ABCD﹣A1B1C1D1的底面ABCD为平行四边形,AD=3,AB=5,cos ∠BAD=,E是CC1的中点.(Ⅰ)求证:平面DBE⊥平面ADD1;(Ⅱ)求点C1到平面BDE的距离.20.已知椭圆C1的离心率为,一个焦点坐标为,曲线C2上任一点到点和到直线的距离相等.(Ⅰ)求椭圆C1和曲线C2的标准方程;(Ⅱ)点P为C1和C2的一个交点,过P作直线l交C2于点Q,交C1于点R,且Q,R,P互不重合,若,求直线l与x轴的交点坐标.21.已知函数f(x)=xlnx+1﹣x﹣lnx.(Ⅰ)设函数y=f(x)在x=1和x=e处的切线交直线y=1于M,N两点,求|MN|;(Ⅱ)设f(x0)为函数y=f(x)的最小值,求证:﹣.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(s为参数).(Ⅰ)设l1与l2的夹角为α,求tanα;(Ⅱ)设l1与x轴的交点为A,l2与x轴的交点为B,以A为圆心,|AB|为半径作圆,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求圆A的极坐标方程.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|ax+1|.(Ⅰ)当a=2时,解不等式f(x)≤5;(Ⅱ)当a=1时,若存在实数x,使得2m﹣1>f(x)成立,求实数m的取值范围.参考答案一、选择题(共12小题).1.已知集合A={x|x2﹣5x<0},B=Z,则A∩B中元素的个数为()A.3B.4C.5D.6解:∵A={x|0<x<5},B=Z,∴A∩B={1,2,3,4},∴A∩B中元素的个数为:4.故选:B.2.若z+2=3﹣i,则|z|=()A.1B.C.D.2解:设z=a+bi,则,因为z+2=3﹣i,所以a+bi+2(a﹣bi)=3﹣i,所以3a﹣bi=3﹣i,所以3a=3,﹣b=﹣1,所以a=1,b=1,所以z=1+i,故|z|=.故选:B.3.在一个不透明的袋子中,装有若干个大小相同颜色不同的小球,若袋中有2个红球,且从袋中任取一球,取到红球的概率为,则袋中球的总个数为()A.5B.8C.10D.12解:在一个不透明的袋子中,装有若干个大小相同颜色不同的小球,设袋中球的总数为n,∵袋中有2个红球,且从袋中任取一球,取到红球的概率为,∴,解得n=10.则袋中球的总个数为10.故选:C.4.如图,位于西安大慈恩寺的大雁塔,是唐代玄奘法师为保存经卷佛像而主持修建的,是我国现存最早的四方楼阁式砖塔.塔顶可以看成一个正四棱锥,其侧棱与底面所成的角为45°,则该正四棱锥的一个侧面与底面的面积之比为()A.B.C.D.解:塔顶是正四棱锥P﹣ABCD,如图,PO是正四棱锥的高,设底面边长为a,底面积为,因为,所以,所以△PAB是正三角形,面积为,所以.故选:D.5.执行如图所示的程序框图,则输出的结果是()A.15B.29C.72D.185解:i=0,a=1,b=1;第一次执行循环体后,a=3,b=2,不满足退出循环的条件,i=1;第二次执行循环体后,a=7,b=5,不满足退出循环的条件,i=2;第三次执行循环体后,a=15,b=14,不满足退出循环的条件,i=3;第四次执行循环体后,a=31,b=41,满足退出循环的条件;故输出a+b值为72,故选:C.6.已知,则下列不等式:①;②|a|>|b|;③a3>b3;④.其中正确的是()A.①②B.③④C.②③D.①④解:因为,所以b>a>0,所以,故①正确;|b|>|a|,故②错误;b3>a3,故③错误;由指数函数f(x)=为减函数,又b>a,所以f(a)>f(b),即,故④正确,故正确的是①④.故选:D.7.已知函数f(x)=2sin(ωx+φ)(ω>0),点A,B是曲线y=f(x)相邻的两个对称中心,点C是f(x)的一个最值点,若△ABC的面积为1,则ω=()A.1B.C.2D.π解:∵点A,B是曲线y=f(x)相邻的两个对称中心,∴AB=,点C是f(x)的一个最值点,则△ABC的高为2,∴三角形的面积S==1,∴T=2,∴=2,∴ω=π,故选:D.8.已知函数f(x)=e x+e﹣x﹣x2,则不等式f(2m)>f(m﹣2)的解集为()A.B.C.D.解:因为函数f(x)=e x+e﹣x﹣x2,所以f(﹣x)=e﹣x+e x﹣(﹣x)2=e x+e﹣x﹣x2=f(x),所以函数为偶函数,又f′(x)=e x﹣e﹣x﹣2x,故f″(x)=e x+e﹣x﹣2≥0,所以f′(x)在R上单调递增,又f'(0)=0,所以f'(x)>0,故f(x)在(0,+∞)上单调递增,则不等式f(2m)>f(m﹣2)等价于|2m|>|m﹣2|,解得或m<﹣2.故选:A.9.在△ABC中,内角A,B,C的对边分别为a,b,c,若A,B,C的大小成等差数列,且b=7,a+c=13,则△ABC的面积为()A.B.C.D.解:△ABC中,因为A,B,C成等差数列,所以2B=A+C,又A+B+C=π,所以B=.有余弦定理,可得b2=a2+c2﹣2ac cos60°=(a+c)2﹣3ac,即72=132﹣3ac,所以ac=40.所以△ABC的面积S=ac sin B=10.故选:C.10.已知球O的半径为5,球面上有A,B,C三点,满足AB=AC=2,则三棱锥O﹣ABC的体积为()A.B.C.D.解:由AB=AC=2,得cos∠BAC==,则sin∠BAC=,设OABC的外接圆半径为r,则2r===8,所以r=4,则球心O到平面ABC的距离等于=3,则△ABC的面积S=2×=7,故三棱锥O﹣ABC的体积为=7.故选:A.11.已知定义在R上的奇函数f(x)满足f(x+3)=f(x+1),当0<x<1时,f(x)=2﹣x,则=()A.﹣8B.C.D.解:根据题意,函数f(x)满足f(x+3)=f(x+1),则f(x+2)=f(x),即f(x)是周期为2的周期函数,又由f(x)为奇函数,则=f(﹣log2257)=f(8﹣log2257)=﹣f(log2257﹣8),而8=log2256<log2257<log2512=9,则0<log2257﹣8=log2<1,且当0<x<1时,f(x)=2﹣x,则=﹣f(log2)=﹣()=﹣,故选:D.12.已知点A在直线3x+y﹣6=0上运动,点B在直线x﹣3y+8=0上运动,以线段AB为直径的圆C与x轴相切,则圆C面积的最小值为()A.B.C.D.解:∵直线3x+y﹣6=0与直线x﹣3y+8=0垂直,且交点为(1,3),∴以AB为直径的圆过点(1,3),又圆C与x轴相切,∴圆C的面积最小时,其直径恰好为点(1,3)到x轴的距离,此时圆的直径为3,则圆C面积的最小值为.故选:C.二、填空题:本题共4小题,每小题5分,共20分.13.平面向量,若,则λ=.解:∵向量,∴﹣=(3,﹣1),λ+=(2λ﹣1,2λ+3).∵,∴3(2λ﹣1)﹣1×(2λ+3)=0,解得λ=,故答案为:.14.若实数x,y满足约束条件,则x﹣y的取值范围是[﹣1,1].解:由约束条件作出可行域如图,联立,解得A(2,1),联立,解得B(1,2),令z=x﹣y,化为y=x﹣z,作出直线x﹣y=0,把直线平移,由图可知,当直线经过A时,直线y=x﹣z在y轴上的截距最小,z有最大值1,当直线经过B时,直线y=x﹣z在y轴上的截距最大,z有最小值﹣1,∴x﹣y的取值范围是[﹣1,1].故答案为:[﹣1,1].15.若函数f(x)=|e x﹣a|﹣1有两个零点,则实数a的取值范围是(1,+∞).解:f(x)的零点个数等价于曲线y=|e x﹣a|与直线y=1的交点个数,作出函数图象如图所示,由题意可知a>1.故答案为:(1,+∞).16.设双曲线的左焦点是F,左、右顶点分别是A,B,过F且与x轴垂直的直线与双曲线交于P,Q两点,若AP⊥BQ,则双曲线的离心率为.解:由题意知,A(﹣a,0),B(a,0),F(﹣c,0),把x=﹣c代入双曲线方程中,有,∴y=±,∴P(﹣c,),Q(﹣c,﹣),∵AP⊥BQ,∴=(﹣c+a,)•(﹣c﹣a,﹣)=c2﹣a2﹣=0,化简得,a2=b2,即a=b,∴双曲线的离心率e===.故答案为:.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列{a n}的前n项和为S n,且和的等差中项为1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log4a n+1,求数列的前n项和T n.解:(Ⅰ)由题意,可得,整理,得S n=2a n﹣2,当n=1时,a1=S1=2a1﹣2,解得a1=2,当n≥2时,由S n=2a n﹣2,可得S n﹣1=2a n﹣1﹣2.两式相减,可得a n=2a n﹣2a n﹣1,化简整理,得a n=2a n﹣1,∴数列{a n}是以2为首项,2为公比的等比数列,∴,n∈N*,(Ⅱ)由(Ⅰ),可得b n=log4a n+1=log42n+1=,则,∴T n=++…+=4×(﹣)+4×(﹣)+…+4×(﹣)===.18.某企业招聘,一共有200名应聘者参加笔试,他们的笔试成绩都在[40,100]内,按照[40,50),[50,60),…,[90,100]分组,得到如图频率分布直方图:(Ⅰ)求图中a的值;(Ⅱ)求全体应聘者笔试成绩的平均数;(每组数据以区间中点值为代表)(Ⅲ)该企业根据笔试成绩从高到低进行录取,若计划录取150人,估计应该把录取的分数线定为多少.解:(Ⅰ)由题意(0.005+0.010+a+0.030+a+0.015)×10=1,解得a=0.020.(Ⅱ)这些应聘者笔试成绩的平均数为:45×0.05+55×0.1+65×0.2+75×0.3+85×0.2+95×0.15=74.5.(Ⅲ)根据题意,录取的比例为0.75,设分数线定为x,根据频率分布直方图可知x∈[60,70),且(70﹣x)×0.02+0.3+0.2+0.15=0.75,解得x=65.故估计应该把录取的分数线定为65分.19.如图,直四棱柱ABCD﹣A1B1C1D1的底面ABCD为平行四边形,AD=3,AB=5,cos ∠BAD=,E是CC1的中点.(Ⅰ)求证:平面DBE⊥平面ADD1;(Ⅱ)求点C1到平面BDE的距离.【解答】(Ⅰ)证明:由题意可得BD2=AD2+AB2﹣2AB×AD cos∠BAD=16,所以AD2+BD2=AB2,因此AD⊥BD.在直四棱柱ABCD﹣A1B1C1D1中,DD1⊥平面ABCD,所以DD1⊥BD.又因为AD∩DD1=D,AD⊂平面ADD1,DD1⊂平面ADD1,所以BD⊥平面ADD1,因为BD⊂平面DBE,所以平面DBE⊥平面ADD1.(Ⅱ)解:如图,在平面BCC1内作C1F⊥BE,垂足为F.由(Ⅰ)知BD⊥平面ADD1,因为平面ADD1∥平面BCC1,所以BD⊥平面BCC1,所以BD⊥C1F,又因为BD∩BE=B,所以C1F⊥平面BDE.所以线段C1F的长就是点C1到平面BDE的距离.因为CC1=DD1=BD=4,BC=3,所以.在平面BCC1内,可知△BCE∽△C1FE,所以,得,所以点C1到平面BDE的距离为.20.已知椭圆C1的离心率为,一个焦点坐标为,曲线C2上任一点到点和到直线的距离相等.(Ⅰ)求椭圆C1和曲线C2的标准方程;(Ⅱ)点P为C1和C2的一个交点,过P作直线l交C2于点Q,交C1于点R,且Q,R,P互不重合,若,求直线l与x轴的交点坐标.解:(Ⅰ)设椭圆,根据条件可知,且,解得a2=12,b2=4,所以椭圆C1的标准方程为,曲线C2是以为焦点,为准线的抛物线,故C2的标准方程为y2=9x;(Ⅱ)联立,解得x=1,y=±3,不妨取P(1,3),若直线l的斜率不存在,Q和R重合,不符合条件;故可设直线l:y=k(x﹣1)+3,由题意可知k≠0,联立,解得,联立,解得,因为,所以P是QR的中点,所以,即,解得k=1,所以直线l的方程为y=x+2,其与x轴的交点坐标为(﹣2,0).21.已知函数f(x)=xlnx+1﹣x﹣lnx.(Ⅰ)设函数y=f(x)在x=1和x=e处的切线交直线y=1于M,N两点,求|MN|;(Ⅱ)设f(x0)为函数y=f(x)的最小值,求证:﹣.解:(Ⅰ)函数f(x)的导函数为.(1分)所以.又因为f(1)=0,f(e)=0,因此y=f(x)在x=1和x=e处的切线方程分别为y=﹣x+1和.令y=1,可得M和N的坐标分别为(0,1)和,故.(Ⅱ)因为在(0,+∞)上单调递增,而,所以必然存在x0∈(1,2),满足f′(x0)=0,且当x∈(0,x0))时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0.即f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,当x=x0时,f(x)取得最小值f(x0)=x0lnx0+1﹣x0﹣lnx0.由f′(x0)=0,可得,所以.当x0∈(1,2)时,,所以.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(s为参数).(Ⅰ)设l1与l2的夹角为α,求tanα;(Ⅱ)设l1与x轴的交点为A,l2与x轴的交点为B,以A为圆心,|AB|为半径作圆,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求圆A的极坐标方程.解:(Ⅰ)设直线l1和l2的倾斜角分别为β和γ,由参数方程知,则.(Ⅱ)令,得,所以A(1,0),令,得,所以B(﹣2,0),所以圆A的直角坐标方程为(x﹣1)2+y2=9,即x2+y2﹣2x=8,所以圆A的极坐标方程为ρ2﹣2ρcosθ=8.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|ax+1|.(Ⅰ)当a=2时,解不等式f(x)≤5;(Ⅱ)当a=1时,若存在实数x,使得2m﹣1>f(x)成立,求实数m的取值范围.解:(Ⅰ)当a=2时,f(x)=|x﹣1|+|2x+1|=;当x≥1时,不等式f(x)≤5化为3x≤5,解得;当时,不等式f(x)≤5化为x+2≤5,解得;当时,不等式化为﹣3x≤5,解得.综上所述,不等式f(x)≤5的解集为.(Ⅱ)当a=1时,f(x)=|x﹣1|+|x+1|≥|x+1+1﹣x|=2,当且仅当﹣1≤x≤1时,等号成立,即f(x)的最小值为2.因为存在实数x,使得2m﹣1>f(x)成立,所以2m﹣1>2.解得,所以m的取值范围是.。
2020-2021学年河南省郑州市第四高级中学高三数学理联考试卷含解析

2020-2021学年河南省郑州市第四高级中学高三数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设满足约束条件,则的取值范围是()A. B. C. D.参考答案:D2. (11)已知函数设表示中的较大值,表示中的较小值,记得最小值为得最小值为,则(A)(B)(C)(D)参考答案:B3. 已知椭圆,作倾斜角为的直线交椭圆C于A,B两点,线段AB的中点为M,O为坐标原点与的夹角为,且,则b=( )A.1 B. C. D.参考答案:B本题考查椭圆的性质,考查推理论证和运算求解能力设,M,则,两式作差得.因为,所以.即.设直线的倾斜角为,则或,.又,由,解得,即.4. 已知球的直径SC=4,A,B是该球球面上的两点,AB=2.∠ASC=∠BSC=45°则棱锥S—ABC的体积为A.B.C.D.参考答案:C略5. 右图是某果园的平面图,实线部分游客观赏道路,其中曲线部分是以为直径的半圆上的一段弧,点为圆心,是以为斜边的等腰直角三角形,其中千米,(),若游客在路线上观赏所获得的“满意度”是路线长度的2倍,在路线EF上观赏所获得的“满意度”是路线的长度,假定该果园的“社会满意度”是游客在所有路线上观赏所获得的“满意度”之和,则下面图象中能较准确的反映与的函数关系的是()参考答案:A6. (文)若复数,则是成立的()(A) 充要条件 (B) 既不充分又不必要条件 (C) 充分不必要条件 (D) 必要不充分条件参考答案:D若,则成立。
若,不妨取,则有成立,但不成立,所以是成立的必要不充分条件,所以D.7. 已知集合,,,则A. {0,1,7}B. {-1,0,7}C. {0,1,3,7}D. {-1,0,2,7}参考答案:D【分析】求得不等式的解集,得到集合,求得,再根据集合的并集运算,即可求解,得到答案.【详解】由题意,不等式,解得,所以,所以,所以.故选D.【点睛】本题主要考查了集合的混合运算,其中解答中正确求解集合M,再根据集合的运算,准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.8. 设函数(,)的最小正周期为π,且,则()A.在单调递减B.在单调递减C.在单调递增D.在单调递增参考答案:A9. 已知f(x)=则下列函数的图象错误的是().参考答案:D10. (文科)平面上O 、A 、B 三点不共线,设向量,则△OAB 的面积等于A .B .C .D .参考答案: C二、 填空题:本大题共7小题,每小题4分,共28分11. 若双曲线的渐近线方程为y=x ,则双曲线的焦点坐标是 .参考答案:()【考点】双曲线的简单性质.【分析】由题意知,m=3.由此可以求出双曲线的焦点坐标.【解答】解:由题意知,∴m=3. ∴c 2=4+3=7,∴双曲线的焦点坐标是().故答案:().12. 已知两个单位向量互相垂直,且向量,则.参考答案:5因为两个单位向置互相垂直,且向量,所以,,.13. 已知是虚数单位,则▲.参考答案:【知识点】复数的基本运算.L41+i 解析:,故答案为.【思路点拨】在分式的分子分母同时乘以分母的共轭复数再进行化简即可。
2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析

三校联考高考数学模拟试卷(文科)(解析版)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()A.2 B.C.1 D.34.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=5.执行如图所示的程序框图,则输出的S的值为()A.7 B.8 C.9 D.106.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A .在[,]上是增函数B .其图象关于直线x=﹣对称C .函数g (x )是奇函数D .当x ∈[0,]时,函数g (x )的值域是[﹣1,2]7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .8.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(单位:m 2).( )A .B .C .D .9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]10.已知双曲线C :﹣=1的左、右焦点分别是F 1,F 2,正三角形△AF 1F 2的顶点A在y 轴上,边AF 1与双曲线左支交于点B ,且=4,则双曲线C 的离心率的值是( )A .+1 B .C .+1 D .11.已知一个平放的棱长为4的三棱锥内有一小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于( ) A .π B .π C .π D .π12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015 B .2016C .4030D .4032二、填空题:本大题共4小题,每小题5分. 13.设i 为虚数单位,则复数= .14.已知函数f (x )=2x 2﹣xf ′(2),则函数f (x )的图象在点(2,f (2))处的切线方程是 . 15.若x ,y 满足若z=x+my 的最大值为,则实数m= .16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列; (2)若b n =log 2a n +3,求数列{}的前n 项和T n .18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a ,b ,c 的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率. 19.如图所示,在四棱锥P ﹣ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB=4,CD=2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A ﹣PBC 的体积.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.21.设函数f (x )=x 2﹣(a+b )x+ablnx (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y=f (x )在点(e ,f (e ))处的切线方程为y=﹣e 2. (1)求b ;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}【分析】根据题意先求出集合M和集合N,再求M∪N.【解答】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.【点评】本题考查集合的运算,解题时要认真审题,仔细解答.2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】分别判断出p,q的真假,从而判断出复合命题的真假.【解答】解:命题p:∃x∈N,x3<x2,是假命题;命题q:∀a∈(0,1)∪(1,+∞),令x﹣1=1,解得:x=2,此时f(2)=0,(x﹣1)的图象过点(2,0),是真命题;故函数f(x)=loga故¬p∧q真是真命题;故选:C.【点评】本题考查了不等式以及对数函数的性质,考查复合命题的判断,是一道基础题.3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()【分析】根据向量的数量积的运算和向量的模计算即可.【解答】解:∵|+2|=2,∴+4+4=||2+4||||cos+4||2=||2+2||+4=12,解得||=2,故选:A.【点评】本题考查了向量的数量积的运算和向量的模的计算,属于基础题.4.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.执行如图所示的程序框图,则输出的S的值为()【分析】由已知中的程序语句可知该框图的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序框图,由程序框图可知该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+42的值,∵S=﹣12+22﹣32+42=10故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A.在[,]上是增函数B.其图象关于直线x=﹣对称C.函数g(x)是奇函数D.当x∈[0,]时,函数g(x)的值域是[﹣1,2]【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象性质,得出结论.【解答】解:把函数f(x)=2sin(2x+)的图象沿x轴向左平移个单位,得到函数g(x)=2sin[2(x+)+]=2cos2x的图象,显然,函数g(x)是偶函数,故排除C.当x∈[,],2x∈[,π],函数g(x)为减函数,故排除A.当x=﹣时,g (x )=0,故g (x )的图象不关于直线x=﹣对称,故排除B .当x ∈[0,]时,2x ∈[0,],cos2x ∈[﹣,1],函数g (x )的值域是[﹣1,2],故选:D .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,余弦函数的图象性质,属于基础题.7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .【分析】由题意得(1+2d )2=1+12d ,求出公差d 的值,得到数列{a n }的通项公式,前n 项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【解答】解:∵a 1=1,a 1、a 3、a 13成等比数列, ∴(1+2d )2=1+12d . 得d=2或d=0(舍去), ∴a n =2n ﹣1, ∴S n ==n 2, ∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A .【点评】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.8.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.【分析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底连长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的连长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等.9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]【分析】由题意,方程f (x )=ax 恰有两个不同实数根,等价于y=f (x )与y=ax 有2个交点,又a 表示直线y=ax 的斜率,求出a 的取值范围. 【解答】解:∵方程f (x )=ax 恰有两个不同实数根, ∴y=f (x )与y=ax 有2个交点, 又∵a 表示直线y=ax 的斜率, ∴y ′=,设切点为(x 0,y 0),k=,∴切线方程为y ﹣y 0=(x ﹣x 0),而切线过原点,∴y 0=1,x 0=e ,k=, ∴直线l 1的斜率为, 又∵直线l 2与y=x+1平行, ∴直线l 2的斜率为,∴实数a 的取值范围是[,). 故选:B .【点评】本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题.10.已知双曲线C:﹣=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且=4,则双曲线C的离心率的值是()A.+1 B.C.+1 D.【分析】不妨设△AF1F2的边长为4,求得c=2,由向量共线可得|BF1|=1,在△BF1F2中,由余弦定理求得|BF2|=,再由双曲线的定义和离心率公式计算即可得到所求值.【解答】解:不妨设△AF1F2的边长为4,则|F1F2|=2c=4,c=2.由,可得|BF1|=1,在△BF1F2中,由余弦定理可得|BF2|2=|BF1|2+|F1F2|2﹣2|BF1||F1F2|cos∠BF1F2=1+16﹣2×1×4×=13,|BF2|=,由双曲线的定义可得2a=|BF2|﹣|BF1|=﹣1,解得a=,则e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的定义和余弦定理,考查运算能力,属于中档题.11.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于()A.πB.πC.πD.π【分析】先求出没有水的部分的体积是,再求出棱长为2,可得小球的半径,即可求出球的表面积.【解答】解:由题意,没有水的部分的体积是正四面体体积的,∵正四面体的各棱长均为4, ∴正四面体体积为=,∴没有水的部分的体积是,设其棱长为a ,则=, ∴a=2,设小球的半径为r ,则4×r=,∴r=,∴球的表面积S=4=.故选:C .【点评】本题考查球的表面积,考查体积的计算,考查学生分析解决问题的能力,正确求出半径是关键.12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015B .2016C .4030D .4032【分析】特殊值法:令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032.根据条件x >0时,有f (x )<2016,得出函数的单调性,根据单调性求出函数的最值.【解答】解:∵对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,∴令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032. 设x 1<x 2,x 1,x 2∈[﹣2016,2016],则x 2﹣x 1>0,f (x 2﹣x 1)=f (x 2)+f (﹣x 1)﹣2016,∴f(x2)+f(﹣x1)﹣2016<2016.又∵f(﹣x1)=4032﹣f(x1),∴f(x2)<f(x1),即函数f(x)是递减的,∴f(x)max=f(﹣2016),f(x)min=f(2016).又∵f(2016)+f(﹣2016)=4032,∴M+N的值为4032.故选D.【点评】考查了抽象函数中特殊值的求解方法,得出函数的性质.二、填空题:本大题共4小题,每小题5分.13.设i为虚数单位,则复数= i .【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故答案为:i.【点评】本题考查了复数代数形式的乘除运算,是基础题.14.已知函数f(x)=2x2﹣xf′(2),则函数f(x)的图象在点(2,f(2))处的切线方程是4x﹣y﹣8=0 .【分析】求导函数,确定切点处的斜率与切点的坐标,即可求得函数f(x)的图象在点(2,f(2))处的切线方程.【解答】解:∵函数f(x)=2x2﹣xf′(2),∴f′(x)=4x﹣f′(2),∴f′(2)=8﹣f′(2),∴f′(2)=4∴f(2)=8﹣2×4=0∴函数f(x)的图象在点(2,f(2))处的切线方程是y﹣0=4(x﹣2)即4x﹣y﹣8=0故答案为:4x﹣y﹣8=0【点评】本题考查导数知识的运用,考查导数的几何意义,确定切点处的斜率与切点的坐标是关键.15.若x,y满足若z=x+my的最大值为,则实数m= 2 .【分析】画出满足约束条件的可行域,求出目标函数的最大值,从而建立关于m的等式,即可得出答案.【解答】解:由z=x+my得y=x,作出不等式组对应的平面区域如图:∵z=x+my的最大值为,∴此时z=x+my=,此时目标函数过定点C(,0),作出x+my=的图象,由图象知当直线x+my=,经过但A时,直线AC的斜率k=>﹣1,即m>1,由平移可知当直线y=x,经过点A时,目标函数取得最大值,此时满足条件,由,解得,即A(,),同时,A也在直线x+my=上,代入得+m=,解得m=2,故答案为:2.【点评】本题主要考查线性规划的应用,根据目标函数的几何意义确定取得最大值的最优解是解决本题的关键.16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为.【分析】先利用余弦定理求得A ,进而通过正弦定理表示出c ,代入面积公式求得S+cosBcosC 的表达式,利用两角和与差的余弦函数公式化简求得其最大值.【解答】解:∵a 2=b 2+c 2+bc , ∴cosA==﹣,∴A=,由正弦定理 c=a ==2sinC , ∴S===sinBsinC ∴S+cosBcosC=sinBsinC+cosBcosC=cos (B ﹣C )≤,故答案为:.【点评】本题主要考查了正弦定理和余弦定理的应用.求得面积的表达式是解决问题的关键,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列;(2)若b n =log 2a n +3,求数列{}的前n 项和T n .【分析】(1)由题意得2a n =S n +,易求,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n﹣1﹣,两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),由递推式可得结论;(2)由(1)可求=2n ﹣2,从而可得b n ,进而有=,利用裂项相消法可得T n ;【解答】解:(1)证明:由S n ,a n ,成等差数列,知2a n =S n +, 当n=1时,有,∴,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n ﹣1﹣, 两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),即a n =2a n ﹣1, 由于{a n }为正项数列,∴a n ﹣1≠0,于是有=2(n ≥2),∴数列{a n }从第二项起,每一项与它前一项之比都是同一个常数2, ∴数列{a n }是以为首项,以2为公比的等比数列. (2)解:由(1)知==2n ﹣2,∴b n =log 2a n +3==n+1,∴==,∴T n =()+()+…+()==.【点评】本题考查等差数列、等比数列的概念、数列的求和,裂项相消法是高考考查的重点内容,应熟练掌握.18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a,b,c的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率.【分析】(Ⅰ)根据茎叶图能求出甲部门数据的中位数和乙部门数据的中位数,再求出甲部门的成绩在70~80的频率为0.5,由此能求出a,b,c.(Ⅱ)利用列举法求出从“甲、乙两组数据中各任取一个”的所有可能情况和其中所取“两数之差的绝对值大于20”的情况,由此能求出所取两数之差的绝对值大于20的概率.【解答】解:(Ⅰ)根据茎叶图得甲部门数据的中位数是78.5,乙部门数据的中位数是78.5;∵甲部门的成绩在70~80的频率为0.5,∴a=0.05,在80~90的频率为0.2,∴b=0.02在60~70的频率为0.1,∴c=0.01.(Ⅱ)从“甲、乙两组数据中各任取一个”的所有可能情况是:(63,67),(63,68),(63,69),(63,73),(63,75),…,(96,86),(96,94),(96,97)共有100种;其中所取“两数之差的绝对值大于20”的情况是:(63,85),(63,86),(63,94),(63,97),(72,94),(72,97),(74,97),(76,97),(91,67),(91,68),(91,69),(96,67),(96,68),(96,69),(96,73),(96,75)共有16种,故所求的概率为.【点评】本题考查概率的求法,考查频率分布直方图的应用,是基础题,解题时要认真审题,注意列举法的合理运用.19.如图所示,在四棱锥P﹣ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(1)求证:DE∥平面PBC;(2)求三棱锥A﹣PBC的体积.【分析】(1)(法一)取PB的中点F,连接EF,CF,由已知得EF∥AB,且,从而四边形CDEF是平行四边形,由此能证明DE∥平面PBC.(1)(法二):取AB的中点F,连接DF,EF,由已知得四边形BCDF为平行四边形,从而DF∥BC,由此能证明DE∥平面PBC.(2)取AD的中点O,连接PO,由已知得PO⊥平面ABCD,由此能求出三棱锥A﹣PBC 的体积.【解答】(1)证明:(方法一):取PB的中点F,连接EF,CF.∵点E,F分别是PA,PB的中点∴EF∥AB,且又CD∥AB,且∴EF∥CD,且EF=CD∴四边形CDEF是平行四边形,∴DE∥CF.又DE⊄平面PBC,CF⊂平面PBC∴DE∥平面PBC.(1)证明:(方法二):取AB的中点F,连接DF,EF.在直角梯形ABCD中,CD∥AB,且AB=4,CD=2,所以BF∥CD,且BF=CD.所以四边形BCDF为平行四边形,所以DF∥BC.在△PAB中,PE=EA,AF=FB,所以EF∥PB.又DF∩EF=F,PB∩BC=B,所以平面DEF∥平面PBC.因为DE⊂平面DEF,所以DE∥平面PBC.(2)解:取AD的中点O,连接PO.在△PAD中,PA=PD=AD=2,所以PO⊥AD,PO=又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO就是三棱锥P﹣ABC的高.在直角梯形ABCD中,CD∥AB,且AB=4,AD=2,AB⊥AD,所以.故.【点评】本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.【分析】(1)通过|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3.列出方程,求出a 、b ,即可求椭圆E 的方程;(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,然后联立直线方程与椭圆方程,设A (x 1,y 1),B (x 2,y 2),结合x 1x 2+y 1y 2=0,即可求圆的方程.(ⅱ)若AB 的斜率不存在,设A (x 1,y 1),则B (x 1,﹣y 1),利用⊥,求出半径,得到结果.【解答】解:(1)由题知2|F 1F 2|=|MF 1|+|MF 2|, 即2×2c=2a ,得a=2c .①又由,得②且a 2=b 2+c 2,综合解得c=1,a=2,b=.∴椭圆E 的方程为+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,r 2=,①消去y ,整理得(3+4k 2)x 2+8kmx+4(m 2﹣3)=0,设A (x 1,y 1),B (x 2,y 2),又∵⊥,∴x1x2+y1y2=0,即4(1+k2)(m2﹣3)﹣8k2m2+3m2+4k2m2=0,化简得m2=(k2+1),②由①②求得r2=.所求圆的方程为x2+y2=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(ⅱ)若AB的斜率不存在,设A(x1,y1),则B(x1,﹣y1),∵⊥,∴=0,得x=.此时仍有r2=|x|=.综上,总存在以原点为圆心的圆x2+y2=满足题设条件.【点评】考查椭圆的方程和基本性质,与向量相结合的综合问题.考查分析问题解决问题的能力.21.设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.【分析】(1)求导,从而求b;(2)由(1)得,,从而①当时,要使得f(x)在上有且只有两个零点,只需=,②当时,求导确定零点个数,③当a>e时,求导确定零点个数.【解答】解:(1),∵f′(e)=0,a≠e,∴b=e;(2)由(1)得,,①当时,由f′(x)>0得x>e;由f′(x)<0得.此时f(x)在上单调递减,在(e,+∞)上单调递增.∵,;∴要使得f(x)在上有且只有两个零点,则只需=,即;②当时,由f′(x)>0得或x>e;由f′(x)<0得a<x<e.此时f(x)在(a,e)上单调递减,在和(e,+∞)上单调递增.此时,∴此时f(x)在[e,+∞)至多只有一个零点,不合题意;③当a>e时,由f′(x)>0得或x>a,由f′(x)<0得e<x<a,此时f(x)在和(a,+∞)上单调递增,在(e,a)上单调递减,且,∴f(x)在至多只有一个零点,不合题意.综上所述,a的取值范围为.【点评】本题考查了导数的综合应用及导数的几何意义的应用,同时考查了分类讨论的思想应用,属于中档题.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F四点共圆即可证得结论;(2)由(1)知,BDBE=BABF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BEBD﹣AEAC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,(1分)又EF⊥AB,∠AFE=90°,(1分)则A,D,E,F四点共圆(2分)∴∠DEA=∠DFA(1分)(2)由(1)知,BDBE=BABF,(1分)又△ABC∽△AEF∴,即ABAF=AEAC(2分)∴BEBD﹣AEAC=BABF﹣ABAF=AB(BF﹣AF)=AB2(2分)【点评】本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.【分析】(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐标方程.把C2的方程化为直角坐标方程为y=a,根据曲线C1关于曲线C2对称,故直线y=a经过圆心解得a,即可得出.(Ⅱ)由题意可得,|OA|,|OB|,|OC|,|OD|,代入利用和差公式即可得出.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,化为直角坐标方程为(x﹣1)2+(y﹣1)2=2.把C2的方程化为直角坐标方程为y=a,∵曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),解得a=1,故C2的直角坐标方程为y=1.(Ⅱ)由题意可得,,,,,.【点评】本题考查了直角坐标与极坐标的互化、圆的对称性、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.【分析】(Ⅰ)问题等价于|m+1|+|m﹣2|≥5,通过讨论m的范围,求出不等式的解集即可;(Ⅱ)根据绝对值的性质证明即可.【解答】解:(Ⅰ)不等式f(1)+f(﹣2)≥5等价于|m+1|+|m﹣2|≥5,可化为,解得m≤﹣2;或,无解;或,解得m≥3;综上不等式解集为(﹣∞,﹣2]∪[3,+∞)…(5分)(Ⅱ)证明:当x≠0时,,|x|>0,,…(10分)【点评】本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.。
2020-2021郑州市第一中学高三数学上期末第一次模拟试卷含答案

2020-2021郑州市第一中学高三数学上期末第一次模拟试卷含答案一、选择题1.已知数列{}n a 的前n 项和为n S ,且1142n n a -⎛⎫=+- ⎪⎝⎭,若对任意*N n ∈,都有()143n p S n ≤-≤成立,则实数p 的取值范围是( )A .()2,3B .[]2,3C .92,2⎡⎤⎢⎥⎣⎦D .92,2⎡⎫⎪⎢⎣⎭2.数列{}n a 满足()11nn n a a n ++=-⋅,则数列{}n a 的前20项的和为( ) A .100 B .-100C .-110D .1103.在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若 2?a bcos C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形4.设,x y 满足约束条件302x y x y x -+≥⎧⎪+≥⎨⎪≤⎩, 则3z x y =+的最小值是 A .5-B .4C .3-D .115.设等比数列{}n a 的前n 项和为n S ,若633S S =, 则96S S =( ) A .2B .73C .83D .36.设x y ,满足约束条件70310,350x y x y x y +-⎧⎪-+⎨⎪--⎩,,………则2z x y =-的最大值为( ).A .10B .8C .3D .27.设变量,x y 、满足约束条件236y xx y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .98.已知集合2A {t |t 40}=-≤,对于满足集合A 的所有实数t ,使不等式2x tx t 2x 1+->-恒成立的x 的取值范围为( )A .()(),13,∞∞-⋃+B .()(),13,∞∞--⋃+C .(),1∞--D .()3,∞+9.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,c=a ,则A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定10.“0x >”是“12x x+≥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.已知变量x , y 满足约束条件13230x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最小值为( )A .1B .2C .3D .612.若变量x ,y 满足约束条件1358x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,,,则2yz x =-的取值范围是( ) A .113⎡⎤-⎢⎥⎣⎦,B .11115⎡⎤--⎢⎥⎣⎦,C .111153⎡⎤-⎢⎥⎣⎦, D .3153⎡⎤-⎢⎥⎣⎦,二、填空题13.若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.14.已知实数,且,则的最小值为____15.设函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,则实数m 的取值范围是 .16.计算:23lim 123n n nn→+∞-=++++L ________17.数列{}21n-的前n 项1,3,7..21n-组成集合{}()*1,3,7,21nn A n N=-∈,从集合nA中任取()1,2,3?··n k k =个数,其所有可能的k 个数的乘积的和为(若只取一个数,规定乘积为此数本身),记12n n S T T T =++⋅⋅⋅+,例如当1n =时,{}1111,1,1===A T S ;当2n =时,{}21221,2,13,13,13137A T T S ==+=⨯=++⨯=,试写出n S =___18.若实数,x y 满足约束条件200220x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩,则3z x y =-的最小值等于_____.19.若x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的最大值是__________.20.已知不等式250ax x b -+>的解集是{}|32x x -<<-,则不等式250bx x a -+>的解集是_________.三、解答题21.若0,0a b >>,且11ab a b+= (1)求33+a b 的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由. 22.设 的内角 的对边分别为 已知.(1)求角 ;(2)若,,求的面积.23.设{}n a 是等比数列,公比不为1.已知113a =,且1a ,22a ,33a 成等差数列. (1)求{}n a 的通项公式;(2)设数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T .24.已知等差数列{}n a 的前n 项和为254,12,16n S a a S +==. (1)求{}n a 的通项公式; (2)数列{}n b 满足141n n n b T S =-,为数列{}n b 的前n 项和,是否存在正整数m ,()1k m k <<,使得23k m T T =?若存在,求出m ,k 的值;若不存在,请说明理由.25.在△ABC 中,角A B C 、、的对边分别为a b c 、、,已知3cos()16cos cos B C B C --=,(1)求cos A (2)若3a =,△ABC 的面积为22求b c 、26.已知角A ,B ,C 为等腰ABC ∆的内角,设向量(2sin sin ,sin )m A C B =-r,(cos ,cos )n C B =r ,且//m n r r,7BC =(1)求角B ;(2)在ABC ∆的外接圆的劣弧»AC 上取一点D ,使得1AD =,求sin DAC ∠及四边形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【解析】11111444222n n S -⎛⎫⎛⎫⎛⎫=+-++-+⋅⋅⋅++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11221244133212nnn n ⎛⎫-- ⎪⎛⎫⎝⎭=+=+-⋅- ⎪⎛⎫⎝⎭-- ⎪⎝⎭()143n p S n ≤-≤Q即22113332n p ⎛⎫⎛⎫≤-⋅-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭对任意*n N ∈都成立, 当1n =时,13p ≤≤ 当2n =时,26p ≤≤当3n =时,443p ≤≤ 归纳得:23p ≤≤故选B点睛:根据已知条件运用分组求和法不难计算出数列{}n a 的前n 项和为n S ,为求p 的取值范围则根据n 为奇数和n 为偶数两种情况进行分类讨论,求得最后的结果2.B解析:B 【解析】 【分析】数列{a n }满足1(1)nn n a a n ++=-⋅,可得a 2k ﹣1+a 2k =﹣(2k ﹣1).即可得出.【详解】∵数列{a n }满足1(1)nn n a a n ++=-⋅,∴a 2k ﹣1+a 2k =﹣(2k ﹣1).则数列{a n }的前20项的和=﹣(1+3+……+19)()101192⨯+=-=-100.故选:B . 【点睛】本题考查了数列递推关系、数列分组求和方法,考查了推理能力与计算能力,属于中档题.3.C解析:C 【解析】在ABC ∆中,222222cos ,2cos 222a b c a b c C a b C b ab abQ +-+-=∴==⋅,2222a a b c ∴=+-,,b c ∴=∴此三角形一定是等腰三角形,故选C.【方法点睛】本题主要考查利用余弦定理判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.4.C解析:C 【解析】画出不等式组表示的可行域如图阴影部分所示.由3z x y =+可得3y x z =-+.平移直线3y x z =-+,结合图形可得,当直线3y x z =-+经过可行域内的点A 时,直线在y 轴上的截距最小,此时z 也取得最小值.由300x y x y -+=⎧⎨+=⎩,解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩,故点A 的坐标为33(,)22-.∴min 333()322z =⨯-+=-.选C . 5.B解析:B 【解析】 【分析】首先由等比数列前n 项和公式列方程,并解得3q ,然后再次利用等比数列前n 项和公式,则求得答案. 【详解】设公比为q,则6163 63313(1)1113(1)11a qS qqqa qS qq---===+=---,∴32q=,∴93962611271123S qS q--===--.故选:B.【点睛】本题考查等比数列前n项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时也可以利用连续等长片断的和序列仍然成等比数列,进行求解.6.B解析:B【解析】【分析】作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数即可求解.【详解】作出可行域如图:化目标函数为2y x z=-,联立70310x yx y+-=⎧⎨-+=⎩,解得5,2A().由图象可知,当直线过点A时,直线在y轴上截距最小,z有最大值25-28⨯=.【点睛】本题主要考查了简单的线性规划,数形结合的思想,属于中档题.7.D解析:D【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8.B解析:B 【解析】 【分析】由条件求出t 的范围,不等式221x tx t x +->-变形为2210x tx t x +--+>恒成立,即不等式()()110x t x +-->恒成立,再由不等式的左边两个因式同为正或同为负处理. 【详解】由240t -≤得,22t -≤≤,113t ∴-≤-≤不等式221x tx t x +->-恒成立,即不等式2210x tx t x +--+>恒成立,即不等式()()110x t x +-->恒成立,∴只需{1010x t x +->->或{1010x t x +-<-<恒成立, ∴只需{11x tx >->或{11x tx <-<恒成立,113t -≤-≤Q只需3x >或1x <-即可. 故选:B . 【点睛】本题考查了一元二次不等式的解法问题,难度较大,充分利用恒成立的思想解题是关键.9.A解析:A 【解析】 【分析】由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,进而求得a ﹣b 的表达式,根据表达式与0的大小,即可判断出a 与b 的大小关系. 【详解】解:∵∠C =120°,ca ,∴由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,()2=a 2+b 2+ab .∴a 2﹣b 2=ab ,a ﹣b ,∵a >0,b >0, ∴a ﹣b ,∴a >b 故选A . 【点睛】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题.10.C解析:C 【解析】先考虑充分性,当x>0时,1122x x x x+≥⋅=,当且仅当x=1时取等.所以充分条件成立. 再考虑必要性,当12x x+≥时,如果x>0时,22210(1)0x x x -+≥∴-≥成立,当x=1时取等.当x<0时,不等式不成立. 所以x>0. 故选C.11.A解析:A 【解析】 【分析】画出可行域,平移基准直线20x y +=到可行域边界的点()1,1C -处,由此求得z 的最小值. 【详解】画出可行域如下图所示,平移基准直线20x y +=到可行域边界的点()1,1C -处,此时z 取得最小值为()2111⨯+-=. 故选:A.【点睛】本小题主要考查线性规划问题,考查数形结合的数学思想方法,属于基础题.12.A解析:A 【解析】【分析】画出满足条件的平面区域,求出角点的坐标,结合2yz x =-的几何意义求出其范围,即可得到答案. 【详解】由题意,画出满足条件的平面区域,如图所示: 由358y x x y =⎧⎨+=⎩,解得11A (,),由1x y x=-⎧⎨=⎩,解得(11)B --,, 而2yz x =-的几何意义表示过平面区域内的点与0(2)C ,的直线斜率, 结合图象,可得1AC k =-,13BC k =, 所以2y z x =-的取值范围为113⎡⎤-⎢⎥⎣⎦,, 故选:A.【点睛】本题主要考查了简单的线性规划问题,其中解答中作出约束条件所表示的平面区域,结合图象确定出目标函数的最优解是解答的关键,着重考查了数形结合思想,以及计算能力,属于基础题.二、填空题13.4【解析】(前一个等号成立条件是后一个等号成立的条件是两个等号可以同时取得则当且仅当时取等号)【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式(1)当且仅当时取等号;(2)当且仅解析:4 【解析】44224141114244a b a b ab ab ab ab ab ab+++≥=+≥⋅= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当2222,24a b ==时取等号). 【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;(2),a b R +∈ ,2a b ab +≥ ,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.14.3+54【解析】【分析】由a+b =2得出b =2﹣a 代入代数式中化简后换元t =2a ﹣1得2a =t+1得出1<t <3再代入代数式化简后得出2t6t-(t2+5)然后在分式分子分母中同时除以t 利用基本不等 解析:【解析】 【分析】由a +b =2得出b =2﹣a ,代入代数式中,化简后换元t =2a ﹣1,得2a =t +1,得出1<t <3,再代入代数式化简后得出,然后在分式分子分母中同时除以t ,利用基本不等式即可求出该代数式的最小值. 【详解】解:由于a +b =2,且a >b >0,则0<b <1<a <2, 所以,,令t =2a ﹣1∈(1,3),则2a =t +1, 所以,. 当且仅当,即当时,等号成立. 因此,的最小值为.故答案为:.【点睛】本题考查利用基本不等式求最值,解本题的关键就是对代数式进行化简变形,考查计算能力,属于中等题.15.【解析】【分析】【详解】根据题意由于函数对任意恒成立分离参数的思想可知递增最小值为即可知满足即可成立故答案为解析:33,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭【解析】 【分析】 【详解】根据题意,由于函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,22222()4(1)(1)11xm x x m m--≤--+-,分离参数的思想可知,,递增,最小值为53,即可知满足33,22⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎦⎣⎭即可成立故答案为33,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎦⎣⎭. 16.【解析】【详解】结合等差数列前n 项和公式有:则: 解析:6【解析】 【详解】结合等差数列前n 项和公式有:()11232n n n +++++=L ,则:()()226231362lim lim lim lim61123111n n n n n n n n n n n n n n n→+∞→+∞→+∞→+∞----====+++++++L . 17.【解析】【分析】通过计算出并找出的共同表示形式进而利用归纳推理即可猜想结论【详解】当时则由猜想:故答案为:【点睛】本题考查元素与集合关系的判断以及数列前项和的归纳猜想属于中档题 解析:1()221n n +-【解析】 【分析】通过计算出3S ,并找出1S 、2S 、3S 的共同表示形式,进而利用归纳推理即可猜想结论. 【详解】当3n =时,{}31,3,7A =,则113711T =++=,213173731T =⨯+⨯+⨯=,313721T =⨯⨯=,∴312311312163S T T T =++=++=,由1212112121S ⨯==-=-,2332272121S ⨯==-=-, 34623632121S ⨯==-=-,⋯猜想:(1)221n n n S +=-.故答案为:1()221n n +-.【点睛】本题考查元素与集合关系的判断以及数列前n 项和的归纳猜想,属于中档题.18.【解析】【分析】先画出可行域改写目标函数然后求出最小值【详解】依题意可行域为如图所示的阴影部分的三角形区域目标函数化为:则的最小值即为动直线在轴上的截距的最大值通过平移可知在点处动直线在轴上的截距最 解析:72-【解析】 【分析】先画出可行域,改写目标函数,然后求出最小值 【详解】依题意,可行域为如图所示的阴影部分的三角形区域,目标函数化为:3y x z =-,则z 的最小值即为动直线在y 轴上的截距的最大值.通过平移可知在A 点处动直线在y 轴上的截距最大.因为20:220x y A x y +=⎧⎨-+=⎩解得11,2A ⎛⎫- ⎪⎝⎭, 所以3z x y =-的最小值()min 173122z =⋅--=-.【点睛】本题考查了线性规划的简单应用,一般步骤:画出可行域,改写目标函数,求出最值19.﹣33【解析】分析:由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求出最优解的坐标代入目标函数得答案详解:由约束条件作出可行域如图:联立解得化目标函数为直线方程的斜截式解析:[﹣3,3] 【解析】分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 详解:由约束条件作出可行域如图:联立13x y x y -=-+=,解得12x y ==,()1,2B ,化目标函数2z x y =-为直线方程的斜截式22x zy =-. 由图可知,当直线22x zy =-过()1,2B ,直线在y 轴上的截距最大,z 最小,最小值为1223-⨯=-;当直线22x zy =-过()3,0A 时,直线在y 轴上的截距最小,z 最大,最大值为3203-⨯=. ∴2z x y =-的取值范围为[﹣3,3].故答案为:[﹣3,3].点睛:利用线性规划求最值,一般用图解法求解,其步骤是 (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值.20.【解析】【分析】根据不等式的解集是求得的值从而求解不等式的解集得到答案【详解】由题意因为不等式的解集是可得解得所以不等式为即解得即不等式的解集为【点睛】本题主要考查了一元二次不等式的解法其中解答中根解析:11(,)23--【解析】 【分析】根据不等式250ax x b -+>的解集是{}|32x x -<<-,求得,a b 的值,从而求解不等式250bx x a -+>的解集,得到答案.【详解】由题意,因为不等式250ax x b -+>的解集是{}|32x x -<<-,可得53(2)(3)(2)a b a ⎧-+-=⎪⎪⎨⎪-⨯-=⎪⎩,解得1,6a b =-=-,所以不等式250bx x a -+>为26510x x --->, 即2651(31)(21)0x x x x ++=++<,解得1123x -<<-, 即不等式250bx x a -+>的解集为11(,)23--. 【点睛】本题主要考查了一元二次不等式的解法,其中解答中根据三个二次式之间的关键,求得,a b 的值是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题21.(1);(2)不存在. 【解析】 【分析】(1)由已知11ab a b+=,利用基本不等式的和积转化可求2ab ≥,利用基本不等式可将33+a b 转化为ab ,由不等式的传递性,可求33+a b 的最小值;(2)由基本不等式可求23a b +的最小值为43,而436>,故不存在. 【详解】 (1)由11ab a b ab=+≥,得2ab ≥,且当2a b ==时取等号.故33+a b 33242a b ≥≥,且当2a b ==时取等号.所以33+a b 的最小值为42;(2)由(1)知,232643a b ab +≥≥. 由于436>,从而不存在,a b ,使得236a b +=成立. 【考点定位】 基本不等式. 22.(1)(2)【解析】 【分析】(1)直接利用正弦定理和三角函数关系式的恒等变换求出结果.(2)利用(1)的结论,余弦定理及三角形的面积公式求出结果. 【详解】(1)∵b=a (cosC ﹣sinC ),∴由正弦定理得sinB=sinAcosC ﹣sinAsinC ,可得sin (A+C )=sinAcosC+cosAsinC=sinAcosC ﹣sinAsinC , ∴cosAsinC=﹣sinAsinC , 由sinC≠0,得sinA+cosA=0, ∴tanA=﹣1, 由A 为三角形内角, 可得.(2)因为, 所以由正弦定理可得b=c ,因为a 2=b 2+c 2﹣2bccosA ,,可得c=,所以b=2,所以.【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦定理和余弦定理的应用,三角形面积公式的应用.23.(1)13nn a ⎛⎫= ⎪⎝⎭; (2)13(21)34n n n T ++-⋅=【解析】 【分析】(1)由等差中项可得21343a a a =+,设数列{}n a 的公比为()1q q ≠,则211143a q a a q ⋅=+⋅,可解得q ,即可求得通项公式;(2)由(1)可得3n nnn a =⋅,再利用错位相减法求解即可. 【详解】解:(1)设数列{}n a 的公比为()1q q ≠,且1a ,22a ,33a 成等差数列,所以21343a a a =+,即211143a q a a q ⋅=+⋅,解得13q =, 因为113a =,所以13nn a ⎛⎫= ⎪⎝⎭(2)由(1)知,13nn a ⎛⎫= ⎪⎝⎭,所以3n nn n a =⋅, 所以1231323333nn T n =⨯+⨯+⨯++⋅L ,则234131323333n n T n +=⨯+⨯+⨯++⋅L ,作差可得,1231233333n n n T n +-=++++-⋅L则()+13312331n n nT n --=-⋅-,即1132322n n T n +⎛⎫-=-⋅- ⎪⎝⎭,所以()132134n n n T ++-⋅=【点睛】本题考查等差中项的应用,考查等比数列的通项公式,考查错位相减法求数列的和.24.(1)*21,n a n n N =-∈(2)存在,2,12m k ==【解析】 【分析】(1)设等差数列{}n a 的公差为d ,由等差数列的通项公式与前n 项和公式得112512238a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,从而求出21n a n =-;(2)由(1)得()2122n n n S n n -=+⨯=,由211114122121n b n n n ⎛⎫==- ⎪--+⎝⎭,利用裂项相消法得21n n T n =+,若23k m T T =,则()2232121k m k m =++,整理得223412m k m m =+-,由1k m >>得11m <<+,从而可求出答案. 【详解】解:(1)设等差数列{}n a 的公差为d , 由2541216a a S +=⎧⎨=⎩得112512238a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,()*12121,n a n n n N ∴=+-=-∈;(2)()2122n n n S n n -=+⨯=,211114122121n b n n n ⎛⎫∴==- ⎪--+⎝⎭,1211111111111123352321212122121n n n T b b b n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++⋅⋅⋅+=-+-+⋅⋅⋅+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥---+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,若23k m T T =,则()2232121k m k m =++,整理得223412m k m m=+-, 又1k m >>,2234121m m m m m ⎧>⎪∴+-⎨⎪>⎩,整理得222104121m m m m m ⎧-->⎪+-⎨⎪>⎩,解得112m <<+, 又*m N ∈,2m ∴=,12k ∴=, ∴存在2,12m k ==满足题意. 【点睛】本题主要考查等差数列的性质与求和,考查裂项相消法求和,属于中档题.25.:(1)1cos 3A =(2)3{2b c ==或23b c =⎧⎨=⎩ 【解析】:(1)由3cos()16cos cos B C B C --=得3(cos cos sin sin )1B C B C -=- 即1cos()3B C +=-从而cos A 1cos()3B C =-+=(2)由于0,A π<<1cos 3A =,所以sin A =又ABC S =V 1sin 2bc A =6bc =由余弦定理2222cos a b c bc A =+-,得2213b c += 解方程组2213{6b c bc +==,得3{2b c ==或23b c =⎧⎨=⎩26.(1)3B π=(2 【解析】 【分析】(1)利用向量共线的条件,结合诱导公式,求得角B 的余弦值,即可得答案; (2)求出CD ,23ADC ∠=π,由正弦定理可得sin DAC ∠,即可求出四边形ABCD 的面积. 【详解】(1)Q 向量(2sin sin ,sin )m A C B =-r ,(cos ,cos )n C B =r,且//m n r r,(2sin sin )cos sin cos A C B B C ∴-=,2sin cos sin()A B B C ∴=+,2sin cos sin A B A ∴=,1cos 2B ∴=,0B Q π<<,3B π∴=;(2)根据题意及(1)可得ABC ∆是等边三角形,23ADC ∠=π, ADC ∆中,由余弦定理可得22222cos3AC AD CD AD CD π=+-⋅⋅, 260CD CD ∴+-=,2CD ∴=,由正弦定理可得sin sin CD ADC DAC AC ∠∠==∴四边形ABCD 的面积.111224S DAC ABC =⨯∠+∠=. 【点睛】本题考查向量共线条件的运用、诱导公式、余弦定理、正弦定理的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将四边形的面积分割成两个三角形的面积和.。
2020-2021学年河南省郑州市第二十二中学高三数学理上学期期末试题含解析

2020-2021学年河南省郑州市第二十二中学高三数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 某四棱锥的三视图如图1所示(单位:cm),则该四棱锥的体积是( )A.B.C.D.参考答案:D试题分析:从三视图可以得到该几何体为四棱锥,且该四棱锥的底面为正方形且边长为3,从侧视图可得该四棱锥的高为1,所以该四棱锥的体积为,故选D考点:三视图四棱锥体积2. 已知f(n)=+++…+,则()A.f(n)中共有n项,当n=2时,f(2)=+B.f(n)中共有n+1项,当n=2时,f(2)=++C.f(n)中共有n2﹣n项,当n=2时,f(2)=++D.f(n)中共有n2﹣n+1项,当n=2时,f(2)=++参考答案:D【考点】数列的求和.【分析】观察数列的通项公式,可得分母n,n+1,n+2…n2构成以n为首项,以1为公差的等差数列,从而可得项数为n2﹣n+1【解答】解:分母n,n+1,n+2…n2构成以n为首项,以1为公差的等差数列项数为n2﹣n+1故选D3. 已知数列是首项为,公差为的等差数列,若数列是等比数列,则其公比为()1参考答案:B4. 函数,则的值域为()A.B.C.D.参考答案:B略5. 执行如图所示的程序框图,输出的S值为A.3B.—6C.10D.参考答案:C第一次循环为:,第二次循环为:,第三次循环为:,第四次循环为:,第五次循环条件不成立,输出,答案选C.6. 若,α是第三象限的角,则=( )A.B.C.2 D.﹣2参考答案:A【考点】半角的三角函数;弦切互化.【专题】计算题.【分析】将欲求式中的正切化成正余弦,还要注意条件中的角α与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.【点评】本题主要考查三角恒等变换中的倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力.7. 已知全集为R,集合A={x|()x≤1},B={x|x2﹣6x+8≤0},则A∩(?R B)=()A.{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}参考答案:C【考点】其他不等式的解法;交、并、补集的混合运算.【分析】利用指数函数的性质可求得集合A,通过解一元二次不等式可求得集合B,从而可求得A∩C R B.【解答】解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2﹣6x+8≤0?(x﹣2)(x﹣4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴?R B={x|x<2或x>4},∴A∩?R B={x|0≤x<2或x>4},故选C.8. 已知集合,下列结论成立的是 ()A. B. C. D.参考答案:D9. 若复数是纯虚数,则实数a的值为()A.—4 B.—6 C.5 D.6参考答案:D10. 为等差数列,为其前项和, 则()A.B.C.D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. (5分)若复数,则|z|=.参考答案:【考点】:复数代数形式的乘除运算;复数求模.【专题】:数系的扩充和复数.【分析】:利用复数的运算法则和模的计算公式即可得出.解:∵复数===1﹣i .∴|z|==.故答案为:.【点评】:本题考查了复数的运算法则和模的计算公式,属于基础题.12. (2011·合肥三检)在数列{a n}中,a1=,(n≥2),则a16=________.参考答案:13. 去年某地的月平均气温(℃)与月份(月)近似地满足函数(为常数). 若6月份的月平均气温约为℃,12月份的月平均气温约为℃,则该地8月份的月平均气温约为℃.参考答案:31【考点】:三角函数的图象,三函数的运算。
2020-2021郑州市高中必修一数学上期末一模试题带答案

2020-2021郑州市高中必修一数学上期末一模试题带答案一、选择题1.已知函数()f x 是定义在R 上的偶函数,且在[)0,∞+上是增函数,若对任意[)x 1,∞∈+,都有()()f x a f 2x 1+≤-恒成立,则实数a 的取值范围是( )A .[]2,0-B .(],8∞--C .[)2,∞+D .(],0∞- 2.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称3.函数y =a |x |(a >1)的图像是( ) A .B .C .D .4.德国数学家狄利克在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f (x )由右表给出,则1102f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值为( )A .0B .1C .2D .35.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2] D .[0,2]6.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦7.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x +B .(1)f x -C .()1f x +D .()1f x -8.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 9.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭10.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2B .()2,+∞C .()31,4D .()34,211.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .12.设函数()1x2,x 12f x 1log x,x 1-≤⎧=->⎨⎩,则满足()f x 2≤的x 的取值范围是( )A .[]1,2-B .[]0,2C .[)1,∞+D .[)0,∞+二、填空题13.已知幂函数(2)my m x =-在(0,)+∞上是减函数,则m =__________. 14.已知函数()f x 满足1121-+⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭x x f f x x x ,其中x ∈R 且0x ≠,则函数()f x 的解析式为__________ 15.若函数cos ()2||x f x x x =++,则11(lg 2)lg (lg 5)lg 25f f f f ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭______. 16.已知函数1()41xf x a =+-是奇函数,则的值为________. 17.已知函数()f x 满足:()()1f x f x +=-,当11x -<≤时,()x f x e =,则92f ⎛⎫= ⎪⎝⎭________. 18.若函数()(21)()xf x x x a =+-为奇函数,则(1)f =___________.19.若幂函数()af x x =的图象经过点1(3)9,,则2a -=__________.20.若函数()242xx f x aa =+-(0a >,1a ≠)在区间[]1,1-的最大值为10,则a =______.三、解答题21.计算或化简:(1)1123021273log 161664π⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭; (2)6log 2332log 27log 2log 36lg 2lg 5+⋅-++.22.已知函数2()(8)f x ax b x a ab =+--- 的零点是-3和2 (1)求函数()f x 的解析式.(2)当函数()f x 的定义域是[]0,1时求函数()f x 的值域.23.已知函数()log (1)2a f x x =-+(0a >,且1a ≠),过点(3,3). (1)求实数a 的值;(2)解关于x 的不等式()()123122xx f f +-<-.24.攀枝花是一座资源富集的城市,矿产资源储量巨大,已发现矿种76种,探明储量39种,其中钒、钛资源储量分别占全国的63%和93%,占全球的11%和35%,因此其素有“钒钛之都”的美称.攀枝花市某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值y (y 值越大产品的性能越好)与这种新合金材料的含量x (单位:克)的关系为:当0≤x <7时,y 是x 的二次函数;当x ≥7时,1()3x m y -=.测得部分数据如表:(1)求y 关于x 的函数关系式y =f (x );(2)求该新合金材料的含量x 为何值时产品的性能达到最佳. 25.记关于的不等式的解集为,不等式的解集为.(1)若,求集合; (2)若且,求的取值范围.26.即将开工的南昌与周边城镇的轻轨火车路线将大大缓解交通的压力,加速城镇之间的流通.根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果一列火车每次拖7节车厢,每天能来回10次,每天来回次数是每次拖挂车厢个数的一次函数. (1)写出与的函数关系式;(2)每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数(注:营运人数指火车运送的人数)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据偶函数的性质,可知函数在(],0-∞上是减函数,根据不等式在[)1,x ∈+∞上恒成立,可得:21x a x +≤-在[)1,+∞上恒成立,可得a 的范围. 【详解】()f x Q 为偶函数且在[)0,+∞上是增函数()f x ∴在(],0-∞上是减函数对任意[)1,x ∈+∞都有()()21f x a f x +≤-恒成立等价于21x a x +≤-2121x x a x ∴-+≤+≤- 311x a x ⇒-+≤≤- ()()max min 311x a x ∴-+≤≤-当1x =时,取得两个最值3111a ∴-+≤≤- 20a ⇒-≤≤本题正确选项:A 【点睛】本题考查函数奇偶性和单调性解抽象函数不等式的问题,关键在于能够通过单调性确定自变量之间的关系,得到关于自变量的不等式.2.C解析:C 【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 3.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .4.D解析:D 【解析】 【分析】采用逐层求解的方式即可得到结果. 【详解】∵(] 121∈-∞,,∴112f ⎛⎫= ⎪⎝⎭, 则110102f ⎛⎫=⎪⎝⎭,∴()1(())21010f f f =, 又∵[)102∈+∞,,∴()103f =,故选D . 【点睛】本题主要考查函数的基础知识,强调一一对应性,属于基础题.5.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.6.B解析:B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈Q 时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.7.D解析:D 【解析】 【分析】首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果. 【详解】设()y g x =图象上任意一点的坐标为(,)x y , 则其关于直线y x =的对称点为(,)y x , 再将点(,)y x 向左平移一个单位,得到(1,)y x +, 其关于直线y x =的对称点为(,1)x y +, 该点在函数()f x 的图象上,所以有1()y f x +=, 所以有()1y f x =-,即()()1g x f x =-, 故选:D. 【点睛】该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目.8.D解析:D 【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立;∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.9.A解析:A 【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.10.D解析:D 【解析】∵对于任意的x ∈R ,都有f (x −2)=f (2+x ),∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[−2,0]时,f (x )=1 2x⎛⎫ ⎪⎝⎭−1,且函数f (x )是定义在R 上的偶函数,若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解, 则函数y =f (x )与y =()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f (−2)=f (2)=3,则对于函数y =()log 2a x +,由题意可得,当x =2时的函数值小于3,当x =6时的函数值大于3,即4a log <3,且8a log >3,34a <2, 故答案为34,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解11.C解析:C 【解析】 【分析】 【详解】因为函数()ln f x x =,()23g x x =-+,可得()()•f x g x 是偶函数,图象关于y 轴对称,排除,A D ;又()0,1x ∈时,()()0,0f x g x <>,所以()()•0f x g x <,排除B , 故选C. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.12.D解析:D 【解析】 【分析】分类讨论:①当x 1≤时;②当x 1>时,再按照指数不等式和对数不等式求解,最后求出它们的并集即可. 【详解】当x 1≤时,1x 22-≤的可变形为1x 1-≤,x 0≥,0x 1∴≤≤. 当x 1>时,21log x 2-≤的可变形为1x 2≥,x 1∴≥,故答案为[)0,∞+. 故选D .【点睛】本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.二、填空题13.-3【解析】【分析】根据函数是幂函数可求出m 再根据函数是减函数知故可求出m 【详解】因为函数是幂函数所以解得或当时在上是增函数;当时在上是减函数所以【点睛】本题主要考查了幂函数的概念幂函数的增减性属于解析:-3 【解析】 【分析】根据函数是幂函数可求出m,再根据函数是减函数知0m <,故可求出m. 【详解】 因为函数是幂函数所以||21m -=,解得3m =-或3m =. 当3m =时,3y x =在(0,)+∞上是增函数; 当3m =-时,y x =在(0,)+∞上是减函数, 所以3m =-. 【点睛】本题主要考查了幂函数的概念,幂函数的增减性,属于中档题.14.【解析】【分析】用代换可得联立方程组求得再结合换元法即可求解【详解】由题意用代换解析式中的可得……(1)与已知方程……(2)联立(1)(2)的方程组可得令则所以所以故答案为:【点睛】本题主要考查了函 解析:()11(1)31f x x x =-≠-- 【解析】 【分析】用x -代换x ,可得1121x x f f x x x +-⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,联立方程组,求得113x f x x +⎛⎫=- ⎪⎝⎭,再结合换元法,即可求解. 【详解】由题意,用x -代换解析式中的x ,可得1121x x f f x x x +-⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,…….(1) 与已知方程1121-+⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭x x f f x x x ,……(2) 联立(1)(2)的方程组,可得113x f x x +⎛⎫=-⎪⎝⎭,令1,1x t t x +=≠,则11x t =-,所以()1131f t t =--,所以()11(1)31f x x x =-≠--. 故答案为:()11(1)31f x x x =-≠--. 【点睛】本题主要考查了函数解析式的求解,解答中用x -代换x ,联立方程组,求得113x f x x +⎛⎫=- ⎪⎝⎭是解答的关键,着重考查了函数与方程思想,以及换元思想的应用,属于中档试题.15.10【解析】【分析】由得由此即可得到本题答案【详解】由得所以则所以故答案为:10【点睛】本题主要考查利用函数的奇偶性化简求值解析:10 【解析】 【分析】 由cos ()2||xf x x x=++,得()()42||f x f x x +-=+,由此即可得到本题答案. 【详解】 由cos ()2||xf x x x =++,得cos()cos ()2||2||x x f x x x x x--=+-+=+--,所以()()42||f x f x x +-=+,则(lg 2)(lg 2)42|lg 2|42lg 2f f +-=+=+,(lg5)(lg5)42|lg5|42lg5f f +-=+=+,所以,11(lg 2)lg (lg 5)lg 42lg 242lg 51025f f f f ⎛⎫⎛⎫+++=+++= ⎪ ⎪⎝⎭⎝⎭. 故答案为:10 【点睛】本题主要考查利用函数的奇偶性化简求值.16.【解析】函数是奇函数可得即即解得故答案为 解析:12【解析】 函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x x a a -+=----,即41214141x x x a =-=--,解得12a =,故答案为12 17.【解析】【分析】由已知条件得出是以2为周期的函数根据函数周期性化简再代入求值即可【详解】因为所以所以是以2为周期的函数因为当时所以故答案为:【点睛】本题主要考查函数的周期性和递推关系这类题目往往是奇【解析】 【分析】由已知条件,得出()f x 是以2为周期的函数,根据函数周期性,化简92f ⎛⎫ ⎪⎝⎭,再代入求值即可. 【详解】 因为()()1f x f x +=-,所以()()()21f x f x f x +=-+=,所以()f x 是以2为周期的函数, 因为当11x -<≤时,()xf x e = ,所以129114222f f f e ⎛⎫⎛⎫⎛⎫=+=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为. 【点睛】本题主要考查函数的周期性和递推关系,这类题目往往是奇偶性和周期性相结合一起运用.18.【解析】【分析】根据函数奇偶性的定义和性质建立方程求出a 的值再将1代入即可求解【详解】∵函数为奇函数∴f (﹣x )=﹣f (x )即f (﹣x )∴(2x ﹣1)(x+a )=(2x+1)(x ﹣a )即2x2+(2 解析:23【解析】 【分析】根据函数奇偶性的定义和性质建立方程求出a 的值,再将1代入即可求解 【详解】 ∵函数()()()21xf x x x a =+-为奇函数,∴f (﹣x )=﹣f (x ), 即f (﹣x )()()()()2121x xx x a x x a -==--+--+-,∴(2x ﹣1)(x +a )=(2x +1)(x ﹣a ), 即2x 2+(2a ﹣1)x ﹣a =2x 2﹣(2a ﹣1)x ﹣a , ∴2a ﹣1=0,解得a 12=.故2(1)3f =故答案为23【点睛】本题主要考查函数奇偶性的定义和性质的应用,利用函数奇偶性的定义建立方程是解决本题的关键.19.【解析】由题意有:则:解析:14【解析】 由题意有:13,29aa =∴=-, 则:()22124a--=-=. 20.2或【解析】【分析】将函数化为分和两种情况讨论在区间上的最大值进而求【详解】时最大值为解得时最大值为解得故答案为:或2【点睛】本题考查已知函数最值求参答题时需要结合指数函数与二次函数性质求解解析:2或12【解析】 【分析】 将函数化为()2()26xf x a =+-,分01a <<和1a >两种情况讨论()f x 在区间[]1,1-上的最大值,进而求a . 【详解】()242x x f x a a =+-()226x a =+-, 11x -≤≤Q ,01a ∴<<时,1x a a a -<<,()f x 最大值为()21(1)2610f a --=+-=,解得12a =1a >时,1x a a a -≤≤,()f x 最大值为()2(1)2610f a =+-=,解得2a =,故答案为:12或2. 【点睛】本题考查已知函数最值求参,答题时需要结合指数函数与二次函数性质求解.三、解答题21.(1)12-(2)3 【解析】 【分析】(1)根据幂的运算法则计算;(2)根据对数运算法则和换底公式计算. 【详解】解:(1)原式1313249314164⎡⎤⎛⎫⎛⎫=+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥+⎣⎦731444=++- 12=-.(2)原式33log 312lg10=+-+3121=+-+ 3=. 【点睛】本题考查幂和对数的运算法则,掌握幂和对数运算法则是解题关键. 22.(1)2()3318f x x x =--+(2)[12,18] 【解析】 【分析】 【详解】 (1)832,323,5b a aba b a a----+=--⨯=∴=-=Q ,()23318f x x x =--+ (2)因为()23318f x x x =--+开口向下,对称轴12x =- ,在[]0,1单调递减,所以()()max min 0,18,1,12x f x x f x ====当当 所以函数()f x 的值域为[12,18] 【点睛】本题将函数的零点、解析式、最大小值等有关知识与性质有机整合在一起,旨在考查函数的表示、零点、最大小值等基础知识及综合运用.求解时先依据函数零点与方程的根之间的关系,求出函数解析式中的参数的值;解答第二问时,借助二次函数的图像和性质,运用数形结合的数学思想求出最大小值从而使得问题获解. 23.(1)2(2){}2log 5x|2<x < 【解析】 【分析】(1)将点(3,3)代入函数计算得到答案.(2)根据函数的单调性和定义域得到1123122x x +<-<-,解得答案. 【详解】(1)()()3log 3123,log 21,2a a f a =-+=∴=∴=∴ ()()2log 12f x x =-+. (2)()()2log 12f x x =-+Q 的定义域为{}|1x x >,并在其定义域内单调递增, ∴()()1123122,123122xx xx f f ++-<-∴<-<-,不等式的解集为{}22<log 5x x <.【点睛】本题考查了函数解析式,利用函数单调性解不等式,意在考查学生对于函数知识的综合应用.24.(1)2884071()73x x x x y x -⎧-+-≤⎪=⎨≥⎪⎩,<,;(2)当4x =时产品的性能达到最佳【解析】 【分析】(1)二次函数可设解析式为2y ax bx c =++,代入已知数据可求得函数解析式;(2)分段函数分段求出最大值后比较可得. 【详解】(1)当0≤x <7时,y 是x 的二次函数,可设y =ax 2+bx +c (a ≠0), 由x =0,y =﹣4可得c =﹣4,由x =2,y =8,得4a +2b =12①, 由x =6,y =8,可得36a +6b =12②,联立①②解得a =﹣1,b =8, 即有y =﹣x 2+8x ﹣4; 当x ≥7时,1()3x my -=,由x =10,19y =,可得m =8,即有81()3x y -=;综上可得2884071()73x x x x y x -⎧-+-≤⎪=⎨≥⎪⎩,<,.(2)当0≤x <7时,y =﹣x 2+8x ﹣4=﹣(x ﹣4)2+12, 即有x =4时,取得最大值12; 当x ≥7时,81()3x y -=递减,可得y ≤3,当x =7时,取得最大值3.综上可得当x =4时产品的性能达到最佳. 【点睛】本题考查函数模型的应用,考查分段函数模型的实际应用.解题时要注意根据分段函数定义分段求解. 25.(1)(2)【解析】 试题分析:(1)当时,利用分式不等式的解法,求得;(2)根据一元二次不等式的求解方法,解得,由于,故.,则.试题解析:(1)当时,原不等式为:集合(2)易知:,;由,则,∴的取值范围为26.(1) ;(2)每次应拖挂节车厢才能使每天的营运人数最多为人.【解析】试题分析:(1)由于函数为一次函数,设出其斜截式方程,将点代入,可待定系数,求得函数关系式为;(2)结合(1)求出函数的表达式为,这是一个开口向下的二次函数,利用对称轴求得其最大值.试题解析:(1)这列火车每天来回次数为次,每次拖挂车厢节,则设. 将点代入,解得∴.(2)每次拖挂节车厢每天营运人数为,则,当时,总人数最多为人.故每次应拖挂节车厢才能使每天的营运人数最多为人.。
2020-2021郑州市高一数学上期末试卷及答案

画出 y x, y cos x 的图像判断出两个函数图像只有一个交点,构造函数 f x x cos x ,利用
零点存在性定理,判断出 f x 零点 x0 所在的区间
【详解】
画出 y x, y cos x 的图像如下图所示,由图可知,两个函数图像只有一个交点,构造函数
f
x
x
cos
x,
(1)求集合 A ;
(2)求 (CU B) A .
24.已知集合
,
,
.
(1)若 ,求 的值;
(2)若 ,求 的取值范围.
25.已知函数 f (x) log2 (4x a 2x a 1) , x R .
(Ⅰ)若 a 1,求方程 f (x) 3 的解集;
(Ⅱ)若方程 f (x) x 有两个不同的实数根,求实数 a 的取值范围.
集可得结果. 【详解】
由 y ln 6 x x 2 可知,
6 x x 2 0 2 x 6 ,所以 A x | 2 x 6 ,
CRB x a 4或x a 4 ,
因为 A CRB ,所以 6 a 4或2 a 4 ,即 a 10或a 2 ,故选 C.
【点睛】 本题考查不等式的解集和对数函数的定义域,以及集合之间的交集和补集的运算;若集合的元素已 知,求解集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.
5
又因为
c
1
63
3 2
3
1
3
,
1
83
,所以
c
3 2
,
2
,
所以 c a b .
故选:C.
【点睛】
本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较大小时,
2020-2021高三数学上期末模拟试题(及答案)(3)

2020-2021高三数学上期末模拟试题(及答案)(3)一、选择题1.数列{}n a 满足()11nn n a a n ++=-⋅,则数列{}n a 的前20项的和为( )A .100B .-100C .-110D .1102.若,x y 满足1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为( )A .8B .7C .2D .13.已知正数x 、y 满足1x y +=,且2211x y m y x +≥++,则m 的最大值为( ) A .163B .13C .2D .44.若0a b <<,则下列不等式恒成立的是 A .11a b> B .a b -> C .22a b > D .33a b <5.数列{}{},n n a b 为等差数列,前n 项和分别为,n n S T ,若3n 22n n S T n +=,则77a b =( ) A .4126B .2314C .117 D .1166.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S,且2S =,则A 等于( )A .6π B .4π C .3π D .2π 7.“0x >”是“12x x+≥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.已知01x <<,01y <<,则)AB .CD .9.已知x 、y 满足约束条件50{03x y x y x -+≥+≥≤,则24z x y =+的最小值是( )A .6-B .5C .10D .10-10.已知x ,y 均为正实数,且111226x y +=++,则x y +的最小值为( ) A .20B .24C .28D .3211.在△ABC 中,若1tan 15013A C BC ︒===,,,则△ABC 的面积S 是( ) A.38- B.34- C.38+ D12.一个递增的等差数列{}n a ,前三项的和12312a a a ++=,且234,,1a a a +成等比数列,则数列{}n a 的公差为 ( ) A .2±B .3C .2D .1二、填空题13.若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.14.已知lg lg 2x y +=,则11x y+的最小值是______. 15.已知变数,x y 满足约束条件340{210,380x y x y x y -+≥+-≥+-≤目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,则a 的取值范围为_____________. 16.关于x 的不等式a 34≤x 2﹣3x +4≤b 的解集为[a ,b ],则b -a =________. 17.已知数列{}n a 的前n 项和为2*()2n S n n n N =+∈,则数列{}n a 的通项公式n a =______.18.已知函数()2xf x =,等差数列{}n a 的公差为2,若()2468104f a a a a a ++++=,则()()()()212310log f a f a f a f a ⋅⋅⋅⋅=⎡⎤⎣⎦L ___________.19.已知等比数列{}n a 满足232,1a a ==,则12231lim ()n n n a a a a a a +→+∞+++=L ________________.20.已知x ,y 满足3010510x y x y x y +-≤⎧⎪-+≥⎨⎪-+≤⎩,则2z x y =+的最大值为______.三、解答题21.已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C的对边,且sin cos 20A a B a --=.(Ⅰ)求B 的大小;(Ⅱ)若b =ABC ∆的面积为2,求a c +的值. 22.解关于x 的不等式()222ax x ax a R -≥-∈. 23.等差数列{}n a 中,71994,2a a a ==. (1)求{}n a 的通项公式; (2)设1n nb na =,求数列{}n b 的前n 项和n S . 24.已知等比数列{a n }的前n 项和为S n ,a 114=,公比q >0,S 1+a 1,S 3+a 3,S 2+a 2成等差数列.(1)求{a n }; (2)设b n ()()22212n n n n c n b b log a +==+,,求数列{c n }的前n 项和T n .25.已知各项均为正数的等比数列{}n a 的首项为12,且()3122123a a a -=+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021郑州市高三数学上期末模拟试题(含答案)一、选择题1.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .42.若正实数x ,y 满足141x y +=,且234yx a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-3.已知数列{}n a 的前n 项和2n S n =,()1nn n b a =-则数列{}n b 的前n 项和n T 满足( ) A .()1nn T n =-⨯ B .n T n =C .n T n =-D .,2,.n n n T n n ⎧=⎨-⎩为偶数,为奇数4.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( ) A.2+B1C.2D15.若直线()100,0ax by a b ++=>>把圆()()224116x y +++=分成面积相等的两部分,则122a b+的最小值为( ) A .10B .8C .5D .46.已知点(),P x y 是平面区域()4{04y x y x m y ≤-≤≥-内的动点, 点()1,1,A O -为坐标原点, 设()OP OA R λλ-∈u u u r u u u r的最小值为M ,若M ≤恒成立, 则实数m 的取值范围是( )A .11,35⎡⎤-⎢⎥⎣⎦B .11,,35⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭C .1,3⎡⎫-+∞⎪⎢⎣⎭D .1,2⎡⎫-+∞⎪⎢⎣⎭7.数列{}{},n n a b 为等差数列,前n 项和分别为,n n S T ,若3n 22n n S T n +=,则77a b =( ) A .4126B .2314C .117 D .1168.若直线()10,0x ya b a b+=>>过点(1,1),则4a b +的最小值为( ) A .6B .8C .9D .109.设x y ,满足约束条件70310,350x y x y x y +-⎧⎪-+⎨⎪--⎩,,„„…则2z x y =-的最大值为( ).A .10B .8C .3D .210.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且()cos 4cos a B c b A =-,则cos2A =( )A .78B .18C .78-D .18-11.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项的和S 18=12,则数列{|a n |}的前18项和T 18的值是 ( ) A .24B .48C .60D .8412.等差数列{}n a 中,34512a a a ++=,那么{}n a 的前7项和7S =( ) A .22B .24C .26D .28二、填空题13.已知实数,且,则的最小值为____14.在等差数列{}n a 中,首项13a =,公差2d =,若某学生对其中连续10项进行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为 .15.数列{}n a 满足14a =,12nn n a a +=+,*n N ∈,则数列{}n a 的通项公式n a =______.16.设函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+⎪⎝⎭恒成立,则实数m 的取值范围是 .17.ABC ∆内角A 、B 、C 的对边分别是a ,b ,c ,且2cos (32)cos b C a c B =-.当42b =,2a c =,ABC ∆的面积为______.18.设,,若,则的最小值为_____________.19.已知x y 、满足约束条件1{1,22x y x y x y +≥-≥--≤若目标函数()0,0z ax by a b =+>>的最大值为7,则34a b+的最小值为_______. 20.已知数列{}n a 满足51()1,62,6n n a n n a a n -⎧-+<⎪=⎨⎪≥⎩,若对任意*n N ∈都有1n n a a +>,则实数a 的取值范围是_________.三、解答题21.已知等差数列{}n a 的前n 项和为254,12,16n S a a S +==. (1)求{}n a 的通项公式; (2)数列{}n b 满足141n n n b T S =-,为数列{}n b 的前n 项和,是否存在正整数m ,()1k m k <<,使得23k m T T =?若存在,求出m ,k 的值;若不存在,请说明理由.22.已知函数()21f x x =-. (1)若不等式121(0)2f x m m ⎛⎫+≥+> ⎪⎝⎭的解集为][(),22,-∞-⋃+∞,求实数m 的值; (2)若不等式()2232y yaf x x ≤+++对任意的实数,x y R ∈恒成立,求正实数a 的最小值.23.设数列{}n a 的前n 项和n S 满足:2(1)n n S na n n =--,等比数列{}n b 的前n 项和为n T ,公比为1a ,且5352T T b =+.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n M ,求证:1154n M ≤<.24.在△ABC 中,角A B C 、、的对边分别为a b c 、、,已知3cos()16cos cos B C B C --=,(1)求cos A (2)若3a =,△ABC的面积为求b c 、25.在公差不为0的等差数列{}n a 中,1a ,3a ,9a 成公比为3a 的等比数列,又数列{}n b 满足*2,21,()2,2,n a n n k b k N n n k ⎧=-=∈⎨=⎩. (1)求数列{}n a 的通项公式; (2)求数列{}n b 的前2n 项和2n T .26.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且22222230a c b ac +-+=. (1)求cos B 的值;(2)求sin 24B π⎛⎫+⎪⎝⎭的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】∵点M (a ,b )与点N (0,−1)在直线3x −4y +5=0的两侧,∴()()34530450a b -+⨯++<,即3450a b -+<,故①错误; 当0a >时,54a b +>,a +b 即无最小值,也无最大值,故②错误; 设原点到直线3x −4y +5=0的距离为d ,则22513(4)==+-d ,则22a b +>1,故③正确;当0a >且a ≠1时,11b a +-表示点M (a ,b )与P (1,−1)连线的斜率. ∵当0a =,b =54时,51194114b a ++==---,又直线3x −4y +5=0的斜率为34, 故11b a +-的取值范围为93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故④正确.∴正确命题的个数是2个. 故选B.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.2.B解析:B 【解析】 【分析】 根据1444y y x x x y ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合基本不等式可求得44yx +≥,从而得到关于a 的不等式,解不等式求得结果. 【详解】 由题意知:1442444y y x yx x x y y x⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭ 0x Q >,0y > 40x y ∴>,04yx>424x y y x ∴+≥=(当且仅当44x y y x =,即4x y =时取等号) 44yx ∴+≥ 234a a ∴-<,解得:()1,4a ∈- 本题正确选项:B 【点睛】本题考查利用基本不等式求解和的最小值问题,关键是配凑出符合基本不等式的形式,从而求得最值.3.A解析:A 【解析】 【分析】先根据2n S n =,求出数列{}n a 的通项公式,然后利用错位相减法求出{}n b 的前n 项和n T .【详解】解:∵2n S n =,∴当1n =时,111a S ==;当2n ≥时,()221121n n n a S S n n n -=-=--=-, 又当1n =时,11a =符合上式,∴21n a n =-, ∴()()()1121nnn n b a n =-=--,∴()()()()()123113151121nn T n =⨯-+⨯-+⨯-+⋅⋅⋅+--①,∴()()()()()2341113151121n n T n +-=⨯-+⨯-+⨯-+⋅⋅⋅+--②,①-②,得()()()()()()23412121111211n n n T n +⎡⎤=-+⨯-+-+-+⋅⋅⋅+---⨯-⎣⎦()()()()()()211111122112111n n n n n -+⎡⎤---⎣⎦=-+⨯--⨯-=---,∴()1nn T n =-,∴数列{}n b 的前n 项和()1nn T n =-.故选:A . 【点睛】本题考查了根据数列的前n 项和求通项公式和错位相减法求数列的前n 项和,考查了计算能力,属中档题.4.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.5.B解析:B 【解析】 【分析】由于直线将圆平分,故直线过圆的圆心,将圆心坐标代入直线方程,利用“1”的代换的方法以及基本不等式,求得所求和的最小值. 【详解】圆的圆心为()4,1--,由于直线将圆平分,故直线过圆心,即410a b --+=,即41a b +=,故()121288444282222b a b a a b a b a b a b a b⎛⎫+=++=++≥+⋅= ⎪⎝⎭,当且仅当82b aa b =,即11,82a b ==时,取得最小值为8.故选B. 【点睛】本小题主要考查直线和圆的位置关系,考查利用“1”的代换和基本不等式求解和式的最小值问题.直线能将圆平分成面积相等的两个部分,则这条直线是经过圆心的.要注意的是,圆的标准方程是()()222x a y b r -+-=,圆心是(),a b ,所以本题的圆心是()4,1--,而不是()4,1.6.C解析:C 【解析】试题分析:直线()4x m y =-恒过定点(0,4),当0m >时,约束条件()4{04y x y x m y ≤-≤≥-对应的可行域如图,则()OP OA R λλ-∈u u u r u u u r的最小值为0M=,满足2M ≤,当0m =时,直线()4x m y =-与y 轴重合,平面区域()4{04y x y x m y ≤-≤≥-为图中y 轴右侧的阴影区域,则()OP OA R λλ-∈u u u r u u u r的最小值为0M =,满足2M ≤,当0m <时,由约束条件()4{04y x y x m y ≤-≤≥-表示的可行域如图,点P 与点B 重合时,()OP OA R λλ-∈u u u r u u u r的最小值为M OB =u u u r ,联立{(4)y x x m y ==-,解得44(,)11m mB m m --,所以421m OB m =-u u u r ,由4221m m ≤-,解得1135m -≤≤,所以103m -≤≤,综上所述,实数m 的取值范围是1,3⎡⎫-+∞⎪⎢⎣⎭,故选C.考点:简单的线性规划.【方法点晴】本题主要考查了二元一次不等式组所表示的平面区域、简单的线性规划求最值问题,着重考查了数形结合思想方法及分类讨论的数学思想方法的应用,关键是正确的理解题意,作出二元一次不等式组所表示的平面区域,转化为利用线性规划求解目标函数的最值,试题有一定的难度,属于难题.7.A解析:A 【解析】依题意,113713113713132412226132a a a Sb b b T +⋅===+⋅.8.C解析:C 【解析】 【详解】 因为直线()10,0x y a b a b+=>>过点()1,1,所以11+1a b = ,因此1144(4)(+)5+529b a b aa b a b a b a b+=+≥+⋅= ,当且仅当23b a ==时取等号,所以选C.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.9.B解析:B 【解析】 【分析】作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数即可求解. 【详解】 作出可行域如图:化目标函数为2y x z =-, 联立70310x y x y +-=⎧⎨-+=⎩,解得5,2A(). 由图象可知,当直线过点A 时,直线在y 轴上截距最小,z 有最大值25-28⨯=. 【点睛】本题主要考查了简单的线性规划,数形结合的思想,属于中档题.10.C解析:C 【解析】 【分析】根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sin A ,进而利用二倍角余弦公式得到结果. 【详解】∵()cos 4cos a B c b A =-. ∴sin A cos B =4sin C cos A ﹣sin B cos A 即sin A cos B +sin B cos A =4cos A sin C ∴sin C =4cos A sin C ∵0<C <π,sin C ≠0. ∴1=4cos A ,即cos A 14=, 那么27cos2218A cos A =-=-. 故选C 【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.11.C解析:C 【解析】试题分析:∵11011101100000a a a d a a ⋅∴>,<,<,>,<, ∴18110111810181060T a a a a S S S =+⋯+--⋯-=--=(),选C . 考点:1.等差数列的求和;2.数列的性质.12.D解析:D 【解析】试题分析:由等差数列的性质34544123124a a a a a ++=⇒=⇒=,则考点:等差数列的性质二、填空题13.3+54【解析】【分析】由a+b =2得出b =2﹣a 代入代数式中化简后换元t =2a ﹣1得2a =t+1得出1<t <3再代入代数式化简后得出2t6t-(t2+5)然后在分式分子分母中同时除以t 利用基本不等 解析:【解析】 【分析】由a +b =2得出b =2﹣a ,代入代数式中,化简后换元t =2a ﹣1,得2a =t +1,得出1<t <3,再代入代数式化简后得出,然后在分式分子分母中同时除以t ,利用基本不等式即可求出该代数式的最小值. 【详解】解:由于a +b =2,且a >b >0,则0<b <1<a <2, 所以,,令t =2a ﹣1∈(1,3),则2a =t +1, 所以,. 当且仅当,即当时,等号成立. 因此,的最小值为.故答案为:.【点睛】本题考查利用基本不等式求最值,解本题的关键就是对代数式进行化简变形,考查计算能力,属于中等题.14.200【解析】试题分析:等差数列中的连续10项为遗漏的项为且则化简得所以则连续10项的和为考点:等差数列解析:200 【解析】试题分析:等差数列{}n a 中的连续10项为*+129,,,,,()x x x x a a a a x N ++⋯∈,遗漏的项为*+,x n a n N ∈且19,n ≤≤则9()10(18)10(2)22x x x x x n x a a a a a a n +++⨯++⨯-=-+,化简得4494352x n ≤=+≤,所以5x =,511a =,则连续10项的和为(1111+18)10=2002+⨯.考点:等差数列.15.【解析】【分析】由题意得出利用累加法可求出【详解】数列满足因此故答案为:【点睛】本题考查利用累加法求数列的通项解题时要注意累加法对数列递推公式的要求考查计算能力属于中等题 解析:22n +【解析】 【分析】由题意得出12nn n a a +-=,利用累加法可求出n a .【详解】数列{}n a 满足14a =,12n n n a a +=+,*n N ∈,12nn n a a +∴-=,因此,()()()211213214222n n n n a a a a a a a a --=+-+-++-=++++L L ()121242212n n --=+=+-.故答案为:22n +. 【点睛】本题考查利用累加法求数列的通项,解题时要注意累加法对数列递推公式的要求,考查计算能力,属于中等题.16.【解析】【分析】【详解】根据题意由于函数对任意恒成立分离参数的思想可知递增最小值为即可知满足即可成立故答案为解析:33,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭【解析】 【分析】 【详解】根据题意,由于函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,22222()4(1)(1)11xm x x m m--≤--+-,分离参数的思想可知,,递增,最小值为53,即可知满足33,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎦⎣⎭即可成立故答案为33,22⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎦⎣⎭.17.【解析】【分析】由利用正弦定理得到再用余弦定理求得b 可得ac 利用面积公式计算可得结果【详解】由正弦定理可化为所以在三角形中所以因为所以又所以由余弦定理得又所以有故的面积为故答案为【点睛】本题考查了正 解析:3257【解析】 【分析】由()2cos 32cos b C a c B =-,利用正弦定理得到2cos 3B =,再用余弦定理求得b ,可得a 、c ,利用面积公式计算可得结果. 【详解】由正弦定理()2cos 32cos b C a c B =-可化为2sin cos 3sin cos 2sin cos B C A B C B =-, 所以()2sin 3sin cos B C A B +=, 在三角形中,()sin sin B C A +=,所以2sin 3sin cos A A B =,因为sin 0A ≠,所以2cos 3B =, 又0B π<<,所以25sin 1cos B B =-=, 由余弦定理得2224323b a c ac =+-=,又2a c =,所以有2967c =. 故ABC ∆的面积为22196965325sin sin sin 27737S ac B c B c B =====⨯=. 故答案为325. 【点睛】本题考查了正弦定理、余弦定理的应用,考查了三角形面积计算公式,考查了推理能力与计算能力,属于中档题.18.3+22【解析】【分析】由已知可得a-1+b=1从而有2a-1+1b=(2a-1+1b)(a-1+b)展开后利用基本不等式即可求解【详解】由题意因为a>1b>2满足a+b=2所以a-1+b=1且a- 解析:【解析】 【分析】 由已知可得,从而有,展开后利用基本不等式,即可求解. 【详解】由题意,因为满足,所以,且,则,当且仅当且,即时取得最小值.【点睛】本题主要考查了利用基本不等式求最值问题的应用,其中解答中根据题意配凑基本不等式的使用条件,合理利用基本不等式求得最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.19.7【解析】试题分析:作出不等式表示的平面区域得到及其内部其中把目标函数转化为表示的斜率为截距为由于当截距最大时最大由图知当过时截距最大最大因此由于当且仅当时取等号考点:1线性规划的应用;2利解析:7【解析】试题分析:作出不等式表示的平面区域,得到及其内部,其中把目标函数转化为,表示的斜率为,截距为,由于当截距最大时,最大,由图知,当过时,截距最大,最大,因此,,由于,当且仅当时取等号,.考点:1、线性规划的应用;2、利用基本不等式求最值.20.【解析】【分析】由题若对于任意的都有可得解出即可得出【详解】∵若对任意都有∴∴解得故答案为【点睛】本题考查了数列与函数的单调性不等式的解法考查了推理能力与计算能力属于中档题解析:17,212⎛⎫⎪⎝⎭【解析】 【分析】由题若对于任意的*n N ∈都有1n n a a +>,可得5610012a a a a -<,>,<<. 解出即可得出. 【详解】∵511,62,6n n a n n a a n -⎧⎛⎫-+<⎪ ⎪=⎝⎭⎨⎪≥⎩,若对任意*n N ∈都有1n n a a +>, ∴5610012a a a a -<,>,<<.. ∴11 0()510122a a a a --⨯+<,>,<< , 解得17 212a <<. 故答案为17,212⎛⎫⎪⎝⎭.【点睛】本题考查了数列与函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)*21,n a n n N =-∈(2)存在,2,12m k ==【解析】 【分析】(1)设等差数列{}n a 的公差为d ,由等差数列的通项公式与前n 项和公式得112512238a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,从而求出21n a n =-; (2)由(1)得()2122n n n S n n -=+⨯=,由211114122121n b n n n ⎛⎫==- ⎪--+⎝⎭,利用裂项相消法得21n n T n =+,若23k m T T =,则()2232121k m k m =++,整理得223412m k m m =+-,由1k m >>得11m <<+,从而可求出答案. 【详解】解:(1)设等差数列{}n a 的公差为d , 由2541216a a S +=⎧⎨=⎩得112512238a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,()*12121,n a n n n N ∴=+-=-∈;(2)()2122n n n S n n -=+⨯=,211114122121n b n n n ⎛⎫∴==- ⎪--+⎝⎭,1211111111111123352321212122121n n n T b b b n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++⋅⋅⋅+=-+-+⋅⋅⋅+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥---+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,若23k m T T =,则()2232121k m k m =++,整理得223412m k m m=+-, 又1k m >>,2234121m m m m m ⎧>⎪∴+-⎨⎪>⎩,整理得222104121m m m m m ⎧-->⎪+-⎨⎪>⎩,解得11m << 又*m N ∈,2m ∴=,12k ∴=, ∴存在2,12m k ==满足题意. 【点睛】本题主要考查等差数列的性质与求和,考查裂项相消法求和,属于中档题.22.(1) 32m =;(2)4. 【解析】试题分析:(Ⅰ)先根据绝对值定义解不等式解集为][(),22,-∞-⋃+∞,再根据解集相等关系得122m +=,解得32m =.(Ⅱ)不等式恒成立问题,一般转化为对应函数最值问题,即()max212322y y ax x --+≤+,根据绝对值三角不等式可得()max21234x x --+=,再利用变量分离转化为对应函数最值问题:()max242y ya ⎡⎤≥-⎣⎦,根据基本不等式求最值: ()()224224242y yy y ⎡⎤+-⎢⎥-≤=⎢⎥⎣⎦,因此4a ≥,所以实数a 的最小值为4.试题解析:(Ⅰ)由题意知不等式221(0)x m m ≤+>的解集为][(),22,-∞-⋃+∞. 由221x m ≤+,得1122m x m --≤≤+, 所以,由122m +=,解得32m =. (Ⅱ)不等式()2232y y a f x x ≤+++等价于212322yya x x --+≤+, 由题意知()max212322y y ax x --+≤+. 因为()()212321234x x x x --+≤--+=, 所以242y y a +≥,即()242y y a ⎡⎤≥-⎣⎦对任意y R ∈都成立,则()max 242y ya ⎡⎤≥-⎣⎦.而()()224224242y yy y⎡⎤+-⎢⎥-≤=⎢⎥⎣⎦,当且仅当242y y =-,即1y =时等号成立, 故4a ≥,所以实数a 的最小值为4. 23.(1) 43n a n =-;(2)证明见解析. 【解析】 【分析】 【详解】(1)∵2(1)n n S na n n =--①, ∴11(1)2(1)n n S n a n n ++=+-+②, ②-①,11(1)4n n n a n a na n ++=+--,∴14n n a a +-=,又∵等比数列{}n b ,5352T T b =+,∴535452T T b b b -=⇐=,1q =,∴11a =,∴数列{}n a 是1为首项,4为公差的等差数列, ∴14(1)43n a n n =+-=-;(2)由(1)可得111111()(43)(41)44341n n a a n n n n +==--+-+, ∴11111111(1)(1)45594341441n M n n n =-+-+⋅⋅⋅+-=--++,∴111(1)454n M -≤<, 即1154n M ≤<. 考点:1.等差等比数列的运算;2.列项相消法求数列的和. 24.:(1)1cos 3A =(2)3{2b c ==或23b c =⎧⎨=⎩【解析】:(1)由3cos()16cos cos B C B C --=得3(cos cos sin sin )1B C B C -=- 即1cos()3B C +=-从而cos A 1cos()3B C =-+= (2)由于0,A π<<1cos 3A =,所以sin A =又ABC S =V1sin 2bc A =6bc =由余弦定理2222cos a b c bc A =+-,得2213b c += 解方程组2213{6b c bc +==,得3{2b c ==或23b c =⎧⎨=⎩ 25.(1)n a n =;(2)22(41)2(1)3n n T n n -=++ 【解析】 【分析】(1)根据条件列方程组解得公差与首项,即得数列{}n a 的通项公式;(2)根据分组求和法得结果. 【详解】(1)公差d 不为0的等差数列{}n a 中,1a ,3a ,9a 成公比为3a 的等比数列,可得2319a a a =,313a a a =,可得2111(2)(8)a d a a d +=+,11a =,化简可得11a d ==,即有n a n =;(2)由(1)可得2,212,2n n n k b n n k ⎧=-=⎨=⎩,*k N ∈;前2n 项和212(28322)(48124)n n T n -=+++⋯+++++⋯+2(14)12(41)(44)2(1)1423n n n n n n --=++=++-. 【点睛】本题考查等差数列通项公式以及分组求和法求和,考查基本分析求解能力,属中档题. 26.(1)34-(2)16【解析】试题分析:(1)利用余弦定理表示出cosB ,将已知等式代入即可求出cosB 的值;(2)由cosB 可求出sin 2,cos 2B B 的值,然后利用两角和的余弦公式可得结果. 试题解析:(1)由22222230a c b ac +-+=,得22232a cb ac +-=-, 根据余弦定理得222332cos 224aca cb B ac ac -+-===-; (2)由3cos 4B =-,得sin B =∴sin22sin cos B B B ==21cos22cos 18B B =-=,∴1sin 2sin2cos cos2sin 44428816B B B πππ⎫⎛⎫+=+=-+=⎪ ⎪⎪⎝⎭⎝⎭.。