全国【人教版】2020年中考数学真题分类汇编 滚动小专题(一)数与式的计算求值题(答案不全)
2020年中考数学数与式专题卷(附答案)

2020年中考数学数与式专题卷(附答案)一、选择题1.在实数,- ,,中,是无理数的是()A. ,B. - ,C.D.2.下列所示的数轴中,画得正确的是()A. B. C. D.3.下列说法正确的是( )A. 的系数是3B. 2m2n的次数是2次C. 是多项式D. x2-x-1的常数项是14.若数a的近似数为1.6,则下列结论正确的是()A. a=1.6B. 1.55≤a<1.65C. 1.55<a≤1.56D. 1.55≤a<1.565.把代数式3x3-6x2y+3xy2分解因式,结果正确的是()A. x(3x+y)(x-3y)B. 3x(x2-2xy+y2)C. x(3x-y)2D. 3x(x-y)26.要使式子﹣有意义,字母x的取值必须满足()A. x≤B. x≥﹣C. x≥且x≠3D. x≥7.下列各式中,是最简分式的是()A. B. C. D.8.实数的值在( )A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间9.用加减法解方程组中,消x用____法,消y用____法()A. 加,加B. 加,减C. 减,加D. 减,减10.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是A. 1B. 2C. -1D. -211.已知:,,那么的值为()A. 3或-3B. 0C. 0或3D. 312.观察一串数:0,2,4,6,….第n个数应为()A. 2(n-1)B. 2n-1C. 2(n+1)D. 2n+113.如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x等于().A. B. 3 C. 4 D. 514.某商店在甲批发市场以每包m元的价格进了20包茶叶,又在乙批发市场以每包n元(m>n)的价格进了同样的40包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店().A. 盈利了B. 亏损了C. 不赢不亏D. 盈亏不能确定二、填空题15.若|2x﹣y|+(y﹣2)2=0,则x+y=________ .16.若是一个完全平方公式,则m的值为________17.计算﹣(﹣1)2=________18.已知=2,则=________.19.使代数式有意义的x取值范围是________.20. 5x+9的立方根是4,则2x+3的平方根是________.21.使有意义的x的取值范围是________.22.当x变化时,|x-4|+|x-t|有最小值5,则常数t的值为________.三、解答题23.综合题。
历年中考真题分类汇编(数学)

第一篇基础知识梳理第一章数与式§1.1 实数A组2015年全国中考题组一、选择题1.(2015·,1,3分)-5的绝对值是( )A.-5 B.5 C.-15D.15解析∵|-5|=5,∴-5的绝对值是5,故选B.答案 B2.(2015·,1,4分)计算2-3的结果为( ) A.-1 B.-2 C.1 D.2解析2-3=-1,故选A.答案 A3.(2015·,1,4分)计算(-1)×3的结果是( ) A.-3 B.-2 C.2 D.3解析(-1)×3=-3,故选A.答案 A4.(2015·,3,3分)4的算术平方根是( ) A.±2 B.2 C.-2 D. 2解析∵4的算术平方根是2,故选B.答案 B5.(2015·,3,4分)2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学记数法可表示为( )A.0.6×1013元B.60×1011元C.6×1012元D.6×1013元解析6万亿=60 000×100 000 000=6×104×108=6×1012,故选C.答案 C6.(2015·,5,2分)估计5-12介于( )A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解析∵5≈2.236,∴5-1≈1.236,∴5-12≈0.618,∴5-12介于0.6与0.7之间.答案 C7.(2015·,2,3分)下列计算正确的是( ) A.23+26=29B.23-26=2-3C.26×23=29D.26÷23=22解析只有“同底数的幂相乘,底数不变,指数相加”,“同底数幂相除,底数不变,指数相减”,故选C.答案 C8.★(2015·,6,3分)若k<90<k+1(k是整数),则k=( ) A.6 B.7 C.8 D.9解析∵81<90<100,∴9<90<100.∴k=9.答案 D9.(2015·,6,3分)如图,数轴上的A,B,C,D四点中,与表示数-3的点最接近的是( )A.点A B.点B C.点C D.点D解析∵-3=-1.732,∴表示-3的点与表示-2的点最接近.答案 B二、填空题10.(2015·,13,4分)实数8的立方根是________.解析 ∵23=8,∴8的立方根是2. 答案 211.(2015·,11,4分)计算:23×⎝ ⎛⎭⎪⎫122=________.答案 212.(2015·,20,3分)定义:a 是不为1的有理数,我们把11-a 称为a 的差倒数,如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.已知a 1=-12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,……,以此类推,则a 2 015=________.解析 根据“差倒数”的规定进行计算得:a 1=-12,a 2=23,a 3=3,a 4=-12,……,三个数一循环,又2 015÷3=671……2,∴a 2 015=23. 答案23三、解答题13.(2015·,17(1),4分)计算:|-5|+4×2-1. 解 原式=5+2×12=5+1=6.14.(2015·,17,6分)计算:|-4|+(-2)0-⎝ ⎛⎭⎪⎫12-1.解 原式=4+1-2=3.15.(2015·,17(1),5分)计算:2 0150+12+2×⎝ ⎛⎭⎪⎫-12.解 原式=1+23-1=2 3.16.(2015·,17,6分)计算:12-|-2|+(1-2)0-4sin 60° 解 原式=23-2+1-23=-1.B 组 2014~2011年全国中考题组一、选择题1.(2013·,1,3分)-2的相反数是 ( )A .2B .-2C.12D .-12解析 -2的相反数是2,故选A. 答案 A2.(2014·,1,3分)⎪⎪⎪⎪⎪⎪-17=( )A .-17B.17C .-7D .7解析 由绝对值的意义可知:⎪⎪⎪⎪⎪⎪-17=-⎝ ⎛⎭⎪⎫-17=17.故选B.答案 B3.★(2013·,1,4分)-2的倒数是 ( )A .-12B.12C .2D .-2解析 ∵-2×(-12)=1,∴-2的倒数是-12.答案 A4.(2013·,1,4分)计算:(-2)×3的结果是 ( )A .-6B .1C .1D .6解析 根据有理数的乘法运算法则进行计算,(-2)×3=-2×3=-6.故选A. 答案 A5.(2014·,1,4分)比较-3,1,-2的大小,正确的是( )A .-3<-2<1B .-2<-3<1C .1<-2<-3D .1<-3<-2解析 ∵||-3>||-2,∴-3<-2.∴-3<-2<1.故选A. 答案 A6.(2013·,1,3分)在数0,2,-3,-1.2中,属于负整数的是( ) A .0B .2C .-3D .-1.2解析 根据负整数的定义,属于负整数的是-3. 答案 C7.(2014·,2,4分)轨道交通1号线、2号线建设总投资253.7亿元.其中253.7亿用科学记数法表示为( )A .253.7×108B .25.37×109C .2.537 ×1010D .2.537 ×1011解析 253.7亿=253.7×108=2.537 ×1010,故选C. 答案 C8.(2014·,1,3分)在数23,1,-3,0中,最大的数是( )A.23B .1C .-3D .0解析 在数23,1,-3,0中,按从大到小的顺序排列为1>23>0>-3,故选B.答案 B9.★(2013·,1,3分)下列计算正确的是 ( )A.⎝ ⎛⎭⎪⎫13-2=9B.(-2)2=-2 C .(-2)0=-1D .|-5-3|=2解析 A 中,⎝ ⎛⎭⎪⎫13-2=1⎝ ⎛⎭⎪⎫132=119=9;B 中,(-2)2=4=2;C 中,(-2)0=1;D 中,|-5-3|=|-8|=8.故选A. 答案 A10.(2014·,4,3分)下列整数中,与30最接近的是 ( )A .4B .5C .6D .7解析 由25<30<36,可知25<30<36,即5<30<6.又∵30.25=5.5,30<30.25,可知30更接近5.故选B. 答案 B 二、填空题11.(2013·,13,3分)实数-8的立方根是________. 解析 ∵(-2)3=-8,∴-8的立方根是-2. 答案 -212.(2013·永州,9,3分)钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑岛,面积约为0.000 8平方公里,请用科学记数法表示飞濑岛的面积约为________平方公里.解析 在0.000 8中,8前面有4个0,则0.000 8=8×10-4. 答案 8×10-413.(2014·,18,3分)若实数m,n满足||m-2+(n-2 014)2=0,则m-1+n0=________.解析∵||m-2+(n-2 014)2=0,∴m-2=0,n-2 014=0,即m=2,n=2 014.∴m-1+n0=2-1+2 0140=12+1=32.故答案为32.答案3 2三、解答题14.(2014·,17,6分)计算:8-4cos 45°+(12)-1+||-2.解8-4cos 45°+(12)-1+||-2=22-4×22+2+2=22-22+4=4.15.(2014·,17,6分)计算:(-3)2+||-4×2-1-(2-1)0.解原式=3+4×12-1=3+2-1=4.16.★(2013·滨州,20,7分)(计算时不能使用计算器)计算:33-(3)2+(π+3)0-27+|3-2|.解原式=3-3+1-33+2-3=-3 3.§1.2 整式及其运算A组2015年全国中考题组一、选择题1.(2015·,3,3分)下列运算正确的是( )A.a3+a3=2a6B.(x2)3=x5C.2a4÷a3=2a2D.x3·x2=x5解析A.a3+a3=2a3;B.(x2)3=x6;C.2a4÷a3=2a,故选D.答案 D2.(2015·,2,3分)化简-16(x-0.5)的结果是( ) A.-16x-0.5 B.16x+0.5C.16x-8 D.-16x+8解析计算-16(x-0.5)=-16x+8.所以D项正确.答案 D3.(2015·,4,3分)若单项式2x2y a+b与-13x a-b y4是同类项,则a,b的值分别为( )A.a=3,b=1 B.a=-3,b=1C .a =3,b =-1D .a =-3,b =-1解析 由同类项的定义可得⎩⎨⎧a -b =2,a +b =4,解得⎩⎨⎧a =3,b =1,故选A.答案 A4.(2015·,2,3分)计算(a 2)3结果正确的是 ( )A .3a 2B .a 6C .a 5D .6a解析 本题属于积的乘方,底数不变指数相乘,故B 正确. 答案 B5.(2015·,5,3分)计算3x 3·2x 2的结果为 ( ) A .5x 5B .6x 5C .6x 6D .6x 9解析 属于单项式乘单项式,结果为:6x 5,故B 项正确. 答案 B6.(2015·,6,3分)计算a ·a -1的结果为 ( ) A .-1B .0C .0D .-a解析 a ·a -1=1,故A 正确. 答案 A 二、填空题7.(2015·,12,4分)计算(x -1)(x +2)的结果是________. 解析 由多项式乘以多项式的法则可知:(x -1)(x +2)=x 2+x -2. 答案 x 2+x -28.(2015·,9,3分)计算:3a 3·a 2-2a 7÷a 2=________.解析 本题属于同底数幂的乘除,和合并同类项,3a 3·a 2-2a 7÷a 2=3a 5-2a 5=a5. 答案a59.(2015·,10,3分)一组按规律排列的式子:a2,a34,a56,a78,…,则第n个式子是________(n为正整数).解析a,a3,a5,a7,…,分子可表示为:a2n-1,2,4,6,8,…,分母可表示为2n,则第n个式子为:a2n-1 2n.答案a2n-1 2n三、解答题10.(2015·,17(2),5分)化简:(2a+1)(2a-1)-4a(a-1).解原式=4a2-1-4a2+4a=4a-1.11.(2015·随州,19,5分)先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2 .解原式=4-a2+a2-5ab+3ab=4-2ab,当ab=-12时,原式=4+1=5.B组2014~2011年全国中考题组一、选择题1.(2014·,13,3分)若-2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是( )A.2 B.0C .-1D .1解析 由同类项的定义可得⎩⎨⎧m =n +2,4=2m +n ,解得⎩⎨⎧m =2,n =0.∴m n =20=1.故选D.答案 D2.(2014·,3,3分)下列式子运算正确的是 ( )A .a 8÷a 2=a 6B .a 2+a 3=a 5C .(a +1)2=a 2+1D .3a 2-2a 2=1解析 选项A 是同底数幂的除法,根据同底数幂除法运算的性质可知a 8÷a 2=a 6,所以选项A 是正确的;选项B 是整式的加法,因为a 2,a 3不是同类项,所以无法合并,所以选项B 是错误的;选项C 是整式的乘法,根据完全平方公式可知(a +1)2=a 2+2a +1,所以选项C 是错误的;选项D 是整式的加法,根据合并同类项法则可知3a 2-2a 2=a 2,所以选项D 是错误的.故选A. 答案 A3.(2014·,8,3分)若a +b =22,ab =2,则a 2+b 2的值为 ( )A .6B .4C .3 2D .2 3解析 ∵a +b =22,∴(a +b )2=(22)2,即a 2+b 2+2ab =8.又∵ab =2,∴a 2+b 2=8-2ab =8-4=4.故选B. 答案 B4.(2013·,2,3分)下列计算正确的是 ( ) A .a 2+a 2=a 4 B .2a -a =2 C .(ab )2=a 2b 2D .(a 2)3=a 5解析 A .a 2+a 2=2a 2,故本选项错误;B.2a -a =a ,故本选项错误;C.(ab )2=a2b2,故本选项正确;D.(a2)3=a6,故本选项错误.故选C.答案 C5.★(2013·湘西,7,3分)下列运算正确的是( ) A.a2·a4=a8B.(x-2)(x+3)=x2-6C.(x-2)2=x2-4 D.2a+3a=5a解析A中,a2·a4=a6,∴A错误;B中,(x-2)(x+3)=x2+x-6,∴B错误;C中,(x-2)2=x2-4x+4,∴C错误;D中,2a+3a=(2+3)a=5a,∴D正确.故选D.答案 D二、填空题6.(2013·,11,5分)计算:x5÷x3=________.解析根据同底数幂除法法则,∴x5÷x3=x5-3=x2.答案x27.(2013·义乌,12,4分)计算:3a·a2+a3=________.解析3a·a2+a3=3a3+a3=4a3.答案4a38.(2013·,14,4分)已知实数a、b满足:a+b=2,a-b=5,则(a+b)3·(a -b)3的值是________.解析法一∵a+b=2,a-b=5,∴原式=23×53=103=1 000.法二原式=[(a+b)(a-b)]3=103=1 000.答案 1 000三、解答题9.(2013·,18,6分)如图,在长和宽分别是a ,b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a ,b ,x 的代数式表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.解 (1)面积=ab -4x 2.(2)根据题意可得:ab -4x 2=4x 2(或4x 2=12ab =12).整理得:8x 2=24, 解得x =± 3.∵x >0,∴正方形边长为 3.10.(2014·,17,6分)计算:(3+a )(3-a )+a 2. 解 原式=9-a 2+a 2=9.11.(2014·,17,4分)先化简,再求值:a (a -3b )+(a +b )2-a (a -b ),其中a =1,b =-12.解 a (a -3b )+(a +b )2-a (a -b )=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2. 当a =1,b =-12时,原式=12+⎝ ⎛⎭⎪⎫-122=54.12.(2014·,18,6分)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x =-2.解(x+5)(x-1)+(x-2)2=x2+4x-5+x2-4x+4=2x2-1.当x=-2时,原式=2×(-2)2-1=8-1=7.§1.3 因式分解A组2015年全国中考题组一、选择题1.(2015·,5,3分)把代数式3x3-12x2+12x分解因式,结果正确的是( )A.3x(x2-4x+4) B.3x(x-4)2C.3x(x+2)(x-2) D.3x(x-2)2解析先提公因式3x再用公式法分解:3x3-12x2+12x=3x(x2-4x+4)=3x(x-2)2,故D正确.答案 D2.(2015·,5,3分)多项式mx2-m与多项式x2-2x+1的公因式是( ) A.x-1 B.x+1C.x2-1 D.(x-1)2解析mx2-m=m(x-1)(x+1),x2-2x+1=(x-1)2,多项式mx2-m与多项式x2-2x+1的公因式是(x-1).答案 A3.(2015·华师一附中自主招生,7,3分)已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是( ) A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形解析∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,∴c=2a,c=2b,∴a=b,且a2+b2=c2.∴△ABC为等腰直角三角形.答案 B二、填空题4.(2015·,11,5分)分解因式:a2-2a+1=________.解析利用完全平方公式进行分解.答案(a-1)25.(2015·,12,4分)分解因式:m3n-4mn=________.解析m3n-4mn=mn(m2-4)=mn(m+2)(m-2).答案mn(m+2)(m-2)6.(2015·,12,3分)分解因式:12x2-3y2=________.解析12x2-3y2=3(2x+y)(2x-y).答案3(2x+y)(2x-y)7.(2015·,12,3分)分解因式:(a-b)2-4b2=________.解析(a-b)2-4b2=(a-b+2b)(a-b-2b)=(a+b)(a-3b).答案(a+b)(a-3b)8.(2015·,13,3分)分解因式:2m2-2=________.解析2m2-2=2(m2-1)=2(m+1)(m-1).答案2(m+1)(m-1)三、解答题9.(2015·宿豫区,19,6分)因式分解:(1)x4-81;(2)6a(1-b)2-2(b-1)2.解(1)x4-81=(x2+9)(x2-9)=(x2+9)(x+3)(x-3);(2)6a(1-b)2-2(b-1)2=2(1-b)2(3a-1).B组2014~2011年全国中考题组一、选择题1.(2014·,7,3分)下列因式分解正确的是( ) A.x2-y2=(x-y)2B.a2+a+1=(a+1)2C.xy-x=x(y-1) D.2x+y=2(x+y)解析A中,由平方差公式可得x2-y2=(x+y)(x-y),故A错误;B中,左边不符合完全平方公式,不能分解;C中,由提公因式法可知C正确;D中,左边两项没有公因式,分解错误.故选C.答案 C2.(2014·,4,3分)下列因式分解正确的是( ) A.2x2-2=2(x+1)(x-1)B.x2+2x-1=(x-1)2C.x2+1=(x+1)2D.x2-x+2=x(x-1)+2解析A中,2x2-2=2(x2-1)=2(x+1)(x-1),故A正确;B中,左边多项式不符合完全平方公式,不能分解;C中,左边多项式为两项,不能用完全平方公式分解,故C错误;D中,右边不是乘积的形式,不是因式分解,故D 错误.故选A.答案 A3.(2014·威海,3,3分)将下列多项式分解因式,结果中不含因式x-1的是( )A.x2-1 B.x(x-2)+(2-x)C.x2-2x+1 D.x2+2x+1解析A中,x2-1=(x+1)(x-1),不符合题意;B中,x(x-2)+(2-x)=x(x-2)-(x-2)=(x-2)(x-1),不符合题意;C中,x2-2x+1=(x-1)2,不符合题意;D中,x2+2x+1=(x+1)2,符合题意,故选D.答案 D4.(2012·,5,4分)把a2-4a多项式分解因式,结果正确的是( )A.a(a-4) B.(a+2)(a-2)C.a(a+2)(a-2) D.(a-2)2-4解析a2-4a=a(a-4).答案 A5.(2011·,3,3分)下列各式能用完全平方公式进行分解因式的是( ) A.x2+1 B.x2+2x-1C.x2+x+1 D.x2+4x+4解析根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A,B,C都不能用完全平方公式进行分解因式,D.x2+4x+4=(x+2)2.答案 D二、填空题6.(2014·,13,3分)因式分解a3-4a的结果是________.解析a3-4a=a(a2-4)=a(a+2)(a-2).故答案为a(a+2)(a-2).答案a(a+2)(a-2)7.(2013·,11,5分)分解因式:x2-y2=________.解析直接利用平方差公式进行因式分解.答案(x+y)(x-y)8.(2012·,11,5分)分解因式:a3-a=________.解析a3-a=a(a2-1)=a(a+1)(a-1).答案a(a+1)(a-1)9.(2013·,12,3分)分解因式:x2-4(x-1)=________.解析原式=x2-4x+4=(x-2)2.答案(x-2)210.★(2013·,11,4分)多项式ax2-a与多项式x2-2x+1的公因式是________.解析∵ax2-a=a(x2-1)=a(x+1)(x-1),x2-2x+1=(x-1)2,∴它们的公因式是(x-1).答案x-111.(2013·,11,3分)若m=2n+1,则m2-4mn+4n2的值是________.解析法一∵m=2n+1,∴m-2n=1.∴m2-4mn+4n2=(m-2n)2=12=1.法二把m=2n+1代入m2-4mn+4n2,得m2-4mn+4n2=(2n+1)2-4n(2n+1)+4n2=4n2+4n+1-8n2-4n+4n2=1.答案 112.(2013·黔西南州,18,3分)因式分解:2x4-2=________.解析2x4-2=2(x4-1)=2(x2+1)(x2-1)=2(x2+1)(x+1)(x-1).答案2(x2+1)(x+1)(x-1)§1.4 分式A 组 2015年全国中考题组一、选择题1.(2015·,4,3分)分式-11-x可变形为 ( ) A .-1x -1B.11+xC .-11+xD.1x -1解析 由分式的性质可得:-11-x =1x -1. 答案 D2.(2015·,3,3分)化简m 2m -3-9m -3的结果是( )A .m +3B .m -3C.m -3m +3D.m +3m -3解析 原式=m 2-9m -3=(m +3)(m -3)m -3=m +3.答案 A3.(2015·,3,3分)化简a 2+2ab +b 2a 2-b 2-ba -b的结果是 ( )A.a a -bB.b a -bC.a a +bD.b a +b解析 原式= (a +b )2(a +b )(a -b )-b a -b =a +b a -b -b a -b =a +b -b a -b =aa -b .答案 A4.(2015·,5,3分)化简 x 2x -1+11-x 的结果是( )A .x +1B.1x +1C .x -1D.x x -1解析 原式=x 2x -1-1x -1=x 2-1x -1=(x +1)(x -1)x -1=x +1. 答案 A 二、填空题5.(2015·,13,4分)计算:1a -1+a1-a的结果是________. 解析1a -1+a 1-a =1-a a -1=-1. 答案 -16.(2015·,19,6分)化简:m 2m 2+2m +1÷⎝ ⎛⎭⎪⎫1-1m +1=________.解析 原式=m 2(m +1)2÷m +1-1m +1=m 2(m +1)2·m +1m =mm +1.答案 m m +17.(2015·,16,4分)化简:⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n=________.解析 ⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =⎝ ⎛⎭⎪⎫2n +1n +n 2n ·n n 2-1=n 2+2n +1n ·n n 2-1=(n +1)2n ·n(n +1)(n -1)=n +1n -1.答案n +1n -18.(2015·,18,7分)化简:(a +b )2a 2+b 2-2aba 2+b 2=________.解析 (a +b )2a 2+b 2-2ab a 2+b 2=a 2+2ab +b 2-2ab a 2+b 2=a 2+b 2a 2+b 2=1.答案 1 三、解答题9.(2015·,19,5分)先化简:x 2+x x 2-2x +1÷⎝⎛⎭⎪⎫2x -1-1x ,再从-2<x <3的围选取一个你最喜欢的值代入求值.解 原式=x (x +1)(x -1)2÷2x -x +1x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x 2x -1.当x =2时,原式=4.B 组 2014~2011年全国中考题组一、选择题1.(2014·,4,4分)要使分式x +1x -2有意义,则x 的取值应满足 ( )A .x ≠2B .x ≠-1C .x =2D .x =-1解析 由x -2≠0得x ≠2,故选A. 答案 A2.(2014·,7,3分)若(4a 2-4+12-a)·w =1,则w = ( )A .a +2(a ≠-2)B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠±2)解析 原式可以化简如下:4-(a +2)(a +2)(a -2)·w =1,-(a -2)(a +2)(a -2)·w =1,-1a +2·w =1,所以w =-(a +2)=-a -2.故选D. 答案 D3.(2013·,2,2分)计算a 3·⎝ ⎛⎭⎪⎫1a 2的结果是( ) A .aB .a 5C .a 6D .a 9解析 a 3·⎝ ⎛⎭⎪⎫1a 2=a 3·1a 2=a ,故选A.答案 A4.(2013·,6,3分)化简a +1a 2-2a +1÷(1+2a -1)的结果是 ( )A.1a -1B.1a +1 C.1a 2-1D.1a 2+1解析 原式=a +1(a -1)2÷a +1a -1=a +1(a -1)2×a -1a +1 =1a -1,故选A.答案 A5.(2013·,6,3分)如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A.k>2 B.1<k<2C.12<k<1 D.0<k<12解析甲图中阴影部分面积是:a2-b2,乙图中阴影部分的面积是a2-ab,∴k=a2-b2a2-ab=(a+b)(a-b)a(a-b)=a+ba=1+ba.∵a>b>0,∴0<ba<1.∴1<1+ba<2.答案 B 二、填空题6.(2011·,11,4分)当x________时,分式13-x有意义.解析要使分式13-x有意义,必须3-x≠0,即x≠3.答案≠37.(2012·,12,4分)化简m2-163m-12得________;当m=-1时,原式的值为________.解析m2-163m-12,=(m +4)(m -4)3(m -4)=m +43,当m =-1时,原式=-1+43=1. 答案m +4318.(2014·,13,4分)计算:1a -1+a 1-a的结果是________. 解析 1a -1+a 1-a =1a -1-a a -1=1-a a -1=-(a -1)a -1=-1.答案 -19.(2014·东营,15,4分)如果实数x ,y 满足方程组⎩⎨⎧x +3y =0,2x +3y =3,那么代数式⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y的值为______. 解析 解方程组可得⎩⎨⎧x =3,y =-1.∴⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y =⎝⎛⎭⎪⎫xy x +y +2·(x +y )=xy +2x +2y =3×(-1)+2×3+2×(-1)=1. 答案 110.(2014·,16,3分)有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:输入x ――→第1次y 1=2x x +1――→第2次y 2=2y 1y 1+1――→第3次y 3=2y 2y 2+1――→… 则第n 次的运算结果=____________(含字母x 和n 的代数式表示). 解析 将第2、3、4次化简后列表如下:故答案为2n x(2n -1)x +1.答案 2n x(2n -1)x +1三、解答题11.(2012·,19,6分)计算:a 2-4a +2+a +2.解 法一:原式=(a +2)(a -2)a +2+a +2=a -2+a +2=2a .法二:原式=a 2-4a +2+(a +2)2a +2=a 2-4a +2+a 2+4a +4a +2=2a 2+4a a +2=2a (a +2)a +2=2a .12.(2013·,17,5分)化简:ba 2-b 2÷⎝ ⎛⎭⎪⎫1-a a +b .解 原式=b(a +b )(a -b )÷⎝ ⎛⎭⎪⎫a +b a +b -a a +b=b(a +b )(a -b )·a +b b =1a -b. 13.(2013·,17,6分)先化简,再求值:x 2-4x +42x ÷x 2-2x x 2+1,在0,1,2,三个数中选一个合适的,代入求值. 解 原式=(x -2)22x ·x 2x (x -2)+1=x -22+1=x2.当x=1时,原式=1 2 .14.(2014·,21,8分)先化简x-4x2-9÷⎝⎛⎭⎪⎫1-1x-3,再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.解原式=x-4(x+3)(x-3)÷x-3-1x-3=x-4(x+3)(x-3)·x-3x-4=1x+3.解不等式2x-3<7,得x<5.取x=0时,原式=1 3 .(本题最后答案不唯一,x≠±3,x≠4即可)§1.5 二次根式A组2015年全国中考题组一、选择题1.(2015·,3,3分)化简12的结果是( ) A.4 3 B.2 3 C.3 2 D.2 6解析化简得:23,故B正确.答案 B2.(2015·,3,3分)要使二次根式x-2有意义,x必须满足( ) A.x≤2 B.x≥2 C.x<2 D.x>2解析由x-2≥0得:x≥2.故B正确.答案 B3.(2015·,4,3分)下列式子为最简二次根式的是( )A. 3B. 4C.8D.1 2解析4=2,8=22,12=22,4,8,12都不是最简二次根式,故选A.答案 A4.(2015·,9,3分)已知x=2-3,则代数式(7+43)x2+(2+3)x+3的值是( ) A.0 B. 3 C.2+ 3 D.2- 3解析原式=(7+43)(2-3)2+(2+3)(2-3)+3=49-48+4-3+3=2+ 3.故选C.答案 C二、填空题5.(2015·,11,4分)27+3=________.解析原式=33+3=4 3.答案4 36.(2015·,12,3分)计算5×153的结果是________.解析5×153=5×5=5.答案 57.(2015·,12,3分)计算:18-212等于________.解析原式=32-2=2 2.答案2 2三、解答题8.(2015·凉山州,19,5分)计算:-32+3×1tan 60°+|2-3|.解-32+3×1tan 60°+|2-3|=-9+3×13+3-2=-5- 2.9. (2015·,21,6分)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用1 5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解 第1个数,当n =1时, 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n=15⎝ ⎛⎭⎪⎫1+52-1-52 =15×5=1. 第2个数,当n =2时, 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52 =15×1×5=1. B 组 2014~2011年全国中考题组一、选择题1.(2013·,1,4分)下列式子中,属于最简二次根式的是 ( ) A.9B.7C.20D.13解析 ∵9=32=3,20=22×5=25,13=13=33,∴9,20,13都不是最简二次根式,7是最简二次根式,故选B. 答案 B2.(2013·,5,3分)化简2+(2-1)的结果是( )A .22-1B .2- 2C .1- 2D .2+ 2解析2+(2-1)=2+2-1=22-1,故选A.答案 A3.★(2013·,2,3分)下列计算正确的是( )A .43-33=1 B.2+3= 5 C .212= 2D .3+22=5 2解析 43-33=3,∴A 错误;∵2与3被开方数不同,不能合并,∴B 错误;212=2×22=2,∴C 正确;3和22一个是有理数,一个是无理数,不能合并,∴D 错误.综上所述,选C. 答案 C4.(2013·,5,3分)计算48-913的结果是 ( )A .- 3 B. 3 C .-1133D.1133 解析 48-913=43-33= 3. 答案 B5.(2014·,7,3分)如果ab>0,a+b<0,那么下面各式:①ab=ab,②a b·ba=1,③ab÷ab=-b,其中正确的是( )A.①②B.②③C.①③D.①②③解析∵ab>0,a+b<0,∴a,b同号,且a<0,b<0,∴ab>0,ba>0.ab=ab.等号右边被开方数小于零,无意义,∴①不正确;ab·ba=ab·ba=1,②正确;ab÷ab=ab·ba=b2=-b,∴③正确.故选B.答案 B二、填空题6.(2013·,11,4分)二次根式x-3中,x的取值围为________.解析由二次根式有意义,得出x-3≥0,解得x≥3.答案x≥37.(2014·,13,4分)计算:(2+1)(2-1)=________.解析由平方差公式可得(2+1)(2-1)=(2)2-12=2-1=1.答案 18.(2013·,22,3分)化简:3(2-3)-24-︱6-3︱=________.解析原式=3×2-(3)2-26-3+6=6-3-26-3+6=-6.答案-69.(2012·,14,4分)已知a (a -3)<0,若b =2-a ,则b 的取值围是________. 解析 由题意知,a >0,∴a >0,∴a -3<0,解得:0<a <3,∴2-3<2-a <2,即:2-3<b <2. 答案 2-3<b <2 三、解答题10.(2013·,17,5分)计算:8+(2-1)+⎝ ⎛⎭⎪⎫120.解8+(2-1)+⎝ ⎛⎭⎪⎫120=22+2-1+1=3 2.11.(2013·,19,6分)先化简,再求值:1x -y ÷⎝ ⎛⎭⎪⎫1y -1x ,其中x =3+2,y =3- 2.解 1x -y ÷⎝ ⎛⎭⎪⎫1y -1x =1x -y ·xy x -y =xy (x -y )2,当x =3+2,y =3-2时, 原式=(3+2)(3-2)(3+2-3+2)2=18.第二章 方程(组)与不等式(组)§2.1 一元一次方程与可化为一元一次方程的分式方程A组2015年全国中考题组一、选择题1.(2015·,8,3分)解分式方程2x-1+x+21-x=3时,去分母后变形正确的为( )A.2+(x+2)=3(x-1) B.2-x+2=3(x-1)C.2-(x+2)=3 D.2-(x+2)=3(x-1)解析公分母为x-1,结果为: 2-(x+2)=3(x-1),故D正确.答案 D2.(2015·,7,3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%,设把x公顷旱地改为林地,则可列方程( ) A.54-x=20%×108 B.54-x=20%(108+x)C.54+x=20%×162 D.108-x=20%(54+x)解析∵改造完后的林地为(108+x)公顷,改造完后的旱地是(54-x)公顷,∴54-x=20%(108+x).故选B.答案 B3.(2015·,5,3分)若代数式4x-5与2x-12的值相等,则x的值是( )A.1 B.32C.23D.2解析根据题意得:4x-5=2x-12,去分母得:8x-10=2x-1,解得:x=32,故选B. 答案 B4.(2015·,5,3分)方程x2-1x+1=0的解是( )A.1或-1 B.-1 C.0 D.1解析去分母得:x2-1=0,即x2=1,解得:x=1或x=-1,经检验x=-1是增根,分式方程的解为x=1.答案 D5.(2015·,6,3分)分式方程2x-2+3x2-x=1的解为( )A.1 B.2 C.13D.0解析去分母得:2-3x=x-2,解得:x=1,经检验x=1是分式方程的解.答案 A二、填空题6.(2015·,14,3分)分式方程3x+2=2x的解x=________.解析去分母得:3x=2x+4,解得:x=4.经检验x=4是原分式方程的解.答案 47. (2015·,16,5分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1∶2∶1,用两个相同的管子在容器的5 cm高度处连通(即管子底离容器底5 cm),现三个容器中,只有甲中有水,水位高1 cm,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56cm,则开始注入________分钟的水量后,甲与乙的水位高度之差是0.5 cm.解析第一种情况,甲比乙高0.5 cm,0.5÷56=35分钟;第二种情况,乙比甲高0.5 cm且甲的水位不变,时间为3320分钟;第三种情况,乙达到5 cm后,乙比甲高0.5 cm,时间为17140分钟.答案35或3320或171408.(2015·,13,3分)分式方程1x-5-10x2-10x+25=0的解是________.解析去分母得:x-5-10=0,解得:x=15,经检验x=15是分式方程的解.答案159.(2015·威海,12,3分)分式方程1-xx-3=13-x-2的解为________.解析去分母得:1-x=-1-2x+6,解得:x=4,经检验x=4是分式方程的解.答案x=4三、解答题10.(2015·,22,7分)下表为市居民每月用水收费标准(单位:元/m3).(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户用水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x-22)×(2.3+1.1)=71,解得:x=28.答:该用户用水28立方米.11.(2015·,19,4分)解方程:1-xx-2=x2x-4-1.解化为整式方程得:2-2x=x-2x+4,解得:x=-2.经检验x=-2是分式方程的解.12.(2015·,18,8分)解方程:x2x-3+53x-2=4.解 去分母得:3x 2-2x +10x -15=4(2x -3)(3x -2),整理得:3x 2-2x +10x -15=24x 2-52x +24,即7x 2-20x +13=0,分解因式得:(x -1)(7x -13)=0,解得:x 1=1,x 2=137,经检验x 1=1与x 2=137都为分式方程的解.13.(2015·,22,8分)某工厂计划在规定时间生产24 000 个零件,若每天比原计划多生产30个零件,则在规定时间可以多生产300个零件. (1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.解 (1)设原计划每天生产零件x 个,由题意得24 000x=24 000+300x +30,解得x =2 400.经检验,x =2 400是原方程的根,且符合题意, ∴规定的天数为24 000÷2 400=10(天).答:原计划每天生产零件2 400 个,规定的天数是10天.(2)设原计划安排工人人数为y 人,由题意得,⎣⎢⎡⎦⎥⎤5×20×(1+20%)×2 400y +2 400×(10-2)=24 000.解得y =480.经检验y =480是原方程的根,且符合题意.答:原计划安排工人人数为480人.B 组 2014~2011年全国中考题组一、选择题1.(2014·,2,3分)方程x +2=1的解是 ( ) A .3B .-3C .1D .-1解析 x +2=1,移项得:x =1-2,x =-1.故选D. 答案 D2.(2014·,7,3分)将分式方程1-2x x -1=3x -1去分母,得到正确的整式方程是( )A .1-2x =3B .x -1-2x =3C .1+2x =3D .x -1+2x =3解析 两边同时乘以(x -1),得x -1-2x =3,故选B. 答案 B3.(2014·枣庄,6,3分)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( )A .350元B .400元C .450元D .500元解析 设这批服装的标价为x 元,得0.6x -200200=20%,解得x =400,故选B.答案 B4.(2013·宿迁,6,3分)方程2x x -1=1+1x -1的解是( )A.x=-1 B.x=0 C.x=1 D.x=2解析方程两边都乘以x-1,得2x=x-1+1.移项,合并,得x=0.经检验,x=0是原方程的解.故选B.答案 B二、填空题5.(2014·,14,4分)方程xx-2=12-x的根x=________.解析去分母,两边同乘以x-2,得x=-1,经检验x=-1是原方程的根,故答案为-1.答案-16.(2013·,12,4分)分式方程1x-2=0的解是________.解析去分母得1-2x=0,解得x=12.经检验,x=12是原方程的解.答案x=1 27.★(2013·,16,3分)若关于x的分式方程xx-1=3a2x-2-2有非负数解,则a的取值围是________.解析去分母,得2x=3a-2(2x-2),解得x=3a+4 6.∵有非负数解,∴3a+4≥0,即a≥-4 3 .又∵x-1≠0,即x≠1,∴3a +4≠6,解得a ≠23.∴a ≥-43且a ≠23.答案 a ≥-43且a ≠238.(2013·,15,4分)到的铁路长1 487千米,动车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由到的行驶时间缩短了3小时,则可列方程为________.解析 动车从到以平均速度为x 千米/时行完全程所需时间为1 487x小时,提速后行完全程所需时间为1 487x +70小时,又行驶时间缩短了3小时,即少用3小时,故所列方程应为1 487x-1 487x +70=3. 答案1 487x-1 487x +70=3 三、解答题9.(2014·,18,8分)解方程:1x -1-3x 2-1=0.解 方程两边同乘x 2-1,得:x +1-3=0. ∴x =2.经检验,x =2是原方程的根.10.(2014·,24,10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成.硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A 方法:剪6个侧面;B 方法:剪4个侧面和5个底面.现有19硬纸板,裁剪时x 用A 方法,其余用B 方法. (1)用x 的代数式分别表示裁剪出的侧面和底面的个数; (2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子? 解 (1)裁剪出的侧面个数为6x +4(19-x )=(2x +76)个, 裁剪出的底面个数为5(19-x )=(-5x +95)个. (2)由题意,得2x +763=-5x +952,∴x =7.当x =7时,2x +763=30. ∴能做30个盒子.§2.2 一元二次方程A组2015年全国中考题组一、选择题1.(2015·,5,3分)一元二次方程x2+4x-3=0的两根为x1,x2,则x1·x2的值是( ) A.4 B.-4 C.3 D.-3解析根据两根之积x1·x2=ca=-3.所以D正确.答案 D2.(2015·,6,3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( ) A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1+x2)=315解析由题意可列方程为:560(1-x)2=315.故B正确.答案 B3.(2015·,5,3分)三角形两边长分别为3和6,第三边的长是方程x2-13x+36=0的两根,则该三角形的周长为 ( ) A .13B .15C .18D .13或18解析 解方程x 2-13x +36=0得,x =9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13. 答案 A4.(2015·,5,3分)关于x 的一元二次方程(m -2)x 2+(2m +1)x +m -2=0有两个不相等的正实数根,则m 的取值围是( )A .m >34B .m >34且m ≠2C .-12<m <2D.34<m <2 解析 根据题意得m -2≠0且Δ=(2m +1)2-4(m -2)·(m -2)>0,解得m >34且m ≠2,设方程的两根为a 、b ,则a +b =-2m +1m -2>0,ab =m -2m -2=1>0,而2m +1>0,∴m -2<0,即m <2,∴m 的取值围为34<m <2.答案 D 二、填空题5.(2015·,22,4分)方程:(2x +1)(x -1)=8(9-x )-1的根为________. 解析 化简为:2x 2+7x -72=0,解得:x 1=-8,x 2=4.5. 答案 x 1=-8,x 2=4.56.(2015·,14,4分)关于x 的一元二次方程x 2-3x +b =0有两个不相等的实数根,则b 的取值围是________.解析有题意得:Δ=9-4b>0,解得b<9 4 .答案b<9 47.(2015·,15,3分)设x1,x2是一元二次方程x2-5x-1=0的两实数根,则x21+x22的值为________.解析∵x1,x2是一元二次方程x2-5x-1=0的两实数根,∴x1+x2=5,x1x2=-1,∴x21+x22=(x1+x2)2-2x1x2=25+2=27.答案278.(2015·,11,3分)关于x的一元二次方程x2-x+m=0没有实数根,则m的取值围是________.解析由题意得(-1)2-4×1×m<0解之即可.答案m>1 49.(2015·,13,3分)某楼盘2013年房价为每平方米8 100元,经过两年连续降价后,2015年房价为7 600元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为________.解析先根据题意将每个量用代数式表示,然后利用等量关系建立等式即可.答案8 100(1-x)2=7 600三、解答题10.(2015·,16,8分)关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,求m的取值围.解∵关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,∴Δ=32-4×2×(-m)>0,∴m>-98,即m的取值围是m>-98.11.(2015·,28,8分)如图,某农场有一块长40 m,宽32 m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路.要使种植面积为1 140 m2,求小路的宽.解设小路的宽为x m.图中的小路平移到矩形边上时,种植面积是不改变的.∴(40-x)(32-x)=1 140.解得x1=2,x2=70(不合题意,舍去).∴小路的宽为2 m.答:小路的宽为2 m.12.(2015·,21,8分)(1)解下列方程:①x+2x=3根为________;②x+6x=5根为________;③x+12x=7根为________;(2)根据这类方程特征,写出第n个方程为________,其根为________;(3)请利用(2)的结论,求关于x的方程x+n2+nx-3=2n+4(n为正整数)的根.解(1)①去分母,得:x2+2=3x,即x2-3x+2=0,(x-1)(x-2)=0,则x-1=0,x-2=0,解得:x1=1,x2=2.经检验:x1=1,x2=2都是方程的解;②去分母,得:x2+6=5x,即x2-5x+6=0,(x-2)(x-3)=0,则x-2=0,x-3=0,解得:x1=2,x2=3,经检验:x1=2,x2=3是方程的解;③去分母,得:x2+12=7x,即x2-7x+12=0,(x-3)(x-4)=0,则x1=3,x2=4,经检验x1=3,x2=4是方程的解;(2)列出第n个方程为x+n(n+1)x=2n+1,解得:x1=n,x2=n+1;(3)x+n2+nx-3=2n+4,即x-3+n(n+1)x-3=2n+1,则x-3=n或x-3=n+1,解得:x1=n+3,x2=n+4.B组2014~2011年全国中考题组一、选择题1.(2013·,7,3分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( )A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-4解析开方得x+6=±4,∴另一个一元一次方程是x+6=-4,故选D.答案 D2.(2014·,8,3分)若x=-2是关于x的一元二次方程x2-52ax+a2=0的一个根,则a的值为( ) A.1或4 B.-1或-4C.-1或4 D.1或-4解析把x=-2代入x2-52ax+a2=0得(-2)2-52a×(-2)+a2=0,解得a1=-1,a2=-4.故选B.答案 B3.(2011·,2,3分)方程x(x-1)=0的解是( ) A.x=0 B.x=1C.x=0或x=1 D.x=0或x=-1解析x(x-1)=0,x=0或x-1=0,x1=0或x2=1.答案 C4.(2013·滨州,10,3分)对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为( ) A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定解析∵b2-4ac=4(k+1)2-4×(-k2+2k-1)=8k2+8>0,∴这个方程有两个不相等的实数根,故选C.答案 C5.(2013·,10,4分)由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降,由原来每斤12元,连续两次降价a%后售价下调到每斤5元,下列所列的方程中正确的是( ) A.12(1+a%)2=5 B.12(1-a%)2=5C.12(1-2a%)=5 D.12(1-a2%)=5解析第一次降价后的价格为12(1-a%)元,第二次降价后的价格为12(1-a %)2元,∴所列方程为12(1-a %)2=5,故选B. 答案 B6.(2013·黄冈,6,3分)已知一元二次方程x 2-6x +c =0有一个根为2,则另一根为( )A .2B .3C .4D .8解析 把x =2代入方程,得22-6×2+c =0,解得c =8,把c =8代入原方程得x 2-6x +8=0,解得x 1=2,x 2=4.故选C. 答案 C7.(2013·日照,8,3分)已知一元二次方程x 2-x -3=0的较小根为x 1,则下面对x 1的估计正确的是 ( )A .-32<x 1<-1B .-3<x 1<-2C .2<x 1<3D .-1<x 1<0解析 在x 2-x -3=0中,b 2-4ac =(-1)2-4×1×(-3)=13>0,∴x =1±132×1=1±132,∴x 1=1-132.∵3<13<4,∴-32<1-132<-1.故选A. 答案 A 二、填空题8.(2013·,17,4分)若|b -1|+a -4=0,且一元二次方程kx 2+ax +b =0有实数根,则k 的取值围是________.解析 ∵|b -1|≥0,a -4≥0,|b -1|+a -4=0,∴b -1=0,a -4=0,即b =1,a =4.∴原方程为kx 2+4x +1=0.∵一元二次方程kx 2+4x +1=0有实数根,∴42-4k ≥0且k ≠0,即k ≤4且k ≠0.。
专题01 数与式-2020年中考数学真题分专题训练(四川专版)(教师版含解析)

专题01 数与式类型一实数1.(2020•成都)﹣2的绝对值是()A.﹣2B.1C.2D.12【答案】C【解析】﹣2的绝对值为2.故选:C.2.(2020•达州)下列各数中,比3大比4小的无理数是()A.3.14B.103C.√12D.√17【答案】C【解析】3=√9,4=√16,A、3.14是有理数,故此选项不合题意;B、103是有理数,故此选项不符合题意;C、√12是比3大比4小的无理数,故此选项符合题意;D、√17比4大的无理数,故此选项不合题意;故选:C.3.(2020•徐州)3的相反数是()A.﹣3B.3C.−13D.13【答案】A【解析】根据相反数的含义,可得3的相反数是:﹣3.故选:A.4.(2020•甘孜州)气温由﹣5℃上升了4℃时的气温是()A.﹣1℃B.1℃C.﹣9℃D.9℃【答案】A【解析】根据题意得:﹣5+4=﹣1,则气温由﹣5℃上升了4℃时的气温是﹣1℃.故选:A.5.(2020•乐山)12的倒数是()A.−12B.12C.﹣2D.2【答案】D【解析】根据倒数的定义,可知12的倒数是2.故选:D.6.(2020•凉山州)﹣12020=()A.1B.﹣1C.2020D.﹣2020【答案】B【解析】﹣12020=﹣1.故选:B.7.(2020•凉山州)下列等式成立的是()A.√81=±9B.|√5−2|=−√5+2C.(−12)﹣1=﹣2D.(tan45°﹣1)0=1【答案】C【解析】A.√81=9,此选项计算错误;B.|√5−2|=√5−2,此选项错误;C.(−12)﹣1=﹣2,此选项正确;D.(tan45°﹣1)0无意义,此选项错误;故选:C.8.(2020•乐山)数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4B.﹣4或10C.﹣10D.4或﹣10【答案】D【解析】点A表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10,点A表示的数是﹣3,右移7个单位,得﹣3+7=4.所以点B表示的数是4或﹣10.故选:D.9.(2020•泸州)2的倒数是()A.12B.−12C.2D.﹣2【答案】A【解析】2的倒数是12.故选:A.10.(2020•南充)若1x=−4,则x的值是()A.4B.14C.−14D.﹣4【答案】C【解析】∵1x =−4,∴x=−14,故选:C.11.(2020•甘孜州)计算:|﹣5|=5.【答案】5【解析】|﹣5|=5.故答案为:512.(2020•自贡)与√14−2最接近的自然数是2.【答案】2【解析】∵3.5<√14<4,∴1.5<√14−2<2,∴与√14−2最接近的自然数是2.故答案为:2.13.(2020•乐山)用“>”或“<”符号填空:﹣7>﹣9.【答案】>【解析】∵|﹣7|=7,|﹣9|=9,7<9,∴﹣7>﹣9,故答案为:>.14.(2020•南充)2020年南充市各级各类学校在校学生人数约为1150000人,将1150000用科学记数法表示为(A)A.1.15×106B.1.15×107C.11.5×105D.0.115×107【答案】A【解析】1150000=1.15×106,故选:A.15.(2020•泸州)将867000用科学记数法表示为()A.867×103B.8.67×104C.8.67×105D.8.67×106【答案】C【解析】867000=8.67×105,故选:C.16.(2020•攀枝花)中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒命名为2019﹣nCoV.该病毒的直径在0.00000008米﹣0.000000012米,将0.000000012用科学记数法表示为a×10n的形式,则n为() A.﹣8B.﹣7C.7D.8【答案】A【解析】0.000000012用科学记数法表示为1.2×10﹣8,∴n=﹣8,故选:A.17.(2020•自贡)5月22日晚,中国自贡第26届国际恐龙灯会开启网络直播,有着近千年历史的自贡灯会进入“云游”时代,70余万人通过“云观灯”感受了“天下第一灯”的璀璨.人数700000用科学记数法表示为() A.70×104B.0.7×107C.7×105D.7×106【答案】【解析】700000用科学记数法表示为7×105,故选:C.18.(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为()A.3.6×103B.3.6×104C.3.6×105D.36×104【答案】B【解析】36000=3.6×104,故选:B.19.(2020•达州)人类与病毒的斗争是长期的,不能松懈.据中央电视台报道,截止北京时间2020年6月30日凌晨,全球新冠肺炎患者确诊病例达到1002万.1002万用科学记数法表示,正确的是()A.1.002×107B.1.002×106C.1002×104D.1.002×102万【答案】A【解析】1002万用科学记数法表示为1.002×107,故选:A.20.(2020•甘孜州)月球与地球之间的平均距离约为38.4万公里,38.4万用科学记数法表示为() A.38.4×104B.3.84×105C.0.384×106D.3.84×106【答案】B【解析】38.4万=384000=3.84×105,故选:B.21.已知a=7﹣3b,则代数式a2+6ab+9b2的值为49.【答案】49【解析】∵a=7﹣3b,∴a+3b=7,∴a2+6ab+9b2=(a+3b)2=72=49,故答案为:49.22.(2020•甘孜州)若m2﹣2m=1,则代数式2m2﹣4m+3的值为5.【答案】5【解析】∵m2﹣2m=1,∴原式=2(m2﹣2m)+3=2+3=5.故答案为:5.23.(2020•南充)计算:|1−√2|+20=√2.【答案】√2.【解析】原式=√2−1+1=√2.故答案为:√2.24.(9分)(2020•乐山)计算:|﹣2|﹣2cos60°+(π﹣2020)0.+1解:原式=2−2×12=2.25.(2020•泸州)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(1)﹣1.3+3解:原式=5﹣1+2×12=5﹣1+1+3=8.26.(2020•自贡)计算:|﹣2|﹣(√5+π)0+(−1)﹣1.6解:原式=2﹣1+(﹣6)=1+(﹣6)=﹣5.类型二整式1.(2020•攀枝花)下列式子中正确的是()A.a2﹣a3=a5B.(﹣a)﹣1=a C.(﹣3a)2=3a2D.a3+2a3=3a3【答案】D【解析】a2和a3不是同类项,不能合并,因此选项A不正确;(−a)−1=−1,因此选项B不正确;a(﹣3a)2=9a2,因此选项C不正确;a3+2a3=3a3,因此选项D正确;故选:D.2.(2020•成都)下列计算正确的是()A.3a+2b=5ab B.a3•a2=a6C.(﹣a3b)2=a6b2D.a2b3÷a=b3【答案】C【解析】A、3a与2b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、a3•a2=a5,原计算错误,故此选项不符合题意;C、(﹣a3b)2=a6b2,原计算正确,故此选项符合题意;D、a2b3÷a=ab3,原计算错误,故此选项不符合题意.故选:C.3.(2020•南充)下列运算正确的是()A.3a+2b=5ab B.3a•2a=6a2C.a3+a4=a7D.(a﹣b)2=a2﹣b2【答案】B【解析】A、原式不能合并,不符合题意;B、原式=6a2,符合题意;C、原式不能合并,不符合题意;D、原式=a2﹣2ab+b2,不符合题意.故选:B.4.(2020•甘孜州)下列运算中,正确的是()A.a4•a4=a16B.a+2a2=3a3C.a3÷(﹣a)=﹣a2D.(﹣a3)2=a5【答案】C【解析】A.a4•a4=a8,故本选项不合题意;B.a与2a2不是同类项,所以不能合并,故本选项不合题意;C.a3÷(﹣a)=﹣a2,故本选项符合题意;D.(﹣a3)2=a6,故本选项不合题意;故选:C.5.(2020•乐山)已知3m=4,32m﹣4n=2.若9n=x,则x的值为()A.8B.4C.2√2D.√2【答案】C【解析】∵3m=4,32m﹣4n=(3m)2÷(3n)4=2.∴42÷(3n)4=2,∴(3n)4=42÷2=8,又∵9n=32n=x,∴(3n)4=(32n)2=x2,∴x2=8,∴x=√8=2√2.故选:C.6.(2020•泸州)下列各式运算正确的是()A.x2+x3=x5B.x3﹣x2=x C.x2•x3=x6D.(x3)2=x6【答案】D【解析】A.x2与x3不是同类项,所以不能合并,故本选项不合题意;B.x3与﹣x2不是同类项,所以不能合并,故本选项不合题意;C.x2•x3=x5,故本选项不合题意;D.(x3)2=x6,故本选项符合题意.故选:D.7.(2020•攀枝花)因式分解:a﹣ab2=a(1+b)(1﹣b).【答案】a(1+b)(1﹣b)【解析】原式=a(1﹣b2)=a(1+b)(1﹣b),故答案为:a(1+b)(1﹣b) 8.(2020•自贡)分解因式:3a2﹣6ab+3b2=3(a﹣b)2.【答案】3(a﹣b)2【解析】3a2﹣6ab+3b2=3(a2﹣2ab+b2)=3(a﹣b)2.故答案为:3(a﹣b)2.9.(2020•凉山州)因式分解:a3﹣ab2=a(a+b)(a﹣b).【答案】a(a+b)(a﹣b).【解析】a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).10.(2020•泸州)若x a+1y3与12x4y3是同类项,则a的值是3.【答案】3【解析】∵x a+1y3与12x4y3是同类项,∴a+1=4,解得a=3,故答案为:3.11.(2020•成都)分解因式:x2+3x=x(x+3).【答案】x(x+3).【解析】x2+3x=x(x+3).12.(2020•乐山)已知y≠0,且x2﹣3xy﹣4y2=0.则xy的值是4或﹣1.【答案】4或﹣1.【解析】∵x2﹣3xy﹣4y2=0,即(x﹣4y)(x+y)=0,可得x=4y或x=﹣y,∴xy=4或xy=−1,即xy的值是4或﹣1;故答案为:4或﹣1.13.(2020•攀枝花)已知x=3,将下面代数式先化简,再求值.(x﹣1)2+(x+2)(x﹣2)+(x﹣3)(x﹣1).解:(x﹣1)2+(x+2)(x﹣2)+(x﹣3)(x﹣1)=x2+1﹣2x+x2﹣4+x2﹣x﹣3x+3=3x2﹣6x将x=3代入,原式=27﹣18=9.14.(5分)(2020•凉山州)化简求值:(2x+3)(2x﹣3)﹣(x+2)2+4(x+3),其中x=√2.解:原式=4x2﹣9﹣(x2+4x+4)+4x+12=4x2﹣9﹣x2﹣4x﹣4+4x+12=3x2﹣1,当x=√2时,原式=3×(√2)2﹣1=3×2﹣1=6﹣1=5.类型三分式1.(2020•成都)已知x=2是分式方程kx +x−3x−1=1的解,那么实数k的值为()A.3B.4C.5D.6【答案】B【解析】把x=2代入分式方程得:k2−1=1,解得:k=4.故选:B.2.(2020•甘孜州)分式方程3x−1−1=0的解为()A.x=1B.x=2C.x=3D.x=4【答案】D【解析】分式方程3x−1−1=0,去分母得:3﹣(x﹣1)=0,去括号得:3﹣x+1=0,解得:x=4,经检验x=4是分式方程的解.故选:D.3.(2020•泸州)已知关于x的分式方程mx−1+2=−31−x的解为非负数,则正整数m的所有个数为()A .3B .4C .5D .6【答案】B 【解析】去分母,得:m +2(x ﹣1)=3, 移项、合并,得:x =5−m 2,∵分式方程的解为非负数,∴5﹣m ≥0且5−m 2≠1,解得:m ≤5且m ≠3,∴正整数解有1,2,4,5共4个, 故选:B .4.(2020•南充)若x 2+3x =﹣1,则x −1x+1= ﹣2 . 【答案】-2【解析】x −1x+1=x(x+1)−1x+1 =x 2+x−1x+1,∵x 2+3x =﹣1,∴x 2=﹣1﹣3x ,∴原式=−1−3x+x−1x+1=−2x−2x+1=−2(x+1)x+1=−2,故答案为:﹣2.5.(2020•自贡)先化简,再求值:x+1x 2−4•(1x+1+1),其中x 是不等式组{x +1≥05−2x >3的整数解. 解:x+1x 2−4•(1x+1+1)=x+1(x+2)(x−2)⋅1+x+1x+1 =x+2(x+2)(x−2)=1x−2,由不等式组{x +1≥05−2x >3,得﹣1≤x <1, ∵x 是不等式组{x +1≥05−2x >3的整数解,∴x =﹣1,0,∵当x =﹣1时,原分式无意义, ∴x =0,当x =0时,原式=10−2=−12. 6.(2020•甘孜州)化简:(3a−2−1a+2)•(a 2﹣4). 解:(3a−2−1a+2)•(a 2﹣4)=3(a+2)−(a−2)(a+2)(a−2)•(a +2)(a ﹣2)=3a +6﹣a +2=2a +8.6.(2020•南充)先化简,再求值:(1x+1−1)÷x 2−x x+1,其中x =√2+1. 解:(1x+1−1)÷x 2−x x+1 =1−(x+1)x+1⋅x+1x(x−1) =1−x−1x(x−1)=−x x(x−1) =11−x ,当x =√2+1时,原式=1−√2−1=−√22. 7.(2020•泸州)化简:(x+2x +1)÷x 2−1x . 解:原式=2x+2x ×x (x+1)(x−1)=2(x+1)x ×x (x+1)(x−1)=2x−1.16.(2020•成都)先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2.解:原式=x+3−1x+3•(x−3)(x+3)x+2 =x ﹣3,当x =3+√2时,原式=√2. 8.(2020•达州)求代数式(2x−1x−1−x ﹣1)÷x−2x 2−2x+1的值,其中x =√2+1.解:原式=(2x−1x−1−x 2−1x−1)÷x−2(x−1)2 =−x 2+2x x−1)÷x−2(x−1)2 =−x(x−2)x−1•(x−1)2x−2=﹣x (x ﹣1)当x =√2+1时,原式=﹣(√2+1)(√2+1﹣1)=﹣(√2+1)×√2=﹣2−√2.9.(2020•乐山)已知y =2x ,且x ≠y ,求(1x−y+1x+y )÷x 2y x 2−y 2的值. 解:原式=2x (x+y)(x−y)÷x 2y x 2−y 2=2x x 2−y 2×x 2−y 2x 2y =2xy ,∵y =2x ,∴原式=2x⋅2x =1 解法2:同解法1,得原式=2xy ,∵y =2x ,∴xy =2,∴原式=22=1.类型四 二次根式1.(2020•攀枝花)下列说法中正确的是( ) A .0.09的平方根是0.3B .√16=±4C .0的立方根是0D .1的立方根是±1 【答案】C【解析】A .0.09的平方根是±0.3,故此选项错误;B .√16=4,故此选项错误;C .0的立方根是0,故此选项正确;D .1的立方根是1,故此选项错误;故选:C .2.(2020•攀枝花)实数a 、b 在数轴上的位置如图所示,化简√(a +1)2+√(b −1)2−√(a −b)2的结果是( )A .﹣2B .0C .﹣2aD .2b【答案】A【解析】由数轴可知﹣2<a <﹣1,1<b <2, ∴a +1<0,b ﹣1>0,a ﹣b <0,∴√(a +1)2+√(b −1)2−√(a −b)2=|a +1|+|b ﹣1|﹣|a ﹣b |=﹣(a +1)+(b ﹣1)+(a ﹣b )=﹣a ﹣1+b ﹣1+a ﹣b=﹣2故选:A .3.(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−√3|−√9;解:(1)原式=2×√32+4+2−√3−3 =√3+4+2−√3−3=3;4.(2020•达州)计算:﹣22+(13)﹣2+(π−√5)0+√−1253. 解:原式=﹣4+9+1﹣5=1.5.(2020•甘孜州)(1)计算:√12−4sin60°+(2020﹣π)0. 解:(1)原式=2√3−4×√32+1 =2√3−2√3+1=1;。
2020年中考数学真题分类汇编(四川省)专题: 数与式(教师版)

专题01 数与式 实数部分一、选择题1.(2019四川凉山州)﹣2的相反数是( ) A .2 B .﹣2 C .12D .﹣12【答案】A .【解析】解:根据相反数的定义,﹣2的相反数是2. 故选:A .2.(2019是攀枝花)2(1)-等于( )A 、1-B 、1C 、2-D 、2 【答案】B【解析】(-1)2=(-1)×(-1)=1. 3.(2019四川资阳)﹣3的倒数是( ) A .﹣13B .13C .﹣3D .3【答案】A .【解析】解:∵﹣3×(﹣13)=1, ∴﹣3的倒数是﹣13. 故选:A .4.(2019四川自贡)﹣2019的倒数是( ) A .﹣2019 B .﹣20191C .20191D .2019【答案】B .【解析】解:﹣2019的倒数是﹣20191. 故选:B .5.(2019四川乐山)3-的绝对值是 A. 3 B. 3-C.31 D. 31- 【答案】A.【解析】考查绝对值的理解,负数的绝对值是它的相反数, 故选A.6.(2019四川眉山)下列四个数中,是负数的是( )A .|﹣3|B .﹣(﹣3)C .(﹣3)2D【答案】D .【解析】解:|﹣3|=3,﹣(﹣3)=3,(﹣3)2=9,∴四个数中,负数是﹣.故选:D .7.(2019四川遂宁)﹣||的值为( )AB .﹣C D .2【答案】B .【解析】解:﹣|﹣|=﹣.故选:B .8.(2019四川攀枝花)在0,1-,2,3-这四个数中,绝对值最小的数是( ) A 、0 B 、1- C 、2 D 、3- 【答案】:A.【解析】:|0|=0,|-1|=1,|2|=2,|-3|=3 显然0最小,故选A.9.(2019四川成都)比﹣3大5的数是( ) A .﹣15 B .﹣8C .2D .8【答案】C .【解析】解:﹣3+5=2. 故选:C .10.(2019四川达州)﹣2019的绝对值是( ) A .2019 B .﹣2019C .20191D .﹣20191【答案】A .【解析】解:﹣2019的绝对值是:2009. 故选:A .11.(2019四川广安)﹣2019的绝对值是( ) A .﹣2019 B .2019C .﹣20191D .20191【答案】B .【解析】解:﹣2019的绝对值是:2019. 故选:B .12.(2019四川乐山)a -一定是( )A. 正数B. 负数C. 0D. 以上选项都不正确 【答案】D【解析】因为a 可正、可负、也可能是0, 故选D.13.(2019四川南充)如果6a =1,那么a 的值为( ) A .6 B .61 C .﹣6 D .﹣61 【答案】B .【解析】解:∵6a =1,∴a =61. 故选:B .14.(2019四川宜宾)2的倒数是( ) A .12B .﹣2C .12-D .12±【答案】A .【解析】解:2的倒数是12, 故选:A .15.(2019四川资阳)设x x 的取值范围是()A .2<x <3B .3<x <4C .4<x <5D .无法确定【答案】B .【解析】解:∵9<15<16,∴34<<,故选:B .16.(2019四川自贡)实数m ,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )m n1A.|m|<1 B.1﹣m>1 C.mn>0 D.m+1>0【答案】利用数轴表示数的方法得到m<0<n,然后对各选项进行判断.【解析】解:利用数轴得m<0<1<n,所以﹣m>0,1﹣m>1,mn<0,m+1<0.故选:B.17.(2019四川宜宾)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为()A.5.2×10﹣6B.5.2×10﹣5C.52×10﹣6D.52×10﹣5【答案】B.【解析】解:0.000052=5.2×10﹣5;故选:B.18.(2019四川自贡)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为()A.2.3×104B.23×103C.2.3×103D.0.23×105【答案】A.【解析】解:23000=2.3×104,故选:A.19.(2019四川凉山州)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012【答案】C.【解析】解:科学记数法表示:153 300 000 000=1.533×1011故选:C.20.(2019四川眉山)中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.1.2×109个B.12×109个C.1.2×1010个D.1.2×1011个【答案】C.【解析】解:120亿个用科学记数法可表示为:1.2×1010个.故选:C.21.(2019四川攀枝花)用四舍五入法将130542精确到千位,正确的是()A、131000B、6⨯D、4⨯13.1101.3110⨯C、50.13110【答案】C.【解析】解:130542=1.30542×105,又精确到千位,所以,130542=1.30542×105≈1.31×105故选C.22.(2019=2,则a的值为()A. B. 4 C.【答案】B.【解析】因为4的算术平方根是2,所以a=4.故选B.23.(2019四川绵阳)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A. 0.2×10-3B. 0.2×10-4C. 2×10-3D. 2×10-4【答案】D.【解析】0.0002=2×0.0001=2×10-4故选D.24.(2019四川巴中)企业家陈某,在家乡投资9300万元,建立产业园区2万余亩.将9300万元用科学记数法表示为()A.93×108元B.9.3×108元C.9.3×107元D.0.93×108元【答案】C.【解析】解:将9300万元用科学记数法表示为:9.3×107元.故选:C.25.(2019四川成都)2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示()A.5500×104B.55×106C.5.5×107D.5.5×108【答案】C.【解析】解:科学记数法表示:5500万=5500 0000=5.5×107故选:C.26.(2019四川广安)第二届“一带一路”国际合作高峰论坛于2019年4月25日至27日在北京召开,“一带一路”建设进行5年多来,中资金融机构为“一带一路”相关国家累计发放贷款250000000000元,重点支持了基础设施、社会民生等项目.数字250000000000用科学记数法表示,正确的是()A.0.25×1011B.2.5×1011C.2.5×1010D.25×1010【答案】B.【解析】解:数字2500 0000 0000用科学记数法表示,正确的是2.5×1011.故选:B.27.(2019四川绵阳)已知x是整数,当x取最小值时,x的值是()A. 5B. 6C. 7D. 8【答案】A.x,∴56,5,∴当x取最小值时,x的值是5,故选:A.28.(2019四川达州)a是不为1的有理数,我们把11a-称为a的差倒数,如2的差倒数为1 12 -=﹣1,﹣1的差倒数111(1)2=--,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是()A .5B .﹣14C .43D .45【答案】D .【解析】解:∵a 1=5,a 2=111115a =--=﹣14, a 3=211111()4a =---=45, a 4=3114115a =--=5, …∴数列以5,﹣14,45三个数依次不断循环, ∵2019÷3=673, ∴a 2019=a 3=45, 故选:D . 二、填空题29.(2019四川攀枝花)3-的相反数是 。
2020年数学中考 专题复习 滚动小专题(一) 数与式的计算求值题

滚动小专题(一)数与式的计算求值题前言:“一学就会,一考就废?”,正是因为考试后缺少了这个环节从小学到初中,学生们经历了无数次考试。
通过考试可以检测同学们对知识的理解、掌握情况,提高应试能力。
但对待考试,部分同学只关注自己的分数,而对试卷的分析和总结缺乏重视。
结果常常出现一些题在考试中屡次出现,但却一错再错的情况。
这样,学生们无法从考试中获益,考试也就失去了它的重要意义。
做好试卷分析和总结是十分有必要的。
那么,怎样做好试卷分析呢?我认为,应从下面两点做起:一.失分的原因主要有如下四方面:(1)考试心理:心理紧张,马虎大意;(2)知识结构:知识面窄,基础不扎实;(3)自身能力:审题不清,读不懂题意;(4)解题基本功:答题规范性差。
只有查出、找准原因,才能对症下药,从弱项方面加强训练,以提高成绩。
二.“扭转乾坤”的方法做题的过程中对每一道题要试图问如下几个问题?(1)怎样做出来的?——想解题方法;(2)为什么这样做?——思考解题原理;(3)怎样想到这种方法?——想解题的基本思路;(4)题目体现什么样的思想?——揭示本质,挖掘规律;(5)是否可将题目变化?——一题多变,拓宽思路;(6)题目是否有创新解法?——创新、求异思维。
转变,让我们从一轮复习开始。
按照上面两点认真完成后面练习题。
希望每一位同学经过一轮复习后,能够扭转“一考就废”的局面,最后决胜中考。
类型1 实数的运算1.计算:(1)-(-1)-38+(π-3.14)0;解:原式=1-2+1=0.(2)4sin60°-(12)-1-12; 解:原式=4×32-2-2 3 =23-2-2 3=-2.(3)|-4|-2cos60°+(3-2)0-(-3)2;解:原式=4-2×12+1-9 =-5.(4)|-3|+(-1)4-2tan45°-(π-1)0;解:原式=3+1-2-1=1.(5)2sin30°+(π-3.14)0+|1-2|+(-1)2 019;解:原式=1+1+(2-1)-1= 2.(6)-12-|3-10|+25sin45°-( 2 019-1)2.解:原式=-1-(10-3)+25×22-(2 019-2 2 019+1) =-1-10+3+10-2 019+2 2 019-1=-2 018+2 2 019.类型2 整式的运算2.计算:x(x -2y)-(x +y)2. 解:原式=-4xy -y 2.3.先化简,再求值:(1)(2+x)(2-x)+(x -1)(x +5),其中x =32; 解:原式=4-x 2+x 2+4x -5=4x -1.当x =32时,原式=4×32-1=5.(2)(m -n)2-m(m -2n),其中m =3,n = 2.解:原式=m 2-2mn +n 2-m 2+2mn=n 2.当n =2时,原式=2.类型3 分式的运算4.化简:(a 2b -a)÷a 2-b 2b. 解:原式=a (a -b )b ·b (a -b )(a +b )=a a +b.5.先化简,再求值:(1)(1-1x +1)·2x,其中x =2 019; 解:原式=x +1-1x +1·2x=2x +1. 当x =2 019时,原式=22 019+1=22 020=11 010.(2)1a +1-a +1a 2-2a +1÷a +1a -1,其中a =2; 解:原式=1a +1-(a +1)(a -1)2·a -1a +1=1a +1-1a -1=a -1-(a +1)a 2-1=-2a 2-1. 当a =2时,原式=-22-1=-2.(3)(x -2xy -y 2x )÷x 2-y 2x 2+xy,其中x =2,y =2-1; 解:原式=x 2-2xy +y 2x ·x (x +y )(x +y )(x -y )=(x -y )2x ·x (x +y )(x +y )(x -y )=x -y.当x =2,y =2-1时,原式=2-(2-1)=1.(4)(2a -1-2a +1a 2-1)÷1a -1,其中a =2sin60°-tan45°.解:原式=2(a +1)-2a -1(a +1)(a -1)·(a -1) =1a +1. 当a =2sin60°-tan45°=2×32-1=3-1时, 原式=13-1+1=33.6.已知|a +1|+(b -3)2=0,求代数式(1b -1a )÷a 2-2ab +b 22ab的值. 解:∵|a +1|+(b -3)2=0,∴a +1=0,b -3=0,即a =-1,b =3.∴原式=a -b ab ÷(a -b )22ab=a -b ab ·2ab (a -b )2=2a -b=2-1-3=-12.7.已知a =b +2 019,求代数式2a -b ·a 2-b 2a 2+2ab +b 2÷1a 2-b 2的值. 解:原式=2a -b ·(a +b )(a -b )(a +b )2·(a +b)(a -b) =2(a -b).∵a =b +2 019,∴a -b =2 019.∴原式=2×2 019=4 038.8.先化简:x 2-2x +1x 2-1÷(x -1x +1-x +1),然后从-5<x<5的范围内选取一个合适的整数作为x 的值代入求值. 解:原式=x 2-2x +1x 2-1÷[x -1x +1-(x -1)] =(x -1)2(x -1)(x +1)÷x -1-(x -1)(x +1)x +1=x -1x +1÷x -1-(x 2-1)x +1=x -1x +1÷x -x 2x +1=x -1x +1·x +1x (1-x )=-1x. ∵满足-5<x<5的整数有-2,-1,0,1,2.又∵x ≠±1且x ≠0,∴x 只能取-2或2.当x =-2时,原式=12;1当x=2时,原式=-2.。
专题01 数与式-2020年中考数学真题分专题训练(湖南专版)(学生版)

2020年中考数学真题分项汇编(湖南专版)专题01数与式1.(2020年湖南长沙中考)(-2)3的值等于()A .-6B .6C .8D .-82.(2020年湖南常德中考)4的倒数为()A .41 B .2 C .1 D .﹣43.(2020年湖南株洲中考)a 的相反数为-3,则a 等于()A .-3B .3C .3±D .134.(2020年湖南张家界市中考)12020的倒数是() A .12020-B .12020C .2020D .2020-5.(2020年湖南怀化中考)下列数中,是无理数的是()A .3-B .0C .13 D6.(2020年湖南岳阳中考)-2020的相反数是()A .2020B .-2020C .12020D .-120207.(2020年湖南湘西中考)下列各数中,比2-小的数是()A .0B .1-C .3-D .38.(2020年湖南株洲中考)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A .B .C .D .9.(2020年湖南省衡阳市中考)-3相反数是()A .3B .-3C .13 D .13-10.(2020年湖南湘潭中考)-6的绝对值是()A .-6B .6C .-16D .1611.(2020年湖南长沙中考)下列运算正确的是()A .523=+B .628x x x =÷C .523=⨯D .725a a =)(12.(2020年湖南省衡阳市中考)下列各式中,计算正确的是()A .325a a a +=B .32a a a -=C .()325a a =D .235a a a ⋅=13.(2020年湖南张家界市中考)下列计算正确的是() A .2235a a a +=B .()325a a = C .22(1)1a a +=+ D .2(2)(2)4a a a +-=-14.(2020年湖南株洲中考)下列运算正确的是() A .34a a a ⋅=B .22a a -=C .()527a a = D .22(3)6b b -=15.(2020年湖南常德中考)下列计算正确的是() A .a 2+b 2=(a +b )2 B .a 2+a 4=a 6C .a 10÷a 5=a 2D .a 2•a 3=a 516.(2020年湖南怀化中考)下列运算正确的是() A .235a a a +=B .624a a a ÷=C .333(2)6ab a b =D .236a a a ⋅=17.(2020年湖南湘西中考)下列运算正确的是()A 2=-B .222()x y x y -=-C =D .22(3)9a a -=18.(2020年湖南湘潭中考)下列运算中正确的是()A .()325aa =B .1122-⎛⎫=- ⎪⎝⎭C .0(21-=D .3362a a a ⋅=19.(2020年湖南岳阳中考)下列运算结果正确的是() A .33()a a -=B .933a a a ÷=C .23a a a +=D .22a a a ⋅=20.(2020年湖南长沙中考)为了将“新冠”疫情对国民经济的影响降低至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展。
中考数学复习 滚动小专题(一)数与式的计算求值题(含答案)

滚动小专题(一)数与式的计算求值题本专题主要考查实数的运算、整式与分式的化简与求值,在中考中往往以计算题、化简求值题的形式出现,属基础题.复习时要熟练掌握实数的各种运算,并注意混合运算中的符号与运算顺序;在整式的化简时要灵活运用乘法公式及运算律;在分式的化简时要灵活运用因式分解知识,分式的化简求值时,还应注意整体思想和各种解题技巧.类型1 实数的运算1.(2014·汕尾)计算:π)0-2|1-sin30°|+(12)-1.2.(2014·重庆B卷)计算:(-3)2+|-2|-2 014012)-1.3.(2014·广安)-12)-15)030°.4.(2014·达州)计算:2-1+(π(-1)2 014.5.(2014·成都)4sin30°+(2 014-π)0-22.6.(2014·自贡)计算:(3.14-π)0+(-12)-2+|1-4cos45°.7.(2014·巴中)计算:|45°+tan60°-(-13)-1π-3)0.类型2 整式的运算1.(2014·温州)化简:(a+1)2+2(1-a).2.(2014·漳州)先化简,再求值:(x+1)(x-1)-x(x-1),其中x=12.3.(2013·衡阳)先化简,再求值:(1+a)(1-a)+a(a-2),其中a=12.4.(2014·绍兴)先化简,再求值:a(a-3b)+(a+b)2-a(a-b),其中a=1,b=-12.5.(2014·广州)已知多项式A =(x +2)2+(1-x )(2+x )-3. (1)化简多项式A ; (2)若(x +1)2=6,求A 的值.类型3 分式的运算 1.(2014·咸宁)化简:222a a b --1a b+.2.(2014·滨州)计算:211x x -+·2221x xx x --+.3.(2014·宜宾)化简:(33a a --3a a +)·29a a-.4.(2014·莱芜)先化简,再求值:(a +1-451a a --)÷(11a --22a a-),其中a =-1.5.(2014·德州)先化简,再求值:2a b a b -+÷222244a b a ab b-++-1,其中a =2sin 60°-tan 45°,b =1.6.(2013·江西)先化简,再求值:2442x x x-+÷222x xx -+1,在0,1,2三个数中选一个合适的,代入求值.7.(2014·重庆A 卷)先化简,再求值:1x ÷(221x x x +--21x -)+11x +,其中x 的值为方程2x =5x -1的解.8.(2013·重庆)先化简,再求值:(2x x + - 12x x --)÷2444x x x --+,其中x 是不等式3x +7>1的负整数解.。
(全国通用版)2020年中考数学复习 第一单元 数与式 滚动小专题(一)数与式的计算求值题练习

2019年滚动小专题(一) 数与式的计算求值题类型1 实数的运算1.计算:(1)-(-1)-38+(π-3.14)0;解:原式=1-2+1=0.(2)4sin 60°-(12)-1-12; 解:原式=4×32-2-2 3 =23-2-2 3=-2.(3)|-4|-2cos 60°+(3-2)0-(-3)2;解:原式=4-2×12+1-9 =-5.(4)|-3|+(-1)4-2tan 45°-(π-1)0;解:原式=3+1-2-1=1.(5)2sin 30°+(π-3.14)0+|1-2|+(-1)2 019; 解:原式=1+1+(2-1)-1= 2.(6)-12-|3-10|+25sin 45°-( 2 019-1)2.解:原式=-1-(10-3)+25×22-(2 019-2 2 019+1) =-1-10+3+10-2 019+2 2 019-1=-2 018+2 2 019.类型2 整式的运算2.计算:x(x -2y)-(x +y)2.解:原式=-4xy -y 2.2019年3.先化简,再求值:(1)(2+x)(2-x)+(x -1)(x +5),其中x =32;解:原式=4-x 2+x 2+4x -5=4x -1.当x =32时,原式=4×32-1=5.(2)(m -n)2-m(m -2n),其中m =3,n = 2.解:原式=m 2-2mn +n 2-m 2+2mn=n 2.当n =2时,原式=2.类型3分式的运算 4.化简:(a 2b -a)÷a 2-b2b .解:原式=a (a -b )b ·b(a -b )(a +b )=aa +b .5.先化简,再求值:(1)(1-1x +1)·2x ,其中x =2 019;解:原式=x +1-1x +1·2x=2x +1.当x =2 019时,原式=22 019+1=22 020=11 010.(2)1a +1-a +1a 2-2a +1÷a +1a -1,其中a =2;解:原式=1a +1-(a +1)(a -1)2·a -1a +1=1a +1-1a -1=a -1-(a +1)a 2-1=-2a 2-1. 当a =2时,原式=-22-1=-2.(3)(x -2xy -y 2x )÷x 2-y 2x 2+xy,其中x =2,y =2-1; 解:原式=x 2-2xy +y 2x ·x (x +y )(x +y )(x -y )=(x -y )2x ·x (x +y )(x +y )(x -y )=x -y. 当x =2,y =2-1时,原式=2-(2-1)=1.(4)(2a -1-2a +1a 2-1)÷1a -1,其中a =2sin 60°-tan 45°. 解:原式=2(a +1)-2a -1(a +1)(a -1)·(a-1) =1a +1. 当a =2sin 60°-tan 45°=2×32-1=3-1时, 原式=13-1+1=33.6.已知|a +1|+(b -3)2=0,求代数式(1b -1a )÷a 2-2ab +b 22ab 的值. 解:∵|a+1|+(b -3)2=0,∴a+1=0,b -3=0,即a =-1,b =3.则原式=a -b ab ÷(a -b )22ab=a -b ab ·2ab (a -b )2 =2a -b =2-1-3 =-12.7.已知a =b +2 019,求代数式2a -b ·a 2-b 2a 2+2ab +b 2÷1a 2-b 2的值. 解:原式=2a -b ·(a +b )(a -b )(a +b )2·(a+b)(a -b) =2(a -b).∵a=b +2 019,∴a-b =2 019.∴原式=2×2 019=4 038.8.先化简:x 2-2x +1x 2-1÷(x -1x +1-x +1),然后从-5<x<5的范围内选取一个合适的整数作为x 的值代入求值.解:原式=x 2-2x +1x 2-1÷[x -1x +1-(x -1)] =(x -1)2(x -1)(x +1)÷x -1-(x -1)(x +1)x +1=x -1x +1÷x -1-(x 2-1)x +1=x -1x +1÷x -x 2x +1=x -1x +1·x +1x (1-x ) =-1x. ∵满足-5<x<5的整数有-2,-1,0,1,2. 又∵x=±1或x =0时,分母值为0,∴x 只能取-2或2.当x =-2时,原式=12; 当x =2时,原式=-12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滚动小专题(一)数与式的计算求值题类型1 实数的运算 类型2 整式的运算 类型3 分式的运算类型1 实数的运算 (2018广安)(2018徐州)(2018资阳)(2018铜仁)(2018云南)(2018曲靖)(2018毕节)21.(本题8分)计算:()31330tan 3123101-+--︒+-⎪⎭⎫⎝⎛--π(2018东营)计算:12018o 0)21()1(3tan30)12(32---+-++-.解:原式=2-1333-13-2+⨯+ =32-2. (2018通辽)(2018沈阳)(2018桂林)19.(本题满分6分)计算:10)21(45cos 6318-+︒--+)(.(2018陕西)计算:(-3)×(-6)+|2-1|+(5-2π)0解:原式=32+2-1+1=4 2.(2018齐齐哈尔)(2018乌鲁木齐)(2018张家界)15. ()13-+()21---︒60sin 4+12.解:原式= 3223211+⨯-+ ……………………4分 =2 ……………………5分(说明:第一步计算每对一项得1分) (2018怀化)(2018海南)(2018遵义)(2018大庆)(2018广西六市同城)(2018遂宁)计算:.(2018十堰)17.计算:12--(2018深圳)17.计算:()1012sin 4520182π-⎛⎫-+-+- ⎪⎝⎭(2018玉林)(2018北京)(2018安顺)19.计算:()22018112tan 60 3.142π-⎛⎫-+︒--+ ⎪⎝⎭.解:原式12144=-++=.(2018淮安)计算:02sin 45(1)π︒+--. 解:1.(2018黄石)17、(本小题7分)计算:()22cos 602ππ-+-+︒(2018新疆建设兵团)(2018郴州)17. 计算()2018112sin 4521---+--.(2018呼和浩特)(2018黔东南、黔南、黔西南)21.(1)计算:(10122cos6020186-⎛⎫--︒+- ⎪⎝⎭.(2018兰州)(2018凉山州)(2018菏泽)15.计算:220181122sin 602-⎛⎫-+- ⎪⎝⎭.(2018孝感)17.计算2(3)44cos30-+-+.解:原式944=++13=+13=.(2018咸宁)计算:2-38-123+.(2018盐城)17.计算:011()2π--+(2018德阳)(2018邵阳)19.计算:(-1)2+( π -3.14)0-|2-2|. 解:(-1 )2+(π-3.14 )0-|2-2|=1+1-(2-2)………………………………………………………………………5分=2-2+2 ……………………………………………………………………7分=2. …………………………………………………………………………8分(2018南通)19.(111220133tan 303-⎛⎫-+--+︒ ⎪⎝⎭.(2018泰州)17.(1)计算:212cos3022π-⎛⎫+--- ⎪⎝⎭°(2018宿迁)20. 计算:200(2)(2sin 60π---++.(2018株洲)19、计算:10323tan 452--+-. 解:原式=132123⨯-+ =2-3 =-1(2018扬州)19.计算或化简.(1)11()2tan 602-++.解:(1)原式43322=--+= .(2018永州)19. 计算:12601-+-.(2018苏州)(2018湘西)(2018湘潭)17.(6分)计算:|﹣5|+(﹣1)2﹣()﹣1﹣.解:原式=5+1﹣3﹣2=1.(2018温州)(2018台州)17.计算:2(1)(3)--⨯-.(20180111)2sin 45()4--︒-(2018绍兴)17.(1)计算:0112tan 60122)()3--+.解:原式132=+=.(2018连云港)计算:20(2)2018-+(2018无锡)(2018长沙)(2018湖州)(2018达州)17.计算:02201860sin 4|122|)21()1(+---+--.(2018岳阳)17.计算:2(1)2sin 45(2018)π--+-+. (2018娄底)(2018常德)17.计算:021)|1()2π---. 解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.(2018嘉兴、舟山)(1)计算:0)13(3)18(2---+-.(2018安徽)15.计算:28)2(50⨯+--解:原式=1+2+4=7.(2018宜宾)17. (1)计算: sin30°+(2018-3)0-2–1+|-4|.解:原式=+1﹣+4=5.(2018眉山)19.(本小题满分6分)计算:(π-2)°+4cos30°-12-(-21)-2.解:144=+-原式 3=-(2018泸州)17.计算:011()|4|2π-+--. (2018衢州)17.计算:()03221π---(2018金华、丽水)17.(本题6分)(2018)--4sin45°+2-.解:(2018自贡)19.(本题满分8分)计算:112cos 452-⎛⎫+- ⎪⎝⎭.(2018枣庄)19.计算:2202)211(2760sin |23|-+---+-. 解:原式=2﹣+﹣3﹣+=﹣.(2018甘肃)(2018内江)17.()0221( 3.14().2π-+---⨯解:原式=2﹣+12﹣1×4=+8.(2018绵阳)19.(1)计算:343-260sin 34-2731++︒.解:原式= × 3 - × +2- + ,= - +2- + ,=2.(2018南充)17.111sin 452-⎛⎛⎫++ ⎪ ⎝⎭⎝⎭.(2018成都)类型2 整式的运算 (2018温州)(2018海南)计算:(2018乌鲁木齐)(2018宜昌)16.先化简,再求值:()()()122x x x x +++-,其中4x =.解:原式224x x x =++-4x =+当4x =时,原式44=+=(2018济宁)(2018咸宁)化简:()()().123---+a a a a(2018襄阳)17.先化简,再求值:(x +y )(x -y )+y (x +2y )-(x -y )2,其中x y =2(2018巴中)24. 20y +=,求代数式2()()()2x y x y x y x ⎡⎤-++-÷⎣⎦的值.(2018扬州)19.计算或化简. (2)2(23)(23)(23)x x x +-+-.解:原式81294129422+=+-++=x x x x(2018淄博)18.先化简,再求值:()()2212a a b a a +-++,其中1,1a b ==.(2018江西)13.(1)计算:2(1)(1)(2)a a a +---. 原式 ===(2018河北)20. 嘉淇准备完成题目:化简:(2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?(2018邵阳)先化简,再求值:( a -2b )( a +2b )-(a -2b )2+8b 2,其中a =-2,b =12.解:( a -2b )( a +2b )-(a -2b )2+8b 2=a 2-(2b )2-(a 2-4ab +4b 2)+8b 2 =a 2-4b 2-a 2+4ab -4b 2+8b 2=4a b . ……………………………………………………………………………6分 将a =-2,b =12 代入得:原式=4×(-2)×12=-4. (8)(2018无锡)(2018长沙)(2018大庆)(2018衡阳)先化简,再求值:(2)(2)(1)x x x x +-+-,其中1x =-.(2018吉林)(2018宁波)19.先化简,再求值:2(1)(3)x x x -+-,其中12x =-. 解:原式=x 2﹣2x+1+3x ﹣x 2=x+1, 当x=﹣时,原式=﹣+1=.(2018重庆A 卷)21.计算: (1)()()()b a b a b a a -+-+2 【答案】 22b ab +【解析】 解: 原式=()2222b a ab a --+ =22b ab +(2018重庆B 卷)21.计算: ()()()()21 2x y x y x y +-+-类型3 分式的运算(2018深圳)18.先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中,2x = 解:原式21(1)(1)11(1)1x x x x x x x -++-=⋅=-++ 把2x =代入得:原式13=.(2018河南)16.(8分)先化简,再求值:)÷,其中x =.(2018通辽)(2018眉山)20.(本小题满分6分)先化简,再求值:(x 1-x -1x 2-x +)÷12x x x -2x 22++,其中x 满足x 2-2x -2=0.解:2(1)(1)(2)(1)=(1)(21)x x x x x x x x x +---++-原式221(1)=(1)(21)x x x x x x -++-21=x x +2220x x --=(2018临沂)20.计算:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭. (2018陕西)化简:⎝⎛⎭⎪⎫a +1a -1-a a +1÷3a +1a 2+a 解:原式=3a +1(a +1)(a -1)×a (a +1)3a +1=aa -1(2018盐城)19.先化简,再求值:21(1)11xx x -÷+-,其中1x =.(2018荆州)先化简,后求值:2211121a a a a a -⎛⎫-÷ ⎪+++⎝⎭,其中1a =. (2018湘潭)18.(6分)先化简,再求值:(1+)÷.其中x=3.解:(1+)÷=×=x+2.当x=3时,原式=3+2=5.(2018昆明)(2018聊城)18.先化简,再求值:211()122a a a a a a a a --÷-+++,其中12a =-.(2018达州)18.化简代数式:1)113(2-÷+--x xx x x x ,再从不等式组⎩⎨⎧+>+≥--131061)1(2x x x x 的解集中取一个合适的整数值代入,求出代数式的值. (2018福建)(2018白银)19.计算:22(1)b a a b a b÷---. 解:原式=()()b a a b a b a b a b -+÷+-- 2分=()()b a b a b +-﹒a bb- 3分1a b=+. 4分 (2018曲靖)(2018广州)19.已知()()229633a T a a a a -=+++.(1)化简T ;(2)若正方形ABCD 的边长为a ,且它的面积为9,求T 的值.(2018烟台)(2018淮安)18.先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3. 解:化简结果为12a -,计算结果为﹣2. (2018青岛)化简:22121x xx x ⎛⎫+-⋅ ⎪-⎝⎭.(2018宜宾)17. (2)化简:(1-2x –1)÷x –3x 2–1. 解:原式=•=x+1.(2018哈尔滨)(2018常德)19.先化简,再求值:22161()3969x x x x +++--+,其中12x =. 解:原式=[+]×(x ﹣3)2=×(x ﹣3)2=x ﹣3,把x=代入得:原式=﹣3=﹣.(2018徐州)计算:(2018娄底)20.先化简,再求值: 2211()1121xx x x x +?+-++,其中x =(2018十堰)18.化简:222111121a a a a a a --÷-+++.(2018泰安)2443(1)11m m m m m -+÷----,其中2m =.(2018长春)(2018重庆A 卷)21.计算:(2)3442322-+-÷⎪⎭⎫ ⎝⎛++-+x x x x x x【答案】22-+x x 【解析】 解: 原式=()()44333222+--⋅--+++x x x x x x x=()()()223322--⋅--+x x x x x=22-+x x(2018黔东南、黔南、黔西南)(2)先化简2221169x x x x x -⎛⎫-⋅ ⎪--+⎝⎭,再在1、2、3中选取一个适当的数代入求值.(2018恩施)17.先化简,再求值:2213212111x x x x x +⎛⎫⋅+÷ ⎪++--⎝⎭,其中1x =.(2018重庆B 卷)21.计算:()2418162 111a a a a a a --+⎛⎫--÷⎪++⎝⎭(2018成都)(2018株洲)20、(本题满分6分)先化简,再求值:22211(1)1x x x y x y++--+其中2,x y ==解:原式=()yx x x yx 2211-+⋅+ =yx y x x 22-+ =yx =2.(2018山西)(2018滨州)21. 先化简,再求值:()22222222x x yxy x y x xy y x y +⨯÷++-,其中101,2s i n 4582x y π-⎛⎫=-=- ⎪⎝⎭. 解:原式=xy (x+y )••=x ﹣y ,当x=1﹣2=﹣1,y=﹣2=﹣时,原式=﹣1.(2018毕节)22.(本题8分)先化简,再求值:44214222++÷⎪⎭⎫ ⎝⎛---a a a a a a其中a 是方程062=-+a a 的解。