2019-2020年高考数学二轮复习难点2.7立体几何中的空间角与距离教学案理
2020版高考数学二轮复习第2部分专题4立体几何第2讲空间向量与立体几何教案理

第2讲 空间向量与立体几何[做小题——激活思维]1.在正方体A 1B 1C 1D 1ABCD 中,AC 与B 1D 所成角的大小为( ) A.π6 B.π4 C.π3D.π2D [如图,连接BD ,易证AC ⊥平面BB 1D , ∴AC ⊥B 1D ,∴AC 与B 1D 所成角的大小为π2.] 2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135°D .90°C [∵m =(0,1,0),n =(0,1,1), ∴|m |=1,|n |=2,m ·n =1,∴cos〈m ,n 〉=m ·n |m ||n |=12=22,设两平面所成的二面角为α,则 |cos α|=22,∴α=45°或135°,故选C.] 3.用a ,b ,c 表示空间中三条不同的直线,γ表示平面,给出下列命题: ①若a ⊥b ,b ⊥c ,则a ∥c ;②若a ∥b ,a ∥c ,则b ∥c ; ③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b . 其中真命题的序号是( ) A .①② B .②③ C .①④D .②④D [对于①,正方体从同一顶点引出的三条直线a ,b ,c ,满足a ⊥b ,b ⊥c ,但是a ⊥c ,所以①错误;对于②,若a ∥b ,a ∥c ,则b ∥c ,满足平行线公理,所以②正确;对于③,平行于同一平面的两条直线的位置关系可能是平行、相交或者异面,所以③错误;对于④,由垂直于同一平面的两条直线平行,知④正确.故选D.]4.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________.π6[设l 与α所成的角为θ,则 sin θ=|cos 〈m ,n 〉|=12,又θ∈⎣⎢⎡⎦⎥⎤0,π2,∴θ=π6.][扣要点——查缺补漏]1.证明线线平行和线线垂直的常用方法(1)证明线线平行:①利用平行公理;②利用平行四边形进行平行转换;③利用三角形的中位线定理;④利用线面平行、面面平行的性质定理进行平行转换.如T 3.(2)证明线线垂直:①利用等腰三角形底边上的中线即高线的性质;②勾股定理;③线面垂直的性质.2.证明线面平行和线面垂直的常用方法(1)证明线面平行:①利用线面平行的判定定理;②利用面面平行的性质定理. (2)证明线面垂直:①利用线面垂直的判定定理;②利用面面垂直的性质定理. 3.异面直线所成的角求法 (1)平移法:解三角形.(2)向量法:注意角的范围.如T 1. 4.二面角的求法cos θ=cos 〈m ,n 〉=m ·n|m ||n |,如T 2.5.线面角的求法sin θ=|cos 〈m ,n 〉|,如T 4.利用空间向量求空间角(5年15考)[高考解读] 主要考查通过建立空间直角坐标系,解决空间图形中的线线角、线面角和面面角的求解,考查学生的空间想象能力、运算能力、三种角的定义及求法等.(2018·全国卷Ⅱ)如图,在三棱锥P ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C 为30°,求PC 与平面PAM 所成角的正弦值.切入点:(1)借助勾股定理,证明PO ⊥OB ;(2)建立空间直角坐标系,利用二面角M PA C 为30°求出点M 的坐标,进而求出PC 与平面PAM 所成角的正弦值.[解](1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,知PO ⊥平面ABC . (2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面PAC 的一个法向量OB →=(2,0,0).设M (a,2-a,0)(0≤a ≤2),则AM →=(a,4-a,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得⎩⎨⎧2y +23z =0,ax +-a y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23a -2a -2+3a 2+a2.由已知可得|cos 〈OB →,n 〉|=32,所以23|a -4|2a -2+3a 2+a2=32, 解得a =-4(舍去),a =43,所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. [教师备选题]1.(2015·全国卷Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.[解](1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt△EBG 中,可得BE =2,故DF =22. 在Rt△FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC . 因为EG平面AEC ,所以平面AEC ⊥平面AFC .(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G xyz .由(1)可得A (0,-3,0),E (1,0,2),F -1,0,22,C (0,3,0), 所以A E →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈A E →,CF →〉=A E →·CF →|A E →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 2.(2019·全国卷Ⅰ)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A MA 1N 的正弦值.[解](1)连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1DC ,可得B 1C A 1D ,故ME ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥D A.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,则 ⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0.所以⎩⎨⎧-x +3y -2z =0,-4z =0.可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量,则 ⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0.所以⎩⎨⎧-3q =0,-p -2r =0.可取n =(2,0,-1).于是cos 〈m ,n 〉=m·n |m||n|=232×5=155,所以二面角A MA 1N 的正弦值为105.1.利用向量法求线面角的两种方法(1)法一:分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)法二:通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.2.利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.提醒:判断二面角的平面角是锐角还是钝角,可结合图形进行.1.[一题多解](以圆柱为载体)如图,圆柱的轴截面ABCD 为正方形,E 为弧BC 的中点,则异面直线AE 与BC 所成角的余弦值为 ( )A.33 B.55 C.306D.66D [法一:(平移法)取BC 的中点H ,连接EH ,AH ,∠EHA =90°,设AB =2,则BH =HE =1,AH =5,所以AE =6,连接ED ,ED =6,因为BC ∥AD ,所以异面直线AE 与BC 所成角即为∠EAD ,在△EAD 中cos∠EAD =6+4-62×2×6=66,故选D.法二:(向量法)取圆柱底面的圆心O 为原点,建立空间直角坐标系O xyz ,设AB =2,则A (1,0,0),B (1,0,2),C (-1,0,2),E (0,1,2),∴A E →=(-1,1,2),BC →=(-2,0,0)∴cos〈A E →,BC →〉=26×2=66,故选D.] 2.(以棱柱为载体)在三棱柱ABC A1B 1C 1中, AB ⊥平面BCC 1B 1,∠BCC 1=π3, AB =BC =2, BB 1=4,点D 在棱CC 1上,且CD =λCC 1(0<λ≤1).建立如图所示的空间直角坐标系.(1)当λ=12时,求异面直线AB 1与A 1D 的夹角的余弦值;(2)若二面角A B 1D A 1的平面角为π3,求λ的值.[解](1)易知A ()0,0,2, B 1()0,4,0, A 1()0,4,2. 当λ=12时, 因为BC =CD =2, ∠BCC 1=π3,所以C ()3,-1,0,D ()3,1,0.所以AB 1→=()0,4,-2, A 1D →=()3,-3,-2. 所以cos 〈AB 1→,A 1D →〉=AB 1→·A 1D→||AB 1→||A 1D →=0×3+4×()-3+()-2×()-242+()-22·()32+()-32+()-22=-55. 故异面直线AB 1与A 1D 的夹角的余弦值为55. (2)由CD =λCC 1可知, D ()3,4λ-1,0, 所以DB 1→=()-3,5-4λ,0, 由(1)知, AB 1→=()0,4,-2.设平面AB 1D 的法向量为m =()x ,y ,z , 则⎩⎪⎨⎪⎧AB 1→·m =0,DB 1→·m =0,即⎩⎨⎧4y -2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =2,所以平面AB 1D 的一个法向量为m =⎝ ⎛⎭⎪⎫5-4λ3,1,2.设平面A 1B 1D 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧B 1A 1→·n =0,DB 1→·n =0,即⎩⎨⎧2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =0,所以平面A 1B 1D 的一个法向量为n =⎝ ⎛⎭⎪⎫5-4λ3,1,0.因为二面角A B 1D A 1的平面角为π3,所以||cos 〈m ,n 〉=|m·n |||m ||n=⎪⎪⎪⎪⎪⎪5-4λ3×5-4λ3+1×1+2×0⎝ ⎛⎭⎪⎫5-4λ32+12+22·⎝ ⎛⎭⎪⎫5-4λ32+12=12, 即()5-4λ2=1,解得λ=32(舍)或λ=1,故λ的值为1.3.(以棱台为载体)如图,在三棱台DEF ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.[解](1)证明:在三棱台DEF ABC 中, 由BC =2EF ,H 为BC 的中点, 可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形, 可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点, 所以GH ∥AB .又GH ∩HF =H ,所以平面FGH ∥平面ABED . 因为BD平面ABED ,所以BD ∥平面FGH .(2)设AB =2,则CF =1.在三棱台DEF ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形, 因此DG ∥FC . 又FC ⊥平面ABC , 所以DG ⊥平面ABC .连接GB ,在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 的中点, 所以AB =BC ,GB ⊥GC , 因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G xyz .所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1).可得H ⎝⎛⎭⎪⎫22,22,0,F (0,2,1). 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1).设n =(x ,y ,z )是平面FGH 的法向量,则 由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2). 因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0), 所以cos 〈GB →,n 〉=GB →·n |GB →|·|n |=222=12.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°. 4.(以五面体为载体)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D AF E 与二面角C BE F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E BC A 的余弦值.[解](1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,DF ∩EF =F , 所以AF ⊥平面EFDC .又AF 平面ABEF ,故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF . 以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G xyz .由(1)知∠DEF 为二面角D AF E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得,AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C BE F 的平面角,∠CEF =60°.从而可得C (-2,0,3).连接AC ,所以E C →=(1,0,3),E B →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·E C →=0,n ·E B →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4). 则cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E BC A 的余弦值为-21919.利用空间向量解决折叠性问题(5年3考)[高考解读] 以平面图形的翻折为载体,考查空间想象能力,在线面位置关系的证明中考查逻辑推理能力,在空间角的求解中,考查转化化归及数学运算的核心素养.1.(2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 切入点:(1)对照折叠前后的线面关系给予证明; (2)建立空间直角坐标系通过向量法求解. [解](1)由已知可得,BF ⊥PF ,BF ⊥EF ,又PF 平面PEF ,EF平面PEF ,且PF ∩EF =F ,所以BF ⊥平面PEF .又BF平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD . 以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,PF 2+PE 2=EF 2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. [教师备选题](2016·全国卷Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B D ′A C 的正弦值. [解](1)证明:由已知得AC ⊥BD ,AD =CD .又由AE =CF 得A EAD =CFCD,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4.由EF ∥AC ,得OH DO =A E AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD . (2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则 ⎩⎪⎨⎪⎧ m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧ 3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则 ⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m·n |m||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B D ′A C 的正弦值是29525.平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变和不变,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(以梯形为载体)如图,等腰梯形ABCD 中,AB ∥CD ,AD =AB =BC =1,CD =2,E 为CD 中点,以AE 为折痕把△ADE 折起,使点D 到达点P 的位置(P 平面ABCE ).(1)证明:AE ⊥PB ;(2)若直线PB 与平面ABCE 所成的角为π4,求二面角A PE C 的余弦值.[解](1)证明:连接BD ,设AE 的中点为O , ∵AB ∥CE ,AB =CE =12CD ,∴四边形ABCE 为平行四边形,∴AE =BC =AD =DE , ∴△ADE ,△ABE 为等边三角形, ∴OD ⊥AE ,OB ⊥AE , 又OP ∩OB =O , ∴AE ⊥平面POB ,又PB 平面POB ,∴AE ⊥PB .(2)在平面POB 内作PQ ⊥平面ABCE ,垂足为Q ,则Q 在直线OB 上, ∴直线PB 与平面ABCE 夹角为∠PBO =π4,又OP =OB ,∴OP ⊥OB ,∴O 、Q 两点重合,即PO ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系, 则P ⎝ ⎛⎭⎪⎫0,0,32,E ⎝ ⎛⎭⎪⎫12,0,0,C ⎝ ⎛⎭⎪⎫1,32,0,∴P E →=⎝ ⎛⎭⎪⎫12,0,-32,E C →=⎝ ⎛⎭⎪⎫12,32,0,设平面PCE 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·P E →=0,n 1·E C →=0,即⎩⎪⎨⎪⎧12x -32z =0,12x +32y =0,令x =3得n 1=(3,-1,1), 又OB ⊥平面PAE ,∴n 2=(0,1,0)为平面PAE 的一个法向量,设二面角A EP C 为α,则|cos α|=cos 〈n 1,n 2〉=|n 1·n 2||n 1||n 2|=15=55,易知二面角A EP C 为钝角,所以cos α=-55.立体几何的综合问题(5年3考)[高考解读] 将圆的几何性质、空间线面的位置关系、空间几何体的体积等知识融于一体,综合考查学生的逻辑推理能力.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 切入点:(1)借助圆的几何性质得出DM ⊥CM ,进而借助面面垂直的判定求解. (2)借助体积公式先探寻M 点的位置,建系借助坐标法求解. [解](1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz . 当三棱锥M ABC 体积最大时,M 为CD ︵的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2).DA →是平面MCD 的法向量,因为cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.存在性问题的求解策略(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“是否有解”“是否有规定范围内的解”等.(2)对于位置探究型问题,通常是借助向量,引入参数,综合条件和结论列方程,解出参数,从而确定位置.(3)在棱上是否存在一点时,要充分利用共线向量定理.(探索位置型)如图所示,四棱锥P ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°,且AB =AP .(1)若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;(2)在线段AD 上是否存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由. [解] (1)以A 为坐标原点,建立空间直角坐标系A xyz ,如图1所示.图1在平面ABCD 内,作CE ∥AB ,交AD 于点E ,则CE ⊥AD . 在Rt△CDE 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 设AB =AP =t (t >0),则B (t,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,∴E (0,3-t,0),C (1,3-t,0),D (0,4-t,0), ∴CD →=(-1,1,0),PD →=(0,4-t ,-t ). 设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥CD →,n ⊥PD →得⎩⎪⎨⎪⎧-x +y =0,-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). cos 60°=|n ·PB →||n |·|PB →|,即|2t 2-4t |t 2+t 2+-t 2·2t 2=12, 解得t =45或t =4(舍去,因为AD =4-t >0),∴AB =45.(2)法一:(向量法)假设在线段AD 上存在一点G (如图2所示),使得点G 到点P ,B ,C ,D 的距离都相等.设G (0,m,0)(其中0≤m ≤4-t ),则GC →=(1,3-t -m,0),GD →=(0,4-t -m,0),GP →(0,-m ,t ).图2由|GC →|=|GD →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m . ①由|GD →|=|GP →|,得(4-m -t )2=m 2+t 2. ② 由①,②消去t ,化简得m 2-3m +4=0. ③由于方程③没有实数根,所以在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等. 法二:(几何法)假设在线段AD 上存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等.图3由GC =GD 得∠GCD =∠GDC =45°, ∴∠CGD =90°,即CG ⊥AD , ∴GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 如图3所示,在Rt△ABG 中,GB =AB 2+AG 2=λ2+-λ2=2⎝⎛⎭⎪⎫λ-322+92>1, 这与GB =GD 矛盾.∴在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等.。
高考复习专题--数学空间角教案

2014年高考数学第二轮复习专题立体几何---空间角【考点审视】立体几何高考命题及考查重点、难点稳定:高考始终把空间直线与直线、直线与平面、平面与平面的平行与垂直的性质与判定、线面间的角与距离的计算作为考查的重点,尤其是以多面体和旋转体为载体的线面位置关系的论证,更是年年反复进行考查,在难度上也始终以中等偏难为主。
空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,空间角高考中每年必考,复习时必须高度重视。
对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.考试要求考点1:掌握空间两异面直线所成的角、直线与平面所成的角、二面角、二面角的平面角等概念;考点2:能熟练地在图形中找出相关的角并证明;考点3:能用向量方法和非向量方法进行计算;考点4:通过空间角的计算和应用进一步考察运算能力、逻辑推理能力及空间想象能力.【高考链接】1.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决.2. 三种空间角,即异面直线所成角、直线与平面所成角、平面与平面所成二面角。
它们的求法一般化归为求两条相交直线的夹角,通常“线线角抓平移,线面角找射影,面面角作平面角”而达到化归目的,有时二面角大小出通过cos θ=原射S S 来求。
3. 由于近年考题常立足于棱柱、棱锥和正方体,因此复习时应注意多面体的依托作用,熟练多面体性质的应用,才能发现隐蔽条件,利用隐含条件,达到快速准确解题的目的。
【复习回顾】(一)空间角三种角的定义异面直线所成的角(1)定义:,a b 是两条异面直线,经过空间任意一点o ,分别引直线//'a a ,//'b b ,则'a 和'b 所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:090θ≤≤. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小. 直线和平面所成的角(1)定义 和平面所成的角有三种:斜线和平面所成的角 这条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.垂线与平面所成的角 直线垂直于平面,则它们所成的角是直角. 一条直线和平面平行,或在平面内,则它们所成的角是0°的角. (2)取值范围090θ≤≤° (3)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ. ②解含θ的三角形,求出其大小. ③最小角定理斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面内任何直线所成的角二面角及二面角的平面角 (1)半平面 (2)二面角.(3)二面角的平面角 二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180°②二面角的平面角具有下列性质:二面角的棱垂直于它的平面角所在的平面。
高三立体几何重点专题复习教案(空间角)

分析:要求二面角的正弦值,首先要找到二面角的平面角
解:过 作 于 ,过 作 交 于 ,连结 ,
则 垂直于平面 , 为二面角 的平面角,
∴ ,
又 平面 ,∴ , ,ຫໍສະໝຸດ ∴ 平面 ,∴ , ,又∵ , ,
∴ 平面 ,∴ ,
设 ,则 ,
在 中, ,∴ ,
同理, 中, , ∴ ,
(2)A、D的连线和直线BC所成的角;
(3)二面角A—BD—C的正切值;
10答案.(1) (2) (3)-2
∴AC与PB所成的余弦值
(3)解:作AN⊥CM,垂足为N,连结BN,在Rt△PAB中,AM=MB,又AC=CB,∴△AMC≌△BMC.∴BN⊥CM,故∠ANB为所求二面角的平面角。∵CB⊥AC,由三垂线定理,得CB⊥PC,
在Rt△PCB中,CM=MB,所以CM=AM.在等腰三角形AMC中, ∴ ∵AB=2,∴
故所求的二面角余弦值为说明:本题也可通过建立坐标系采用向量方法求解.
7.如图所示,正三角形ABC的边长为3,过其中心G作BC边的平行线,分别交AB\AC于B1,C1,将△AB1C1折起到△A1B1C1的位置.使点A1在平面BB1C1C上的射影恰是线段BC的中点M,求(1)二面角A1—B1C1—M的大小。(2)异面直线A1B1与CC1所成角的余弦值大小。
2、直线与平面所成角的定义?直线与平面所成角的范围是什么?怎样求直线与平面所成的角?
3、二面角的定义?怎样定义二面角的平面角?二面角的平面角的范围?怎样确定二面角的平面角?
二、基本技能训练讲评:
在一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的大小关系是( )
(A)相等(B)互补
高考数学第二轮复习教案空间角与距离的计算 教案

EA BC D A1B1C1D1FGH IJ高考数学第二轮复习教案空间角与距离的计算考点核心整合一.空间角计算空间角,其一般方法是根据定义通过作辅助线或辅助面构造出要求的角θ并作出含有角θ的三角形,从而通过解三角形得角θ的值.1.求异面直线所成角的常用方法(1)平移法(定义法):即根据定义找出或作出有关角的图形并证明它符合定义,进而求出角的大小.(2)补形法:有时在原几何体上补一个类似的几何体.2.求直线与平面所成角的常用方法(1)定义法:关键是作出斜线在平面内的射影,即关键是判断射影在平面内的位置.(2)公式法:cosθ= cosθ1cosθ2(其中θ1为所求线面角,θ为斜线与平面内任一直线所成的角,θ2为射影与该直线所成的角).3.二面角的定义从一条直线出发的两个半平面所组成的图形叫做二面角.(1)二面角定量地反映了两个平面相交的位置关系,它是转化成平面内两条相交直线所成的角(二面角的平面角)度量的,与顶点在棱上的位置无关.(2)求二面角大小的三个步骤:①找出或作出二面角的平面角(本着先找后作的原则);②证明符合定义;③指出某角即为二面角的平面角并计算(往往把该平面角放置到一个三角形中去求).简单地表述为:一作,二证,三计算.二面角的大小,课本中给出了具体范围,即为[0,π].(3)求作二面角的平面角的方法:①定义法:在棱上找一点O,在二面角的两个面内分别作棱的垂线AO、BO,则∠AOB即为二面角的平面角.②用三垂线定理(或逆定理)作二面角的平面角:从二面角的一个面内选一个特殊点A,由A向另一个平面作垂线,垂足为B,再由B向棱作垂线交于点C,则∠ACB即为二面角的平面角.③作棱的垂面:作垂直于二面角的棱或二面角两个半平面的垂面,则该垂面与两个半平面交线所成的角就是二面角的平面角.④面积法:如果一个多边形在一个平面内的射影是一个多边形,且这两个多边形所在平面所成的二面角为θ,则cosθ=S射影多边形S斜多边形.⑤对于未给棱的二面角的求法,一般情况下首先作棱或在有利条件下利用射影公式求更方便.二、空间的距离立体几何中涉及到的距离有八种:两点间距离、点到直线距离、点到平面距离、两平行线间距离、异面直线间距离、与平面平行的直线到平面的距离、两平行平面间的距离以及求球面上两点间距离.这八种距离都归结到求点到点、点到直线、点到面这三种距离.求距离问题的解题步骤是找到表示该距离的线段,证明该线段合题意,得到该线段所在三角形,解这个三角形,求出距离.1.求异面直线间距离大体有如下的解法:(1)作出两条异面直线的公垂线段然后求之;(2)将异面直线间距离转化为线面之间的距离;(3)将异面直线间距离转化为面面之间的距离;(4)运用“两条异面直线间距离,是分别在两条异面直线上的两点间距离的最小值”这一概念求之;(5)利用体积法(主要是指三棱锥的体积)求之.2.点到直线或平面的距离是空间最常见的,求解的关键是正确作出图形,其中确定垂足位置最重要,应充分利用图形性质,注意各种距离之间的相互转化,等积求法及“平行移动”的思想方法.3.求距离的方法大致有两种:(1)直接法:步骤是“一作,二证,三计算”,即先作出表示该距离的线段,再证明该线段即为所求距离,然后再计算,不能忽视第二步的证明.(2)间接法:包括等积法和转化法,转化法即不断地进行点面、线面、面面距离之间的转化,直到求出为止.考题名师诠释【例1】已知正方体ABCD—A1B1C1D1的棱长为1,在正方体表面上与点A距离为233的点的集合形成一条曲线,则这条曲线的长度为.解析如右图,题目即以A为球心,233为半径的球面与正方体六个面交线的长度,而这条交线有六条弧构成,即EFGHIJ.由对称性知EF = GH = IJ,FG = HI = JE,所以,所求曲线长l = 3(EF⌒+ FG⌒).由AE =233,AA1 = 1,ABCDEOFG则AF = AE = 233,A 1E = AE 2 - AA 12= 33,A 1F = A 1E = 33,∠A 1AE = ∠A 1AF = π6.由对称性∠FAG = π2 -∠A 1AE = π2 - 2×π6 = π6.因此EF ⌒为以A 1为圆心、33为半径、π2为圆心角的一段弧,故EF ⌒= A 1E × π2 = 3π6.同理,FG 为以A 为圆心,233为半径、π6为圆心角的一段圆弧.故FG ⌒= AF × π6 = 3π9.所以,所求曲线的长l = 3(3π6+ 3π9) = 53π6. 答案 53π6.评叙 本题以正方体各侧面截球面求交线为背景,全面考查空间想象能力和分析解决问题的能力.考虑正方体各面与球面的交线时,应知道截线都是圆弧,但不过球心A 的面截球面所的截线是小圆的圆弧,而经过球心A 的面截球面所得的是大圆的圆弧.【例2】(2005年福建卷,20)如图,直二面角D -AB -E 中,四边形ABCD 是边长为2的正方形,AE = EB ,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥平面BCE ; (2)求二面角B -AC -E 的大小;(3)求点D 到平面ACE 的距离. (1)证明:∵BF ⊥平面ACE ,∴BF ⊥AE .∵二面角D -AB -E 为直二面角,且CB ⊥AB ,∴CB ⊥平面ABE .∴CB ⊥AE . ∴AE ⊥平面BCE .(2)解:连结BD 交AC 于点G ,,连结FG . ∵正方形ABCD 的边长为2,∴BG ⊥AC ,BG = 2. ∵BF ⊥平面ACE ,由三垂线定理的逆定理,得FG ⊥AC . ∴∠BGF 是二面角B -AC -E 的平面角. 由(1)AE ⊥平面BCE ,∴AE ⊥EB .又∵AE = EB ,∴在等腰直角△AEB 中,BE = 2.又∵直角△BCE 中,EC = BC 2 + BE 2= 6,BF =BC ·BE EC = 2×26= 233, ∴Rt △BFG 中,sin ∠BGF = BF BG = 2332 = 63.∴二面角B -AC -E 等于arcsin63. (3)解:过E 作EO ⊥AB 交AB 于点O ,OE = 1. ∵二面角D -AB -E 为直二面角,∴EO ⊥平面ABCD . 设D 到平面ACE 的距离为h ,∵V D —ACE = V E —ACD , ∴13S △ACE ·h = 13S △ACD ·EO .∵AE ⊥平面BCE ,∴AE ⊥EC .∴h = 12AD ·DC ·EO 12AE ·EC = 12×2×2×112×2×6 = 233.∴点D 到平面ACE 的距离为233.评叙 本题主要考查直线、直线与平面、二面角及点到平面的距离等基础知识,考查空间想象能力、逻辑思维能力与运算能力.【例3】(2005年北京卷,理16)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,AB = AD = 2,DC = 23,AA 1 = 3,AD ⊥DC ,AC ⊥BD ,垂足为E .(1)求证:BD ⊥A 1C ;(2)求二面角A 1- BD –C 1的大小;(3)求异面直线AD 与BC 1所成的角的大小. (1)证明: 在直四棱柱ABCD -A 1B 1C 1D 1中,∵A 1A ⊥底面ABCD .∴AC 是A 1C 在平面ABCD 上的射影.∵BD ⊥AC ,∴BD ∥A 1C . (2)解:连结A 1E 、C 1E 、A 1C 1.与(1)同理可证BD ⊥A 1E ,BD ⊥C 1E ,∴∠A 1EC 1为二面角A 1- BD –C 1的平面角. ∵AD ⊥DC ,∴∠A 1D 1C 1 = ∠ADC = 90º.又A 1D 1 = AD = 2,D 1C 1 = DC = 23,AA 1 = 3,且AC ⊥BD ,∴A 1C 1 = 4, AE = 1,EC = 3.∴A 1E = 2,C 1E = 23. 在△A 1EC 1中,A 1C 12= A 1E 2+ C 1E 2,∴∠A 1EC 1 = 90º,即二面角A 1- BD –C 1的大小为90º.BA CD E FABCD(3)解:过B 作BF ∥AD 交AC 于点F ,连结FC 1, 则∠C 1BF 就是AD 与BC 1所成的角. ∵AB = AD = 2,AC ⊥BD ,AE = 1, ∴BF = 2,EF = 1,FC = 2,BC = DC . ∴FC 1 = 7,BC 1 = 15.在△BFC 1中,cos ∠C 1BF = 15 + 4 - 72×2×15 = 155.∴∠C 1BF = arccos155,即异面直线AD 与BC 1所成的角的大小为arccos 155. 【例4】(2004年全国卷Ⅰ,20)如图,已知四棱锥P —ABCD ,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120º. (1)求点P 到平面ABCD 的距离;(2)求面APB 与面CPB 所成的二面角的大小. 解(1):如图,作PO ⊥平面ABCD ,垂足为点O . 连结OB 、OA 、OD ,OB 与AD 交于点E ,连结PE . ∵AD ⊥PB ,∴AD ⊥OB .∵PA = PD ,∴OA = OD . 于是OB 平分AD ,点E 为AD 的中点,∴PE ⊥AD .由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角,∴∠PEB = 120º,∠PEO = 60º. 由已知可求得PE = 3.∴PO = PE ·sin60º = 3×32 = 32.即点P 到平面ABCD 的距离为32.(2)如图,取PB 的中点G ,PC 的中点F , 连结EG 、AG 、GF ,则AG ⊥PB ,FG ∥BC ,FG = 12BC .∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB .∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG .又∵PE = BE ,∴EG ⊥PB ,且∠PEG = 60º. 在Rt △PEG 中,EG = PE ·cos60º = 32.在Rt △PEG 中,EG = 12AD = 1.于是tan ∠GAE = EG AE =32.又∠AGF = π - ∠GAE , ∴所求二面角的大小为π - arctan32. 评叙 本题主要考查棱锥、二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力. 特别提示1.求二面角的平面角的步骤:(1)先作出二面角的平面角,其作法有定义法、根据三垂线定理及其逆定理、垂面法;(2)根据作法构造三角形,在直角三角形中,用解直角三角形的方法;在斜三角形中,利用正、余弦定理求二面角的平面角.2.二面角的计算方法常用的还有:射影面积法,向量法.利用这些方法可在不作出二面角的平面角的情况下求出二面角的平面角.考能提升训练一、选择题1.(2005年湖南卷,5)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面的中心,则O 到平面ABC 1D 1的距离为 ………( )A .12B .24C .22D .322.对于已知直线a ,如果直线b 同时满足下列三个条件:①与a 是异面直线;②与a 所成的角为定值 ;③与a 的距离为定值d .那么这样的直线b 有 ……………………………( ) A .1条B .2条C .3条D .无数条3.如图,在正三棱锥P -ABC 中,M 、N 分别是侧棱PB 、PC 的中点,若截面AMN ⊥侧面PBC ,则此三棱锥的侧棱与底面所成角的正切值 是…………………………………………… ( )A .32B . 2C .52D .634.如图,ABC -A 1B 1C 1是直三棱柱,∠BCA = 90º,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC = CA = CC 1,则BD 1与AF 1所成角的余弦值是………………………………………………………………( )A .3010B .12C .3015D .15105.正方形ABCD 的边长是2,E 、F 分别是AB 和CD 的中点,将正方形沿EF 折成直二面角(如图所示).M 为矩形AEFD 内一点,如果ABCDPABCD PE OABCDPE OG F ABD OA 1B 1C 1D 1ABCPMNABCA 1B 1C 1D 1 F 1DMB CF∠MBE = ∠MBC ,MB 和平面BCE 所成角的正切值为12,那么点M到直线EF 的距离为………………………………… ( ) A .22B .1C .32D .12二、填空题6.长方体的一条对角线与交于一点的三个面所成的角分别为α、β、γ,那么下列命题: ①sin 2α+ sin 2β+ sin2γ= 1;②sin 2α+ sin 2β+ sin 2γ= 2;③cos 2α+ cos 2β+ cos 2γ= 1;④cos 2α+ cos 2β+ cos 2γ= 2.其中正确命题的序号是 .7.(2005年江西卷,理15)如图,在直三棱柱ABC -A 1B 1C 1中,AB = BC = 2,BB 1 = 2,∠ABC = 90º,E 、F 分别为AA 1、 C 1B 1的中点,沿棱柱的表面从E 到F 两点的最短路径的长度为 . 三、解答题8.(2004年春季北京卷,17)如图,四棱锥S -ABCD 的底面是边长为1的正方形,SD ⊥底面ABCD ,SB = 3.(1)求证:BC ⊥SC ;(2)求面ASD 与面BSC 所成二面角的大小;(3)设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小.9.(2005年湖北卷,理20)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,AB = 3,BC = 1,PA = 2,E 为PD 的中点.(1)求直线AC 与PB 所成角的余弦值;(2)在侧面PAB 内找一点N ,使NE ⊥面PAC ,并求出N 点到AB 和AP 的距离.B A 1BCA DSMBA10.如图所示,在矩形ABCD 中,AB = 1,BC = a ,PA ⊥平面ABCD ,PA = 1. (1)在BC 边上是否存在点Q ,使得PQ ⊥QD ?说明理由.(2)若BC 边上有且仅有一个点Q ,使PQ ⊥QD ,求AD 与平面PDQ 所成的角的正弦值. (3)在(2)的条件下,能求出平面PQD 与平面PAB 所成的角的大小吗?训练参考答案一、1.B 2.D 3.C 4.A 5.A 二、6.①④ 7.322三、8.(1)略;(2)45º;(3)90º.9.(1)3714(2)在面ABCD 内过点D 作AC 的垂线交AB 于点F ,连结PF ,N 为PF 的中点,N 点到AB 的距离为1,N 点到AP的距离为36. 10.(1)a ≥2时,BC 边上存在存在点Q ,使得PQ ⊥QD ;a <2时,不存在点Q ,使得PQ ⊥QD ;(2)66;(3)能,大小为arctan 5. BCA DP Q。
2020高考数学二轮复习 专题二 立体几何 第3讲 空间角学案

第3讲 空间角[考情考向分析] 以空间几何体为载体考查空间角是高考命题的重点,热点为异面直线所成的角、直线与平面所成的角和二面角的求解,向量法作为传统几何法的补充,为考生答题提供新的工具.热点一 异面直线所成的角(1)几何法:按定义作出异面直线所成的角(即找平行线),解三角形.(2)向量法:设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).设l ,m 的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21 a 22+b 22+c 22. 例1 (1)(2018·全国Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( ) A.15 B.56 C.55 D.22 答案 C解析 方法一 如图,在长方体ABCD -A 1B 1C 1D 1的一侧补上一个相同的长方体A ′B ′BA -A 1′B 1′B 1A 1.连接B 1B ′,由长方体性质可知,B 1B ′∥AD 1,所以∠DB 1B ′为异面直线AD 1与DB 1所成的角或其补角.连接DB ′,由题意,得DB ′=12+(1+1)2=5,B ′B 1=12+(3)2=2,DB 1=12+12+(3)2= 5.在△DB ′B 1中,由余弦定理,得DB ′2=B ′B 21+DB 21-2B ′B 1·DB 1·cos∠DB 1B ′,即5=4+5-2×25cos∠DB 1B ′,∴cos∠DB 1B ′=55. 故选C.方法二 如图,以点D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴建立空间直角坐标系D -xyz .由题意,得A (1,0,0),D (0,0,0),D 1(0,0,3),B 1(1,1,3),∴AD 1→=(-1,0,3),DB 1→=(1,1,3),∴AD 1→·DB 1→=-1×1+0×1+(3)2=2, |AD 1→|=2,|DB 1→|=5, ∴cos〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→|·|DB 1→|=225=55.故选C.(2)(2018·浙江省杭州二中月考)已知异面直线a ,b 所成的角为50°,过空间一定点P 最多可作n 条直线与直线a ,b 均成θ角,则下列判断不正确的是( ) A .当θ=65°时,n =3 B .当n =1时,θ只能为25° C .当θ=30°时,n =2 D .当θ=75°时,n =4答案 B解析 将空间直线平移,异面直线的夹角不变,则可将异面直线a ,b 平移到同一平面α内,使得点P 为平移后的直线a ′,b ′的交点,则当0°≤θ<25°时,n =0;当θ=25°时,n =1,此时该直线为直线a ′,b ′所成锐角的角平分线所在的直线;当25°<θ<65°时,n =2,此时这两条直线在平面α内的投影为直线a ′,b ′所成锐角的角平分线所在的直线;当θ=65°时,n =3,此时其中两条直线在平面α内的投影为直线a ′,b ′所成锐角的角平分线所在的直线,另一条直线为直线a ′,b ′所成钝角的角平分线所在的直线;当65°<θ<90°时,n =4,此时其中两条直线在平面α内的投影为直线a ′,b ′所成锐角的角平分线所在的直线,另外两条直线在平面α内的投影为直线a ′,b ′所成钝角的角平分线所在的直线;当θ=90°时,n =1,此时直线为过点P 且与平面α垂直的直线.综上所述,B 选项的说法错误,故选B.思维升华 (1)运用几何法求异面直线所成的角一般是按找—证—求的步骤进行. (2) 两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|. 跟踪演练1 (2018·浙江省衢州二中模拟)如图,已知等腰三角形ABC 中,AB =AC ,O 为BC 的中点,动点P 在线段OB 上(不含端点),记∠APC =θ,现将△APC 沿AP 折起至△APC ′,记异面直线BC ′与AP 所成的角为α,则下列结论一定成立的是( )A .θ>αB .θ<αC .θ+α>π2D .θ+α<π2答案 A解析 设PC →=λBC →,则cos θ=|PA →·PC →||PA →||PC →|=|PA →·λBC →||PA →||λBC →|=|PA →·BC →||PA →||BC →|=|PA →·(BP →+PC →)||PA →|·(|BP →|+|PC →|), 因为cos α=|PA →·BC ′→||PA →||BC ′→|=|PA →·(BP →+PC ′→)||PA →||BC ′→|,且PA →·PC →=PA →·PC ′→,|BP →|+|PC →|=|BP →|+|PC ′→|>|BC ′→|, 所以cos θ<cos α,又θ,α∈⎝⎛⎭⎪⎫0,π2,所以θ>α,故选A.热点二 直线与平面所成的角(1)几何法:按定义作出直线与平面所成的角(即找到斜线在平面内的投影),解三角形. (2)向量法:设直线l 的方向向量为a =(a 1,b 1,c 1),平面α的法向量为μ=(a 2,b 2,c 2),设直线l 与平面α的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|.例2 (2018·浙江省名校协作体联考)在如图所示的几何体中,平面DAE ⊥平面ABCD ,四边形ABCD 为等腰梯形,四边形DCFE 为菱形.已知AB ∥CD ,∠ABC =60°,CD =12AB =1.(1)线段AC 上是否存在一点N ,使得AE ∥平面FDN ?证明你的结论;(2)若线段FC 在平面ABCD 上的投影长度为12,求直线AC 与平面ADF 所成角的正弦值.解 (1)在线段AC 上存在点N ,使得AE ∥平面FDN ,且N 是AC 的中点.如图,取AC 的中点N ,连接NF ,DN ,连接EC 交DF 于点O ,连接ON . ∵四边形CDEF 为菱形, ∴O 为EC 的中点.在△ACE 中,由中位线定理可得ON ∥AE .∵ON ⊂平面FDN ,AE ⊄平面FDN ,∴AE ∥平面FDN ,∴在线段AC 上存在点N ,使得AE ∥平面FDN ,且N 是AC 的中点. (2)方法一 ∵DE ∥CF ,∴DE 在平面ABCD 上的投影长度为12,过点E 作EO ⊥AD 于点O ,∵平面DAE ⊥平面ABCD ,且平面DAE ∩平面ABCD =AD ,EO ⊂平面DAE , ∴EO ⊥平面ABCD ,则OD =12,∵在等腰梯形ABCD 中,由已知易得AD =BC =1, ∴点O 为线段AD 的中点. 设点C 到平面FDA 的距离为h , ∵V C -FDA =V F -ADC , ∴h ·S △FDA =EO ·S △ADC , 易知S △ADC =34,EO =32, 取AB 的中点M ,连接CM ,取CM 的中点P ,连接AP ,DP ,FP ,OP .∵O ,P 分别为AD ,MC 的中点,AM ∥DC ∥EF ,且AM =DC =EF ,∴OP ∥EF 且OP =EF , ∴四边形OPFE 为平行四边形,∴OE ∥FP ,OE =FP , ∴FP ⊥平面ABCD . 易求得AP =72,DP =FP =32,∴AF=102,DF=62,∴DF2+AD2=AF2,∴△ADF为直角三角形,∴S△FDA=64.∴h=EO·S△ADCS△FDA=32×3464=64.设直线AC与平面FDA所成的角为θ,在△ADC中,易得AC=3,则sin θ=hAC=24.方法二∵DE∥CF,∴DE在平面ABCD上的投影长度为12,过点E作EO⊥AD于点O,∵平面DAE⊥平面ABCD,且平面DAE∩平面ABCD=AD,EO⊂平面DAE.∴EO⊥平面ABCD,则OD=12,∵在等腰梯形ABCD中,由已知易得AD=BC=1.∴点O为线段AD的中点.以O为原点,OE所在直线为z轴,过O且平行于DC的直线为y轴,过O且垂直于yOz平面的直线为x轴建立空间直角坐标系,易得x轴在平面ABCD内.可得A⎝⎛⎭⎪⎫34,-14,0,C⎝⎛⎭⎪⎫-34,54,0,D⎝⎛⎭⎪⎫-34,14,0,E⎝⎛⎭⎪⎫0,0,32,∴AC→=⎝⎛⎭⎪⎫-32,32,0,DA→=⎝⎛⎭⎪⎫32,-12,0,DF→=DE→+EF→=DE→+DC→=⎝⎛⎭⎪⎫34,-14,32+(0,1,0)=⎝⎛⎭⎪⎫34,34,32.设平面ADF的法向量为n=(x,y,z),则⎩⎪⎨⎪⎧n·DA→=0,n·DF→=0,得⎩⎪⎨⎪⎧32x-12y=0,34x+34y+32z=0.令x =1,得平面ADF 的一个法向量为n =(1,3,-2).若直线AC 与平面ADF 所成的角为θ, 则sin θ=|cos 〈n ,AC →〉|=322×3=24. 思维升华 (1)运用几何法求直线与平面所成的角一般是按找——证——求的步骤进行. (2)直线和平面所成角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,注意所求角和两向量夹角间的关系.跟踪演练2 (2018·杭州质检)如图,在等腰三角形ABC 中,AB =AC ,∠A =120°,M 为线段BC 的中点,D 为线段BC 上一点,且BD =BA ,沿直线AD 将△ADC 翻折至△ADC ′,使AC ′⊥BD .(1)证明:平面AMC ′⊥平面ABD ;(2)求直线C ′D 与平面ABD 所成的角的正弦值. (1)证明 因为△ABC 为等腰三角形,M 为BC 的中点, 所以AM ⊥BD ,又因为AC ′⊥BD ,AM ∩AC ′=A ,AM ,AC ′⊂平面AMC ′, 所以BD ⊥平面AMC ′,因为BD ⊂平面ABD ,所以平面AMC ′⊥平面ABD .(2)解 在平面AC ′M 中,过C ′作C ′F ⊥AM 交直线AM 于点F ,连接FD . 由(1)知,平面AMC ′⊥平面ABD ,又平面AMC ′∩平面ABD =AM ,C ′F ⊂平面AMC ,所以C ′F ⊥平面ABD . 所以∠C ′DF 为直线C ′D 与平面ABD 所成的角. 设AM =1,则AB =AC =AC ′=2,BC =23,MD =2-3,DC =DC ′=23-2,AD =6- 2.在Rt△C ′MD 中,MC ′2=DC ′2-MD 2=(23-2)2-(2-3)2=9-4 3.设AF =x ,在Rt△C ′FA 和Rt△C ′FM 中,AC ′2-AF 2=MC ′2-MF 2,即4-x 2=9-43-(x-1)2,解得x =23-2,即AF =23-2. 所以C ′F =223-3.故直线C ′D 与平面ABD 所成的角的正弦值等于C ′F DC ′=23-33-1. 热点三 二面角二面角有两种求法:①几何法:利用定义作出二面角的平面角,然后计算.②向量法:利用两平面的法向量.设平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4),设二面角α—a —β的平面角为θ(0≤θ≤π),则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|.例3 如图,在矩形ABCD 中,AB =2,AD =4,点E 在线段AD 上且AE =3,现分别沿BE ,CE 所在的直线将△ABE ,△DCE 翻折,使得点D 落在线段AE 上,则此时二面角D -EC -B 的余弦值为( )A.45B.56C.67D.78 答案 D解析 如图1所示,连接BD ,设其与CE 的交点为H ,由题意易知BD ⊥CE .翻折后如图2所示,连接BD ,图1 图2则在图2中,∠BHD 即为二面角D -EC -B 的平面角, 易求得BD =22,DH =255,BH =855,所以cos∠DHB =BH 2+DH 2-BD 22BH ·DH =78,故选D.思维升华 (1)构造二面角的平面角的方法(几何法):根据定义;利用二面角的棱的垂面;利用两同底等腰三角形底边上的两条中线等. (2)向量法:根据两平面的法向量.跟踪演练3 (2018·绍兴质检)已知四面体SABC 中,二面角B -SA -C ,A -SB -C ,A -SC -B 的平面角的大小分别为α,β,γ,则( ) A.π2<α+β+γ<π B.3π2<α+β+γ<2π C .π<α+β+γ<3π D .2π<α+β+γ<3π 答案 C解析 设三棱锥的顶点S 距离底面ABC 无穷远,则三棱锥S -ABC 近似为以△ABC 为底面的三棱柱,此时二面角的平面角α,β,γ等于三角形ABC 的三个内角;若顶点S 与底面ABC 的距离趋向于0,则三棱锥S -ABC 近似压缩为四顶点共面,则当S 为△ABC 内一点时,二面角的平面角α,β,γ的大小都为π,因此α+β+γ∈(π,3π),故选C.真题体验1.(2017·全国Ⅲ)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号) 答案 ②③解析 依题意建立如图所示的空间直角坐标系,设等腰直角三角形ABC 的直角边长为1.由题意知,点B 在平面xOy 中形成的轨迹是以C 为圆心,1为半径的圆.设直线a 的方向向量为a =(0,1,0),直线b 的方向向量为b =(1,0,0),CB →以Ox 轴为始边沿逆时针方向旋转的旋转角为θ,θ∈[)0,2π, 则B (cos θ,sin θ,0),∴AB →=(cos θ,sin θ,-1),|AB →|= 2. 设直线AB 与a 所成的角为α,则cos α=|AB →·a ||a ||AB →|=22|sin θ|∈⎣⎢⎡⎦⎥⎤0,22,∴45°≤α≤90°,∴③正确,④错误; 设直线AB 与b 所成的角为β, 则cos β=|AB →·b ||b ||AB →|=22|cos θ|.当直线AB 与a 的夹角为60°,即α=60°时, |sin θ|=2cos α=2cos 60°=22, ∴|cos θ|=22,∴cos β=22|cos θ|=12. ∵45°≤β≤90°,∴β=60°, 即直线AB 与b 的夹角为60°. ∴②正确,①错误.2.(2017·浙江改编)如图,已知正四面体D —ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP =PB ,BQ QC =CRRA=2,分别记二面角D —PR —Q ,D —PQ —R ,D —QR —P 的平面角为α,β,γ,则α,β,γ的大小关系为________.答案 α<γ<β解析 如图①,作出点D 在底面ABC 上的射影O ,过点O 分别作PR ,PQ ,QR 的垂线OE ,OF ,OG ,连接DE ,DF ,DG ,则α=∠DEO ,β=∠DFO ,γ=∠DGO .由图可知,它们的对边都是DO , ∴只需比较EO ,FO ,GO 的大小即可.如图②,在AB边上取点P′,使AP′=2P′B,连接OQ,OR,则O为△QRP′的中心.设点O到△QRP′三边的距离为a,则OG=a,OF=OQ·sin∠OQF<OQ·sin∠OQP′=a,OE=OR·sin∠ORE>OR·sin∠ORP′=a,∴OF<OG<OE,∴ODtan β<ODtan γ<ODtan α,∴α<γ<β.3.(2018·浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.方法一(1)证明由AB=2,AA1=4,BB1=2,AA1⊥AB,BB1⊥AB,得AB1=A1B1=22,所以A1B21+AB21=AA21,故AB1⊥A1B1.由BC=2,BB1=2,CC1=1,BB1⊥BC,CC1⊥BC,得B1C1= 5.由AB=BC=2,∠ABC=120°,得AC=2 3.由CC1⊥AC,得AC1=13,所以AB21+B1C21=AC21,故AB1⊥B1C1.又因为A1B1∩B1C1=B1,A1B1,B1C1⊂平面A1B1C1,因此AB1⊥平面A1B1C1.(2)解 如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连接AD . 由AB 1⊥平面A 1B 1C 1, 得平面A 1B 1C 1⊥平面ABB 1.由C 1D ⊥A 1B 1,平面A 1B 1C 1∩平面ABB 1=A 1B 1,C 1D ⊂平面A 1B 1C 1,得C 1D ⊥平面ABB 1. 所以∠C 1AD 即是直线AC 1与平面ABB 1所成的角. 由B 1C 1=5,A 1B 1=22,A 1C 1=21, 得cos∠C 1A 1B 1=427,sin∠C 1A 1B 1=77, 所以C 1D =3, 故sin∠C 1AD =C 1D AC 1=3913. 因此直线AC 1与平面ABB 1所成的角的正弦值是3913. 方法二 (1)证明 如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1).因此AB 1→=(1,3,2),A 1B 1→=(1,3,-2),A 1C 1→=(0,23,-3). 由AB 1→·A 1B 1→=0,得AB 1⊥A 1B 1. 由AB 1→·A 1C 1→=0,得AB 1⊥A 1C 1.又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 设直线AC 1与平面ABB 1所成的角为θ. 由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2).设平面ABB 1的一个法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧n ·AB →=0,n ·BB 1→=0,得⎩⎨⎧x +3y =0,2z =0,可取n =(-3,1,0).所以sin θ=|cos 〈AC 1→,n 〉|=|AC 1→·n ||AC 1→||n |=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913. 押题预测如图所示,在四棱锥S -ABCD 中,底面ABCD 是矩形,SA ⊥底面ABCD ,E ,F 分别为线段AB ,SD 的中点.(1)证明:EF ∥平面SBC ;(2)设SA =AD =2AB ,试求直线EF 与平面SCD 所成角的正弦值.押题依据 定义法求直线与平面所成的角的关键是利用直线与平面所成角的定义去构造一个直角三角形,通过解三角形的知识求角.方法一求解第(2)问的关键是构造三角形,证明∠AFE 为直线EF 与平面SCD 所成角的余角.(1)证明 方法一 如图,过点E 作EG ∥SB ,交SA 于点G ,连接GF .因为E 为AB 的中点,所以G 为SA 的中点, 又F 为SD 的中点, 所以GF ∥AD ,所以GF ∥BC ,又BC ⊂平面SBC ,GF ⊄平面SBC ,所以GF ∥平面SBC .因为GE ∥SB ,SB ⊂平面SBC ,GE ⊄平面SBC , 所以GE ∥平面SBC ,又GE ∩GF =G ,GE ,GF ⊂平面GEF , 所以平面GEF ∥平面SBC ,又EF ⊂平面GEF ,所以EF ∥平面SBC .方法二 取SC 的中点H ,连接FH ,BH ,因为F 是SD 的中点,所以FH ∥CD ,FH =12CD ,又CD ∥AB ,CD =AB ,点E 是AB 的中点,所以FH ∥BE ,FH =BE ,所以四边形EFHB 是平行四边形,所以EF ∥BH ,又BH ⊂平面SBC ,EF ⊄平面SBC ,所以EF ∥平面SBC . (2)解 方法一 如图,连接AF .因为SA =AD ,SA ⊥AD , 所以AF ⊥SD . 因为SA ⊥平面ABCD , 所以SA ⊥CD .因为AD ⊥CD ,SA ∩AD =A ,SA ,AD ⊂平面SAD , 所以CD ⊥平面SAD ,因为AF ⊂平面SAD ,所以CD ⊥AF , 又SD ∩CD =D ,SD ,CD ⊂平面SCD , 所以AF ⊥平面SCD .所以∠AFE 即为直线EF 与平面SCD 所成角的余角. 令SA =AD =2AB =4,则AE =1,AF =22,所以EF =3.设直线EF 与平面SCD 所成的角为θ, 则sin θ=sin ⎝⎛⎭⎪⎫π2-∠AFE =cos∠AFE =AF EF =223.所以直线EF 与平面SCD 所成角的正弦值为223.方法二 因为四边形ABCD 是矩形,SA ⊥底面ABCD , 所以直线AB ,AD ,AS 两两垂直.以A 为坐标原点,AB ,AD ,AS 所在的直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A -xyz . 设SA =AD =2AB =4,则S (0,0,4),C (2,4,0),D (0,4,0),E (1,0,0),F (0,2,2). 所以EF →=(-1,2,2),SD →=(0,4,-4),DC →=(2,0,0). 设平面SCD 的法向量为a =(x ,y ,z ), 则⎩⎪⎨⎪⎧a ·SD →=4y -4z =0,a ·DC →=2x =0,取y =1,所以a =(0,1,1)是平面SCD 的一个法向量. 设直线EF 与平面SCD 所成的角为θ, 所以sin θ=|a ·EF →||a |·|EF →|=|0+2+2|2×3=223.所以直线EF 与平面SCD 所成角的正弦值为223.A 组 专题通关1.(2017·全国Ⅱ)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A.32 B.155 C.105 D.33答案 C解析 方法一 将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .图①由题意知∠ABC =120°,AB =2,BC =CC 1=1, 所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1=3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C.方法二 以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.图②由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1). 所以cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=25×2=105.所以异面直线AB 1与BC 1所成角的余弦值为105. 故选C.2.(2018·嘉兴、丽水模拟)已知两个平面α,β和三条直线m ,a ,b ,若α∩β=m ,a ⊂α且a ⊥m ,b ⊂β,设α和β所成的一个二面角的大小为θ1,直线a 和平面β所成的角的大小为θ2,直线a ,b 所成的角的大小为θ3,则( ) A .θ1=θ2≥θ3 B .θ3≥θ1=θ2 C .θ1≥θ3,θ2≥θ3 D .θ1≥θ2,θ3≥θ2答案 D解析 当平面α与平面β所成的二面角为锐角或直角时,θ1=θ2,当平面α与平面β所成的二面角为钝角时,θ2为θ1的补角,则θ1>θ2,综上所述,θ1≥θ2,又由最小角定理得θ3≥θ2,故选D.3.如图,正四棱锥P -ABCD .记异面直线PA 与CD 所成的角为α,直线PA 与平面ABCD 所成的角为β,二面角P -BC -A 的平面角为γ,则( )A .β<α<γB .γ<α<βC .β<γ<αD .α<β<γ答案 C解析 如图,过点P 作PO ⊥平面ABCD ,则O 为正方形ABCD 的中心.连接AO ,并过O 点作OE ⊥BC ,交BC 于点E ,连接PE .∵AB ∥DC ,∴异面直线PA 与CD 所成的角就是∠PAB ,而AO 为PA 在平面ABCD 上的投影,∴∠PAO 为PA 与平面ABCD 所成的角. ∴∠PAB >∠PAO .又OE ⊥BC ,PO ⊥BC ,OE 与PO 相交于点O , ∴BC ⊥平面POE ,∴PE ⊥BC ,因此∠PEO 为二面角P -BC -A 的平面角. ∵OE <AO ,∴tan∠PEO >tan∠PAO , ∴∠PEO >∠PAO .又∠PAB =∠PBE ,cos∠PBE =BEPB ,cos∠PEO =OE PE, ∵OE =BE ,PE <PB ,∴cos∠PBE <cos∠PEO ,∴∠PBE >∠PEO ,又∠PBE =∠PAB =α,∴β<γ<α,故选C.4.已知四边形ABCD ,AB =BD =DA =2,BC =CD =2,现将△ABD 沿BD 折起,使二面角A -BD -C 的大小在⎣⎢⎡⎦⎥⎤π6,5π6内,则直线AB 与CD 所成角的余弦值的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,528B.⎣⎢⎡⎦⎥⎤0,28 C.⎣⎢⎡⎦⎥⎤0,28∪⎣⎢⎡⎭⎪⎫528,1 D.⎣⎢⎡⎦⎥⎤28,528答案 A解析 设BD 的中点为E ,连接AE ,CE , 因为AB =BD =DA =2,BC =CD =2, 所以AE =3,CE =1,且AE ⊥BD ,CE ⊥BD , 则∠AEC 为二面角A -BD -C 的平面角,在平面ABD 内,过点A 作AF ∥BD ,使AF =BD ,构造平行四边形ABDF ,连接FD ,CF ,则∠CDF 或其补角即为异面直线AB 与CD 的夹角, 则在△AEC 中,由余弦定理得AC 2=AE 2+CE 2-2AE ·CE cos∠AEC=4-23cos∠AEC ,又因为∠AEC ∈⎣⎢⎡⎦⎥⎤π6,5π6,所以AC 2=4-23cos∠AEC ∈[1,7].因为AE ⊥BD ,CE ⊥BD ,且AE ∩CE =E ,AE ,CE ⊂平面AEC , 所以BD ⊥平面AEC , 则BD ⊥AC ,所以AF ⊥AC ,则在Rt△CAF 中,CF 2=AC 2+AF 2∈[5,11],则在△CDF 中,由余弦定理易得直线AB 与CD 的夹角的余弦值为|cos∠CDF |=⎪⎪⎪⎪⎪⎪DF 2+CD 2-CF 22DF ·CD ∈⎣⎢⎡⎦⎥⎤0,528,故选A.5.长方体的对角线与过同一个顶点的三个表面所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=________. 答案 2解析 设长方形的长、宽、高分别为a ,b ,c ,则对角线长d =a 2+b 2+c 2,所以cos 2α+cos 2β+cos 2γ=⎝ ⎛⎭⎪⎫b 2+c 2d 2+⎝ ⎛⎭⎪⎫a 2+c 2d 2+⎝ ⎛⎭⎪⎫a 2+b 2d 2=2()a 2+b 2+c 2d 2=2.6.如图所示,在正方体AC 1中, AB =2, A 1C 1∩B 1D 1=E ,直线AC 与直线DE 所成的角为α,直线DE 与平面BCC 1B 1所成的角为β,则cos ()α-β=________.答案66解析 由题意可知,α=π2,则cos ()α-β=sin β,以点D 为坐标原点,DA ,DC ,DD 1方向为x ,y ,z 轴正方向建立空间直角坐标系,则D ()0,0,0,E ()1,1,2,DE →=()1,1,2,平面BCC 1B 1的法向量DC →=()0,2,0,由此可得cos ()α-β=sin β=|DE →·DC →||DE →||DC →|=66.7.(2018·浙江省名校新高考研究联盟联考)如图,平行四边形PDCE 垂直于梯形ABCD 所在的平面,∠ADC =∠BAD =90°,∠PDC =120°,F 为PA 的中点,PD =1,AB =AD =12CD =1.(1)求证:AC ∥平面DEF ;(2)求直线BC 与平面PAD 所成角的余弦值.(1)证明 连接PC .设PC 与DE 的交点为M ,连接FM ,因为F ,M 分别为PA ,PC 的中点,则FM ∥AC . 因为FM ⊂平面DEF ,AC ⊄平面DEF ,所以AC ∥平面DEF .(2)解 方法一 (几何法)取CD 的中点G ,连接AG ,则AG ∥BC ,所以直线AG 与平面PAD 所成的角即为直线BC 与平面PAD 所成的角. 过点G 作GH ⊥PD ,交PD 于点H ,又平面PDCE ⊥平面ABCD ,平面PDCE ∩平面ABCD =CD ,AD ⊥CD ,AD ⊂平面ABCD , 所以AD ⊥平面PDCE ,又GH ⊂平面PDCE ,所以AD ⊥GH , 因为PD ∩AD =D ,PD ,AD ⊂平面PAD ,所以GH ⊥平面PAD ,则∠GAH 即为所求的线面角, 易得GH =32,AG =BC =2, 则sin∠GAH =GH AG =64, 所以直线BC 与平面PAD 所成角的余弦值为104. 方法二 (向量法)过点D 在平面PDCE 中作DQ ⊥PE ,交PE 于点Q ,由已知可得PQ =12,以D 为坐标原点,分别以DA ,DC ,DQ 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.由题意可得D (0,0,0),P ⎝⎛⎭⎪⎫0,-12,32,A (1,0,0),B (1,1,0),C (0,2,0),则DA →=(1,0,0),DP →=⎝ ⎛⎭⎪⎫0,-12,32,设平面PAD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DA →=0,n ·DP →=0,即⎩⎪⎨⎪⎧x =0,-12y +32z =0,令y =3,得平面PAD 一个法向量n =(0,3,1),BC →=(-1,1,0).设直线BC 与平面PAD 所成的角为θ,则sin θ=|cos 〈n ,BC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·BC →|n ||BC →|=322=64, 所以直线BC 与平面PAD 所成角的余弦值为104. 8.(2018·浙江省杭州二中月考)如图,等腰梯形ABCD 中,AB =CD =BC =2,AD =5,M ,N 是AD 上的点,且AM =DN =2,现将△ABM ,△CDN 分别沿BM ,CN 折起,使得A ,D 重合记作S .(1)求证:BC ∥平面SMN ;(2)求直线SN 与底面BCNM 所成角的余弦值.(1)证明 ∵BC ∥MN ,且MN ⊂平面SMN ,BC ⊄平面SMN ,∴BC ∥平面SMN .(2)解 过S 向底面作垂线,垂足为O ,连接BC 的中点Q 与MN 的中点P ,根据对称性可知O 在PQ 上,分别连接SQ ,SP ,ON ,则∠SNO 是所求的线面角.在△SPQ 中,SP =152,SQ =3,PQ =72,则SO =2357, 则sin∠SNO =357,∴cos∠SNO =147. 9.(2018·湖州、衢州、丽水质检)已知矩形ABCD 满足AB =2,BC =2,△PAB 是正三角形,平面PAB ⊥平面ABCD .(1)求证:PC ⊥BD ;(2)设直线l 过点C 且l ⊥平面ABCD ,点F 是直线l 上的一个动点,且与点P 位于平面ABCD的同侧.记直线PF 与平面PAB 所成的角为θ,若0<CF ≤3+1,求tan θ的取值范围. (1)证明 取AB 的中点E ,连接PE ,EC .因为点E 是正三角形PAB 的边AB 的中点,所以PE ⊥AB . 又平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,PE ⊂平面PAB , 所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,则PE ⊥BD . 因为BEBC=12=22=BCCD,∠EBC =∠BCD =90°, 所以△EBC ∽△BCD . 故∠ECB =∠BDC ,所以∠ECB +∠DBC =∠BDC +∠DBC =90°, 所以CE ⊥BD ,又CE ∩PE =E ,CE ,PE ⊂平面PEC , 故BD ⊥平面PEC ,又PC ⊂平面PEC ,因此PC ⊥BD .(2)解 方法一 在平面PAB 内过点B 作直线m ∥FC ,过F 作FG ⊥m ,交m 于点G ,连接PG ,则四边形BGFC 为矩形,BC ∥FG ,BC =FG . 又由(1)及题意得,BC ⊥平面PAB , 所以FG ⊥平面PAB ,所以∠GPF 是直线PF 与平面PAB 所成的角,所以点F 到平面PAB 的距离等于点C 到平面PAB 的距离,即为BC =2, 因为0<CF ≤3+1,所以1≤GP <2, 故tan θ=2GP∈⎝⎛⎦⎥⎤22,2. 方法二 如图,以E 为坐标原点,EB ,EP 所在直线为x 轴,z 轴,过点E 平行于BC 的直线为y 轴,建立空间直角坐标系.设CF =a (0<a ≤3+1), 则P (0,0,3),F (1,2,a ), 所以PF →=(1,2,a -3),取平面PAB 的一个法向量为n =(0,1,0), 则sin θ=|PF →·n ||PF →||n |=212+(2)2+(a -3)2, 由0<a ≤3+1,得sin θ∈⎝ ⎛⎦⎥⎤33,63, 则tan θ∈⎝⎛⎦⎥⎤22,2. B 组 能力提高10.已知三棱锥P -ABC 的底面ABC 是边长为23的正三角形,A 点在侧面PBC 内的投影H 为△PBC 的垂心,二面角P -AB -C 的平面角的大小为60°,则AP 的长为( )A .3B .3 2 C.7 D .4 答案 C解析 连接BH 交PC 于点E ,连接AE .设P 点在底面ABC 内的投影为O ,则PO ⊥平面ABC ,连接CO 交AB 于F 点,连接PF .∵A 点在侧面PBC 内的投影H 为△PBC 的垂心, ∴AH ⊥平面PBC ,且BE ⊥PC , ∵PC ⊂平面PBC ,∴AH ⊥PC .∵BE ∩AH =H ,BE ⊂平面ABE ,AH ⊂平面ABE , ∴PC ⊥平面ABE .又AB ⊂平面ABE ,∴PC ⊥AB . ∵PO ⊥平面ABC ,AB ⊂平面ABC ,∴PO ⊥AB . ∵PO ∩PC =P ,PO ⊂平面PFC ,PC ⊂平面PFC , ∴AB ⊥平面PFC . ∴AB ⊥PE ,AB ⊥CF ,∴∠PFC 为二面角P -AB -C 的平面角.∵三棱锥P -ABC 的底面ABC 是边长为23的正三角形, ∴BF =3,CF =3,则FO =13×3=1,∵二面角P -AB -C 的平面角的大小为60°,∴∠PFC =60°,在Rt△POF 中,PO =FO ·tan 60°=3,PF =FOcos 60°=2.又在Rt△PFA中,PF =2,AF =AB2=3,∴AP =PF 2+AF 2=7,故选C.11.(2018·湖州、衢州、丽水质检)已知等腰直角三角形ABC 内接于圆O ,点M 是下半圆弧上的动点.现将上半圆面沿AB 折起(如图所示),使所成的二面角C -AB -M 为π4,则直线AC与直线OM 所成角的最小值是( )A.π12B.π6C.π4D.π3 答案 B解析 设圆的半径为2,∠AOM =θ(θ∈[0,π]),建立如图所示的空间直角坐标系,则O (0,0,0),M (2sin θ,-2cos θ,0),A (0,-2,0),C (2,0,2),所以OM →=(2sin θ,-2cos θ,0),AC →=(2,2,2).设直线AC 与OM 所成的角为α,则cos α=|cos 〈OM →,AC →〉|=|OM →·AC →||OM →||AC →|=|22sin θ-4cos θ|2×22=|26sin (θ-φ)|42≤2642=32(其中tan φ=2),又α∈⎝ ⎛⎦⎥⎤0,π2,所以α∈⎣⎢⎡⎦⎥⎤π6,π2, 所以α的最小值为π6,故选B.12.(2018·浙江省温州六校协作体联考)如图1,在Rt△ABC 中,∠BAC =90°,∠ABC =60°,E 是边AC 上的点,EC →=2AE →,D 是斜边BC 的中点,现将△ABE 与△DEC 分别沿BE 与DE 翻折,翻折后的点A ,C 分别记作A ′,C ′,若点A ′落在线段EC ′上,如图2,则二面角B -EC ′-D 的余弦值为( )A.13B.33C.23D.63 答案 A解析 设AB =1,易得BC =2,AC =3,又因为EC →=2AE →, 点D 是斜边BC 的中点, 所以AE =33,CE =233,CD =BD =1, 则由翻折的性质易得A ′E =A ′C ′=33,A ′B =1,BD =C ′D =1,BA ′⊥C ′E ,连接BC ′,则C ′B =A ′B 2+A ′C ′2=233=BE , 在△BDC ′中,由余弦定理得cos∠BDC ′=BD 2+C ′D 2-C ′B 22BD ·C ′D =13,在△C ′DE 中,过点A ′作C ′E 的垂线,交C ′D 于点F ,则∠FA ′B 就是二面角B -EC ′-D 的平面角.易得A ′F =A ′C ′tan 30°=13,C ′F =23,DF=C ′D -C ′F =13.连接BF ,在△BDF 中,由余弦定理得BF =BD 2+DF 2-2BD ·DF cos∠BDF =223, 则在△BA ′F 中,由余弦定理得cos∠BA ′F =A ′B 2+A ′F 2-BF 22A ′B ·A ′F =13,即二面角B -EC ′-D 的余弦值为13,故选A.13.如图,已知三棱锥A —BCD 的所有棱长均相等,点E 满足DE →=3EC →,点P 在棱AC 上运动,设EP 与平面BCD 所成的角为θ,则sin θ的最大值为________.答案223解析 因为三棱锥A —BCD 的所有棱长都相等,设底面BCD 的中心为O ,则O 为顶点A 在底面的射影,以点O 为原点,以过点O 且平行于CD 的直线为x 轴,过点O 且垂直于CD 的直线为y 轴,直线OA 为z 轴建立空间直角坐标系.设三棱锥A —BCD 的棱长为2,则易得O (0,0,0),A ⎝⎛⎭⎪⎫0,0,263,C ⎝ ⎛⎭⎪⎫1,33,0,E ⎝ ⎛⎭⎪⎫12,33,0, 则OA →=⎝⎛⎭⎪⎫0,0,263,A E →=⎝ ⎛⎭⎪⎫12,33,-263,AC →=⎝⎛⎭⎪⎫1,33,-263,设AP →=λAC →(0≤λ≤1), 则PE →=AE →-AP →=AE →-λAC →=⎝ ⎛⎭⎪⎫12-λ,33(1-λ),263(λ-1),则sin θ=|PE →·OA →||PE →||OA →|=463·1-λ16λ2-28λ+13, 设f (x )=(1-x )216x 2-28x +13 (0≤x ≤1),则f ′(x )=2(2x -1)(x -1)(16x 2-28x +13)2,令f ′(x )>0,得0<x <12,所以函数f (x )在⎝ ⎛⎭⎪⎫0,12上单调递增; 令f ′(x )<0,得12<x <1,所以函数f (x )在⎝ ⎛⎭⎪⎫12,1上单调递减, 所以f (x )max =f ⎝ ⎛⎭⎪⎫12=112,所以sin θ的最大值为463×112=223.。
上海高三数学高考二轮复习教案立体几何专题之空间的角与距离(1)含答案

沪教版(上海)高中数学度高三数学二轮复习立体几何专题之空间的角与距离①教学目标1、理解点到平面、直线和直线、直线和平面、平面和平面距离的概念;会用求距离的常用方法(如:直接法、转化法、向量法)2、理解线线角、线面角、面面角的概念定义和取值范围;会用求角的方法“一作二证三计算”。
知识梳理1、空间角:(1)空间角的计算步骤一作、二证、三算。
(2)异面直线所成角:1>范围:___________ (0°,90°];2>计算方法:<1>平移法:一般情况下应用平行四边形的对边、梯形的平行对边、三角形的中位线进行平移;<2>补体法;(3)直线与平面所成的角:1>定义:平面的一条斜线和它在这个平面内的射影所成的锐角,叫做这条直线和这个平面所成的角;一条直线垂直于平面,我们说它们所成的角是直角;2>范围:_____________ [0°,90°];3>斜线与平面所成角的计算:<1>直接法:关键是作垂线,找射影可利用面面垂直的性质;<2>平移法:通过三角形的中位线或平行四边形的对边平移,计算其平行线与平面所成的角(也可平移平面)。
<3>通过等体积法求出斜线任一点到平面的距离d,计算这点与斜足之间的线段长l,则sindl θ=.(6)二面角:1>定义:平面内的一条直线把平面分为两部分,其中的每一部分叫做半平面.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。
二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角,叫做这个二面角的平面角.规定:二面角的两个半平面重合时,二面角为0,当两个半平面合成一个平面时,二面角为π,因此,二面角的大小范围为_______ [0°,180°];2>确定二面角的方法:<1>定义法;<2>垂面法;注:空间角的计算步骤:一作、二证、三算2、空间距离(1)七种距离:点与点、点到直线、两条平行直线、两条异面直线、点到平面、平行于平面的直线与该平面、两个平行平面之间的距离,其中点与点、点与直线、点到平面的距离是基础,求其它几种距离一般化归为求这三种距离; (2)点与点的距离: 1>解三角形及多边形;2>空间任意两点A 、B 间的距离即线段AB 的长度: 设()111,,A x y z 、()222,,B x y z ,则()()()222121212AB x x y y z z =-+-+-(3)两条异面两条异面直线的距离:直线的公垂线段的长度;说明:两条异面直线的距离等于其中一条直线到过另一条直线且与这条直线平行的平面的距离。
高考数学二轮专题复习第14课时空间角与空间距离课件文

在RtPOD中,PD2 PO2 OD2,
在RtPDB中,PB2 PD2 BD2,
所以PB2 PO2 OD2 BD2 36,得PB 6.在RtPOA中,
PA2 AO2 OP2 25,得PA 5.
又cosBPA PA2 PB2 AB2 1,从而sinBPA 2 2 .
16
(1)证明:因为AB、BC、CD两两垂直, 所以CD⊥BC,CD⊥AB. 又因为AB、BC为平面ABC内的两条相交直线,所 以CD⊥平面ABC, 而CD⊂平面ACD,所以平面ACD⊥平面ABC. (2)因为AB⊥CD,AB⊥BC,而BC、CD是平面BCD 内的两条相交直线, 所以AB⊥平面BCD. 而BD⊂平面BCD,所以AB⊥BD, 所以∠CBD为二面角C-AB-D的平面角. 又因为BC=CD=1,BC⊥CD,所以∠CBD=45°, 即二面角C-AB-D的平面角为45°.
在RtDCA中,CG CD2 22 4 5 .
AC
22 12
5
45
在RtPCG中,tanCPG CG 5 2 5 , PC 2 5
即直线PC与平面PDE所成的角的正弦值为 2 . 3
22
3由于BF 1 CF,所以可知点B到平面PDE的距离等于
4 点C到平面PDE的距离 1 ,即 1 CH.
24
【变式训练】如图,在四棱锥P-ABCD中,底面 ABCD 是 矩 形 , PA⊥ 平 面 ABCD , PA=AD=4 , AB=2,BM⊥PD,垂足为M,O为BD的中点. (1)求证:PD⊥平面ABM; (2)求点O到平面ABM的距离; (3)求直线OA与平面ABM所成角的正弦值.
25
(1)证明:因为PA⊥平面ABCD, 而AB⊂平面ABCD,所以PA⊥AB, 又因为AB⊥AD,PA、AD为平面PAD内的两条相 交直线, 所以AB⊥平面PAD,所以AB⊥PD, 又因为BM⊥PD,AB、BM为平面ABM内的两条相 交直线,所以PD⊥平面ABM.
2019-2020年高三数学立体几何专题复习教案

,
2
2
EF d 2 m2 n2 2mncos
③向量方法: 只要在两个半平面内各有棱的垂线、 (不必相 交),则向量、 所成的角的大小等于所求二面 角或其补角的大小。 另法: 设、分别为两个半平面的 法向量 ,则 它们所成的角的大小等于所求二面角或其补 角的大小。 对于棱未给出的二面角的求法可通过“作平 行线”法或“找公共点”法寻求棱。
问题十: 求距离 1. 立体几何主要研究以下八种距离:点点
距、点线距、点面距、线线距(平行线间 距离与异面直线间的距离) 、线面距、面 面 距及球面上两点间的 距离(课本 9.10 )。 ( 1)无论哪种距离, 其定义原则有以下两条: 一是惟一性,二是最短原则。 ( 2)以上距离之间有些可以互相转化, 如两 平行线间距离可以转化成点线距,线面距与
距离公式可求出二面角,公式为:
问题八: 求平面的斜线与平面所成角 1. 传统几何方法: ①转化为求斜线与它在平面内的射影所成的 角,通过直角三角形求解。 ②利用三面角定理(即最小角定理)求。 2. 向量方法: 设为平面的 法向量 ,直线与平
面所成的角为,则
a, n , a, n 0,
2
2
a, n
, a, n
d l 2 m2 n 2 2mncos
①定义。在具体问题中异面直线的给出是异
③三垂线定理及其逆定理:过一个半平面内
面线段形式表示的,因此由异面直线所成角
一点作另一半平面的垂线,过垂足在另一个
的定义我们可以选择两条线段的四个端点,
半平面内作棱的垂线得棱上一点(即斜足) ,
过其中一个端点作另外一条线段的平行线,
斜足与面上一点的连线和斜足与垂足连线所
①求公垂线段的长度
同一个半平面内的几何元素之间的关系是 不
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学二轮复习难点2.7立体几何中的空间角与距离教学案理 立体几何中的“角”与“距离”是定量分析空间几何元素(点、线、面)间位置关系的两个重要的几何量,在研究这些“角”和“距离”时,常将空间问题转化为平面问题来处理,这是化归思想在立体几何中的具体应用. 空间角是考查学生对立体几何中的视图、空间想象能力、逻辑推理能力以及运算能力的一个综合知识点;空间距离既能考查学生的空间想象能力和逻辑推理能力,又能考查学生的转化思想及运算能力,空间距离的计算也是学生感觉较难的部分.在求解空间的角与距离的问题时,一般应包括三个部分:求作、论证和计算,这三部分是一个统一的整体.求空间中的角或距离的常用方法注意根据定义找出或作出所求的角或距离,给出证明,一般情况下,力求明确所求角或距离的位置.求角与距离的关键是将空间的角与距离灵活地转化为平面上的角与距离,然后将所求量置于一个三角形中,通过解三角形最终求得所需的角与距离. 空间向量是高中数学立体几何中新增加的内容 .借助于空间向量工具,可以对一些传统解法中较为繁琐的问题加以定量化 ,从而降低了思维难度 ,增强了可操作性 ,使学生对立体几何更容易产生兴趣 .空间向量在角和距离的处理上有着独特的优势 ,它最大限度地避开了思维的高强度转换 ,避开了各种辅助线添加的难处 ,代之以空间向量的计算 ,有利于我们较好地解决问题 .1 异面直线所成的角异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角)来定义的.因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小.在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力.新教材对立体几何的处理有了一些新的变化,淡化了对学生作图能力的要求,引进了空间向量的方法(实际上是把空间问题代数化),避开了一些繁杂的作图,其中在求异面直线所成的角中运用空间向量的方法有很大的优点.另外,对异面直线所成的角的求法我们还可以借用一些固定的模型,引用一些已知的公式来求出角的大小.例1在直三棱柱111ABC A B C -中,底面ABC ∆是直角三角形,12AC BC AA ===,D 为侧棱1AA 的中点.(1)求异面直线1DC 、1B C 所成角的余弦值;(2)求二面角11B DC C --的平面角的余弦值.思路分析:建立空间直角坐标系,由题意写出相关点的坐标;(1)求出异面直线11,DC B C 所在的方向向量11,DC B C ,直接计算即可;(2)求出平面1B DC 与平面1DCC 的法向量,计算即可.(2)因为(0,2,0)CB =,(2,0,0)CA =,1(0,0,2)CC =,所以0CB CA ⋅=,10CB CC ⋅=,所以CB 为平面11ACC A 的一个法向量.因为1(0,2,2)BC =--,(2,0,1)CD =,设平面1B DC 的一个法向量为n , (),,n x y z =.由10,0,n B C n CD ⎧⋅=⎪⎨⋅=⎪⎩得220,20.y z x z --=⎧⎨+=⎩令1x =,则2,2y z ==-,()1,2,2n =-. 4,)3|||nCB CB CB ⋅==⨯11B DC C --点评:本题考查空间向量的应用,属中档题;在空间求线线角、线面角、二面角,是通过建立恰当的空间直角坐标系,正确写出各点的坐标,则通直线所在的方向向量、平面的法向量,通过向量的夹角间接求解,准确运算是解决这类问题的关键.2 直线与平面所成的角直线与平面所成角是空间三大角之一,它既是教与学的难点,又是高考的热点,求直线与平面所成角的常用方法.一、直接法直接法就是根据斜线与平面所成角的定义,直接作出斜线在平面内的射影,则斜线与射影所成角就是斜线与平面所成角,这是解题时首先要考虑的方法,直接法的关键是确定斜线在平面内的射影,下列结论常作为找斜线在平面内射影的依据.(1)(两平面垂直的性质定理)如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.(2)如果一个角所在平面外一点到角的两边的距离相等,那么这个点在平面内的射影在这个角的平分线上.(3)经过一个角的顶点引这个角所在平面的斜线,设它和已知角的两边的夹角为锐角且相等,则这条斜线在平面的射影是这个角的平分线.(4)若三棱锥的三条侧棱相等,则其顶点在底面上的射影是底面三角形的外心. 二、借助于空间向量工具,利用直线的方向向量与平面的法向量的夹角来转化,当直线的方向向量与平面的法向量夹角为锐角时,通过直角三角形可以知道 ,直线与平面所成的角与直线的方向向量与平面的法向量夹角互余,因此直线与平面所成的角的正弦就等于直线的方向向量与平面的法向量夹角的余弦,当直线的方向向量与平面的法向量夹角为钝角时,其补角跟直线与平面所成的角互余,因此因此直线与平面所成的角的正弦就等于直线的方向向量与平面的法向量夹角的余弦的相反数.例2【西南名校联盟高三2018年元月】如图,在等腰梯形ABCD 中, 060ABC ∠=,上底2CD =,下底4AB =,点E 为下底AB 的中点,现将该梯形中的三角形BEC 沿线段EC 折起,形成四棱锥B AECD -.(1)在四棱锥B AECD -中,求证: AD BD ⊥;(2)若平面BEC 与平面AECD 所成二面角的平面角为0120,求直线AE 与平面ABD 所成角的正弦值. 思路分析:(1)由60ABC ∠=︒, 2CD =, 4AB =,点E 为AB 的中点,得三角形BEC 沿线段EC 折起后可得四边形AECD 为菱形,边长为2, 60DAE ∠=︒,取EC 的中点F ,连接DF , BF , DE ,可证EC BF ⊥, EC DF ⊥,即可证EC ⊥平面BFD ,从而AD ⊥平面BFD ,即可得证;(2)以F 为坐标原点,建立空间直角坐标系,由(1)可证BFD ∠为平面BEC 与平面AECD 所成二面角的平面角,从而求出D , E , A , B ,再求出平面ABD 的一个法向量,即可求出直线AE 与平面ABD 所成角的正弦值.∴120BFD ∠=︒,而BF DF ==3BD =且30BFz ∠=︒,得点B的横坐标为B 的竖坐标为32,则)00D , ()010E ,,,)20A , 302B ⎛⎫ ⎪ ⎪⎝⎭,,,故()10AE =-,, 333022BD ⎛⎫=- ⎪ ⎪⎝⎭, ()020AD =-,,, 设平面ABD 的一个法向量为()n x y z =,,,∴()()()333·0?02{ ·020?0BD n x y z AD n x y z ⎛⎫=-= ⎪ ⎪⎝⎭=-=,,,,,,,,,,得30{ 2220x z y -=-=,,点评:直线与平面所成的角解题的一般思路为:首先建立适当的空间直角坐标系并正确写出各点的空间坐标,并求出平面的法向量,最后运用公式即可得出结果. 利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.3 二面角二面角及其平面角的概念是立体几何最重要的概念之一,在历年高考中几乎都要涉及.尤其是在数学新课改的大环境下,要求对二面角求法的掌握变得更加灵活,二面角的概念发展、完善了空间角的概念;而二面角的平面角不但定量描述了两相交平面的相对位置,同时它也是空间中线线、线面、面面位置关系的一个汇集点.研究二面角的求法,可以进一步培养学生的空间想象能力和逻辑思维能力,为培养学生的创新意识和创新能力提供了一个良好的契机. 在求解二面角的问题中,通常首先要定位出二面角的平面角,而这也是学生在解题中感到最为陌生和棘手的问题.特别是若二面角的棱隐而不露其解题的难度又会增大.求解二面角是立体几何中最基本、最重要的题型,也是各地高考中的“热点”问题,虽然对此可说是“千锤百炼”,但我们必须面对新的情境、新的变化,如何以基本方法的“不变”去应对题目中的“万变”就是我们研究的中心话题. 总的来说,求解二面角的大体步骤为:“作、证、求”.其中“作、证”是关键也是难点,“求”依靠的计算,也决不能忽视,否则因小失大,功亏一篑,也是十分遗憾之事.例3【北京市朝阳区2018届期末】如图,在三棱柱111ABC A B C -中, 90ACB ∠=, D 是线段AC 的中点,且1A D ⊥ 平面ABC .(Ⅰ)求证:平面1A BC ⊥平面11AAC C ;(Ⅱ)求证: 1//B C 平面1A BD ;(Ⅲ)若11A B AC ⊥, 2AC BC ==,求二面角1A A B C --的余弦值.思路分析:(Ⅰ)由90ACB ∠=,可得BC AC ⊥,由1A D ⊥ 平面ABC 可得1A D BC ⊥.根据线面垂直的判定定理可得BC ⊥平面11AAC C ,再利用面面垂直的判定定理可得结论;(Ⅱ)连接1AB ,设11AB A B E ⋂=,根据三角形中位线定理可得1//DE B C ,从而根据线面平行的判定定理可得1//B C 平面1A BD ;(Ⅲ)取AB 的中点F ,则//DF BC ,因为BC AC ⊥,所以DF AC ⊥,又因为1A D ⊥平面ABC ,所以1,,DF DC DA 两两垂直.以D 为原点,分别以1,,DF DC DA 为,,x y z 轴建立空间坐标系,利用向量垂直数量积为零列方程组,分别求出平面1A AB 的一个法向量与平面1A BC 的一个法向量,根据空间向量夹角余弦公式,可得结果.()2,0,0CB =,所以10,{ 0,m CA m CB ⋅=⋅=,即1110,{ 20.y x -==设11z =,则()m =.故17cos ,7m n m n m n ⋅+〈〉===⋅.由图知,二面角1A A B C --的平面角为锐角,所以二面角1A A B C --.点评:本题考查了线面平行性质定理及判定定理、二面角的求解、空间向量的运算等知识点的应用,其中对于垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直. 利用空间向量求二面角,首先利用垂直关系建立恰当的空间直角坐标系,设立各点坐标,利用方程组解两个平面的法向量,利用向量数量积求夹角,最后根据向量夹角与二面角之间关系得结果.其解题过程中最容易出现以下错误:其一是对于第一问不能熟练运用线线平行、线面平行和面面平行的判定定理和性质定理,进而不能正确处理线面平行的问题;其二是对于第二问不能正确运用空间向量求二面角的大小,其关键是正确地求出各面的法向量.4 空间距离空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. 空间中的距离主要指以下七种: (1)两点之间的距离. (2)点到直线的距离. (3)点到平面的距离. (4)两条平行线间的距离. (5)两条异面直线间的距离. (6)平面的平行直线与平面之间的距离. (7)两个平行平面之间的距离. 七种距离都是指它们所在的两个点集之间所含两点的距离中最小的距离.七种距离之间有密切联系,有些可以相互转化,如两条平行线的距离可转化为求点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离. 在七种距离中,求点到平面的距离是重点,求两条异面直线间的距离是难点. 求点到平面的距离:(1)直接法:即直接由点作垂线,求垂线段的长.(2) 转移法:转化成求另一点到该平面的距离.(3)体积法. 求异面直线的距离:(1)定义法:即求公垂线段的长.(2)转化成求直线与平面的距离.(3)函数极值法:依据是两条异面直线的距离是分别在两条异面直线上两点间距离中最小的.例4.AB 是O 的直径,点C 是O 上的动点,过动点C 的直线VC 垂直于O 所在的平面,,D E 分别是,VA VC 的中点.(1)试判断直线DE 与平面VBC 的位置关系,并说明理由;(2)若已知2,AB VC ==当三棱锥V ABC -体积最大时,求点C 到面VBA 的距离.思路分析:(1)要判断直线DE 与平面VBC 的位置关系,注意到,D E 分别是,VA VC 的中点,可知//DE AC ,只需判断直线AC 与平面VBC 的位置关系,由已知AB 是O 的直径,点C 是O 上的动点,得AC BC ⊥,又直线VC 垂直于O 所在的平面,可得AC ⊥面VBC ,从而可得DE ⊥面VBC .(2)求点C 到面VBA 的距离,首先确定点C 的位置,有已知2,AB VC ==当三棱锥V ABC -体积最大,需写出三棱锥V ABC -的体积表达式,故设,AC b BC b ==,则224a b +=,从而可得1112323V ab ab =⋅⋅=,由基本不等式可得点C 为AB 的中点,最后利用公式V ABC C VAB V V --=即可得出点C 到面VBA 的距离.点评:本题考查是空间的直线与平面的垂直问题和点与平面的距离的计算问题.解答时第一问充分借助已知条件与判定定理,探寻直线DE与AC平行,再推证DE与平面VBC垂直即可.关于第二问中的最值问题,V 的体积取得最大值时成立的条件,然后运用等积法求解答时巧妙运用基本不等式,探求出三棱锥ABC出点C到平面VAB的距离.综合以上四类问题,立体几何中的空间角与距离问题都是高考中的热点问题,在高考试题的新颖性越来越明显,能力要求也越来越高,并且也越来越广泛.异面直线所成的角,通过作平行线,转化为相交直线所成的角.具体地,有以下两种方法:一是在其中一条上的适当位置选一点,过该点作另一条的平行线;二是在空间适当位置选一点,过该点作两条异面直线的平行线.求异面直线所成的角,点的选取很重要.运用空间向量坐标运算求异面直线所成的角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.注意:两异面直线所成的角不一定是直线的方向向量的夹角. 直线与平面所成的角就是直线与其在该平面内的射影所成的角.求线面角的关键是找出斜线在平面内的射影,一般在斜线上的某个特殊的位置找一点,过该点平面的垂线,从而作出射影;运用空间向量坐标运算求直线与平面所成的角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.注意:直线与平面所成的角的正弦等于直线与平面的法向量的夹角的余弦的绝对值. 求二面角的方法:①直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角,自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;;②利用与二面角的棱垂直的平面确定平面角, 自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角;③利用定义确定平面角, 在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;②射影面积法.利用射影面积公式cos θ= S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等.③空间向量法:法一: ,AB CD 是二面角l αβ--的两个面内与棱l 垂直的直线,则二面角的大小,AB CD θ=〈〉. 法二:设1n ,2n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧(同等异补),则二面角l αβ--的平面角12cos cos ,u u θ=〈〉或12cos cos ,u u θ=-〈〉.求距离的关键是化归.即空间距离向平面距离化归,具体方法如下:(1)求空间中两点间的距离,一般转化为解直角三角形或斜三角形.(2)求点到直线的距离和点到平面的距离,一般转化为求直角三角形斜边上的高;或利用三棱锥的底面与顶点的轮换性转化为三棱锥的高,即用体积法.(3)求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法,把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:①找出或作出表示有关距离的线段;②证明它符合定义;③归到解某个三角形.若表示距离的线段不容易找出或作出,可用体积等积法计算求之.2.用法向量球距离:(1)用法向量求异面直线间的距离:如右图所示,a 、b 是两异面直线,是a 和b 的法向量,点E ∈a ,F ∈b ,则异面直线 a 与b之间的距离是d = ;(2)用法向量求点到平面的距离:已知AB 是平面α的 一条斜线,为平面α的法向量,则 A 到平面α的距离为d =;(3)用法向量求直线到平面间的距离:首先必须确定直线与平面平行,然后将直线到平面的距离问题转化成直线上一点到平面的距离问题;(4)用法向量求两平行平面间的距离:首先必须确定两个平面是否平行,这时可以在一个平面上任取一点,将两平面间的距离问题转化成点到平面的距离问题.解答这些问题,需要主观的意志力,不要见到此类问题先发怵,进行消极的自我暗示,要通过一些必要的练习,加强解题信心的培养,确定解题的一般规律,积极的深入分析问题的特征,进而实现顺利解答.。