高精度、低功耗芯片TDC-GP21在超声波热量表中的应用-
TDC-GP21完美适合超声波热量表的解决方案

TDC-GP21完美适合超声波热量表的解决方案前言:从2009年开始,中国北方供热改革已经真正的迈开了脚步,在未来的几年当中,北方各地将会加快对于供热计量方面的改革力度,按热量计价收费将会成为今后北方供热供暖方面的一个重点工作。
而超声波热量表由于其测量方式无接触部件,低压降和低能量消耗而且测量高精度,正在逐渐取代机械式的热量表,成为北方供热供暖热计量方案的首选。
应用德国acam公司的第一代产品TDC-GP2实现的超声波热量表已经在市场被广泛的应用,而且由于其集成度高,测量性能好功耗低的优势,受到广大的热量表公司的认可。
而今,acam公司进一步推出了针对超声波热量表的高集成度TDC-GP21,在性能质量,功耗及其他各个方面将全面超越TDC-GP2,成为超声波热量表的首选。
TDC-GP21介绍:在2010年的11月底,德国acam公司在原有的基础上,又专门针对超声波热量表的一些特性,进行了更深入的研究和改进,最终推出了新一代针对超声波热量表所设计的的芯片TDC-GP21。
这颗芯片采用QFN32管脚的封装形式,除了具备了TDC-GP2的功能以外,还额外集成了超声波热量表所需要的信号处理模拟部分,比如模拟开关,以及低噪声斩波稳定(自动进行温度电压校正)模拟信号比较器,以及内部集成了温度测量所需施密特触发器,使超声波热量表的设计开发非常简单,大大降低材料和人工成本,并且将测量质量和功耗提升到了一个前所未有的等级,实现了更高集成度,更低功耗,更高精度的超声波热量表方案。
TDC-GP21所能够实现的性能,是TDC-GP2所无法达到的。
TDC-GP21内部结构上模拟控制部分将信号的发射接收的处理变得前所。
TDC_GP2在热表中的应用新的超声波热表解决方案

Stop Enable Generator
TDC
ALU
Time_Val1 28 Time_Val2 28 Time_Val3 28 Time_Val4 28
SO SI
SCK SSN
Config Register 4-Wire SPI-Interface
TStart TStop
T 上游= Toffset +
L
C + V * cosθ
T 下游= Toffset +
L
C − V * cosθ
*其中 C 为声音在水中传播的速度。
那么顺流时间和逆流时间的时间差为:
ΔT = T 上游- T 下游=
L
−
L
= 2VL cosθ
C + V * cosθ C − V * cosθ C 2 − V 2 cos2 θ
3.1 什么是 TDC?
在介绍 TDC-GP2 的优点之前,首先让我们来看看到底什么是 TDC。TDC 即时间数字转换器,它是利 用信号通过逻辑门的绝对时间延迟来精确量化时间间隔。
High-speed unit Start Stop
dynam ic value m em ory
coarse counter
为了简化计算,我们可以假设流体的速度相对于声波在流体中传播的速度是非常微小的,那么我们
可以将上式简化为:
ΔT ≈ 2VL cosθ C2
从而我们得到流体的速度与传播时间差的一个线性公式为:
V = C 2ΔT 2L cosθ
需要特别强调的一点是 V 是流体沿着管道中心线的线速度,考虑到液体流速沿管道直径的不均匀分
data post processing
一款基于TDC-GP21的低功耗热量表设计与实现

一款基于TDC-GP21的低功耗热量表设计与实现作者:陈晔王立辉来源:《机电信息》 2015年第24期陈晔王立辉(海南大学,海南儋州571700)摘要:介绍了一款基于高精度时间测量芯片TDC�GP21的超声波式热量表的具体设计。
热量表中热水流量采用超声波时差法原理进行测量,超声波换能器采用V型安装方式。
利用低功耗MSP430单片机的休眠模式等方法,大幅降低了测量系统的功耗。
关键词:TDC�GP21;超声波;热量表;流量;温度0引言供热取暖逐步采用分户计量模式,需要安装热量的检测仪表。
本文针对小口径流量测量,选择采用超声波时差法原理。
1测量原理热量表的三大构件是:流量传感器、温度传感器和热量计算器。
工作原理:流量传感器负责检测出当载热流体流经热交换系统时的流量;配对的两支温度探头测量出进水和回水管道的温度;热量计算器计算出系统释放的热量。
1.1热量计量2硬件设计2.1TDC�GP21芯片流量检测采用德国ACAM公司的时间数字转换芯片TDC�GP21来完成[5],原理是逻辑门电路延迟信号的传输。
集成电路工艺精确地决定非门的传输时间,求出传输通过非门的个数,进而得出时间间隔。
TDC�GP21芯片内部集成了一个以PICOSTRAIN为基础的测温单元,测量原理是基于电容充放电法,每次测量电流都很小,大大降低了功耗。
2.2MSP430F449基于低功耗的考虑,选择MSP430F449超低功耗单片机作为主控芯片,其带有FLASH存储器[6]。
2.3外围电路(1)超声波换能器。
采用以PPS材料作为外壳的压电超声波换能器[7]。
PPS外壳超声波换能器参数如下:中心频率——1MHz;带宽——39.5%;灵敏度——21dB;Qm——4.9;余震——7.68μs;外壳材质——PPS;导线末端处理——镀锡;导线外被材质——PVC;导线屏蔽层——Y。
(2)超声波换能器安装方式。
采用V型安装方式,此方式传播量程较长,信号散射损失小,精度高。
一款基于TDC-GP21的低功耗热量表设计与实现

一款基于TDC-GP21的低功耗热量表设计与实现背景与概述在家庭、公寓、办公楼等大量建筑物中,热能消耗占据了非常大的比例,因此监测和控制热量的消耗和分配是非常重要的。
根据热量的测量方法不同,传统的低功耗热量表通常采用机械式、电子式、电离式等测量方法,这些方法在测量准确度、实时性以及维护成本等方面存在问题。
为了满足现代低功耗热量测量对精度和实时性的要求,本文提出了一款基于TDC-GP21芯片的低功耗热量表设计与实现。
TDC-GP21芯片介绍TDC-GP21芯片是一款集成了时间数字转换器和计数器模块的高性能低功耗芯片。
TDC-GP21最大的特点是能够实现高精度的计时并提高测量精度。
其内部时钟频率高达1GHz,最高能够计数到1.024秒,并提供了 SPI 接口驱动,能够和 MCU系统集成。
基于TDC-GP21芯片的低功耗热量表,通过对芯片的时间计数和测量,能够实现对热量的高精度计量和追踪。
低功耗热量表整体设计一款基于TDC-GP21的低功耗热量表,主要由传感器、计算模块、显示模块和MCU等模块组成。
其中传感器和计算模块为核心部件,负责实现热量的测量和计算,而显示模块则用于显示热量数据,MCU则作为控制模块,控制整个系统的运行和处理。
传感器传感器是整个热量表测量的核心部分,负责实时监测水流量和温度的变化。
本文选择热能传感器作为测量传感器。
计算模块计算模块实际上就是基于TDC-GP21芯片的计数器模块。
该模块负责测定冷热水进出口的时间差,并通过这个差值计算出每秒钟的冷热水体积。
通过脉冲的计数和时间计数,计算出流量。
显示模块显示模块主要是将计算模块得到的热量数据实时显示给用户。
本文选择了一块4位7段数码管模块作为显示模块。
这种模块在价格上比LCD显示屏等其他显示模块便宜,且比较简单。
这种模块有较低的功耗,并且可以实时显示正在测量的数据。
MCUMCU控制模块负责控制显示模块的输出,从传感器提取数据,并处理和转换数据以便于实时显示。
高精度时间数字转换器在超声波流量计量中的应用

高精度时间数字转换器在超声波流量计量中的应用目前市场上先进的超声波流量计都采用高精度时间转换器即TDC-GP2 芯片,该芯片内部通过特殊的设计和布线方法来保证每个门电路的时间延迟严格一致,但这个时间延迟是会随供电电压和温度而变化的,因此TDC-GP2 设计了一个参考时钟用来对门电路的延时进行校准,同时这个参考时钟也会在被测时间较长时介入时间丈量。
TDC-GP2的高精度时间丈量原理其中Toffset 包含换能器的响应时间、电路元件造成的延时等。
每个门电路的传输延时典型值是65ps,TDC 核心丈量单元通过计数在STOP 脉冲到来之前START 信号通过的门电路个数来获得START 与STOP 信号之间的时间距离。
时差法超声波流量丈量的枢纽是对超声波传播时间的丈量,德国ACAM 公司的时间数字转换芯片TDC-GP2 提供典型值65ps 的时间分辨率,丈量范围从0 到4ms。
前言。
相对于使用分立元件或者FPGA的超声波流量计方案,使用TDC-GP2的方案大大简化了硬件电路设计,明显降低了整机功耗,成为电路最简洁、功耗最低的超声波流量计方案。
因为顺流和逆流路径的一致性,顺、逆流的Toffset 是一样的。
超声波流量计的丈量原理相对于使用传统丈量方法的流量计,超声波流量计有着诸多的长处:它不会改变流体的活动状态,分歧错误流体产生附加阻力;它可适应多种管径的流体丈量,不会因管径的不同增加仪表本钱;它的换能器可设计成夹装式,可作移动性丈量。
TDC-GP2作为高精度的时间丈量芯片,不但集成了时间丈量功能,还针对超声波流量计和热量表的应用提供超声波换能器驱动脉冲以及温度丈量功能。
如图3 所示,TDC 核心丈量单元只丈量TFC1 和TFC2,而TCC 则通过数参考时钟的周期数来完成丈量,待测时间TSS 便可通过如下计算获得:如图2 所示,TDC 核心丈量单元对START 和STOP 脉冲之间的时间距离进行丈量。
顺、逆流传播的时间差为:如图1 所示,超声波在静止流体中的传播速度用C 表示,则顺流和逆流的传播时间分别为:以使用较多的时差法超声波流量计为例,通过分别丈量超声波在流体中顺流和逆流的传播时间,利用流体流速与超声波顺流逆流传播时间差的线性关系计算出流体的实时流速,进而得到对应的流量值。
TDC-GP21在激光测距中的应用

的分辨率 , 能 够 以较 高的 精 度 获得 准 确 的 脉 冲往 返 时 间 , 从 而 能 够 更 为 准 确 地 计 算 出 实 际距 离。 详 细 论 述 了硬 件 电路 中 ,
T DC — GP 2 1的 外 围电路 以 及 工 作 方 式 , 以及 其 内部 的误 差校 验 方 式 。 在 实 际设 计 与 实现 过 程 中 , 针 对 不 同量 程 , 设 置 不 同的 闽值 比 较 电压 能 较 精 确 的 测 量 出 时 间 间 隔 。
周期的个数来得出时间间隔 , 为 了达 到 较 高 的精 度 , 对 硬 件 电路 有极 高 的 要求 , 不 易 实 现 且 增 加 了设 计 成 本 J 。 T D C— GP 2 1 作 为 A CA M公 司 T D C— GP 2的 下一 代 时 间数 字转 换 器 产 品 , 因 其 良好 的性 能 , 为 测 量激 光 脉 冲往返 时 间 提供 了 一个 较好 的解决 方 案 。 该 芯片 应 用 电路 简 单 , 且 时 间测 量 的精 度 满 足实 际应 用 中 的需 求 。
《 工业控制计算机} 2 0 1 7年 第 3 O卷 第 6期
1 2 7
T D C — G P 2 1 在激光测距中的应用
Ap pl i c a t i o n o f T DC-GP2 1 i n Pu l s e d L a s e r Ra n gi n g
脉冲式激光测距方案。
保 证 。 实 际 工 作 过 程 中 的测 量 精 度 取 决 于 内部 电流 信 号 通 过 单 个逻 辑 门 的传 播 时 间 。
TDC GP 2 1 具有 两个测量范 围 , 其 中测 量 范 围 1的 时 间 测
TDC-GP21在超声波热量表中的应用

TDC-GP21在超声波热量表中的应用前言相对于使用传统机械式的测量方法,超声波测量技术提供了一种无阻碍式的测量方法。
在这种技术的支持下,我们设计出的新一代超声波热量表没有了活动部件、电路更加的紧凑简单、功耗更低、精度更高。
而为超声波热量表市场量身定做的TDC-GP21 必将为你提供一个完美的解决方案。
关键字:TDC-GP21,时间数字转换器,超声波流量计,热量表,时间测量,低功耗超声波热量表的测量原理以使用较多的时差法超声波热能量表为例,通过分别测量超声波在流体中顺流和逆流的传播时间,利用流体流速与超声波顺流逆流传播时间差的线性关系计算出流体的实时流速,进而得到对应的流量值。
再分别测出进出水的温度,通过求得差值获得温度系数。
将流量值和温度系数带入公式即可获得单位热量。
如图1 所示,超声波在静止流体中的传播速度用C 表示,则顺流和逆流的传播时间分别为:其中包含换能器的响应时间、电路元件造成的延时等。
由于顺流和逆流路径的一致性,顺、逆流的是一样的。
顺、逆流传播的时间差为:由此得到流体流速V 和瞬时流量Q 的计算公式(K 为流速分布修正系数):再通过K 系数法,我们就可以得出热量E:德国ACAM 公司针对超声波热量表市场新推出的TDC-GP21 TDC-GP21 是德国ACAM 公司在TDC-GP2 的基础上发展的新一代产品。
除了具有TDC-GP2 所具有的高精度时间测量,高速脉冲发生器,接收信号使能,温度测量和时钟控制等功能外,它还集成了施密特触发器,斩波稳定的内部比较器和模拟开关等特殊功能模块,使得它尤其适合于超声波流量测量和热量测量方面的应用。
这款芯片利用现代化的纯数字化CMOS 技术,将时间间隔的测量量化到22ps 的精度,给超声波热量表的时差测量提供了一个完美的解决方案。
1、TDC-GP21 的技术核心——时间数字转换器(TDC)TDC—即时间数字转换器(Time-to-Digital Converter),。
TDC_GP21中文数据手册

3
Time-to-Digital-Converter
TDC-GP21
4
acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de
TDC-GP21
1
概述
TDC-GP21为TDC-GP2的下一代升级产品.这颗芯片提供了对于TDC-GP2的管脚完全兼容的功能,
0.06
0.04
0,02% < 0.01%
0.012 0.0082
单位 Bit dB
%/V %/10 K
acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de
1-1
2-1 2-2 2-3 2-6 2-7 2-8
3-1 3-11 3-13 3-14
4-1 4-7 4-14 4-16
5-1 5-4 5-7 5-7
6-1
7-1
acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de
如果应用tdcgp21的模拟部分那么一个超声波热量表的典型测量功耗可以下降到22ua11特性测量范围2?单通道90ps典型精度?双精度模式45ps四精度模式22ps?测量范围500ns到4ms?2xclkhs脉冲最小间隔最多可以接受3个脉冲?3个脉冲每个都可以设定精准的时间窗口窗口精确度达10ns模拟输入部分?斩波稳定低噪声比较器?2个模拟开关作为输入选择?外部电路仅需要2个电阻和2个电容特殊功能?脉冲产生器可以产生最多127个脉冲?可以选则上升沿和或下降沿敏感?通过窗口功能精确接受stop脉冲?低功耗32khz振荡器500na?时钟标定单元?7x32位eeprom温度测量单元?2或4个传感器?pt500pt1000或者更高?集成的施密特触发器?应用外部施密特触发器为16位有效精度对于铂电阻来说0004c分辨率应用内部集成低噪声施密特触发器为17
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TDC-GP21 在超声波热量表中的应用方案
TDC-GP21 具有高精度的时间测量功能,分辨率达到 22ps,为时差法流量计的应用提供 了基本的测量保障;TDC-GP21 的脉冲发生器在小管径的流量测量中可直接驱动超声波换能 器,无需另外增加驱动芯片;TDC-GP21 测量的低功耗特性使得流量计的整体功耗大幅降低, 为电池供电设备提供了优良的解决方案。 使用 TDC-GP21 的超声波流量计方案相对于使用分立元件或者 FPGA 的超声波流量计方 案,大大简化了硬件电路设计,只需搭配一颗低功耗 MCU,外加几个电阻电容就可完成控制 和时间测量回路的设计。该方案使电路设计得到简化的同时大大缩小了设备的 PCB 面积,使 设备的生产、维护也更加方便容易。
2、TDC-GP21 的特性
100% 功能 & 管脚 & 寄存器 与 TDC-GP2 兼容 (可 1:1 进行替换) 对于 TDC-GP2 的 bug 进行了纠正 增加了一些新的数字部分的功能 (最多可发 128 个驱动脉冲) 可选择精度最高可达 22ps 低功耗 32 kHz 晶振 (600nA) 更加高质量的温度测量单元 内部集成温度测量施密特触发器 超低静态功耗: 0.005 µ A (typ.) 整个测量流程由 GP21 控制,无须复杂单片机控制 可选择部分: 对于超声波热量表所需要的完整的模拟部分 内部集成斩波稳定的内部低噪声比较器(<1mV 漂移) 内部集成低串扰的模拟开关
第 4 页
TDC-GP21 是德国 ACAM 公司在 TDC-GP2 的基础上发展的新一代产品。除了具有 TDC-GP2 所具有的高精度时间测量,高速脉冲发生器,接收信号使能,温度测量和时钟控 制等功能外, 它还集成了施密特触发器, 斩波稳定的内部比较器和模拟开关等特殊功能模块, 使得它尤其适合于超声波流量测量和热量测量方面的应用。 这款芯片利用现代化的纯数字化 CMOS 技术,将时间间隔的测量量化到 22ps 的精度,给超声波热量表的时差测量提供了一 个完美的解决方案。
结语
超声波原理的流量计将是未来流量计的发展方向,TDC-GP21 为超声波流量计提供了最 高集成度、最高测量精度、最低功耗的解决方案。基于测流量原理的户用超声波热量表在北 方城市开始大面积推广,TDC-GP21 已在其中得到了广泛应用。
世强电讯为以上方案提供:完整可行的软件、原理图、PCB 示例,技术支持。
高精度、低功耗芯片 TDC-GP21 在超声波热量表中的应用
——超声波热量表的ቤተ መጻሕፍቲ ባይዱ美解决方案
陈刚 应用工程师 世强电讯
关键字:TDC-GP21,时间数字转换器,超声波流量计,热量表,时间测量,低功耗
前言
相对于使用传统机械式的测量方法,超声波测量技术提供了一种无阻碍式的测量方法。 在这种技术的支持下, 我们设计出的新一代超声波热量表没有了活动部件、电路更加的紧凑 简单、功耗更低、精度更高。而为超声波热量表市场量身定做的 TDC-GP21 必将为你提供一 个完美的解决方案。
图 2 显示了这种测量绝对时间 TDC 的主要构架。芯片上的智能电路结构、担保电路和 特殊的布线方法使得芯片可以精确地记下信号通过门电路的个数。 芯片能获得的最高测量精 度基本上由信号通过芯片内部门电路的最短传播延迟时间决定。 测量单元由 START 信号触发, 接收到 STOP 信号停止。由环形振荡器的位置和粗值计 数器的计数值可以计算出 START 信号和 STOP 信号之间时间间隔, 测量范围可达 20 位。 在 3.3V 和 25 ℃时 ,GP21 的最小分辨率是 22ps。 温度和电压对门电路的传播延迟时间有很大 的影响。通常是通过校准来补偿由温度和电压变化而引起的误差。
第 3 页
… … … … … … … … … … … … … … … … … … … … … … … … … … … … … ..
TDC-GP21 还带有两路温度测量功能,可直接接 PT1000 或 PT500 热电阻进行温度测量, 这为热量表的应用提供了集成化的解决方案。
图 3:超声波热量表应用框图
… … … … … … … … … … … … … … … … … … … … … … … … … … … … … ..
如图 1 所示, 超声波在静止流体中的传播速度用 C 表示,则顺流和逆流的传播时间分别 为:
T顺流 Toffset L (C V * cos )
T逆流 Toffset L (C V * cos )
超声波热量表的测量原理
以使用较多的时差法超声波热能量表为例, 通过分别测量超声波在流体中顺流和逆流的 传播时间,利用流体流速与超声波顺流逆流传播时间差的线性关系计算出流体的实时流速, 进而得到对应的流量值。再分别测出进出水的温度,通过求得差值获得温度系数。将流量值 和温度系数带入公式即可获得单位热量。
由此得到流体流速 V 和瞬时流量 Q 的计算公式(K 为流速分布修正系数) :
( 3)
V T * C 2 ( 2 L * cos ) Q K * * D 2 * V 4
再通过 K 系数法,我们就可以得出热量 E:
( 4) ( 5)
德国 ACAM 公司针对超声波热量表市场新推出的 TDC-GP21
致性,顺、逆流的 T offset 是一样的。顺、逆流传播的时间差为:
( 1) (2)
其中 T offset 包含换能器的响应时间、电路元件造成的延时等。由于顺流和逆流路径的一
T T逆流 T顺流 2 VL * cos (C 2 - V 2 cos 2 ) 2 VL * cos C 2
1、TDC-GP21 的技术核心——时间数字转换器(TDC)
TDC—即时间数字转换器 (Time-to- Digital Converter) , 它是利用信号通过逻辑门的绝对时 间延迟来精确量化时间间隔。
图 2 TDC 时间测量单元
第 2 页
… … … … … … … … … … … … … … … … … … … … … … … … … … … … … ..