鸡兔同笼

合集下载

鸡兔同笼问题

鸡兔同笼问题

“鸡兔同笼”问题小朋友们听说过吗?这是一类著名的数学问题。

比如:“鸡兔同笼,共有45个头,146只脚。

笼中各有多少只鸡兔?”鸡兔同笼问题的特点是:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。

解题时,先假设要求的两个或几个未知量相等,或者先假设要求的两个未知量是同一量,然后按照题中的已知条件来推算,根据数量上出现的矛盾适当置换,求出结果。

为了更好地解答鸡兔同笼问题,我们可以用下面的公式:兔数=(实际脚数-每只鸡脚数×鸡兔的总数)÷(每只兔子脚数-每只鸡脚数)【经典例题】例1:鸡兔同笼,共有45个头,146只脚。

笼中鸡免各有多少只?解:解法一假设全是兔子。

(4×45-146)÷(4-2)=17(只)…鸡45-17=28(只)…兔解法二假设全是鸡。

(146-2×45)÷(4-2)=28(只)…兔45-28=17(只)…鸡答:鸡有17只,兔子有28只。

练习:鸡兔共有35只,关在同一个笼子中,共有100条腿。

试计算,笼中有鸡多少只?兔子多少只?解:4x35-100=40(条)则鸡有:40÷2=20(只),所以兔有:35-20=15(只)。

例2:在一个停车场上,汽车.摩托车共停了60辆,一共有190个轮子。

其中每辆汽车有4个轮子,每辆摩托车有2个轮子,求停车场上汽车和摩托车各有多少辆?解:假设60辆全是汽车,则摩托车:(60×4-190)÷(4-2)=25(辆)汽车:60-25=35(辆)。

答:摩托车有25辆,汽车有35辆。

练习:在一个停车场上,停了小轿车和摩托车一共32辆,这些车一共有108个轮子。

求小轿车和摩托车各有多少辆?解:小轿车22辆,摩托车10辆。

例3:盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克。

盒中大钢珠、小钢珠各有多少个?解:假设全部都是大钢珠,则共重:11×30=330(克)与解比原来的克数重:330-266=64(克)小钢珠的个数是:64÷(11-7)=16(个)大钢珠的个数是:30-16=14(个)同样,也可以假设全部都是小钢珠。

鸡兔同笼13种解题方法

鸡兔同笼13种解题方法

鸡兔同笼13种解题方法鸡兔同笼问题是一类经典的数学问题,常见于初中数学题目中。

这个问题的基本思路是通过解方程组来求解鸡和兔子的数量。

在本文中,将介绍13种不同的解题方法,包括逆向思维、代数法、图形法等多种方法,帮助读者更好地理解和掌握这一问题。

一、逆向思维法逆向思维法是一种比较简单易懂的方法,其基本思路是先确定总数量,再确定其中一个物品的数量,最后计算出另一个物品的数量。

1. 假设笼子里有13只动物,则鸡和兔子的总数量为13。

2. 假设有x只鸡,则有13-x只兔子。

3. 根据题目所给条件“总腿数为32”,得到方程式2x+4(13-x)=32。

4. 解方程得到x=6,则笼子里有6只鸡和7只兔子。

二、代数法代数法是一种常用的解题方法,其基本思路是通过设定未知量来建立方程组,并通过求解方程组来得到答案。

1. 设鸡和兔子的数量分别为x和y,则有方程组:x+y=132x+4y=322. 通过求解方程组得到x=6,y=7,则笼子里有6只鸡和7只兔子。

三、图形法图形法是一种直观易懂的方法,其基本思路是通过画图来解决问题。

1. 在平面直角坐标系中,设鸡和兔子的数量分别为x和y,则可以用一条直线表示鸡和兔子的总数量为13。

2. 根据题目所给条件“总腿数为32”,可以得到另一条直线表示鸡和兔子的总腿数为32。

3. 通过求解两条直线的交点,即可得到笼子里有6只鸡和7只兔子。

四、枚举法枚举法是一种简单易行的方法,其基本思路是通过列举所有可能情况来找到符合条件的答案。

1. 从1到12枚举鸡的数量x。

2. 根据题目所给条件“总腿数为32”,计算出相应的兔子数量y。

3. 如果x+y=13,则找到符合条件的答案。

五、分段函数法分段函数法是一种利用函数性质解题的方法,其基本思路是将问题拆分成多个部分,并建立相应的函数关系式来求解问题。

1. 假设笼子里有x只鸡,则有13-x只兔子。

2. 根据题目所给条件“总腿数为32”,可以得到下列函数关系式: f(x)=2x+4(13-x)3. 通过求解f(x)=32的解,即可得到笼子里有6只鸡和7只兔子。

鸡兔同笼公式

鸡兔同笼公式

鸡兔同笼公式
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数
总只数-鸡的只数=兔的只数
解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数
总只数-兔的只数=鸡的只数
解法3:总脚数÷2—总头数=兔的只数
总只数—兔的只数=鸡的只数
解法4 :鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数
解法5:兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数
解法6:(头数x4-实际脚数)÷2=鸡
解法7 :4×+2(总数-x)=总脚数(x=兔,总数-x=鸡数,用于方程)。

鸡兔同笼问题四种基本公式

鸡兔同笼问题四种基本公式

鸡兔同笼问题四种基本公式一、已知总头数和总脚数,求鸡兔各多少:(总脚数-每只鸡的脚数X总头数)+(每只兔的脚数-每只鸡的脚数)=兔数;总头数- 兔数=鸡数。

(每只兔的脚数X总头数-总脚数)+(每只兔的脚数-每只鸡的脚数)=鸡数;总头数- 鸡数=兔数。

例:有鸡兔共36 只,它们共有脚100 只,鸡兔各是多少只?解一:(100- 2X36) -(4-2)=14 (只)”兔;36- 14=22(只),, 鸡。

解二:(4X36-100) - (4-2)=22 (只)”鸡;36-22=14(只),, 兔。

(答略)二、已知总头数和鸡兔脚数的差数,求鸡兔各多少:(1 )当鸡的总脚数比兔的总脚数多时:(每只鸡脚数X总头数-脚数之差)+(每只鸡的脚数+每只兔的脚数)=兔数;总头数- 兔数=鸡数(每只兔脚数X总头数+鸡兔脚数之差) +(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(2)当兔的总脚数比鸡的总脚数多时:(每只鸡的脚数X总头数+鸡兔脚数之差)+(每只鸡的脚数+每只兔的脚数)=兔数;总头数- 兔数=鸡数。

(每只兔的脚数X总头数-鸡兔脚数之差)+(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)三、得失问题(鸡兔问题的推广题)的解法:(每只合格品得分数沪品总数-实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。

总产品数-(每只不合格品扣分数X总产品数+实得总分数)+(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如:灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除1 5分。

某工人生产了1 000只灯泡,共得3525分,问其中有多少个灯泡不合格?解一:(4X1000- 3525) - (4+15)=475+19=25 (个)解二:1000- (15X1000+3525) + (4+15)= 1000- 18525+19=1000- 975=25 (个)(答略)注:“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费XX元,破损者不仅不给运费,还需要赔成本XX元它的解法显然可套用上述公式。

鸡兔同笼

鸡兔同笼

总述鸡兔同笼是我国古代著名趣题之一。

大约在1500年前,《孙子算经》中就记载了这个有趣的问题。

书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。

问笼中各有几只鸡和兔?算这个有个最简单的算法。

(总脚数-总头数*2)/2=兔子数解释:让兔子和鸡都抬起两只脚,这样笼子里的脚就减少了头数*2只,由于鸡只有2只脚,所以笼子里只剩下兔子的,再除以2就是兔子数。

别说兔子和鸡不听话,现实中也没人鸡兔同笼。

假设法:假设全是鸡:2×35=70(只)比总脚数少的:94-70=24 (只)兔:24÷(4-2)=12 (只)鸡:35-12=23(只)假设法(通俗)假设鸡和兔子都听指挥那么,让所有动物抬起一只脚,笼中站立的脚:94-35=59(只)然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只)鸡:35-12=23(只)一元一次方程法解:设兔有x只,则鸡有(35-x)只。

4x+2(35-x)=944x+70-2x=942x=24x=24÷2x=1235-12=23答:兔子有12只,小鸡有23只。

二元一次方程法解:设鸡有x只,兔有y只。

x+y=352x+4y=94(x+y=35)×2=2x+2y=70(2x+2y=70)-(2x+4y=94)=(2y=24)y=12把y=12代入(x+y=35)x+12=35x=35-12x=23。

答:兔子有12只,小鸡有23只。

我国古代《孙子算经》共三卷,成书大约在公元5世纪。

这本书浅显易懂,有许多有趣的算术题,比如“鸡兔同笼”问题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?题目中给出了鸡兔共有35只,如果把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚,那么,兔子就成了2只脚,即把兔子都先当作两只脚的鸡。

鸡兔同笼及变形

鸡兔同笼及变形

鸡兔同笼及变形一、典型问题笼子里有若干鸡和兔,从上面数,有35个头;从下面数,有94只脚。

问鸡、兔各有几只?解析:典型的鸡兔同笼问题是指两个物体之间有一定的倍数关系(鸡脚是头的2倍,兔脚是鸡脚的2倍),对于这种可以有简便算法。

先假设全部都是鸡;没有兔,这时可以算出笼子里只有70只脚,不符合题意。

以此类推,一直到脚数正好是94只时,鸡是23只;兔是12只。

注意:此法容易理解,但有时要算出答案需要写很长,有一定的局限。

通过此图我们可以发现一个规律:每将一个鸡变成一个兔,脚数就会多2只。

法二:基础法我们先假设笼子里全是鸡,也就是35个鸡、0个兔,这时脚数为35×2+0×4=70(只)。

题目要求是94只脚,那需要增加脚数94-70=24(只),通过法一可得知:每将一个鸡变成一个兔,脚数就会多2只,24÷2=12也就是将12只鸡变成12只兔就可以增加到94只脚。

此时鸡数减少为:35-12=23(个),兔数增加到:0+12=12(个)。

或者这样理解:假设全是鸡那脚数为35×2=70(只),但实际有94只脚,多出94-70=24(只)脚。

这24只脚也必须在笼子里,可以将这24只脚按在鸡身上,我们一个鸡身上按上2只脚,那一个鸡也就变成4只脚,可以当成一个兔。

24只脚最终能按在24÷2=12(个)鸡身上,也就是12只鸡变成了12个兔。

检验:23×2+12×4=94(只),符合题目要求。

35×2=70(只)94-70=24(只)4-2=2(只)24÷2=12(个)35-12=23(个)答:鸡有23个,兔有12个。

35×2=70(只)表示都是鸡的情况下一共有70只脚;94-70=24(只)表示符合题目要求还需增加24只脚才行;4-2=2(只)表示一个兔比一个鸡多2只脚也就是将其中的一个鸡换成兔就会增加2只脚;24÷2=12(个)表示增加24只脚需要将12只鸡换成兔,并且兔一开始为0个,现在增加的兔子数量也就是兔子的总数量;35-12=23(个)表示用总数量剪去兔子的数量剩下的就是鸡的数量。

鸡兔同笼详解

鸡兔同笼详解

我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有稚兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?2*35得70 94-70得24 24/2=12 35-12得23古代解法解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只).显然,鸡的只数就是35-12=23(只)了.用方程也可以.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.这种思维方法叫化归法.化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题.《孙子算经》上的解法很巧妙,它是按公式:兔数足数-头数来算的,具体计算是这样的:兔数(只),鸡数=头数-免数=35-12=23,并且书中还给出了公式的来历:把足数除以2以后,每只鸡只剩下一足,每只兔剩下两足了,减去头数,就相当于每只鸡兔再减去一只,鸡足减完了,剩下的每只兔只有一足了,此时所剩足数恰好等于兔子头数. 详细解法一,基本问题"鸡兔同笼"是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解.因此很有必要学会它的解法和思路.例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是244÷2=122(只).在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只.上面的计算,可以归结为下面算式:总脚数÷2-总头数=兔子数.上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,"脚数"就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.还说例1.如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只).说明我们设想的88只"兔子"中,有54只不是兔子.而是鸡.因此可以列出公式鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).当然,我们也可以设想88只都是"鸡",那么共有脚2×88=176(只),比244只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,68÷2=34(只).说明设想中的"鸡",有34只是兔子,也可以列出公式兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为"假设法". 现在,拿一个具体问题来试试上面的公式.对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的"脚数"19与11之和是30.我们也可以设想16只中,8只是"兔子",8只是"鸡",根据这一设想,脚数是8×(11+19)=240.比280少40.40÷(19-11)=5.就知道设想中的8只"鸡"应少5只,也就是"鸡"(蓝铅笔)数是3.30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算.实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,"兔数"为10,"鸡数"为6,就有脚数19×10+11×6=256.比280少24.24÷(19-11)=3,就知道设想6只"鸡",要少3只.要使设想的数,能给计算带来方便,常常取决于你的心算本领. 二,"两数之差"的问题鸡兔同笼中的总头数是"两数之和",如果把条件换成"两数之差",又应该怎样去解呢例9 鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只解一:假如再补上28只鸡脚,也就是再有鸡28÷2=14(只),鸡与兔脚数就相等,兔的脚是鸡的脚4÷2=2(倍),于是鸡的只数是兔的只数的2倍.兔的只数是(100+28÷2)÷(2+1)=38(只).鸡是100-38=62(只).答:鸡62只,兔38只.当然也可以去掉兔28÷4=7(只).兔的只数是(100-28÷4)÷(2+1)+7=38(只).也可以用任意假设一个数的办法.解二:假设有50只鸡,就有兔100-50=50(只).此时脚数之差是4×50-2×50=100,比28多了72.就说明假设的兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因此要减少的兔数是(100-28)÷(4+2)=12(只).兔只数是。

鸡兔同笼

鸡兔同笼

鸡兔同笼问题
例如:鸡兔同笼,头共46,足共128,鸡兔各几只? • 砍足法 分析:假如砍去每只鸡、每只兔一半的足,则鸡变 成了“独脚鸡”,兔就变成了“双脚兔”,则鸡和 兔足的总数就由128变成了64,而且因为“双脚兔” 足的总数比头的总数多1,所以足的总数64与总头数 46的差,就是兔子的只数,即64-46=18(只),则 鸡的只数就是46-18=28(只)。
经典透析
例题4
老师给同学们分苹果,每人分10个,就多出8个,
每人分11个,则正好分完,那么一共有多少名学生?多
少个苹果?
【审题要点】盈亏问题。
【详解过程】为什么第一次多8个,第二次不多也不少
了呢?因为第二次每人多分了1个,所以有8÷1=8名学
生,8×10+8=88个苹果。
经典透析
例题5 皮皮从家到学校,如果每分钟走50米,上课就要迟到3 分钟;如果每分钟走60米,就可以比上课时间提前2分钟到校。 那么皮皮甲距离学校多远? 【审题要点】需要转化条件的盈亏问题。
抬水,用于挑水的扁担有38-18=20(根),所以挑水
的人是20人。
经典透析
例题2 某旅游点有儿童票、成人票两种规格的门票卖,儿童票
的价格为30元,成人票的价格为40元,如果是团体还可以买平均 32元一位的团体票。一个由8个家庭组成的旅游团(每个家庭由 两个大人、或两个大人和一个小孩组成)来景点旅游,如果他们 买团体票可以比他们各买各票的少花了120元。问这个旅游团一
18对翅膀,比实际多了18-14=4对,所以有蝉4÷1=
4只,蜻蜓9-4=5只。
盈亏问题
• 盈亏型 • 例如:二(1)班的同学分糖果,如果每人分4粒就 多9粒,如果每人分5粒则少6粒,问有多少位同学分 多少粒糖果?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一批钢材,用小卡车装载要 45 辆,用大卡车装载只要 36 辆.已知每辆大卡车比每辆小卡车多装 4 吨, 那么这批钢材有多少吨?
3/7
【堂练】 下面是小波和售货员阿姨的一段对话: 小波: 您好! 你好. 想买点什么?” “阿姨, ” 售货员: “同学, 小波:“我只有 100 元,请帮我安排买 10 支钢笔和 15 本笔记本.”售货员:“好,每支钢笔比每本笔记本贵 2 元,退你 5 元,请拿好.再见.”根据这段对话,则钢笔每支是 元,笔记本每本是 元.
【作业 3】 某次数学考试考五道题,全班 52 人参加,共做对 181 道题,已知每人至少做对 1 道题,做对 1 道的有 7 人,5 道全对的有 6 人,做对 2 道和 3 道的人数一样多,那么做对 4 道的人数有多少人?
7/7
【堂练】某场足球赛赛前售出甲、乙、丙三类门票共 400 张,甲类票 50 元/张,乙类票 40 元/张,丙类票 30 元/张,共收入 15500 元,其中乙类、丙类门票张数相同.则甲类、乙类、丙类门票分别售出多少张?
5/7
课堂检测
【家练】某次数学竞赛,试题共有 10 道,每做对一题得 6 分,每做错一题倒扣 2 分。小红最终得 44 分,做 对的题比做错的题多______道。
【家练】张明、李华两人进行射击比赛,规定每射中一发得 20 分,脱靶一发扣 12 分,两人各射了 10 发, 共得 208 分,其中张明比李华多 64 分,则张明射中___________发。
某旅游点有儿童票、成人票两种规格的门票卖,儿童票的价格为 30 元,成人票的价格为 40 元,如果 是团体还可以买平均 32 元一位的团体票,一个由 8 个家庭组成的旅游团(每个家庭由两位大人,或两个大 人、一个小孩组成)来景点旅游,如果他们买团体票那么可以比他们各买各的少花 120 元,问这个旅游团 一共有多少人?
鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较, 做差除二兔找到.
解鸡兔同笼问题的基本关系式是: (1) 如果假设全是兔,那么则有: 鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数 (2) 如果假设全是鸡,那么就有: 兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数 当头数一样时,脚的关系:兔子是鸡的 2 倍 当脚数一样时,头的关系:鸡是兔子的 2 倍 在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程 等专题中也都会接触到假设法
鸡兔同笼问题
知识框架
一、 鸡兔同笼
这个问题,是我国古代著名趣题之一.大约在 1500 年前, 《孙子算经》中就记载了这个有趣的问题.书 中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是: 有若干只鸡兔同在一个笼子里,从上面数,有 35 个头;从下面数,有 94 只脚.求笼中各有几只鸡和兔? 你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?
【堂练】买一些 4 分和 8 分的邮票 , 共花 6 元 8 角 . 已知 8 分的邮票比 4 分的邮票多 40 张 , 那么两种邮 票各买了多少张
【堂练】小同有一个储蓄筒,存放的都是硬币,其中 2 分币比 5 分币多 22 个;按钱数算,5 分币却比 2 分 币多 4 角;另外,还有 36 个 1 分币.小同共存了多少钱?
【堂练】 一份稿件,甲单独打字需 6 小时完成.乙单独打字需 10 小时完成,现在甲单独打若干小时后,因有事由 乙接着打完,共用了 7 小时.甲打字用了多少小时?
4/7
二、多个量的“鸡兔同笼” 【堂练】有蜘蛛、蜻蜓、蝉三种动物共 18 只,共有腿 118 条,翅膀 20 对(蜘蛛 8 条腿;蜻蜓 6 条腿,两对 翅膀;蝉 6 条腿,一对翅膀),求蜻蜓有多少只?
【堂练】学校组织新年游艺晚会 , 用于奖品的铅笔 , 圆珠笔和钢笔共 232 支 , 共花了 300 元 . 其中铅笔数 量是圆珠笔的 4 倍 . 已知铅笔每支 0.60 元 , 圆珠笔每支 2.7 元 , 钢笔每支 6.3 元 . 问三种笔各有多少支 ?
6/7
家庭作业
【作业 1】 * 元。其中 名。
1/7
例题精讲
某次数学竞赛,共有 20 道题,每道题做对得 5 分,没做或做错都要扣 2 分,小聪得了 79 分,他做对了 多少道题?
【家练】东湖路小学三年级举行数学竞赛,共 20 道试题.做对一题得 5 分,没有做一题或做错一题都要倒扣
2 分.刘钢得了 86 分,问他做对了几道题?
一次数学竞赛有 10 道试题,若小宇得 70 分,根据图 5 中两人的对话可知小宇答对______一题得 8 分,答错一题扣 5 分。小华答了 18 道题,得 92 分,小华在 此次比赛中答错了________ 道题。
2/7
春风小学 3 名云参加数学竞赛,共 10 道题,答对一道题得 10 分,答错一道题扣 3 分,这 3 名同学都 回答了所有的题,小明得了 87 分,小红得了 74 分,小华得了 9 分,他们三人一共答对了_____道题.
二、
解鸡兔同笼的基本步骤
解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变 成了“双脚兔”.这样,鸡和兔的脚的总数就由 94 只变成了 47 只;如果笼子里有一只兔子,则脚的总数就 比头的总数多 1 .因此,脚的总只数 47 与总头数 35 的差,就是兔子的只数,即 4 7 3 5 1 2 (只).显然, 鸡的只数就是 3 5 1 2 2 3 (只)了. 这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的 经典思路“假设法”. 假设法顺口溜:
08 年春,我国南方遭受到重大雪灾,实验小学三年级一班的 42 名同学给南方的灾区捐款 4 5 0
有 12 名同学每人捐 5 元,其他同学捐 10 元或 20 元,则捐 10 元的有
名,捐 20 元的有
【作业 2】
*
在一次考试中有选择题、 填空题和解答题三类题共 22 道. 选择题和填空题每题 4 分, 解答题每题 10 分. 这 次考试总分是 1 0 0 分,其中选择题和解答题的分值比填空题多 4 分,这次考试有多少道选择题?多少道填空 题?多少道解答题?
【家练】犀牛、羚羊、孔雀三种动物共有头 26 个,脚 80 只,犄角 20 只.已知犀牛有 4 只脚、1 只犄角, 羚羊有 4 只脚,2 只犄角,孔雀有 2 只脚,没有犄角.那么,犀牛、羚羊、孔雀各有几只呢?
食品店上午卖出每千克为 20 元、25 元、30 元的 3 种糖果共 100 千克,共收入 2570 元.已知其中售出 每千克 25 元和每千克 30 元的糖果共收入了 1970 元,那么,每千克 25 元的糖果售出了多少千克?
相关文档
最新文档