高考试题——数学理(全国卷1)(精校版)
2017高考全国1卷理科数学试题及答案解析[精校解析版]
![2017高考全国1卷理科数学试题及答案解析[精校解析版]](https://img.taocdn.com/s3/m/d9632f3d763231126edb11e7.png)
WORD 格式整理2016 年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置 . 用 2B 铅笔将答题卡上试卷类型 A 后的方框涂黑 .2、选择题的作答: 每小题选出答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑 . 写在试题卷、草稿纸和答题卡上的非答题区域内均无效 .3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内 . 写在试题卷、草稿纸和答题卡上的非答题区域均无效 .4、选考题的作答: 先把所选题目的题号在答题卡上指定的位置用 2B 铅笔涂黑 . 答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效 .5、 考试结束后,请将本试题卷和答题卡一并上交 .第 Ⅰ 卷一 . 选择题:本大题共 12 小题 ,每小题 5 分 ,在每小题给出的四个选项中,只有一项是符合题目要求 的 .1.设集合 A x x 2 4x 3 0 , x 2x 3 0 ,则 A B( A )3, 3 ( B ) 3, 3 ( C ) 1, 3 ( D ) 3,3 2 2 2 2设i ) x 1 yi ,其中 x, y 是实数,则 x yi 2. (1 ( A ) 1( B ) 2(C )3 (D) 23.已知等差数列 a n 前 9 项的和为 27,a 108 ,则 a 100( A ) 100 ( B ) 99 (C ) 98 ( D ) 974.某公司的班车在7:00,8:00,8:30 发车,小明在7:50 至8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是( A )1( B)1(C)2( D)33234x2y21 表示双曲线,且该双曲线两焦点间的距离为4,则 n 的取值范围是5.已知方程n 3m2m2n专业技术参考资料WORD 格式整理( A )1,3 ( B) 1, 3 ( C) 0,3( D )0, 36.如图 ,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径 .若该几何体的体积是28,则它的表面积是3( A )17 ( B)18( C)20( D)287.函数 y 2x2e x在2,2 的图像大致为y y( A )1( B)12 O 2 x 2 O2xy y1 1( C)2O 2 x(D) 2 O 2 x8.若 a b 10, c 1,则( A )a cbc ( B)ab c ba c( C ) alog b cb log ac ( D) logac9.执行右面的程序框图 ,如果输入的 x 0, y 1,n1 ,则输出 x,y 的值满足( A ) y 2x ( B) y 3x ( C) y 4x ( D) y 5x10.以抛物线 C 的顶点为圆心的圆交 C 于 A、B 两点,交 C 的准线于D 、E 两点 .已知 |AB|= 4 2 ,|DE|= 2 5 ,则 C 的焦点到准线的距离为n=n+ 1(A)2 (B)4 (C)6 (D)8 11.平面过正方体ABCD顶点 A I平面ABCD=m, I 平面 ABB1A1=n,则 m、n所成角的正弦值为3 2(A) (B)2 2log b c开始输入x,y,nn-1x=x+ 2,y=nyx2+y2≥36?否是输出x,y结束专业技术参考资料WORD 格式整理12.已知函数 f (x)sin( x+ )(0,), x 为 f (x) 的零点 , x 为 y f ( x) 图像2 4 4的对称轴,且 f (x) 在5单调,则的最大值为18,36( A ) 11 ( B)9(C) 7( D)5二、填空题:本大题共3 小题 ,每小题 5 分13.设向量 a=(m,1), b=(1,2) ,且|a+b|2=|a|2+|b|2,则 m= .14. (2 xx)5的展开式中, x3的系数是.(用数字填写答案)15.设等比数列a n满足 a1+a3=10, a2+a4=5,则 a1a2 ⋯an的最大值为.16.某高科技企业生产产品A 和产品 B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料 1kg,用 5 个工时;生产一件产品B 需要甲材料 0.5kg,乙材料 0.3kg ,用 3 个工时.生产一件产品 A 的利润为2100 元,生产一件产品B 的利润为 900 元.该企业现有甲材料150kg,乙材料 90kg,则在不超过600 个工时的条件下,生产产品 A、产品 B 的利润之和的最大值为元.三.解答题:解答应写出文字说明 ,证明过程或演算步骤 .17.(本小题满分为 12 分)ABC 的内角A,B,C的对边分别为a b c2cos C (a cos B+b cos A)c.,,,已知( I)求 C;( II )若 c 7 ,ABC 的面积为 3 3,求ABC 的周长.218.(本小题满分为12 分)如图,在以A,B,C,D,E, F 为顶点的五面体中,面ABEF 为正方形, AF =2FD ,AFD 90 ,且二面角 D -AF -E 与二面角 C-BE-F 都是 60 .( I)证明:平面ABEF 平面 EFDC ;D C( II )求二面角E-BC- A 的余弦值.F专业技术参考资料WORD 格式整理19.(本小题满分12 分)某公司计划购买 2 台机器 ,该种机器使用三年后即被淘汰.机器有一易损零件 ,在购进机器时,可以额外购买这种零件作为备件,每个 200 元 .在机器使用期间 ,如果备件不足再购买 ,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了 100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:频数40200 8 9 10 11 更换的易损零件数以这 100 台机器更换的易损零件数的频率代替 1 台机器更换的易损零件数发生的概率,记 X 表示 2台机器三年内共需更换的易损零件数, n 表示购买 2 台机器的同时购买的易损零件数.( I)求 X 的分布列;( II )若要求 P( X n) 0.5 ,确定 n 的最小值;( III )以购买易损零件所需费用的期望值为决策依据,在 n 19 与 n 20 之中选其一 ,应选用哪个?20.(本小题满分12 分)设圆x2y22x 15 0 的圆心为 A,直线 l 过点 B ( 1,0)且与 x 轴不重合, l 交圆 A 于 C,D 两点,过 B 作 AC 的平行线交A D 于点 E.( I)证明EA EB 为定值,并写出点 E 的轨迹方程;( II )设点 E 的轨迹为曲线C1,直线 l 交 C1于 M ,N 两点,过 B 且与 l 垂直的直线与圆 A 交于 P,Q两点,求四边形MPNQ 面积的取值范围 .21.(本小题满分 12 分)已知函数 f x x 2 e x2有两个零点 .a x 1(I ) 求a的取值范围;(II)设12是fx 的两个零点 ,证明:x1x2 2 .x ,x专业技术参考资料WORD 格式整理请考生在22、 23、 24 题中任选一题作答 ,如果多做 ,则按所做的第一题计分.22.(本小题满分 10 分)选修 4-1:几何证明选讲如图,△ OAB 是等腰三角形,∠ AOB=120°.以 O 为圆心, 1OA 为半径作圆 . 2(I) 证明:直线 AB 与⊙ O 相切;(II) 点 C ,D 在⊙ O 上,且 A , B , C , D 四点共圆,证明: AB ∥ CD. DCOA B23.(本小题满分 10 分)选修 4— 4:坐标系与参数方程在直角坐标系 x y 中,曲线 C 1 的参数方程为 x a cost ( t 为参数, a > 0).y 1 a sin t 在以坐标原点为极点, x 轴正半轴为极轴的极坐标系中,曲线C 2: ρ= 4 cos . ( I )说明 C 1 是哪一种曲线,并将 C 1 的方程化为极坐标方程;( II )直线 C 3 的极坐标方程为 0 ,其中 0 满足 tan 0 =2 ,若曲线 C1 与 C2 的公共点都在 C3 上,求 a .24.(本小题满分 10 分)选修 4— 5:不等式选讲已知函数 fx x 1 2x 3 .( I )画出 y f x 的图像;( II )求不等式 f x 1 的解集.专业技术参考资料WORD 格式整理2016 年高考全国1 卷理科数学参考答案 题号 1 2 3 45 6 7 8 9 10 11 12 答案D BCBAADCCBA B1. A x x 2 4x 3 0 x 1 x 3 , B x 2 x 3 0 x x 3 .2 故 A Bx 3x 3 . 2故选D .2. 由 1 i x 1 yi 可知: x xi 1 yi ,故 x 1 ,解得: x 1 . x y y 1 所以,xyi x 2y 22 .故选 B .3. 由等差数列性质可知: S 99 a 1 a992a 5 9a 5 27 ,故a 5 3 ,2 2而 a 10 8 ,因此公差 d a10 a 51 10 5∴a100 a10 90d 98 .故选C .4. 如图所示,画出时间轴:7:30 7:40 7:50 8:008:10 8:20 8:30ACDB小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或 DB时,才能保证他等车的时间不超过10 分钟根据几何概型,所求概率 P 10 10 1 .40 2 故选 B.专业技术参考资料WORD 格式整理5. x2y21 表示双曲线,则m2n 3m2n 0m2n 3m2n∴m2 n 3m2由双曲线性质知:c2m2n 3m2n 4m2,其中 c 是半焦距∴焦距 2c 2 2 m 4 ,解得 m 1∴1 n 3故选 A.6.原立体图如图所示:是一个球被切掉左上角的1 后的三视图8表面积是7 的球面面积和三个扇形面积之和8S= 7 4 22 +3 1 22 =178 4故选A.7. f 2 8 e 2822.8 0 ,排除Af 2 8 e28 2.721 ,排除 Bx 0 时, fx 2x2e x f x 4x e x,当 x 0, 1时, f x 1 4 e004 4因此f x 在 0, 1 单调递减,排除 C4 故选D.8. 对 A :由于 0 c 1 ,∴函数 y x c在 R 上单调递增,因此 a b 1 a c b c, A 错误对 B :由于 1 c 1 0 ,∴函数 yx c1在 1, 上单调递减,∴ a b 1 a c 1bc 1 ba cab c , B 错误专业技术参考资料WORD 格式整理对 C :要比较 a log b c 和 blog a c ,只需比较 a ln c和 b ln c ,只需比较 ln c 和 ln c,只需 b lnbln b ln abln b aln a 和 a ln a构造函数 fx x ln xx 1 ,则 f ' x ln x 1 1 0 , f x 在1, 上单调递增,因此 f a f b 0a ln ab ln b 0 1 1a ln ab ln b又由 0 c 1 得 ln c0 ,∴ ln ca ln a对 D : 要比较 log a c 和 log b c ,只需比较ln c blog a c a log b c , C 正确b ln b lnc 和 ln cln a ln b而函数 y ln x 在 1, 上单调递增,故 a b 1 ln a 1 1ln b 0 ln b ln a又由 0 c 1 得 ln c0 ,∴ ln c ln c log a c log b c , D 错误 ln a ln b故选 C .9. 如下表:循环节运 n 1 判断是否x x ny n n n 1 x y y行次数2 2 2 36 输出 x y 运行前 0 1 / / 1 第一次 0 1 否 否 2 第二次 1 2 否 否3 2第三次36是是2输出x 3,y 6,满足y 4x 2故选 C.10.以开口向右的抛物线为例来解答,其他开口同理设抛物线为y22px p 0,设圆的方程为 x2y2r2,题目条件翻译如图:设 A x0 ,2 2 ,D p,, 5 2专业技术参考资料WORD 格式整理点 Ax 0 ,2 2 在抛物线 y 2 2 px 上,∴ 8 2 px 0 ⋯⋯ ① p p 2 , 5 在圆x 2 2 2 r 2⋯⋯ ② 点 D y r 上,∴ 52 2点 A x 0 ,22 2 2 2 2 8 r 2在圆 x y r 上,∴x0 ⋯⋯ ③ 联立①②③解得: p 4 ,焦点到准线的距离为p 4 . 故选B .D Cα B A11. 如图所示:∵ ∥平面 CB1D1 ,∴若设平面 CB1 D1 平面 ABCD m1 ,C 1D 1则 m 1∥ mA 1 B1又∵平面 ABCD ∥平面 A 1 B 1C 1 D 1 ,结合平面 B 1D 1C 平面 A 1 B 1 C 1D 1 B 1 D 1∴B 1D 1∥m 1 ,故 B 1D 1∥m 同理可得: CD 1∥n故 m 、 n 的所成角的大小与 B1D1 、 CD1 所成角的大小相等,即 CD1B1 的大小.而 B 1C B 1 D 1 CD 1 (均为面对交线) ,因此CD 1 B 1 ,即 sin CD 1B 1 3 . 3 2故选A .12. 由题意知:π + k 1 π4π +k2π+ π4 2则 2 k 1,其中 k Zf (x)在π, 5π单调, 518 π T ,1218 36 3612 2接下来用排除法若11, πsin 11xππ 3π3π 5π递减,不满,此时 f( x) , f (x) 在, 递增,在,364 4 18 44 44足 f ( x) 在π 5π单调18,36专业技术参考资料WORD 格式整理若πsin 9 xπ,满足f ( x)在π 5π单调递减9, ,此时 f( x)4 18,4 36故选 B.13.-2 14.10 15 . 64 16 . 21600013. 由已知得: a b m 1, 32 2 2232m2121222,解得m∴ a b a b m 1 2 .14.设展开式的第k 1 项为Tk1,k0,1,2,3,4,5∴ Tk 1k5k k k5k 5 kC5 2 x xC5 2 x2.k C54 255 4当 53 时,k4 ,即T5 4 x210x3 2故答案为10.15. 由于a n 是等比数列,设a na1q n 1,其中 a1是首项, q是公比.2 a18∴ a1 a310 a1 a1q 3 10,解得: 1 .a2a4 5a1q a1q5 q2 1n 4 32 ...n4故 a n,∴a1a2 ... a n1 12 2 21nn72121n 7 2 4922421当 n 3 或 4 时,n 7 49 取到最小值 6 ,此12 2 4取到最大值 26.1n 7 2 49224所以 a1 a2 ... an 的最大值为64.16.设生产 A 产品 x 件, B 产品 y 件,根据所耗费的材料要求、工时要求等其他限制条件,构造线性规则约束为专业技术参考资料WORD 格式整理目标函数 z 2100 x 900 y作出可行域为图中的四边形,包括边界,顶点为(60,100) (0,200) (0,0)(90,0)在 (60,100) 处取得最大值,z 2100 60 900 100 216000 17. 解:⑴2cosC a cosB bcosA c 由正弦定理得:2cosC sin A cosB sin BcosA sinC 2cosC sin A B sinC∵A B C , A 、B 、C 0,ππ ∴sin A B sinC 0∴ 2cos C 1 , cosC 12∵ C 0 ,π∴ C π 3⑵ 由余弦定理得: c 2 a 2 b 22ab cosC 7 a 2 b 22ab 12 a b 2 3ab 7S 1 ab sinC 3 ab 3 32 42∴ab 6∴ a b 218 7a b 5∴ △ ABC 周长为 a b c 5 7专业技术参考资料WORD 格式整理18.解: (1) ∵ ABEF 为正方形∴ A F E F ∵AFD 90∴AF DF∵ DF EF =F∴AF 面 EFDCAF 面 ABEF∴平面 ABEF 平面 EFDC⑵ 由⑴知DFE CEF 60∵AB ∥ EFAB 平面 EFDCEF 平面 EFDC∴AB ∥平面 ABCDAB 平面 ABCD∵面 ABCD 面 EFDC CD∴AB ∥ CD∴CD ∥ EF∴四边形 EFDC 为等腰梯形以 E 为原点,如图建立坐标系,设FD aE 0 ,0,0 B 0,2a ,0 C a,0 ,3 a A 2a , 2a ,2 2EB 0 ,2a ,0 ,BC a, 2a ,3 a ,AB2a ,0 ,0 2 2设面 BEC 法向量为 m x, y,z .2a y10m EB 0 ,即ax1 2ay1 3 az1x1 3 , y10,z1 1m BC 0202 m3 ,0 , 1设面 ABC 法向量为 n x2,y2,z2n BC=a 3.即 2 x22ay22 az20x2 0 , y23,z2 4n AB 02ax20专业技术参考资料WORD 格式整理n0 ,3 ,4设二面角 E BC A 的大小为 .cosm n 4 2 19m n 3 1 3 16 19∴二面角E BC A 的余弦值为2 191919 解:⑴每台机器更换的易损零件数为8, 9, 10,11记事件A i 为第一台机器3 年内换掉 i 7个零件i 1,2,3,4记事件B i 为第二台机器3 年内换掉 i 7个零件i 1,2,3,4由题知P A1P A3P A4P B1P B3P B40.2, PA2P B20.4设 2 台机器共需更换的易损零件数的随机变量为X ,则 X 的可能的取值为16, 17,18,19, 20,21, 22PX 16 P A1PB1 0.2 0.2 0.04PX 17 P A1 PB2P A2 PB1 0.2 0.40.4 0.2 0.16PX 18 P A1 PB3P A2 PB2 P A3 P B1 0.2 0.2 0.2 0.2 0.4 0.4 0.24PX 19 P A1PB4PA2 P B3PA3 P B2P A4 PB1 0.2 0.2 0.20.2 0.40.20.2 0.4 0.24PX 20 P A2PB4P A3 P B3P A4 P B20.4 0.2 0.2 0.4 0.2 0.2 0.2P x 21 P A3 P B4P A4 P B30.2 0.2 0.2 0.2 0.08 P x 22 P A4P B40.2 0.2 0.04X 16 17 18 19 20 21 22P 0.04 0.160.240.24 0.2 0.0 80.04⑵ 要令, 0.04 0.16 0.24 0.5 ,0.04 0.16 0.24 0.24 ≥ 0.5P x ≤ n ≥0.5则 n 的最小值为 19⑶ 购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用当 n 19时,费用的期望为 19 200 500 0.2 1000 0.08 1500 0.04 当 n 20 时,费用的期望为 20 200 500 0.08 1000 0.04 4080 所以应选用 n19 20. (1) 圆 A 整理为 x 2 y 2 16 , A 坐标 1,0 ,如图,1BE ∥AC ,则 ∠C ∠ EBD ,由 AC A D ,则∠ D ∠C ,∠ EBD ∠D ,E D 则 EBA E EB AE ED A D 4 4 2 2 所以 E 的轨迹为一个椭圆,方程为 x y 1 , ( y 0 );4 3 D 404043 2 C 1 A x2B 2 4 E 1 234专业技术参考资料WORD 格式整理⑵C1 : x2y2my1,41 ;设l : x3因为 PQ⊥ l ,设PQ : y m x 1 ,联立 l与椭圆 C1x my 1x2y2得 3m24 y26my 9 0 ;4 31则| MN | 1 m2 | y M y N | 1m236m236 3m2 4 12 m23m2 4 3m2圆心 A 到 PQ 距离 d | m1 1| | 2m| ,1 m2 1 m2所以 | PQ | 2| AQ |2 d 2 2 16 4m22 4 3m2 4 ,1 m 1 m2S MP NQ 1 1 12 m2 14 3m2 4 24 m2124 | MN | |PQ |3m2 1 m23m22 2 4 4 321. (Ⅰ) f '(x) ( x 1)e x2a( x 1) (x 1)(e x2a) .( i)设a 0 ,则 f(x) (x 2)e x, f (x) 只有一个零点.( ii)设a 0 ,则当x (,1)时, f'(x)0 ;当x (1,) 时, f'(x)上单调递减,在 (1, ) 上单调递增.又 f(1) e , f (2) a ,取 b 满足 b 0 且 b ln a,则a (b 2) a(b 3 2f (b) 1)2a(b2b) 0,2故 f (x) 存在两个零点.( iii)设 a 0 ,由 f '(x) 0 得 x若 ae,则ln( 2a)1 ,故当x2P 4321NA x4 2 B 2 41QM 2341;4112,8 312m 10 .所以 f ( x) 在 ( ,1)在 (1, ) 上单调递增.又专业技术参考资料WORD 格式整理当x 1f (x) 0,所以f( x)不存在两个零点.时,若 a e1 ,故当x (1,ln( 2a)) 时, f '(x)0 ;当 x(ln( 2a), ) 时,,则ln( 2a)2f '(x) 0 .因此f (x) 在 (1,ln( 2a)) 单调递减,在(ln( 2a),) 单调递增.又当x 1时,f (x) 0,所以 f ( x) 不存在两个零点.综上, a 的取值范围为(0, ) .()不妨设x1x2,由(Ⅰ)知x1 (,1) ,x2(1,) ,2 x2 (,1) , f ( x) 在(,1)上单调递减,所以x1x22 等价于 f( x1 ) f (2x2 ) ,即 f(2 x2 ) 0 .由于 f(2 x2 ) x2e2x2a( x2 1)2,而 f(x2 )( x22)e x2a( x21)20,所以f (2 x2 ) x2e2 x2( x22)e x2 .设 g( x) xe2x ( x 2)e x,则 g(x) ( x 1)(e2 x e x ) .所以当x 1 时, g(x) 0 ,而 g (1)0 ,故当x1时, g( x) 0.从而 g(x2 ) f (2 x2 ) 0 ,故x1x2 2 .22.⑴设圆的半径为 r ,作 OK AB 于 K ∵OA OB , AOB 120∴OK AB , A 30 ,OK OAsin30OAr2∴ AB 与⊙O 相切⑵方法一:假设 CD 与 AB不平行 CD 与AB 交于 F2FK FC FD ①∵ A 、B 、C 、D 四点共圆∴ FC FD FA FB FK AK FK BK ∵ AK BK专业技术参考资料WORD 格式整理∴ FC FD FK AK FK AK FK 2 AK 2②由①②可知矛盾∴AB ∥ CD方法二:因为 A, B, C, D四点共圆,不妨设圆心为T ,因为O A OB ,TA TB,O,T为 AB 的中垂线上,所以同理OC OD ,TCTD ,所以 OT 为 CD 的中垂线,所以AB∥CD .xacost( t均为参数)23.⑴ 1 a sinty∴x2y2a2①1∴ C1为以0,1 为圆心, a 为半径的圆.方程为x2y2 2 y 1 a20∵x 2y 22,y sin ∴2 2 sin1a20即为C1的极坐标方程⑵ C2:4cos两边同乘得2 4 cos 2x2y2, cos xx2y24x 即 x224②y2C3:化为普通方程为y 2 x由题意:C1和 C2 的公共方程所在直线即为 C3①—②得: 4 x2y 1 a20 ,即为 C3∴ 1 a20 ∴ a 124.⑴如图所示:x 4 ,x ≤1⑵ f x 3x 2 , 1 x 324 x,x ≥32f x 1当 x ≤ 1 , x 4 1 ,解得 x 5 或 x 3 ∴ x ≤ 1专业技术参考资料WORD 格式整理当 1 x 32 1,解得x 11 , 3x 或 x2 3∴ 1 x 1x3 或12 3当 x ≥3, 4 x 1 ,解得 x 5 或 x 32∴3≤x 3或x 52综上, x 1或1 x 3 或 x 5 3∴ f x 1 ,解集为,11 3 5,每项建议案实施完毕,实施部门应根据结果写出总结报告,实事求是的说明产生的经济,3效益或者其他积极效果,呈报总经办。
09年全国高考数学试题——全国卷1(理科)含答案

09年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n k n n P k C P P k n -=-=,,, 一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[u (A B )中的元素共有 (A )3个 (B )4个 (C )5个 (D )6个(2)已知1iZ +=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i(3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。
2019年高考理科数学(全国1卷)答案详解(附试卷)

P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)
sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为
(精校版)2022年新高考全国卷Ⅰ数学高考试题(含答案)

普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.2i 12i -= +A.1B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是A .()2,6-B .()6,2-C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是A .[)1,1][3,-+∞B .3,1][,[01]--C .[)1,0][1,-+∞D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。
2010年高考试题——数学理(全国卷1)解析版

O
2
x
Ax y 2 0 2
【 解 析 2】 z x 2 y zMax 1 2 1
y
1x 2
1 2
z
,
画
图
知
过
点
1, 1 是 最 大 ,
(4)已知各项均为3正数的等比数列{ an }, a1a2a3 =5, a7a8a9 =10,则 a4a5a6 =
(A) 5 2 (B) 7 (C) 6
PA PB x1 x0 , y1 x1 x0 , y1 x12 2x1x0 x02 y12
AO PA x1, y1 x1 x0 , y1 0 x12 x1x0 y2 0 x1x0 1
PA PB x12 2x1x0 x02 y12 x12 2 x02 1 x12 1
2 x02
(12)已知在半径为
2
的球面上有
D1
C1
【解析 1】因为 BB1//DD1,所以 B B1 与平面 ACD 1所成角和 DD 1与平 A1
面 ACD1所 成 角 相 等 ,设 DO⊥ 平 面 ACD 1, 由 等 体 积 法 得
DO
B1 C
V V D ACD 1
D1 ACD ,
即1S 3
ACD1
DO
1S 3
ACD
DD1 .设 DD1=a,
做本小题时极易忽视 a 的取值范围,而利用均值不等式求得 a+2b a 2 2 2 ,从而错选 a
A,这也是命题者的用苦良心之处.
【解析 1】因为 f(a)=f(b),所以|lga|=|lgb|,所以 a=b(舍去),或b
1 a
,所以
a+2b=
a
(完整版)历年高考数学真题(全国卷整理版)

2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013大纲全国,理1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( ).A .3B .4C .5D .62.(2013大纲全国,理2)3=( ).A .-8B .8C .-8iD .8i3.(2013大纲全国,理3)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ).A .-4B .-3C .-2D .-14.(2013大纲全国,理4)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ).A .(-1,1)B .11,2⎛⎫-- ⎪⎝⎭ C .(-1,0) D .1,12⎛⎫ ⎪⎝⎭ 5.(2013大纲全国,理5)函数f (x )=21log 1x ⎛⎫+⎪⎝⎭(x >0)的反函数f -1(x )=( ). A .121x -(x >0) B .121x-(x≠0) C .2x -1(x ∈R) D .2x -1(x >0)6.(2013大纲全国,理6)已知数列{a n }满足3a n +1+a n =0,a 2=43-,则{a n }的前10项和等于( ). A .-6(1-3-10) B .19(1-310) C .3(1-3-10) D .3(1+3-10)7.(2013大纲全国,理7)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ).A .56B .84C .112D .1688.(2013大纲全国,理8)椭圆C :22=143x y +的左、右顶点分别为A 1,A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( ).A .13,24⎡⎤⎢⎥⎣⎦ B .33,84⎡⎤⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦ 9.(2013大纲全国,理9)若函数f (x )=x 2+ax +1x 在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ). A .[-1,0] B .[-1,+∞) C .[0,3] D .[3,+∞)10.(2013大纲全国,理10)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ).A .23 B.3 C.3 D .1311.(2013大纲全国,理11)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若0MA MB ⋅=,则k =( ).A .12 B.2 CD .212.(2013大纲全国,理12)已知函数f (x )=cos x sin 2x ,下列结论中错误的是( ).A .y =f(x)的图像关于点(π,0)中心对称B .y =f(x)的图像关于直线π=2x 对称C .f(x)的最大值为2 D .f(x)既是奇函数,又是周期函数二、填空题:本大题共4小题,每小题5分.13.(2013大纲全国,理13)已知α是第三象限角,sin α=13-,则cot α=__________. 14.(2013大纲全国,理14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有__________种.(用数字作答)15.(2013大纲全国,理15)记不等式组0,34,34x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D .若直线y =a (x +1)与D 有公共点,则a 的取值范围是__________.16.(2013大纲全国,理16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013大纲全国,理17)(本小题满分10分)等差数列{a n }的前n 项和为S n .已知S 3=22a ,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.18.(2013大纲全国,理18)(本小题满分12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac . (1)求B ; (2)若sin A sin C=14,求C .19.(2013大纲全国,理19)(本小题满分12分)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD都是等边三角形.(1)证明:PB⊥CD;(2)求二面角A-PD-C的大小.20.(2013大纲全国,理20)(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X表示前4局中乙当裁判的次数,求X的数学期望.21.(2013大纲全国,理21)(本小题满分12分)已知双曲线C:2222=1x ya b(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C.(1)求a,b;(2)设过F2的直线l与C的左、右两支分别交于A,B两点,且|AF1|=|BF1|,证明:|AF2|,|AB|,|BF2|成等比数列.22.(2013大纲全国,理22)(本小题满分12分)已知函数f(x)=1ln(1+)1x xxxλ(+)-+.(1)若x≥0时,f(x)≤0,求λ的最小值;(2)设数列{a n}的通项111=1+23nan+++,证明:a2n-a n+14n>ln 2.2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:B解析:由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素.故选B. 2. 答案:A解析:323=13=8-.故选A.3. 答案:B解析:由(m +n )⊥(m -n )⇒|m |2-|n |2=0⇒(λ+1)2+1-[(λ+2)2+4]=0⇒λ=-3.故选B. 4. 答案:B解析:由题意知-1<2x +1<0,则-1<x <12-.故选B. 5. 答案:A解析:由题意知11+x=2y⇒x =121y -(y >0),因此f -1(x )=121x -(x >0).故选A. 6. 答案:C解析:∵3a n +1+a n =0,∴a n +1=13n a -.∴数列{a n }是以13-为公比的等比数列.∵a 2=43-,∴a 1=4. ∴S 10=101413113⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦+=3(1-3-10).故选C.7.答案:D解析:因为(1+x )8的展开式中x 2的系数为28C ,(1+y )4的展开式中y 2的系数为24C ,所以x 2y 2的系数为2284C C 168=.故选D. 8. 答案:B解析:设P 点坐标为(x 0,y 0),则2200=143x y +, 2002PA y k x =-,1002PA y k x =+,于是12220222003334244PA PA x y k k x x -⋅===---.故12314PA PA k k =-. ∵2PA k ∈[-2,-1], ∴133,84PA k ⎡⎤∈⎢⎥⎣⎦.故选B.9. 答案:D解析:由条件知f ′(x )=2x +a -21x ≥0在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即212a x x ≥-在1,2⎛⎫+∞ ⎪⎝⎭上恒成立.∵函数212y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上为减函数,∴max 211<23212y -⨯=⎛⎫⎪⎝⎭.∴a ≥3.故选D. 10. 答案:A解析:如下图,连结AC 交BD 于点O ,连结C 1O ,过C 作CH ⊥C 1O 于点H .∵11BD ACBD AA AC AA A ⊥⎫⎪⊥⎬⎪=⎭1111BD ACC A CH ACC A ⊥⎫⎬⊂⎭平面平面11=CH BDCH C O BD C O O ⊥⎫⎪⊥⎬⎪⎭CH ⊥平面C 1BD ,∴∠HDC 为CD 与平面BDC 1所成的角.设AA 1=2AB =2,则=2AC OC,1C O =由等面积法,得C 1O ·CH =OC ·CC 12CH , ∴2=3CH . ∴sin ∠HDC =223==13HC DC .故选A.11. 答案:D解析:由题意知抛物线C 的焦点坐标为(2,0),则直线AB 的方程为y =k (x -2),将其代入y 2=8x ,得k 2x 2-4(k2+2)x +4k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2242k k (+),x 1x 2=4.①由112222y k x y k x =(-)⎧⎨=(-)⎩∵0MA MB ⋅=,∴(x 1+2,y 1-2)·(x 2+2,y 2-2)=0. ∴(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0, 即x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4=0.④ 由①②③④解得k =2.故选D. 12. 答案:C解析:由题意知f (x )=2cos 2x ·sin x =2(1-sin 2x )sin x . 令t =sin x ,t ∈[-1,1], 则g (t )=2(1-t 2)t =2t -2t 3. 令g ′(t )=2-6t 2=0,得=t ±. 当t =±1时,函数值为0;当t =;当t =.∴g (t )max ,即f (x )的最大值为9.故选C. 二、填空题:本大题共4小题,每小题5分.13.答案:解析:由题意知cos α=3==-.故cot α=cos sin αα14.答案:480解析:先排除甲、乙外的4人,方法有44A 种,再将甲、乙插入这4人形成的5个间隔中,有25A 种排法,因此甲、乙不相邻的不同排法有4245A A 480⋅=(种).15.答案:1,42⎡⎤⎢⎥⎣⎦解析:作出题中不等式组表示的可行域如图中阴影部分所示. ∵直线y =a (x +1)过定点C (-1,0),由图并结合题意可知12BC k =,k AC =4,∴要使直线y =a (x +1)与平面区域D 有公共点, 则12≤a ≤4. 16.答案:16π解析:如下图,设MN 为两圆的公共弦,E 为MN 的中点, 则OE ⊥MN ,KE ⊥MN ,结合题意可知∠OEK =60°.又MN =R ,∴△OMN 为正三角形.∴OE =2R .又OK ⊥EK ,∴32=OE ·sin 60°=22R ⋅∴R =2.∴S =4πR 2=16π.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:设{a n }的公差为d .由S 3=22a 得3a 2=22a ,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得22S =S 1S 4. 又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意; 若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1. 18.解:(1)因为(a +b +c )(a -b +c )=ac ,所以a 2+c 2-b 2=-ac .由余弦定理得cos B =222122a cb ac +-=-, 因此B =120°.(2)由(1)知A +C =60°,所以cos(A -C )=cos A cos C +sin A sin C =cos A cos C -sin A sin C +2sin A sin C =cos(A +C )+2sin A sin C=11+2242⨯=, 故A -C =30°或A -C =-30°, 因此C =15°或C =45°. 19.(1)证明:取BC 的中点E ,连结DE ,则ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O .连结OA ,OB ,OD ,OE .由△PAB 和△PAD 都是等边三角形知PA =PB =PD , 所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P ,故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD .取PD 的中点F ,PC 的中点G ,连结FG ,则FG ∥CD ,FG ⊥PD .连结AF ,由△APD 为等边三角形可得AF ⊥PD .所以∠AFG 为二面角A -PD -C 的平面角.连结AG ,EG ,则EG ∥PB .又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =,EG =12PB =1,故AG 3.在△AFG 中,FG =12CD =,AF =AG =3,所以cos ∠AFG =22223FG AF AG FG AF +-=-⨯⨯因此二面角A -PD -C 的大小为π-解法二:由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE 的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB |=2,则A (,0,0),D (0,,0),C (,0),P (0,0).PC =(,),PD =(0,,).AP =,0),AD =,,0).设平面PCD 的法向量为n 1=(x ,y ,z ),则n 1·PC =(x ,y ,z )·(,)=0,n 1·PD =(x ,y ,z )·(0,,)=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故n 1=(0,-1,1).设平面PAD 的法向量为n 2=(m ,p ,q ),则n 2·AP =(m ,p ,q ,0)=0,n 2·AD =(m ,p ,q ,,0)=0,可得m+q=0,m-p=0.取m=1,得p=1,q=-1,故n2=(1,1,-1).于是cos〈n1,n2〉=1212||||3=-·n nn n.由于〈n1,n2〉等于二面角A-PD-C的平面角,所以二面角A-PD-C的大小为π-20.解:(1)记A1表示事件“第2局结果为甲胜”,A2表示事件“第3局甲参加比赛时,结果为甲负”,A表示事件“第4局甲当裁判”.则A=A1·A2.P(A)=P(A1·A2)=P(A1)P(A2)=14.(2)X的可能取值为0,1,2.记A3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B1表示事件“第1局结果为乙胜丙”,B2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B3表示事件“第3局乙参加比赛时,结果为乙负”.则P(X=0)=P(B1·B2·A3)=P(B1)P(B2)·P(A3)=18,P(X=2)=P(1B·B3)=P(1B)P(B3)=14,P(X=1)=1-P(X=0)-P(X=2)=1151848--=,EX=0·P(X=0)+1·P(X=1)+2·P(X=2)=98.21.(1)解:由题设知ca=3,即222a ba+=9,故b2=8a2.所以C的方程为8x2-y2=8a2.将y=2代入上式,求得x=由题设知,=a2=1.所以a=1,b=(2)证明:由(1)知,F1(-3,0),F2(3,0),C的方程为8x2-y2=8.①由题意可设l的方程为y=k(x-3),k(k2-8)x2-6k2x+9k2+8=0.设A(x1,y1),B(x2,y2),则x1≤-1,x2≥1,x1+x2=2268kk-,x1·x2=22988kk+-.于是|AF1|=-(3x1+1),|BF1|3x2+1.由|AF1|=|BF1|得-(3x1+1)=3x2+1,即x1+x2=23 -.故226283kk=--,解得k2=45,从而x1·x2=199-.由于|AF2|=1-3x1,|BF2|3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|·|BF2|=3(x1+x2)-9x1x2-1=16. 因而|AF2|·|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.22.(1)解:由已知f(0)=0,f′(x)=22121x xxλλ(-)-(+),f′(0)=0.若12λ<,则当0<x<2(1-2λ)时,f′(x)>0,所以f(x)>0.若12λ≥,则当x>0时,f′(x)<0,所以当x>0时,f(x)<0.综上,λ的最小值是12.(2)证明:令12λ=.由(1)知,当x>0时,f(x)<0,即2ln(1) 22x xxx(+)>++.取1xk=,则211>ln21k kk k k++(+).于是212111 422(1)n n n k n a a n k k -=⎡⎤-+=+⎢⎥+⎣⎦∑ =2121211ln 21n n k n k n k k k k k --==++>(+)∑∑ =ln 2n -ln n =ln 2.所以21ln 24n n a a n-+>. 2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ).A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4 D .45 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x 5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3B .866π3cm3C .1372π3cm3D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 10.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y +D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n n b a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列C .{S2n -1}为递增数列,{S2n}为递减数列D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b·c=0,则t =__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n项和2133n nS a=+,则{an}的通项公式是an=_______.15.(2013课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.2.答案:D解析:∵(3-4i)z =|4+3i|, ∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D. 3.答案:C 解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.4.答案:C解析:∵c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±. ∴渐近线方程为12b y x x a =±±. 5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3).若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4].综上可知,输出的s ∈[-3,4].故选A.6.答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3.∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8.答案:A 解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9.答案:B解析:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得m =6.故选B. 10.答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上, ∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b(+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2, 而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9. ∴椭圆E 的方程为22=1189x y +.故选D. 11.答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a .∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0].12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2.14.答案:(-2)n -1 解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1n n a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1. ∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1. 15.答案:5- 解析:f (x )=sin x -2cos xx x ⎫⎪⎭, 令cos αsin α=则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x ) 即θ=2k π+π2-α(k ∈Z ),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α=5=-. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15.由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2上为增函数,在(-2,-2)上为减函数,在(-2,-2)上为增函数,在(-2∴f (-2=[1-(-22][(-2)2+8(-2+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2=[1-(-22][(-22+8(-2)+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=. 故PA=2. (2)设∠PBA =α,由已知得PB =sin α.在△PBA中,由正弦定理得sin sin150sin(30)αα=︒︒-,cos α=4sin α.所以tan α=4,即tan ∠PBA=4. 18. (1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz . 由题设知A (1,0,0),A 1(0,0),C (0,0,B (-1,0,0).则BC =(1,0,1BB =1AA =(-10),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.x x ⎧+=⎪⎨-+=⎪⎩可取n =,1,-1).故cos 〈n ,1AC 〉=11A CA C⋅n n =. 所以A 1C 与平面BB 1C 1C 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2)=41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14. 所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20. 解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M,解得k=4±. 当k=4时,将4y x =代入22=143x y +, 并整理得7x 2+8x -8=0,解得x 1,2=47-±. 所以|AB |2118|7x x -=.当k =时,由图形的对称性可知|AB |=187. 综上,|AB |=|AB |=187. 21. 解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ),故b =2,d =2,a =4,d +c =4.从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1).设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2,则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x-1).由题设可得F (0)≥0,即k ≥1.令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1).而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0.故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG=2.设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF外接圆的半径等于2.23.解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将cos,sinxyρθρθ=⎧⎨=⎩代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0. 由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即43a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦. 2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ).A .13B .13-C .19D .19-4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,lα,l β,则( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ).A .-4B .-3C .-2D .-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++D .1111+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ). 8.(2013课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,则( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c9.(2013课标全国Ⅱ,理9)已知a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩若z =2x +y 的最小值为1,则a =( ).A.14 B.12 C.1 D.210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.1122⎛⎫-⎪⎪⎝⎭ C.1123⎛⎤-⎥⎝⎦ D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。
(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0 B .12 C .1 D .22.已知集合2{|20}A x x x =-->,则A =R ðA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->UD .{|1}{|2}x x x x -U ≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a =,则5a = A .12- B .10- C .10 D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uu rA .3144AB AC -uu u r uuu r B .1344AB AC -uuu r uuu rC .3144AB AC +uu u r uuu rD .1344AB AC +uuu r uuu r7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则FM FN?uuu r uuu r A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y :-=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN = A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。
2013年高考真题——理科数学(全国卷大纲版)精校版 Word版无答案

绝密★启用前2013年普通高等学校招生全国统一考试数学(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )6(2)()3=(A )8- (B )8 (C )8i - (D )8i (3)已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则(A )4- (B )-3 (C )2- (D )-1 (4)已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫⎪⎝⎭(5)函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> (6)已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于(A )()-10-61-3 (B )()-1011-39(C )()-1031-3 (D )()-1031+3(7)()()342211+x y x y +的展开式中的系数是(A )56 (B )84 (C )112 (D )168(8)椭圆22122:1,,46x y C A A P C PA +=的左、右顶点分别为点在上且直线斜率的取值范围是[]12,1,PA --那么直线斜率的取值范围是(A )1324⎡⎤⎢⎥⎣⎦, (B )3384⎡⎤⎢⎥⎣⎦, (C )112⎡⎤⎢⎥⎣⎦, (D )314⎡⎤⎢⎥⎣⎦,(9)若函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是 (A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+ (10)已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于(A )23 (B)3 (C)3(D )13 (11)已知抛物线()2:82,2,C C y x M k C =-与点过的焦点,且斜率为的直线与交于,0,A B MA MB k ==两点,若则(A )12 (B)2(C(D )2 (12)已知函数()=cos sin 2,f x x x 下列结论中正确的是(A )()(),0y f x π=的图像关于中心对称 (B )()2y f x x π==的图像关于对称(C )()f x (D )()f x 既是奇函数,又是周期函数 二、填空题:本大题共4小题,每小题5分.(13)已知1sin ,cot 3a a a =-=是第三象限角,则 . (14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)(15)记不等式组0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为.D 若直线()1y a x D a =+与有公共点,则的取值范围是 .(16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K = ,且圆与圆所在的平面所成角为,则球O 的表面积等于 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)等差数列{}n a 的前n 项和为232124.=,,,n S S a S S S 已知且成等比数列,求{}n a 的通项式.18.(本小题满分12分)设()(),,,,,.ABC A B C a b c a b c a b c ac ∆++-+=的内角的对边分别为(I )求;B(II )若sin sin C.A C =求19.(本小题满分12分)如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆ 中,,与都是等边三角形.(I )证明:;PB CD ⊥(II )求二面角.A PD C --的大小20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(II )X 表示前4局中乙当裁判的次数,求X 的数学期望.21.(本小题满分12分)已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b ;(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF -证明:22.AF AB BF 、、成等比数列22.(本小题满分12分)已知函数()()()1=ln 1.1x x f x x xλ++-+(I )若()0,0,x f x λ≥≤时求的最小值;;(II )设数列{}211111,ln 2.234n n n n a a a a n n=+++⋅⋅⋅+-+>的通项证明:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2010年普通高等学校招生全国统一考试
理科数学(必修+选修II )
本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷
注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:
如果事件A 、B 互斥,那么 球的表面积公式
()()()P A B P A P B +=+ 24S R π=
如果事件A 、B 相互独立,那么 其中R 表示球的半径
()()()P A B P A P B = 球的体积公式
如果事件A 在一次试验中发生的概率是p ,那么 334
V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径
()(1)
(0,1,2,)k k n k n n P k C p p k n -=-=…
一、选择题
(1)复数3223i i
+=- (A)i (B)i - (C)12-13i (D) 12+13i
(2)记cos(80)k -︒=,那么tan100︒=
(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩
则2z x y =-的最大值为
(A)4 (B)3 (C)2 (D)1
(4)已知各项均为正数的等比数列{n a }中,123a a a =5,789a a a =10,则
456a a a =
(A)
(5)35(1(1+的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 4
(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有
(A) 30种 (B)35种 (C)42种 (D)48种
(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为
(A )(B (C )23 (D (8)设a =3log 2,b =ln2,c =1
25-,则
(A ) a<b<c (B )b<c<a (C ) c<a<b (D ) c<b<a
(9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则P 到x 轴的距离为
(10)已知函数f (x )=|lg x |.若0<a<b,且f (a )=f (b ),则a+2b 的取值范围是
(A))+∞ (B))+∞ (C)(3,)+∞ (D)[3,)+∞
(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ∙的最小值为
(A) 4-3- (C) 4-+3-+(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为
绝密★启用前
2010年普通高等学校招生全国统一考试
理科数学(必修+选修II )
第Ⅱ卷
注意事项:
1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域 内作答,在试题卷上作答无效.........。
3.第Ⅱ卷共l0小题,共90分。
二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无效.........
)
(13)1x ≤的解集是 .
(14)已知α为第三象限的角,3cos 25α=-
,则tan(2)4πα+= . (15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .
(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,
且BF 2FD =uu r uu r ,则C 的离心率为 .
三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分10分)(注意:在试题卷上作答无效............
) 已知ABC V 的内角A ,B 及其对边a
,b 满足cot cot a b a A b B +=+,求内角C .
(18)(本小题满分12分)(注意:在试题卷上作答无效.........).
投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审, 则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录 用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3. 各专家独立评审.
(I)求投到该杂志的1篇稿件被录用的概率;
(II)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望.
(19)(本小题满分12分)(注意:在试题...卷上作答无效......
) 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .
(Ⅰ)证明:SE=2EB ;
(Ⅱ)求二面角A-DE-C 的大小 .
(20)(本小题满分12分)(注意:在试题卷上作答无效.........
) 已知函数()(1)ln 1f x x x x =+-+.
(Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围;
(Ⅱ)证明:(1)()0x f x -≥ .
(21)(本小题满分12分)(注意:在试题卷上作答无效.........
) 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D.
(Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89
FA FB =
,求BDK ∆的内切圆M 的方程 .
(22)(本小题满分12分)(注意:在试题卷上作答无效.........
) 已知数列{}n a 中,1111,n n
a a c a +==- . (Ⅰ)设51,22
n n c b a ==-,求数列{}n b 的通项公式; (Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围 .。