《周髀算经》与《九章算术》介绍
《数学史》周髀算经》与《九章算术》教学文案

仪 生 四 象 , 四 象 生 八 卦 。 ”
易 有 太 极 , 是 生 两 仪 , 两
“
太极八卦图
图中每个阳、阴爻分别代表数9与 数6,其中数字的配置依照“九六”说, 是一种均衡的数字配置。在八卦中,相对 称的卦象,如乾与坤,其象数之和均为45。 它与洛书中1至9的数字之和相同
周(约公元前11世纪~公元前 256年):奴隶制经济获得进一步 的发展. “数”作为六艺之一,开 始形成一个学科。
商代(又称殷代,约公元前17世 纪~约前11世纪):1899年在河南 安阳发掘出来的殷墟龟甲和兽骨上 所刻的象形文字(甲骨文,公元前14 世纪)。
自然数的记法:10进位制,最大 的数字是3万。
中国古代数学的萌芽
▪ 与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、 丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号 构成的八卦表示八种事物发展为六十四卦,表示64种事物。
《墨经》:
点:端,体之无厚而最前者也; 直线:直, 参也; 圆:圆, 一中同长也.
3.1.2《周髀算经》
▪“周髀”是测 量日影的工 具—八尺长竿
在现存的中国古代数学著作中,《周髀算经》是最早的 一部。 作者不祥,成书年代应不晚于公元前2世纪西汉时期, 但书中涉及的数学、天文知识,有的可追溯到西周(公元前 11世纪-前8世纪)。这部著作实际上是从数学上讨论“盖天 说”(天圆地方)宇宙模型,反映了中国古代数学与天文学 的密切联系。从数学上看,《周髀算经》主要的成就是分数 运算、勾股定理及其在天文测量中的应用,其中关于勾股定 理的论述最为突出。
▪ 儒家以“九数”为核心,具有鲜明的政治和人文色彩,并以《周易》 象数学宇宙论为哲学依托.
▪ 墨家则以几何学为核心,具有一定的抽象性和思辨性,以《墨经》 的逻辑学为其论说的工具。
中国古代的数学知识

中国古代的数学知识
中国古代的数学知识非常丰富,以下是一些重要的成就和贡献:
《周髀算经》:这是中国最古老的天文学和数学著作,约成书于公元前1世纪。
它主要阐明当时的盖天说和四分历法,还包含一些数学知识,例如勾股定理的特例。
《九章算术》:这是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右。
其作者已不可考,一般认为是由多人编撰而成的。
刘徽:魏晋时期的数学家,他提出了“割圆术”,即用“圆内接正多边形”去无限逼近“圆”,并首次用理论证明了“圆周率”的存在。
祖冲之:南北朝时期的数学家和天文学家,他首次将“圆周率”精算到小数第七位,是当时世界最精确的圆周率数值,这一成果直到16世纪才被打破。
此外,中国古代还有许多其他的数学成就,如张衡发明的地动仪、赵爽的《周髀算经注》、一行和尚的《大衍历》等等,都体现了中国古代在数学领域的卓越贡献和深厚底蕴。
《九章算术》的主要内容

不朽的古代数学名著——《九章算术》每当提起中国古代数学,肯定会提到《九章算术》。
《九章算术》是流传至今的我国一部古代数学典籍,根据考证,大约成书于东汉初期,作者姓名不详。
《九章算术》是中国古典数学的一部最重要的经典著作。
它总结了我国先秦至西汉的数学成果,形成以问题为中心的算法体系。
它是我国传统文化的一部分,有着鲜明的特色,对世界数学宝库作出了重要贡献。
我国杰出的古代数学家刘徽于魏景元四年(263年)首次注释《九章算术》;唐初,数学家李淳风于显庆元年(656年)奉命对《九章算术》也作了注释。
刘徽在《九章算术注序》中说:“往昔暴秦焚书,经术散坏,自时厥后,汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。
苍等因旧文之遗残,各称删补。
”可见,在秦朝以前已有算书流传,但因受秦始皇焚书而散失,后来张苍和耿寿昌等收集了旧算书的残篇,进行了删补。
他们删补校订旧算书的目的显然是为了培养行政官吏,或教习官家子弟,以实用为宗旨。
1983年从湖北江陵张家山出土的西汉早年(约公元前180年左右)的竹简算书《算数书》,也是采用问题集的形式,并按算法将问题分类。
其中大部分算法术语,都出现在以后的《九章算术》之中,因此,《算数书》可能是《九章算术》的取材来源之一。
《九章算术》就是在这类算书的基础上,经过多人之手,不断补充、修改、增订而逐步形成的。
由于《九章算术》是我国古代数学教材之一,在民间流传较为广泛,所以,对我国古代数学的影响十分巨大。
《九章算术》对分数、正负数的记载是世界上早而有系统的论述。
这不仅早于欧洲,也比印度的有关记载早五、六世纪。
我国古代虽然没有无理数的明确记载,但是,《九章算术》里早有这一概念的萌芽。
刘徽意识到有一种开不尽方的数,为了近似地表示这种开不尽方的数,便创造了十进制分数。
刘徽十分重视比例算法,当比例算法传到欧洲时,欧洲人对比例算法也很重视,不但称为“黄金算法”,而且往往还把简单的问题化为比例问题去研究。
《九章算术》里提出的方程组的解法是“直除”法。
中国古代数学书籍

中国古代数学书籍
中国古代数学书籍有很多,以下是一些著名的数学书籍:
1. 《九章算术》:又称《九章算术大略》,是我国古代贡献最大的一部算术著作,共收录“经络,方田,本源,田广,勾股,五经,授时,方程,杂病”九门内容。
2. 《周髀算经》:是战国时期的数学著作,作者是孙子周公,收录了我国最早记载的勾股定理。
3. 《海岱算经》:是东汉末年刘徽所著的一本数学著作,主要介绍了代数学、几何学、算法和解析学等方面的内容。
4. 《数书九章》:是刘徽的另一本重要著作,内容涵盖了数学、天文学、算法和军事学等领域。
5. 《算法统宗》:是明代数学家杨辉的著作,以算术、代数、几何和算法为主要内容,包括计数术、乘除术、数列、方程式、三角学等。
6. 《数理精蕴》:是明代数学家张世杰的著作,详细介绍了代数、几何、数论、解析等方面的数学知识。
以上只是中国古代数学书籍的一部分,这些书籍对推动中国古代数学发展起到了重要的作用。
我国最早的数学著作

我国最早的数学著作
我国最早的数学著作可以追溯到两千多年前的古代中国。
这些著
作主要集中在《九章算术》、《周髀算经》和《孙子算经》等。
《九章算术》又称《九章术数》,是中国古代最早的一部数学著述。
该书由战国时期的数学家张丘建所著,成书年代可追溯到公元前2世纪。
《九章算术》主要介绍了整数的计算方法、方程的解法、几何
图形的计算等内容。
这些内容包含了中国古代数学的基础,奠定了后
来数学发展的基石。
《周髀算经》是中国古代数学著作中保存最完整的一部。
它是西
汉时期的数学家周髀(zhōu bì)所创作,成书年代大约在公元前1
世纪。
该书主要介绍了分数的计算、方程的解法、几何图形的计算等
内容。
与《九章算术》相比,它更加系统和详细,包含了更多实用的
数学知识。
《孙子算经》是中国古代的一部军事数学著作,也是中国古代数
学领域中的重要著作之一。
该书传统上被认为是战国时期的军事家孙
子所著,成书年代可追溯到公元前4世纪。
《孙子算经》主要介绍了
战争中的数学计算方法,如算术、几何、测量等等。
虽然以军事为背景,但其中蕴含的数学思想和方法对后来的数学发展有深远影响。
这些数学著作不仅反映了古代中国人民在数学领域的智慧,也是
世界上最早的数学著作之一。
它们为中国古代数学的发展奠定了基础,并对后世产生了深远的影响。
九章算术的主要内容

九章算术的主要内容《九章算术》是中国古代一部重要的数学著作,该书共九章,篇幅较为详细,内容包括整数、分数、方程、几何学等多个方面。
在中国古代数学发展史上具有重要的地位,不仅对中国古代数学的研究有较大地推动作用,也对数学史研究有一定的价值。
第一章为“方程”,讨论一元二次方程、二元一次方程等的解法。
第二章为“为多设方”,解决了多元方程组的问题,包括几何问题和商业问题。
第三章为“尺规作图”,讲述几何作图知识,包括平分角、作正方形等。
第四章为“检释方程”,介绍了方程根的概念,并通过实例说明了解二次方程的公式的计算方法,着重考虑到符号问题,并将数学符号化的初步工作已经体现。
第五章为“释方程”,主要关注除方、截方等求式方法,包括负数的表示方法、分数的计算等。
第六章为“省广义”,扩展了原来二次方程根的计算方法,提出了“愚人捷径”——用最大的平方数来分拆,使得分解后的两个数差最小,而且只用变号加减。
第七章为“杂项”,囊括了诸如勾股定理和证明两平方等于和差平方等几何问题。
第八章为“五经解数术”,介绍了《孙子算经》、《周髀算经》等古代算学文献中的数学方法。
最后一章为“分数”,着重介绍了分数的计算方法,以及混合数字的运算,加减乘除等。
此外,本书介绍了计算平方、根号等数学运算方法,还提出了许多实际问题的解决方法,如商业计算、土地面积计算等。
总之,《九章算术》集中体现了中国古代数学家的智慧与才能,对后世学者影响深远,它是古代数学研究与教学的经典著作之一。
其思想和方法论,对现代数学的发展和研究有着深远的影响,是我们在学习和研究数学的历程中不可缺少的珍贵文献。
九章算术是在中国古代的汉朝时期编写完成的,该时期是中国历史上文化与科技发展的黄金时期,也是我国在各个领域进行了大量发展的时期。
汉朝是我国发展最为快速的一个朝代,社会经济、文化思想也积极开展,这些因素促进了古代中国的数学知识的发展。
在整个汉代历史中,文化和科技的发展逐渐成为重要的方向,为数千年后的中国文化和科技做出了巨大的贡献。
九章算术简介

九章算术
九章算术,又称《九章算术》、《九章算经》,是古代中国数学的一部重要著作,是中国古代数学的经典之一。
这部著作编纂完成的时间约在战国时期(公元前5世纪至公元前2世纪),具体的编纂时间和作者等信息在历史上并不清晰。
《九章算术》是一部系统的数学著作,内容广泛涵盖了算术、代数、几何、概率等多个数学领域。
它分为九篇,每篇都探讨了不同的数学问题和方法。
这九篇分别是:
1.《海岛算经》:主要涉及实际问题,如土地测量、田亩分配等。
2.《精说第一》:主要论述一次至六次方程的解法。
3.《精说第二》:讨论一次至二十次方程的解法。
4.《周髀算经》:以乡土土地的规划为背景,涉及几何问题。
5.《五经算術》:介绍一些实际问题中的算术和代数方法。
6.《算数》:讨论分数、比例、变比等。
7.《雜論》:包括多种数学题目,如勾股定理的应用、经济问题等。
8.《方程》:主要涉及一次至二十次方程的解法。
9.《杂题》:包括了各种杂项的数学问题。
《九章算术》的影响深远,对中国古代数学和世界数学的发展都产生了
积极的影响。
其中包含了许多具体的问题和解法,展示了古代中国数学家在解决实际问题时的高超数学技巧。
这部著作在中国数学史上具有重要地位,被视为中国古代数学的巅峰之作之一。
[资料]中国数学史
![[资料]中国数学史](https://img.taocdn.com/s3/m/7fbd24c532d4b14e852458fb770bf78a65293a1c.png)
中国数学史中国数学史1. 中国数学从公元前后至公元 14 世纪,先后经历了三次发展高潮,即 ___________ 、魏晋南北朝时期以及宋元时期,其中 ___________ 时期达到了中国古典数学发展的顶峰。
3.1 《周髀算经》与《九章算术》 1. 《史记》“夏本纪”记载说:夏禹治水,“左规矩,右准绳”,这里的规是指 ________ ,矩则是指 _____________ 。
2 “一尺之棰,日取其半,万世不竭”出自我国古代名著 ( ) 。
A. 《考工记》B. 《墨经》C. 《史记》D. 《庄子》3. 在现存的中国古代数学著作中,《 ________ 》是最早的一部。
卷上叙述的关于荣方与陈子的对话,包含了 ________ 的一般形式。
4 中国历史上最早叙述勾股定理的著作是《 ______ 》,中国历史上最早完成勾股定理证明的数学家是三国时期的 ______ 。
5 《九章算术》是从先秦至 ___________ 的长时期里经众多学者编撰、修改而成的一部数学著作。
6 、“九数”是指:方田、粟米、差分、少广、商功、均输、方程、赢不足、旁要。
7 、《九章算术》就是从九数发展来的。
8 《九章算术》 " 方田 " 、 " 商功 " 、 " 勾股 " 三章处理几何问题。
其中 " 方田 " 章讨论 _________ , " 勾股 " 章则是关于_________ 。
9 《九章算术》的“少广”章主要讨论()。
A. 比例术B. 面积术C. 体积术D. 开方术10 《九章算术》内容丰富,全书共有 ________ 章,大约有 ________ 个问题。
11. 世界上讲述方程最早的著作是 ( )A. 中国的《九章算术》B. 阿拉伯花拉子米的《代数学》C. 卡尔丹的《大法》D. 牛顿的《普遍算术》12 《九章算术》中 " 方程术 " 的关键算法是 "__________" ,实质上这就是我们今天所使用的解线性联立方程组的___________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[键入文字]
《周髀算经》与《九章算术》介绍
《周髀算经》是我国最早的一部数学及天文算学着作。
髀即股,在周朝时立八尺之杆(立柱)为表(表即股),表的影子为勾,故合称之为勾股。
可想而知,这是一部有关勾股定理方面的数学着作。
该书成书于公元前一世纪。
在天文算学方面,主要阐明当时关于宇宙见解的“盖天说”和“四分历法”。
这在当时都是相当先进的。
该书最引人注目的是最早阐述了勾股定理。
《周髀算经》一开始就记载了公元前1100 年西周时周公与商高的一段对话,商高说;“……折矩以为勾广三,股修四,径隅五。
”也就是说,把一根直尺折成直角,直
立的一边长四,横躺的一边为三,则直尺的两端距离必然是五。
因为是商高讲的,有的书也把勾股定理叫做“商高定理”。
据西方国家记载,古希腊数学家毕达哥拉斯在公元前550 年首先证明了这个定理时,他十分高兴,杀了一百头牛,以示庆贺。
国外称这个定理为“毕达哥拉斯定理”。
其实,他要比我国商高晚了五百五十多年。
《周髀算经》还记载了公元前六七世纪荣方和陈子的对话。
在这些对话中,他们提到了进行各种数据计算的方法,其中包括测量太阳高度的方法。
其方法大致如下:
夏至时(太阳直射北回归线),观测者在北方立一八尺高杆,其日影长度刚好是六尺。
标杆每向南移动一千里,在同一时刻的日影长度就减少一寸。
也就是说,当日影减少六尺(即没有日影)时,标竽就向南移动了:60×1000=60000 里
这时标杆在太阳的正下方。
根据平面几何的相似原理可知,若勾为六万里,则股为八万里。
再由勾股定理即可算出测量者与太阳间的距离为10 万里。
这种推理,从数学角度是正确的,当然与实际情况相差不少。
至少,他没有考虑地球是圆的这个因素。
但与号称西方“测量之祖”的希腊学者塔利斯相比,陈子的水平要高多了。
塔利斯在公元前六世纪,利用日影测量了埃及金字塔的高度,但金字塔只有一百多尺高,并且人可以接近它,而陈子测的却是地球与太阳之间的距离。
1。