福州市初中数学质检试卷及答案

合集下载

2020年福建省福州市初中毕业班质量检测卷(数学卷)附详细解析

2020年福建省福州市初中毕业班质量检测卷(数学卷)附详细解析

2020年福建省(福州市)初中毕业班质量检测数 学 试 题(测试范围:中考范围 测试时间:120分钟 满分:150分)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在实数π4,-227,2.02002,38中,无理数的是( )A .π4B .-227C .2.02002D .382.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .赵爽弦图 笛卡尔心形线 科克曲线 斐波那契螺旋线3.下列运算中,结果可以为3-4的是( ) A .32÷36B .36÷32C .32×36D .(-3)×(-3)×(-3)×(-3)4.若一个多边形的内角和是540°,则这个多边形是( ) A .四边形B .五边形C .六边形D .七边形5.若a <28-7<a +1,其中a 为整数,则a 的值是( ) A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六。

问人数、鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为( )A .⎩⎪⎨⎪⎧9x -11=y 6x +16=yB .⎩⎪⎨⎪⎧9x -11=y 6x -16=yC .⎩⎪⎨⎪⎧9x +11=y 6x +16=yD .⎩⎪⎨⎪⎧9x +11=y 6x -16=y7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是( ) A .b 一定增大,c 可能增大 B .b 可能不变,c 一定增大C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变8.若一个粮仓的三视图如图所示(单位:m),则它的体积(参考公式:V 圆锥=13S 底h ,V 圆柱=S 底h )是( )A .21πm 3B .36πm 3C .45πm 3D .63πm 39.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 长为半径作⌒EF ,交CD 于点F ,连接AE ,AF .若AB =6,∠B =60°,则阴影部分的面积是( ) A .63+2πB .63+3πC .93-3πD .93-2π第8题 第9题10.小明在研究抛物线y =-(x -h )2-h +1(h 为常数)时,得到如下结论,其中正确的是( ). A .无论x 取何实数,y 的值都小于0B .该抛物线的顶点始终在直线y =x -1上C .当-1<x <2时,y 随x 的增大而增大,则h <2D .该抛物线上有两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2,x 1+x 2>2h ,则y 1>y 2 二、填空题:本题共6小题,每小题4分,共24分. 11.计算:2-1+cos60°= .12.能够成为直角三角形三条边长的三个正整数称为勾股数,若从2,3,4,5中任取3个数,则这3个数能够构成一组勾股数的概率是 .13.一副三角尺如图摆放,D 是BC 延长线上一点,E 是AC 上一点,∠B =∠EDF =90°,∠A =30°,∠F =45°,若EF ∥BC ,则∠CED 等于 度.第13题15.如图,在⊙O 中,C 是⌒AB 的中点,作点C 关于弦AB 的对称点D ,连接AD 并延长交⊙O 于点E ,过点B 作BF ⊥AE 于点F ,若∠BAE =2∠EBF ,则∠EBF 等于 度.16.如图,在平面直角坐标系xOy 中,□ABCD 的顶点A ,B 分别在x ,y 轴的负半轴上,C ,D 在反比例函数y =k x(x>0)的图像上,AD 与y 轴交于点E ,且AE =23AD ,若△ABE 的面积是3,则k 的值是 .第15题 第16题三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解不等式组⎩⎪⎨⎪⎧2x ≤6, ①3x +12>x . ②并把不等式组的解集在数轴上表示出来.18.(本小题满分8分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:∠A =∠D .19.(本小题满分8分)先化简,再求值:x 2+1x 2+2x +1÷1x +1-x +1,其中x =3-1.20.(本小题满分8分)如图,已知∠MON ,A ,B ,分别是射线OM ,ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD =2CD ,并证明OD =2CD .21.(本小题满分8分)甲,乙两人从一条长为200m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息,图1是甲出发后行走的路程y (单位:m)与行走时间x (单位:min)的函数图象,图2是甲,乙两人之间的距离s (单位:m)与甲行走时间x (单位:min)的函数图象. (1)求甲,乙两人的速度; (2)求a ,b 的值.图1 图222.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m(单位:t)的部分按平价收费,超出m的部分按议价收费,为此拟召开听证会,以确定一个合理的月均用水量标准m,通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t),将这1000个数据按照0≤x<4,4≤x<8…,28≤x<32分成8组,制成了如图所示的频数分布直方图.(1)写出a的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m,请判断若以(1)中所求得的平均数作为标准m是否合理?并说明理由.23.(本小题满分10分)如图,在Rt△ABC中,AC<AB,∠BAC=90°,以AB为直径作⊙O交BC于点D,E是AC的中点,连接ED,点F在⌒BD上,连接BF并延长交AC的延长线于点G.(1)求证:DE是⊙O的切线;(2)连接AF,求AFBG的最大值.24.(本小题满分12分)已知△ABC ,AB =AC ,∠BAC =90°,D 是AB 边上一点,连接CD ,E 是CD 上一点,且∠AED =45°. (1)如图1,若AE =DE , ①求证:CD 平分∠ACB ; ②求ADDB的值;(2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.图1 图225.(本小题满分14分)在平面直角坐标系xOy中,抛物线C:y=kx2+(4k2-k)x的对称轴是y轴,过点F(0,2)作一直线与抛物线C相交于点P,Q两点,过点Q作x轴的垂线与直线OP相交于点A.(1)求抛物线C的解析式;(2)判断点A是否在直线y=-2上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,过抛物线C上的任意一点(除顶点外)作该抛物线的切线l,分别交直线y=2和直线y=-2于点M,N,求MF2-NF2的值.2019-2020学年度福建省质量检测数学试题参考答案一、选择题(本题共10小题,每小题4分,共40分,每小题只有一个选项正确)1 2 3 4 5 6 7 8 9 10 ACABBABCCD二、填空题(本题共6小题,每小题4分,共24分)11.1 12.14 13.15 14.4 15.18 16.94三、解答题(共9题,满分86分) 17.(本小题满分8分)解:解不等式①,得x ≤3. ……………………………………………………………………3分解不等式②,得 x >-1. …………………………………………………………………5分 ∴原不等式组的解集是-1<x ≤3, ………………………………………………………6分 将该不等式组解集在数轴上表示如下:……………………………………………………………8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE =CF ∴BE +EF =CF +EF∴BF =CE ……………………………………………………………………………………3分在△ABF 和△DCE 中, ⎩⎪⎨⎪⎧AB =DC ∠B =∠C BF =CE∴△ABF ≌△DCE ……………………………………………………………………………6分 ∴∠A =∠D …………………………………………………………………………………8分 19.(本小题满分8分)x 2+1=x 2+1x +1-(x +1)(x -1)x +1…………………………………………………………………4分=x 2+1x +1-x 2-1x +1…………………………………………………………………………5分=2x +1…………………………………………………………………………………6分 当x =3-1时,原式=23-1+1………………………………………………………………7分=23=233…………………………………………………………………………8分20.(本小题满分8分) 解:画法一: 画法二:………………………………………4分 (1)如图,点C 、D 分别为(1),(2)所求作的点. ……………………………5分(2)证明如下:由(1)得BC ∥OA ,BC =12OA ,∴∠DBC =∠DAO ,∠DCB =∠DOA ,∴△DBC ∽△DAO ,…………………………………………………………7分 ∴DC DO =BC AO =12, ∴OD =2CD ……………………………………………………………………8分21.(本小题满分8分)解:(1)由图1可得甲的速度是120÷2=60m /min . …………………………………………………2分由图2可知,当x =43时,甲,乙两人相遇,故(60+v 乙)×43=200,解得v 乙=90m /min . …………………………………………………………………………4分(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴b =20090=209,………………………………………………………………………………6分 a =20060=103. ………………………………………………………………………………8分 ∴a 的值为103,b 的值为209. 22.(本小题满分10分)(1)依题意a =100 ·································································································· 2 分 这1000户家庭月均用水量的平均数 为:72.141000203060261002222018280114180101006402=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=x , ∴估计这1000户家庭月均用水量的平均数是14.72.·······················································6分(2)解法一:不合理.理由如下·····················································································7分 由(1)可得14.72在12≤x <16内,这1000户家庭中月均用水量小于16t 的户数有40+100+180+280=600(户),····················································································8分 ∴这1000家庭中月均用水量小于16t 的家庭所占的百分比是%60%10010060=⨯ ∴月均用水量不超过14.72t 的户数小于60%··································································9分 ∵该市政府希望70%的家庭的月均用水量不超过标准m而60%<70%,∴用14.72作为标准m 不合理.····················································································10分 解法二:不合理.理由如下··························································································7分 ∵该市政府希望70%的家庭的月均用水量不超过标准m∴数据中不超过m 的频数应为700,·············································································8分 即有300户家庭的月均用水量超过m又20+60+100=160<300,20+60+100+220=380>300∴m 应在16≤x <20内·································································································9分 而14.72<16∴用14.72作为标准m 不合理.·····················································································10分23.(本小题满分10分)(1)证明:连接OD ,AD∵AB 为⊙O 直径,点D 在⊙O 上∴∠ADB=90°…………………………………………………………………………………………1分∴∠ADC=90°∵E是AC的中点∴DE=AE∴∠EAD=∠EDA……………………………………………………………………………………2分∵OA=OD∴∠OAD=∠ODA……………………………………………………………………………………3分∵∠OAD+∠EAD=∠BAC=90°∴∠ODA+∠EAD=90°即∠ODE=90°…………………………………………………………………………………………4分∴OD⊥DE∵D是半径OD的外端点∴DE是⊙O的切线……………………………………………………………………………………5分(2)解法一:过点F作FH⊥AB于点H,连接OF∴∠AHF=90°∵AB为⊙O的直径,点F⊙O在上∴∠AFB=90°∴∠BAF+∠ABF=90°∵∠BAC=90°∴∠G+∠ABF=90°∴∠G=∠BAF…………………………………………………………………………………………6分∵∠AHF=∠GAB=90°∴△AFH∽△GBA ……………………………………………………………………………………7分∴AFGB=FHBA………………………………………………………………………………………………8分由垂线段最短可得FH≤OF……………………………………………………………………………9分当且仅当点H,O重合时等号成立∵AC<AB∴⌒BD上存在点F使得FO⊥AB,此时点H,O重合∴AFGB=FHBA≤OFBA=12……………………………………………………………………………………10分即AFGB的最大值为12解法二:取GB 中点M ,连接AM∵BAG =90°∴AM =12GB ……………………………………………………………………………………………6分 ∵AB 为⊙O 的直径,点F ⊙O 在上∴∠AFB =90°∴∠AFG =90°∴AF ⊥GB ………………………………………………………………………………………………7分 由垂线段最短可得AF ≤AM …………………………………………………………………………8分 当且仅当点F ,M 重合时等号成立此时AF 垂直平分GB即AG =AB∵AC <AB∴⌒BD 上存在点F 使得F 为GB 中点∴AF ≤12GB ……………………………………………………………………………………………9分 ∴AF GB ≤12………………………………………………………………………………………………10分 即AF GB 的最大值为1224.(本小题满分12分)(1)①证明:∵∠AED =45°,AE =DE ,∴∠EDA =180°-45°2=67.5°·················································································· 1 分 ∵AB =AC ,∠BAC =90°,∴∠ACB =∠ABC =45°,∠DCA =22.5°, ································································· 2 分 ∴∠DCB =22.5°,即∠DCA =∠DCB ,∴CD 平分∠ACB . ······························································································· 3 分 ②解:过点D 作DF ⊥BC 于点F ,∴∠DFB =90°.∵∠BAC =90°,∴DA ⊥CA .又CD 平分∠ACB ,∴AD =FD ,········································································································· 4分 ∴ AD DB =FD DB在Rt △BFD 中,∠ABC =45°,∴sin ∠DBF =FD DB =22····························································································· 5 分 ∴ AD DB =22··········································································································· 6 分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE =90°.又∠BAC =90°,∠AED =45°,∴∠BAG =∠CAE ,∠AGE =45°,∠AEC =135°, ························································ 7 分 ∴∠AGE =∠AEG ,∴AG =AE . ··········································································································8 分 ∵AB =AC ,∴△AGB ≌△AEC , ································································································ 9 分 ∴∠AGB =∠AEC =135°,CE =BG ,∴∠BGE =90°. ·····································································································10 分 ∵AE ⊥BE ,∴∠AEB =90°,∴∠BEG =45°,在Rt △BEG 和Rt △AGE 中,BE =GE cos45°=2GE ,AE =GE •cos 45°=22GE , ······························································ 11 分 在Rt △ABE 中,tan ∠ABE =AE BE =22GE GE =12. ································································ 12 分 (也可以将△AEB 绕点 A 逆时针旋转 90°至△AFC 得到AE =22EF ,CF =2EF ) 证法二:∵AE ⊥BE ,∴∠AEB =90°,∴∠BAE =∠ABE =90°.∵∠AED =45°,∴∠BED =45°,∠EAC =∠ECA =45°,∴∠AEC =∠BEC =135°. ······················································································ 7 分∵∠BAC =90°,∴∠BAE =∠EAC =90°,∴∠ABE =∠EAC .∵∠ABC =45°,∴∠ABE +∠EBC =45°,∴∠ECA =∠EBC , ······························································································· 8 分 ∴△BEC ∽△CEA ,∴ BE CE =EC EA =BC CA. ································································································ 9 分 在Rt △ABC 中,BC =CA cos45°=2CA , ··································································· 10 分 ∴BE CE =EC EA =2, ∴ BE =2CE ,AE =22CE . ·················································································· 11 分 在Rt △ABE 中,tan ∠ABE =AE BE =22CE CE =12································································ 12 分 25.(本小题满分14分)解:(1)∵抛物线C 的对称轴是y 轴,∴-4k 2-k 2k= 0且k ≠0,…………………………………………………………………………1分 ∴4k -12=0 解得k =14,………………………………………………………………………………………3分 ∴抛物线C 的解析式为y =14x 2……………………………………………………………………4分 (2)点A 在直线y =-2上……………………………………………………………………………5分 理由如下:∵过F (0,2)的直线与抛物线C 交于P ,Q 两点∴直线PQ 与x 轴不垂直设直线PQ 的解析式为y =tx +2将y =tx +2带入y =14x 2得x 2-4tx -8=0 ∴ △ =16t 2+32>0∴该方程有两个不相等的实数根x 1,x 2不妨设P (x 1,y 1),Q (x 2,y 2)∴直线OP 的解析式为 y =y 1x 1x ………………………………………………………………………6分设A (m ,n ),∵QA ⊥x 轴交直线OP 于点A∴m =x 2∴n =y 1x 1•x 2=14x 12•x 2x 1=14x 1x 2……………………………………………………………………………7分 又方程x 2-4tx -8=0的解为x =2t ±2t 2+2∴x 1x 2=(2t +2t 2+2)(2t -2t 2+2)=4t 2-4(t 2+2)=-8∴14x 1x 2=-2 即点A 的纵坐标为-2………………………………………………………………………………9分 ∴点A 在直线y =-2上(3)∵切线l 不过抛物线C 的顶点∴设切线l 的解析式为y =ax +b (a≠0)将y =ax +b 代入y =14x 2 得x 2-4ax -4b =0………………………………………………10分 依题意得△=0即(-4a )2-4×(-4b )=16a 2+16b =0∴b =-a 2∴切线l 的解析式为y =ax -a 2……………………………………………………………………11分当y =2时,x =a 2+2a ,∴(a 2+2a,2)………………………………………………………………12分 当y =-2时,x =a 2-2a ,∴(a 2-2a,2) …………………………………………………………13分 ∵F (0,2)∴MF 2=(a 2+2a)2, 由勾股定理得NF 2=(a 2-2a )2+(-2-2)2 ∴MF 2-NF 2=(a 2+2a )2-[(a 2-2a)2+(-2-2)2] =(a 2+2a +a 2-2a )(a 2+2a -a 2-2a)-16 =2a 2a •4a-16 =8-16=-8……………………………………………………………………………14分。

2023-2024学年第二学期福建省福州市九年级质量抽测数学试卷参考答案

2023-2024学年第二学期福建省福州市九年级质量抽测数学试卷参考答案

2023-2024学年第二学期福州市九年级质量抽测数学答案及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果学生的解法与本解答不同,可根据习题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当学生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示学生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题(本题共10小题,每小题4分,共40分) 1.A 2.B 3.A 4.A 5.C 6.D 7.B 8.B 9.C 10.B二、填空题(本题共6小题,每小题4分,共24分) 11.60−米 12.抽样调查 13.70° 14.23x > 15.396元16.DE三、解答题(本题共9小题,共86分)17.(本小题满分8分)解:原式π312=−++ ······································································································ 6分π=. ··············································································································· 8分18.(本小题满分8分)证明:∵BE CF =,∴BE EF CF EF +=+,∴BF CE =. ········································································································· 3分在△ABF 和△DCE 中AB DC =,············································································································ 4分 B C ∠=∠,············································································································ 5分 BF CE =, ∴△ABF ≌△DCE , ································································································ 6分 ∴A D ∠=∠. ········································································································ 8分19.(本小题满分8分)解法一:∵3a b=,∴3a b =, ········································································································· 1分∴原式222(3)233(2)3(3)b b b b b b b b −×⋅=−÷−− ······································································· 2分 222239(2)296b bb b b b −=−⋅− ··················································································· 4分 2238(2)23b b=−⋅ ····························································································· 6分 8123=× ······································································································ 7分 43=. ······································································································· 8分 B C DA E F ⎧⎪⎨⎪⎩解法二:原式22222()2a b a ab a b a b a ab−−=−⋅−−− ············································································· 2分 ()()2(2)a b a b a b a b a a b +−−=⋅−− ···················································································· 5分 a b a+=. ····································································································· 6分 ∵3a b=, ∴3a b =, ········································································································· 7分 ∴原式33b b b+=43=. ······································································································· 8分 20.(本小题满分8分)解:(1)400; ·············································································································· 2分72°; ··············································································································· 4分 (2)记两名男生为M ,N ,两名女生为P ,Q .6分由表(图)可知,所有可能出现的结果共有12种,且这些结果出现的可能性相等. ········· 7分 其中抽取的两名同学刚好为两位女同学的结果有2种.∴抽取的两名同学刚好为两位女同学是21126=. ······················································· 8分21.(本小题满分8分) 证明:连接OC ,CD. ····································································································· 1分∵CA CB =,∴A B ∠=∠.········································································································· 2分 ∵BD 是直径,∴90BCD ∠=°.分 ∵D 是OA 的中点, ∴AD OD =.分又OB OD =,∴AO BD =.分 ∵△AOC ≌△BDC , ································································································ 6分 ∴90ACO BCD ∠=∠=°, ························································································· 7分 ∴OC ⊥AC .∵点C 为半径OC 的外端点,∴AC 是⊙O 的切线. ······························································································ 8分22.(本小题满分10分) (1)····························································· 3分如图,O 为所求作的点. ··························································································· 4分(2)证明:∵D 是BC 的中点,∴12BD BC =. ······························································································ 5分∵△ABC 绕点O 旋转得到△DEF ,D ,E 分别是点A ,B 的对应点,∴OB OE =,90BOE AOD ∠=∠=°,△ABC ≌△DEF , ·········································· 6分∴90BOD ∠=°,BC EF =,ABC DEF ∠=∠.分 在△ODB 与△OGE 中 ABC DEF OB OE BOD BOE ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴△ODB ≌△OGE , ·分 ∴BD EG =,分∴12EG EF =,即EG FG =,∴G 是EF 中点. ··························································································· 10分 23.(本小题满分10分)解:(1)①a ; ················································································································ 1分②b ;················································································································· 2分 ③tan b α⋅; ········································································································ 3分 ④(tan )b a α⋅+; ································································································· 4分(2)先在该建筑物(MN )的附近较空旷的平地上选择一点A , 点B 为测量人员竖直站立时眼睛的位置,用自制测角仪获取最高处(M )的仰角MBC α∠=,然后由点A 朝点N 方向前进至点D 处,此时点E 为测量人员竖直站立时眼睛的位置,再用自制测角仪获取最高处(M )的仰角MEC β∠=; ················································ 5分 再用皮尺测得测量人员眼睛到地面的距离m AB a =,以及前进的距离m AD b =, ············· 6分 由实际背景可知四边形ABED ,四边形ABCN 为矩形, 故m NC DE AB a ===,m BE AD b ==.在Rt △BCM 和Rt △ECM 中,90BCM ∠=°,∴tan MC BC α=, ··································································································· 7分tan MC EC β=, ··································································································· 8分∴tan tan MC MC BE BC EC αβ=−=−,············································································ 9分即tan tan MC MC b αβ=−,∴tan tan tan tan b MC αββα⋅⋅=−,∴tan tan ()m tan tan b MN MC CN a αββα⋅⋅=+=+−. ······························································10分 24.(本小题满分12分)解:(1)①将A (2−,0),B (6,4)代入22y ax bx =+−,得422036624a b a b −−=⎧⎨+−=⎩,, ·························································································· 2分解得1412a b ⎧=⎪⎨⎪=−⎩,, ∴抛物线的解析式为211242y x x =−−. ······························································· 4分A BCMN α ABC D EMN②将0y =代入211242y x x =−−,得2112042x x −−=, 解得14x =,22x =−, ∵A (2−,0), ∴C (4,0). ································································································ 5分 根据题意,得8AD =,2CD =,6AC =,4BD =,90ADB ∠=°, ∴1tan tan 2BAD CBD ∠=∠=, ∴BAD CBD ∠=∠.分 ∵EAC ABC ∠=∠, ∴EAB EBA ∠=∠,∴EB EA =.分∵B (6,4), ∴设E (6,t ),∴4AE BE t ==−,DE t =−. ∵222AD DE AE +=,∴2228()(4)t t +−=−,∴6t =−,∴E (6,6−). ····························································································· 8分(2)5a <−或56a >. ······························································································· 12分25.(本小题满分14分)(1)证明:∵BE ⊥AD , ∴90AEB ∠=°. ······························································································ 1分 ∵90ACB ∠=°,ADC BDE ∠=∠, ∴CAE CBE ∠=∠. ························································································· 2分∵四边形AEFC 是平行四边形,∴CAE F ∠=∠, ····························································································· 3分 ∴CBE F ∠=∠. ····························································································· 4分(2)解:12S S =. ·········································································································· 5分理由如下:延长BE ,AC 交于点P ,过点E 作EQ ⊥AP 于点Q .∵AD 平分∠BAC ,∴BAD CAD ∠=∠. ············································································ 6分 ∵90AEP AEB ∠=∠=°, ∴APB ABP ∠=∠,∴AB AP =, ····················································································· 7分∴EB EP =,即12PE PB =.∵EQ ⊥AP , ∴90PQE PCB ∠=°=∠, ∴EQ ∥BC ,∴△PQE ∽△PCB , ············································································ 8分 ∴EQ PE BC PB=, ∴12EQ BC =, ·················································································· 8分∴2112S AC EQ AC BC S =⋅=⋅=.(3)证明:延长BE 交CF 于点T .∵四边形AEFC 是平行四边形, ∴AC ∥FG ,AE ∥CF ,AC EF =∴90BTC BED ∠=∠=°,90BHG BCA ∠=∠=°. ∴BT ⊥CF .A BCFE D A B CF E D P Q。

福州市初中毕业班质量检测数学试卷及答案

福州市初中毕业班质量检测数学试卷及答案
【说明】该小题也可用频数来说理,如:李先生要想按时上班,乘车时间不能超过30分钟,由统计图可知,乘坐20路公交车和66路公交车所需时间不超过30分钟的频数分别为8和11,因此,选择66路公交车比较适合.
(ⅱ)李先生每天最迟7点10分出发,乘坐20路公交车比较合适.8分
理由如下:李先生每天7点10分出发,还有40分钟的乘车时间,由统计图可估计乘坐20路公交车不迟到的天数为 ,乘坐66路公交车不迟到的天数为 .因为一月上班22天,其中公司出于人文关怀允许两次迟到,所以,不迟到的天数应不少于20天,因此,李先生每天7点10分出发,乘坐20路公交车比较适合.10分
由(Ⅱ)得△FBE∽△FDA,
∴ ,11分
∵BE BF,
∴AD AF,
在Rt△ABD中,BD AD DF,
∴BE BD DF ( ห้องสมุดไป่ตู้)DF,
∴tan∠BDG tan∠BAE 1.12分
(25)解:(Ⅰ)A( ,0),B( , );4分
(Ⅱ)过点B作BF⊥x轴于F,
∴直线BF为抛物线的对称轴,
且F( ,0).
∵a>0,b<0,k>0,
∴BF ,AF OF ,
∴tan∠BAF= ,6分
∵直线y kx m过点B( , ),
∴m <0,
把y kx 代入y ax2 bx,
得ax2 bx kx ,
化简,得ax2 (b k)x 0,
Δ (b k)2 4a k2,
解得x1 ,x2 >0,
∵点D不与点A重合,
∴D点的横坐标为 ,
∴OC⊥CP.7分
∵OC是⊙O的半径,
∴PC是⊙O的切线.8分
证法二:过点O作OD⊥BC于D,则∠ODC 90°,1分
∴∠OCD ∠COD 90°.2分

福建省福州市2021-2022学年八年级下学期期末质量抽测数学试卷(pdf版含答案)

福建省福州市2021-2022学年八年级下学期期末质量抽测数学试卷(pdf版含答案)

福州市2021-2022学年第二学期期末质量抽测八年级数学试卷(考试时间:120分钟满分:150分)一.选择题(共10小题,满分40分,每小题4分)1.(4分)要使根式有意义,x的取值应满足()A.x≠0B.x≠﹣2C.x≥﹣2D.x>﹣22.(4分)以下列长度的线段为边,不能组成直角三角形的是()A.1,1,B.1,,C.,2,D.3.(4分)下列各式中,化简后能与合并的是()A.B.C.D.4.(4分)以下各组数据为三边的三角形中,是直角三角形的是()A.B.C.D.5.(4分)如图,在Rt△ABC中,∠BAC=90°,D、E、F分别是三边的中点,AF=5,则DE的长为()A.2.5B.4C.5D.106.(4分)在平面直角坐标系中,点P(﹣4,3)到原点的距离是()A.3B.4C.5D.7.(4分)一辆汽车从甲地开往乙地,开始以正常速度匀速行驶,但行至途中汽车出了故障,只好停下修车,修好后,为了按时到达乙地,司机加快了行驶速度并匀速行驶.则汽车行驶路程y(千米)与时间x(小时)的函数图象大致是()A.B.C.D.8.(4分)一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、﹣1、2、0,其中判断错误的是()A.前一组数据的中位数是200B.前一组数据的众数是200C.后一组数据的平均数等于前一组数据的平均数减去200D.后一组数据的方差等于前一组数据的方差减去2009.(4分)如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,AE=BF=2,△DEF的周长为,则AD 的长为()A.B.C.D.10.(4分)已知直线l1:y=kx+b与直线l2:y=﹣x+m都经过C(﹣,),直线l1交y轴于点B(0,4),交x轴于点A,直线l2交y轴于点D,P为y轴上任意一点,连接PA、PC,有以下说法:①方程组的解为;②△BCD为直角三角形;③S△ABD=3;④当PA+PC的值最小时,点P的坐标为(0,1).其中正确的说法个数有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分24分,每小题4分)11.(4分)若代数式有意义,则x的取值范围为.12.(4分)直角三角形的两直角边长分别为6和8,则斜边中线的长是.13.(4分)如图,将正方形OABC放在平面直角坐标系中,O是坐标原点,点C的坐标是(3,2),则点A的坐标是.14.(4分)甲乙两人六次参加射击训练的成绩(单位:环)分别如下:甲:7,7,8,8,9,9;乙:6,8,8,8,8,10.则甲乙两人中射击成绩更稳定的是.15.(4分)如图,在▱ABCD中,点E,F均在AD边上,BE平分∠ABC,CF平分∠BCD,如果BE=8,CF=6,EF=2,那么▱ABCD的周长等于.16.(4分)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,以PC为边做等腰直角三角形PCD,∠CPD=90°,PC=PD,过点D作线段AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则Q点的坐标是.三.解答题(共9小题,满分86分)17.(6分)计算:.18.(8分)解方程:(1)x(x﹣2)+x﹣2=0;(2)x2﹣6x+8=2.19.(8分)如图,四边形ABCD是正方形,四个顶点都在格点上,图中每个小正方形的边长均为1,现要在图中建立平面直角坐标系xOy,使得点A的坐标为(2,0),点C的坐标为(0,4).(1)正方形ABCD的面积为.(2)在图中画出符合题意的坐标系,并写出点B,D的坐标;(3)以A为圆心,AB长为半径画弧,该弧与x轴的负半轴相交于点E,画出点E的位置,并求出点E的坐标.20.(8分)如图,矩形ABCD的对角线AC,BD相交于点O,且DE∥AC,CE∥BD交于点E.求证:四边形CEDO是菱形.21.(8分)关于x的方程x2﹣(m+2)x+(2m﹣1)=0(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根为1,求m的值;22.(12分)如图,直线y=2x+m与x轴交于点A(﹣3,0),直线y=﹣x+n与x轴、y轴分别交于B、C两点,并与直线y=2x+m相交于点D,点A在点B左边.且AB=6.(1)求点D的坐标;(2)求出四边形AOCD的面积;(3)若E为x轴上一点,且△ACE为等腰三角形,求出点E的坐标.23.(10分)2022年北京冬奥会和冬残奥会的吉祥物冰墩墩和雪容融深受国内外广大朋友的喜爱,北京奥组委会官方也推出了许多吉祥物的周边产品.现有以下两款:已知购买3个冰墩墩和2个雪容融需要560元;购买1个冰墩墩和3个雪容融需要420元;(1)请问冰墩墩和雪容融每个的售价分别是多少元?(2)北京奥运官方特许零售店开始销售的第一天4个小时内全部售罄,于是从厂家紧急调配24000个商品,拟租用甲、乙两种车共6辆,一次性将商品送到指定地点,若每辆甲种车的租金为400元可装载4500个商品,每辆乙种车的租金为280元可装载3000个商品,请给出最节省费用的租车方案,并求出最低费用.24.(12分)(1)正方形ABCD,E、F分别在边BC、CD上(不与端点重合),∠EAF=45°,EF与AC交于点G①如图(i),若AC平分∠EAF,直接写出线段EF,BE,DF之间等量关系;②如图(ⅱ),若AC不平分∠EAF,①中线段EF,BE,DF之间等量关系还成立吗?若成立请证明;若不成立请说明理由(2)如图(ⅲ),矩形ABCD,AB=4,AD=8.点M、N分别在边CD、BC上,AN=2,∠MAN=45°,求AM 的长度.25.(14分)(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA.应用图1的数学模型解决下列问题:(2)如图2,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,将直线l1绕点A逆时针旋转45°至直线l2;求直线l2的函数表达式;(3)如图3,平面直角坐标系内有一点B(3,﹣4),过点B作BA⊥x轴于点A、BC⊥轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.若△CPD为等腰直角三角形,请直接写出点D的坐标.福州市2021-2022学年第二学期期末质量抽测参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)要使根式有意义,x的取值应满足()A.x≠0B.x≠﹣2C.x≥﹣2D.x>﹣2【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x+2≥0,解得x≥﹣2.故选:C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.(4分)以下列长度的线段为边,不能组成直角三角形的是()A.1,1,B.1,,C.,2,D.【分析】根据勾股定理的逆定理对四个选项中所给的数据看是否符合两个较小数的平方和等于最大数的平方即可.【解答】解:A、12+12=()2,能构成直角三角形,故不符合题意;B、12+()2=()2,能构成直角三角形,故不符合题意;C、()2+22≠()2,不能构成直角三角形,故符合题意;D、()2+22=()2,能构成直角三角形,故不符合题意.故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.(4分)下列各式中,化简后能与合并的是()A.B.C.D.【分析】根据=•(a≥0,b≥0),=(a≥0,b>0)化简二次根式,看被开方数是否是2即可得出答案.【解答】解:A选项,原式=2,与不是同类二次根式,不能合并,故该选项不符合题意;B选项,原式=2,与是同类二次根式,可以合并,故该选项符合题意;C选项,原式=,与不是同类二次根式,不能合并,故该选项不符合题意;D选项,原式=3,与不是同类二次根式,不能合并,故该选项不符合题意;【点评】本题考查了同类二次根式,二次根式的性质与化简,掌握=•(a≥0,b≥0),=(a≥0,b>0)是解题的关键.4.(4分)以下各组数据为三边的三角形中,是直角三角形的是()A.B.C.D.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【解答】解:A、()2+()2≠()2,故不是直角三角形,故选项错误,不符合题意;B、()2+()2=()2,故是直角三角形,故选项正确,符合题意;C、()2+52≠62,故不是直角三角形,故选项错误,不符合题意;D、()2+()2≠()2,故不是直角三角形,故选项错误,不符合题意.故选:B.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.(4分)如图,在Rt△ABC中,∠BAC=90°,D、E、F分别是三边的中点,AF=5,则DE的长为()A.2.5B.4C.5D.10【分析】根据直角三角形斜边上的中线的性质求出BC,再根据三角形中位线定理解答即可.【解答】解:在Rt△ABC中,∠BAC=90°,点F是斜边BC的中点,则BC=2AF,∵AF=5,∴BC=10,∵D、E分别是AB、AC的中点,∴DE=BC=5,【点评】本题考查的是三角形中位线定理、直角三角形斜边上的中线的性质,掌握三角形中位线等于第三边的一半是解题的关键.6.(4分)在平面直角坐标系中,点P(﹣4,3)到原点的距离是()A.3B.4C.5D.【分析】根据勾股定理可求点P(﹣4,3)到原点的距离.【解答】解:点P(﹣4,3)到原点的距离为,故选:C.【点评】考查了勾股定理,两点间的距离公式,熟练掌握勾股定理是解题的关键.7.(4分)一辆汽车从甲地开往乙地,开始以正常速度匀速行驶,但行至途中汽车出了故障,只好停下修车,修好后,为了按时到达乙地,司机加快了行驶速度并匀速行驶.则汽车行驶路程y(千米)与时间x(小时)的函数图象大致是()A.B.C.D.【分析】根据匀速直线运动的路程、时间图象是一条过原点的斜线,修车时没有运动,所以修车时的路程保持不变是一条平行于横轴的线段,修车后为了赶时间,加大速度后再做匀速直线运动,其速度比原来变大,斜线的倾角变大,即可得出答案.【解答】解:开始以正常速度匀速行驶,正常匀速行驶的路程、时间图象是一条过原点O的斜线,修车时没有运动,所以修车时的路程保持不变是一条平行于横轴的线段,修车后为了赶时间,他比修车前加快了速度继续匀速行驶,此时的路程、时间图象仍是一条斜线,只是斜线的倾角变大.因此选项A、B、D都不符合要求.故选:C.【点评】此题考查了函数的图象,本题的解题关键是知道匀速直线运动的路程、时间与图象的特点,要能把实际问题转化成数学问题.8.(4分)一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、﹣1、2、0,其中判断错误的是()A.前一组数据的中位数是200B.前一组数据的众数是200C.后一组数据的平均数等于前一组数据的平均数减去200D.后一组数据的方差等于前一组数据的方差减去200【分析】由中位数、众数、平均数及方差的意义逐一判断可得.【解答】解:A.前一组数据的中位数是200,正确,此选项不符合题意;B.前一组数据的众数是200,正确,此选项不符合题意;C.后一组数据的平均数等于前一组数据的平均数减去200,正确,此选项不符合题意;D.后一组数据的方差等于前一组数据的方差,此选项符合题意;故选:D.【点评】本题主要考查方差、中位数、众数、平均数,解题的关键是掌握中位数、众数、平均数及方差的意义.9.(4分)如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,AE=BF=2,△DEF的周长为,则AD的长为()A.B.C.D.【分析】连接BD,证△DBE≌△DCF(SAS),得DE=DF,∠EDB=∠FDC,再证△DEF 是等边三角形,得DE=DF=EF,过点D作DM⊥AB于M,设AD=x(x>0),则AM =x,DM=x,ME=AE﹣AM=2﹣x,然后在Rt△DME中,由勾股定理得出方程,解方程即可.【解答】解:如图,连接BD,∵四边形ABCD是菱形,∴AB=BC=CD,∠C=∠A=60°,AD∥BC,∴△BCD是等边三角形,∠ABC=180°﹣∠A=120°,∴∠BDC=∠DBC=60°,BD=CD,∴∠DBE=∠ABC﹣∠DBC=60°,∴∠DBE=∠C,∵AE=BF=2,∴AB﹣AE=BC﹣BF,即BE=CF,在△DBE和△DCF中,,∴△DBE≌△DCF(SAS),∴DE=DF,∠EDB=∠FDC,∴∠EDB+∠BDF=∠FDC+∠BDF=∠BDC=60°,∴△DEF是等边三角形,∴DE=DF=EF,∵△DEF的周长为3,∴DE=,过点D作DM⊥AB于M,设AD=x(x>0),则AM=x,DM=AD•sin60°=x,∴ME=AE﹣AM=2﹣x,在Rt△DME中,由勾股定理得:(x)2+(2﹣x)2=()2,整理得:x2﹣2x﹣2=0,解得:x=1+或x=1﹣(舍去),∴AD=+1,故选:C.【点评】本题考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,熟练掌握菱形的性质和等边三角形的判定与性质,证明三角形全等是解题的关键.10.(4分)已知直线l1:y=kx+b与直线l2:y=﹣x+m都经过C(﹣,),直线l1交y轴于点B(0,4),交x轴于点A,直线l2交y轴于点D,P为y轴上任意一点,连接PA、PC,有以下说法:①方程组的解为;②△BCD为直角三角形;③S△ABD=3;④当PA+PC的值最小时,点P的坐标为(0,1).其中正确的说法个数有()A.1个B.2个C.3个D.4个【分析】根据一次函数图象与二元一次方程的关系,利用交点坐标可得方程组的解;根据两直线的系数的积为﹣1,可知两直线互相垂直;求得BD和AO的长,根据三角形面积计算公式,即可得到△ABD的面积;根据轴对称的性质以及两点之间,线段最短,即可得到当PA+PC的值最小时,点P的坐标为(0,1).【解答】解:∵直线l1:y=kx+b与直线l2:y=﹣x+m都经过C(﹣,),∴方程组的解为,故①正确;把B(0,4),C(﹣,)代入直线l1:y=kx+b,可得,解得,∴直线l1:y=2x+4,又∵直线l2:y=﹣x+m,∴直线l1与直线l2互相垂直,即∠BCD=90°,∴△BCD为直角三角形,故②正确;把C(﹣,)代入直线l2:y=﹣x+m,可得m=1,y=﹣x+1中,令x=0,则y=1,∴D(0,1),∴BD=4﹣1=3,在直线l1:y=2x+4中,令y=0,则x=﹣2,∴A(﹣2,0),∴AO=2,=×3×2=3,∴S△ABD故③正确;点A关于y轴对称的点为A'(2,0),设过点C,A'的直线为y=ax+n,则,解得,∴y=﹣x+1,令x=0,则y=1,∴当PA+PC的值最小时,点P的坐标为(0,1),故④正确.故选:D.【点评】本题主要考查了一次函数图象与性质,三角形面积以及最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.二.填空题(共6小题,满分24分,每小题4分)11.(4分)若代数式有意义,则x的取值范围为x≥2且x≠3.【分析】根据分式的分母不为零(x﹣3≠0)、二次根式的被开方数是非负数(x﹣2≥0)来解答.【解答】解:根据题意,得x﹣2≥0,且x﹣3≠0,解得,x≥2且x≠3;故答案是:x≥2且x≠3.【点评】本题考查了二次根式有意义的条件、分式有意义的条件.本题需注意的是,被开方数为非负数,且分式的分母不能为0.12.(4分)直角三角形的两直角边长分别为6和8,则斜边中线的长是5.【分析】已知直角三角形的两条直角边,根据勾股定理即可求斜边的长度,根据斜边中线长为斜边长的一半即可解题.【解答】解:已知直角三角形的两直角边为6、8,则斜边长为=10,故斜边的中线长为×10=5,故答案为5.【点评】本题考查了勾股定理在直角三角形中的运用,考查了斜边中线长为斜边长的一半的性质,本题中正确的运用勾股定理求斜边的长是解题的关键.13.(4分)如图,将正方形OABC放在平面直角坐标系中,O是坐标原点,点C的坐标是(3,2),则点A的坐标是(﹣2,3).【分析】作AD⊥y轴于点D,CE⊥x轴于点E,先证明△AOD≌△COE,因为C(3,2),所以OD=OE=3,AD=CE=2,再根据点A在第二象限求出点A的坐标.【解答】解:如图,作AD⊥y轴于点D,CE⊥x轴于点E,则∠ADO=∠CEO=90°,∵四边形OABC是正方形,∴∠AOC=∠DOE=90°,OA=OC,∴∠AOD=∠COE=90°﹣∠COD,在△AOD和△COE中,,△AOD≌△COE(AAS),∵C(3,2),∴OD=OE=3,AD=CE=2,∵点A在第二象限,∴A(﹣2,3),故答案为:(﹣2,3).【点评】此题考查正方形的性质、全等三角形的判定、图形与坐标等知识,正确地作出所需要的辅助线是解题的关键.14.(4分)甲乙两人六次参加射击训练的成绩(单位:环)分别如下:甲:7,7,8,8,9,9;乙:6,8,8,8,8,10.则甲乙两人中射击成绩更稳定的是甲.【分析】首先比较平均数,平均数相同时选择方差较小的即可.【解答】解:=(7+7+8+8+9+9)=8(环),=(6+8+8+8+8+10)=8(环),s2甲=[2×(7﹣8)2+2×(8﹣8)2+2×(9﹣8)2]=,s2乙=[(6﹣8)2+4×(8﹣8)2+(10﹣8)2]=,∵=,s2甲<s2乙,∴甲乙两人中射击成绩更稳定的是甲.故答案为:甲.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.(4分)如图,在▱ABCD中,点E,F均在AD边上,BE平分∠ABC,CF平分∠BCD,如果BE=8,CF=6,EF=2,那么▱ABCD的周长等于26.【分析】将CF平移至PE的位置,可求出BC的长度,进而通过推导可知AB=AE且DC =DF,即AE=DF,进而可求出AB的长度.【解答】解:如图,延长BC至点P,使得CP=EF=2,∵EF∥CP,∴四边形EFCP为平行四边形,∴EP=CF=6,EP∥CF,∵BE平分∠ABC,CF平分∠BCD,∴∠EBC+∠FCB=∠ABC+∠DCB=90°,∴CF⊥BE,∴PE⊥BE,∴BP==10,∴BC=8,∵∠ABE=∠EBC,∠EBC=∠AEB,∴∠ABE=∠AEB,∴AB=AE,同理可得:CD=DF,∴AE=DF,∵AD+EF=AE+DF,∴AE=DF=5,∴AB=CD=5,∴▱ABCD的周长等于2×(5+8)=26.【点评】本题考查平行四边形的性质,解题关键是将CF平移至PE的辅助线做法.16.(4分)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,以PC为边做等腰直角三角形PCD,∠CPD=90°,PC=PD,过点D作线段AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则Q点的坐标是(,).【分析】过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,求出∠MCP=∠DPN,证△MCP≌△NPD,推出DN =PM,PN=CM,设AD=a,求出DN=2a﹣1,得出2a﹣1=1,求出a=1,得出D的坐标,由两点坐标公式求出PC=PD=,在Rt△MCP中,由勾股定理求出CM=2,得出C的坐标,设直线CD的解析式是y=kx+3,把D(3,2)代入求出直线CD的解析式,解由两函数解析式组成的方程组,求出方程组的解即可.【解答】解:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,∴∠MCP=∠DPN,∵P(1,1),∴OM=BN=1,PM=1,在△MCP和△NPD中,∴△MCP≌△NPD(AAS),∴DN=PM,PN=CM,∵BD=2AD,∴设AD=a,BD=2a,∵P(1,1),∴DN=2a﹣1,则2a﹣1=1,∴a=1,即BD=2.∵直线y=x,∴AB=OB=3,∴点D(3,2)∴PC=PD===,在Rt△MCP中,由勾股定理得:CM===2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,∴组成方程组解得:∴点Q(,),故答案为:(,).【点评】本题是一次函数综合题,考查了用待定系数法求出一次函数的解析式,全等三角形的性质和判定,解方程组,勾股定理,旋转的性质等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,题目比较好,但是有一定的难度.三.解答题(共9小题,满分86分)17.(6分)计算:.【分析】先算乘法和负整数指数幂,去绝对值,再合并即可.【解答】解:原式=2﹣(2﹣)﹣2=2﹣2+﹣2=3﹣4.【点评】本题考查实数的混合运算,解题的关键是掌握实数相关运算的法则.18.(8分)解方程:(1)x(x﹣2)+x﹣2=0;(2)x2﹣6x+8=2.【分析】(1)利用因式分解法解方程;(2)利用配方法解方程.【解答】解:(1)x(x﹣2)+x﹣2=0;(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1;(2)x2﹣6x=﹣6x2﹣6x+9=3,(x﹣3)2=3,x﹣3=±,所以x1=3+,x2=3﹣.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法.19.(8分)如图,四边形ABCD是正方形,四个顶点都在格点上,图中每个小正方形的边长均为1,现要在图中建立平面直角坐标系xOy,使得点A的坐标为(2,0),点C的坐标为(0,4).(1)正方形ABCD的面积为10.(2)在图中画出符合题意的坐标系,并写出点B,D的坐标;(3)以A为圆心,AB长为半径画弧,该弧与x轴的负半轴相交于点E,画出点E的位置,并求出点E的坐标.【分析】(1)利用勾股定理求出AD的长,可得正方形的面积;(2)根据点A的坐标,可建立直角坐标系,从而得出点B、D的坐标;(3)根据AB=AE,可得点E的坐标.【解答】解:(1)由图形知,AD=,∴正方形ABCD的面积为10,故答案为:10;(2)如图,B(﹣1,1),D(3,3);(3)如图,E(2﹣,0).【点评】本题主要考查了勾股定理,正方形的性质,平面直角坐标系中点的坐标的特征等知识,求出正方形的边长是解题的关键.20.(8分)如图,矩形ABCD的对角线AC,BD相交于点O,且DE∥AC,CE∥BD交于点E.求证:四边形CEDO是菱形.【分析】先证明四边形OCED是平行四边形,再由矩形的性质得出OC=OD,即可证出四边形OCED是菱形.【解答】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=AC,OD=BD,AC=BD,∴OC=OD,∴四边形OCED是菱形.【点评】本题考查了矩形的性质、菱形的判定,熟练掌握矩形的性质和菱形的判定是解决问题的关键.21.(8分)关于x的方程x2﹣(m+2)x+(2m﹣1)=0(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根为1,求m的值;(3)求出以此方程两根为直角边的直角三角形的周长.【分析】(1)根据关于x的方程x2﹣(m+2)x+(2m﹣1)=0的根的判别式的符号来证明结论;(2)根据一元二次方程的解的定义,将x=1代入方程x2﹣(m+2)x+(2m﹣1)=0,即可求得m的值;(3)先由根与系数的关系求得方程的另一根为3,再由勾股定理得斜边的长度为,再根据三角形的周长公式进行计算.【解答】(1)证明:∵Δ=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4>0,即Δ>0,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)解:根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得m=2;(3)解:方程的另一根为:m+2﹣1=2+1=3;由勾股定理得斜边的长度为:;该直角三角形的周长为1+3+=4+.【点评】本题综合考查了勾股定理、根的判别式、根与系数的关系、一元二次方程解的定义.解答(3)时采用了勾股定理.22.(12分)如图,直线y=2x+m与x轴交于点A(﹣3,0),直线y=﹣x+n与x轴、y轴分别交于B、C两点,并与直线y=2x+m相交于点D,点A在点B左边.且AB=6.(1)求点D的坐标;(2)求出四边形AOCD的面积;(3)若E为x轴上一点,且△ACE为等腰三角形,求出点E的坐标.【分析】(1)分别求出两条直线的解析式,再联立方程组即可求D点坐标;=S△ABD﹣S△BCO,求解即可;(2)由S四边形AOCD(3)设E(t,0),分三种情况讨论:①当AC=AE时,E(3﹣3,0)或(﹣3﹣3,0);②当CA=CE时,E(3,0);③当EA=EC时,E(0,0).【解答】解:(1)将点A(﹣3,0)代入y=2x+m,∴m=6,∴y=2x+6,∵BA=6,∴B(3,0),将B点代入y=﹣x+n,∴n=3,∴y=﹣x+3,联立方程组,解得,∴D(﹣1,4);(2)由(1)知C(0,3),=S△ABD﹣S△BCO=×6×4﹣×3×3=;∴S四边形AOCD(3)设E(t,0),∵A(﹣3,0),C(0,3),∴AC=3,①当AC=AE时,3=|t+3|,解得t=3﹣3或t=﹣3﹣3,∴E(3﹣3,0)或(﹣3﹣3,0);②当CA=CE时,3=,解得t=3或t=﹣3(舍),∴E(3,0);③当EA=EC时,|t+3|=,此时t=0,∴E(0,0);综上所述,E点坐标为(3﹣3,0)或(﹣3﹣3,0)或(3,0)或(0,0).【点评】本题考查一次函数的图象及性质,熟练掌握一次函数的图象及性质,等腰三角形的性质,分类讨论是解题的关键.23.(10分)2022年北京冬奥会和冬残奥会的吉祥物冰墩墩和雪容融深受国内外广大朋友的喜爱,北京奥组委会官方也推出了许多吉祥物的周边产品.现有以下两款:已知购买3个冰墩墩和2个雪容融需要560元;购买1个冰墩墩和3个雪容融需要420元;(1)请问冰墩墩和雪容融每个的售价分别是多少元?(2)北京奥运官方特许零售店开始销售的第一天4个小时内全部售罄,于是从厂家紧急调配24000个商品,拟租用甲、乙两种车共6辆,一次性将商品送到指定地点,若每辆甲种车的租金为400元可装载4500个商品,每辆乙种车的租金为280元可装载3000个商品,请给出最节省费用的租车方案,并求出最低费用.【分析】(1)设1个冰墩墩的售价为x元,1个雪容融的售价为y元,根据“购买3个冰墩墩和2个雪容融需要560元;购买1个冰墩墩和3个雪容融需要420元”,列出方程组求解即可;(2)设租用甲种车x辆,则租用乙种车(6﹣a)辆,总租金为w元,根据题意求出w 与a的关系式,并根据题意求出a的取值范围,再根据一次函数的性质解答即可.【解答】解:(1)设1个冰墩墩的售价为x元,1个雪容融的售价为y元,根据题意,得:,解得,答:1个冰墩墩的售价为120元,1个雪容融的售价为100元;(2)设租用甲种车a辆,则租用乙种车(6﹣a)辆,总租金为w元,根据题意,得:w=400a+280(6﹣a)=120a+1680,由题意,得4500a+3000(6﹣a)≥24000,解得a≥4,∵120>0,∴w随a的增大而增大,∴当a=4时,w有最小值为2160,此时6﹣a=2,即当租用甲种车4辆,租用乙种车2辆,总租金最低,最低费用为2160元.【点评】本题考查了一次函数的应用,一元一次不等式组及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.24.(12分)(1)正方形ABCD,E、F分别在边BC、CD上(不与端点重合),∠EAF=45°,EF与AC交于点G①如图(i),若AC平分∠EAF,直接写出线段EF,BE,DF之间等量关系;②如图(ⅱ),若AC不平分∠EAF,①中线段EF,BE,DF之间等量关系还成立吗?若成立请证明;若不成立请说明理由(2)如图(ⅲ),矩形ABCD,AB=4,AD=8.点M、N分别在边CD、BC上,AN=2,∠MAN=45°,求AM的长度.【分析】(1)①证明△ABE≌△ADF(ASA)得BE=DF,AE=AF,根据角平分线的性质得:BE=EG,DF=GF,相加可得结论;②延长CD到点H,截取DH=BE,连接AH,根据SAS定理可得出△AEB≌△AHD,故可得出AE=AH,再由∠EAF=45°,∠ABC=90°可得出∠EAF=∠HAF,由SAS定理可得△EAF≌△HAF,故EF=HF,可得结论;(2)解法一:作辅助线,构建正方形ABQP,设PH=x,根据勾股定理列方程可得PH 的长,从而得DM的长,最后由勾股定理可得结论;解法二:作辅助线,构建直角三角形,设AP=x,表示PM和PG的长,根据AG=8=3x,可得x的值,根据等腰直角三角形的性质可得斜边AM的长.解法三:作辅助线,构建k字形全等,最后面积法列方程可得结论.【解答】解:(1)①如图(i),∵四边形ABCD是正方形,∴∠BAC=∠CAD=45°,∵∠EAF=45°,AC平分∠EAF,∴∠BAE=∠EAG=∠DAF=∠FAG=22.5°,∵AB=AD,∠B=∠D=90°,∴△ABE≌△ADF(ASA),∴BE=DF,AE=AF,∴∠AEF=∠AFE,∴AC⊥EF,∴∠AGE=∠AGF=90°,∵AE平分∠BAC,∴BE=EG,DF=GF,∴EF=BE+DF;②,①中线段EF,BE,DF之间等量关系还成立:EF=BE+DF;如图(ⅱ),延长CD到点H,截取DH=BE,连接AH,在△AEB与△AHD中,∵,∴△AEB≌△AHD(SAS),∴AE=AH,∠BAE=∠HAD,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAF+∠DAH=45°.即∠EAF=∠HAF,在△EAF与△HAF中,∵,∴△EAF≌△HAF(SAS),∴EF=HF=DF+DH=BE+DF,(2)解法一:如图,取AD,BC的中点P,Q,连接QP,PQ交AM于H,连接NH,∵AD=8,AB=4,∴AP=AB=BQ=PQ=4,∠B=90°,∴四边形ABQP是正方形,Rt△ABN中,AB=4,AN=2,∴BN==2,∴NQ=4﹣2=2,∵∠NAH=45°,由(1)同理得:NH=BN+PH,设PH=x,则NH=x+2,QH=4﹣x,Rt△NHQ中,NH2=QH2+NQ2,∴(2+x)2=22+(4﹣x)2,x=,∵P是AD的中点,PH∥DM,∴AH=HM,∴DM=2PH=,由勾股定理得:AM===;解法二:如图(iii),延长AN,DC交于点G,过M作MP⊥AG于点P,∵四边形ABCD是矩形,∴∠B=90°,Rt△ABN中,AB=4,AN=2,∴BN=2,CN=8﹣2=6,∵AB∥CG,∴△ABN∽△GCN,∴=,∴NG=6,∵∠MAN=45°,∠APM=90°,∴AP=PM,设AP=x,则PM=x,PG=2x,∵AG=2+6=x+2x,x=,∴AM=x=.解法三:如图,过点N作NK⊥AN,交AM于K,过K作KL⊥BC于L,∴∠ANK=∠B=∠KLN=90°,∴∠ANB=∠KNL,∵∠MAN=45°,∴△ANK是等腰直角三角形,∴AN=NK,∴△ABN≌△NLK(AAS),∴NL=AB=4,KL=BN=2,设CM=x,则DM=4﹣x,=2S△ABN+S△ANK+S梯形KLCM,∵S梯形ABCM∴×8(x+4)=2×+×(2)2+(x+2)×(8﹣2﹣4),∴x=,∴DM=,由勾股定理得:AM===.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,相似三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和等腰直角三角形是解题的关键.25.(14分)(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA.应用图1的数学模型解决下列问题:(2)如图2,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,将直线l1绕点A逆时针旋转45°至直线l2;求直线l2的函数表达式;(3)如图3,平面直角坐标系内有一点B(3,﹣4),过点B作BA⊥x轴于点A、BC⊥轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.若△CPD为等腰直角三角形,请直接写出点D的坐标.【分析】(1)由∠BCA=90°,得∠ACD=90°﹣∠BCE,又∠BEC=90°=∠CDA,∠CBE=90°﹣∠BCE=∠ACD,即可得△BCE≌△CAD(AAS);(2)过B作BE⊥AB交直线l2于E,过E作EF⊥y轴于F,在y=x+3中得A(﹣2,0),B(0,3),OA=2,OB=3,证明△AOB≌△BFE(AAS)即得OA=BF=2,OB=EF=3,从而E(﹣3,5),用待定系数法即得直线l2的函数表达式为y=﹣5x﹣10;(3)设D(m,﹣2m+1),P(3,n),①以D为直角顶点,过D作DW⊥x轴于W,交AB延长线于T,证明△CDW≌△DPT(AAS),有DT=CW,DW=PT,,可得D(,﹣),②以C为直角顶点,过P作PK⊥y轴于K,过D作DR⊥y轴于R,△PKC≌△CRD(AAS),有PK=CR,CK=DR,,可得D(4,﹣7)③以P为直角顶点,同理可得(,﹣).【解答】(1)证明:∵∠BCA=90°,∴∠ACD=90°﹣∠BCE,∵AD⊥ED,BE⊥ED,∴∠BEC=90°=∠CDA,∴∠CBE=90°﹣∠BCE=∠ACD,在△BCE和△CAD中,。

新人教版福建省福州市2022年初中数学学业质量检查试卷【含答案】

新人教版福建省福州市2022年初中数学学业质量检查试卷【含答案】

新人教版福建省福州市2022年初中数学学业质量检查试卷【含答案】一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(4分)(2022•福州质检)计算﹣3+3的结果是()A.0B.﹣6 C.9D.﹣9考点:有理数的加法分析:根据有理数的加法运算法则计算即可得解.解答:解:∵3与﹣3互为相反数,且互为相反数的两数和为0.∴﹣3+3=0.故选A.点评:本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.2.(4分)(2022•福州质检)如图,AB∥CD,∠BAC=120°,则∠C的度数是()A.30°B.60°C.70°D.80°考点:平行线的性质专题:计算题.分析:根据两直线平行,同旁内角互补由AB∥CD得到∠A+∠C=180°,然后把∠BAC=120°代入计算即可.解答:解:∵AB∥CD,∴∠A+∠C=180°而∠BAC=120°,∴∠C=180°﹣120°=60°.故选B.点评:本题考查了平行线的性质:两直线平行,同旁内角互补.3.(4分)(2022•福州质检)节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×1010考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350 000 000有9位,所以可以确定n=9﹣1=8.解答:解:350 000 000=3.5×108.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(4分)(2022•福州质检)下列学习用具中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形分析:根据轴对称图形的概念:把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形,对各选项判断即可.解答:解:A、是轴对称图形,不合题意,故本选项错误;B、是轴对称图形,不合题意,故本选项错误;C、不是轴对称图形,符合题意,故本选项正确;D、是轴对称图形,不合题意,故本选项错误;故选C.点评:本题考查了轴对称图形的知识,属于基础题,判断轴对称图形的关键是寻找对称轴.5.(4分)(2022•福州质检)一元二次方程x2+4=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根考点:根的判别式专题:计算题.分析:先计算出△=0﹣4×4×1=﹣16<0,然后根据△的意义即可得到方程的根的情况.解答:解:∵△=0﹣4×4×1=﹣16<0,∴方程没有实数根.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.(4分)(2022•福州质检)不等式组的解集在数轴上表示如图,则该不等式组的解集是()A.B.C.D.考点:在数轴上表示不等式的解集分析:根据“向右大于,向左小于,空心不包括端点,实心包括端点”的原则将数轴上不等式的解集写出来,再判断答案.解答:解:由图示可看出,从﹣1出发向右画出的线且﹣1处是空心圆,表示x>﹣1;从2出发向左画出的线且2处是实心圆,表示x≤2;不等式组的解集是:.故选B.点评:不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.(4分)(2022•福州质检)“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).随机在大正方形及其内部区域投针,若针扎到小正方形(阴影部分)的概率是,则大、小两个正方形的边长之比是()A.3:1 B.8:1 C.9:1 D.2:1考点:几何概率分析:根据针扎到小正方形(阴影部分)的概率是,求出小正方形与大正方形的面积之比,再根据相似多边形面积之比等于相似比的平方即可求出答案.解答:解:∵针扎到小正方形(阴影部分)的概率是,∴=,∴大、小两个正方形的边长之比是3:1;故选A.点评:此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比,相似多边形面积之比等于相似比的平方.8.(4分)(2022•福州质检)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且A、D在BC同侧,连接AD,量一量线段AD 的长,约为()A.1.0cm B.1.4cm C.1.8cm D.2.2cm考点:作图—复杂作图分析:首先根据题意画出图形,再利用刻度尺进行测量即可.解答:解:如图所示:测量可得AD=1.4cm,故选:B.点评:此题主要考查了复杂作图,关键是正确理解题意,画出图形.9.(4分)(2022•福州质检)有一种公益叫“光盘”.所谓“光盘”,就是吃光你盘子中的食物,杜绝“舌尖上的浪费”.某校九年级开展“光盘行动”宣传活动,根据各班级参加该活动的总人次折线统计图,下列说法正确的是()A.极差是40 B.中位数是58 C.平均数大于58 D.众数是5考点:折线统计图;算术平均数;中位数;众数;极差分析:根据极差的定义,平均数、中位数、众数的定义,对各选项分析判断后利用排除法求解.解答:解:A、极差是80﹣45=35,故本选项错误;B、按照从小到大的顺序排列如下:45、50、58、59、62、80,第3、4两个数分别是58、59,所以,中位数是58.5,故本选项错误;C、平均数=(50+80+59+45+58+62)=×354=59>58,故本选项正确;D、6个数据均是出现一次,所以众数是45、50、58、59、62、80,故本选项错误.故选C.点评:本题考查折线统计图的运用,主要涉及极差、平均数、中位数、众数的定义,熟记概念并根据折线统计图准确获取数据是解题的关键.10.(4分)(2022•福州质检)已知一个函数中,两个变量x与y的部分对应值如下表:x …﹣2﹣…﹣2+…﹣1 …+1 …y …﹣2+…﹣2﹣…+1 …﹣1 …如果这个函数图象是轴对称图形,那么对称轴可能是()A.x轴B.y轴C.直线x=1 D.直线y=x考点:轴对称图形;坐标与图形变化-对称专题:压轴题.分析:根据x、y的值可得y与x的函数关系式,继而可判断出函数图象的对称轴.解答:解:由表格可得:y=,故可得这个函数图象是轴对称图形,对称轴是y=x.故选D.点评:本题考查了轴对称图形及函数表达式,解答本题的关键是确定y与x的函数关系式.二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡的相应位置)11.(4分)(2022•福州质检)分解因式:3mn2﹣12m= 3m(n+2)(n﹣2).考点:提公因式法与公式法的综合运用分析:先提取公因式3m,再对余下的多项式利用平方差公式继续分解.解答:解:3mn2﹣12m,=3m(n2﹣4),=3m(n+2)(n﹣2).点评:本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)(2022•福州质检)如图,∠A+∠B+∠C+∠D=360 度.考点:多边形内角与外角分析:根据四边形内角和等于360°即可求解.解答:解:由四边形内角和等于360°,可得∠A+∠B+∠C+∠D=360度.故答案为:360.点评:考查了四边形内角和等于360°的基础知识.13.(4分)(2022•福州质检)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第四象限.考点:一次函数图象与系数的关系专题:探究型.分析:先根据函数的增减性判断出k的符号,再根据一次函数的图象与系数的关系进行解答即可.解答:解:∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案为:四.点评:本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时,函数的图象经过一、二、三象限.14.(4分)(2022•福州质检)若方程组,则3(x+y)﹣(3x﹣5y)的值是24 .考点:解二元一次方程组专题:整体思想.分析:把(x+y)、(3x﹣5y)分别看作一个整体,代入进行计算即可得解.解答:解:∵,∴3(x+y)﹣(3x﹣5y)=3×7﹣(﹣3)=21+3=24.故答案为:24.点评:本题考查了解二元一次方程组,计算时不要盲目求解,利用整体思想代入计算更加简单.15.(4分)(2022•福州质检)如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是 1.5 .考点:旋转的性质;等边三角形的性质专题:压轴题.分析:取AC的中点G,连接EG,根据等边三角形的性质可得CD=CG,再求出∠DCF=∠GCE,根据旋转的性质可得CE=CF,然后利用“边角边”证明△DCF和△GCE全等,再根据全等三角形对应边相等可得DF=EG,然后根据垂线段最短可得EG⊥AD时最短,再根据∠CAD=30°求解即可.解答:解:如图,取AC的中点G,连接EG,∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∴∠DCF=∠GCE,∵AD是等边△ABC的对称轴,∴CD=BC,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD时,EG最短,即DF最短,此时∵∠CAD=×60°=30°,AG=AC=×6=3,∴EG=AG=×3=1.5,∴DF=1.5.故答案为:1.5.点评:本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.三、解答题(满分90分;请将正确答案及解答过程填在答题卡的相应位置.作图或添轴助线用铅笔画完,再用黑色签字笔描黑)16.(14分)(2022•福州质检)(1)计算:(π+3)0﹣|﹣2022|+×(2)已知a2+2a=﹣1,求2a(a+1)﹣(a+2)(a﹣2)的值.考点:整式的混合运算—化简求值;实数的运算;零指数幂专题:计算题.分析:(1)原式第一项利用零指数幂法则计算,第二项利用负数的绝对值等于它的相反数计算,最后一项先利用二次根式的化简公式计算,再约分即可得到结果;(2)所求式子第一项利用单项式乘多项式法则计算,第二项利用平方差公式化简,去括号合并得到最简结果,将已知等式的值代入计算即可求出值.解答:(1)解:原式=1﹣2022+8×=1﹣2022+1=﹣2022;(2)解:原式=2a2+2a﹣a2+4=a2+2a+4,∵a2+2a=﹣1,∴原式=﹣1+4=3.点评:此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,单项式乘多项式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.17.(16分)(2022•福州质检)(1)如图,在△ABC中,AB=AC,点D、E、F分别是△ABC 三边的中点.求证:四边形ADEF是菱形.(2)一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?考点:菱形的判定;分式方程的应用分析:(1)D,E,F分别是AB,BC,AC边上的中点,则可以想到三角形的中位线定理,易证四边形ADEF是平行四边形.要证明是菱形,只要再证明它的一组邻边相等即可.(2)设江水流速为v千米/时,则顺水速=静水速+水流速,逆水速=静水速﹣水流速.根据顺流航行100千米所用时间,与逆流航行60千米所用时间相等,列方程求解.解答:(1)证明:∵D、E、F分别是△ABC三边的中点,∴DE∥AC,DE=AC,EF∥AB,EF=AB,∴四边形ADEF为平行四边形.又∵AC=AB,∴DE=EF.∴四边形ADEF为菱形;(2)解:设江水的流速为x千米/时,依题意,得:=,解得:x=5.经检验:x=5是原方程的解.答:江水的流速为5千米/时.点评:(1)本题主要应用了菱形的定义,有一组邻边相等的平行四边形是菱形.(2)本题考查了方式方程的应用,利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.此题中涉及的公式:顺水速=静水速+水流速,逆水速=静水速﹣水流速,时间=路程÷速度.18.(10分)(2022•福州质检)有一个袋中摸球的游戏.设置了甲、乙两种不同的游戏规则:甲规则:乙规则:红1 红2 黄1 黄2第一次第二次红1 (红1,红1)(红2,红1)(黄1,红1)②红2 (红1,红2)(红2,红2)(黄1,红2)(黄2,红2)黄1 (红1,黄1)①(黄1,黄1)(黄2,黄1)黄2 (红1,黄2)(红2,黄2)(黄1,黄2)(黄2,黄2)请根据以上信息回答下列问题:(1)袋中共有小球 4 个,在乙规则的表格中①表示(红2,黄1),②表示(黄2,红1);(2)甲的游戏规则是:随机摸出一个小球后不放回(填“放回”或“不放回”),再随机摸出一个小球;(3)根据甲、乙两种游戏规则,要摸到颜色相同的小球,哪一种可能性要大,请说明理由.考点:列表法与树状图法分析:(1)观察树状图与表格,即可得袋中共有小球4个,在乙规则的表格中①表示(红2,黄1),②表示(黄2,红1);(2)由树状图可得甲的游戏规则是:随机摸出一个小球后不放回,再随机摸出一个小球;(3)分别由树状图与表格,求得摸到颜色相同的小球的概率,比较大小,即可知哪一种可能性要大.解答:解:(1)∵由树状图可得袋中共有2个红色小球与2个黄色小球,∴袋中共有小球4个;在乙规则的表格中①表示:(红2,黄1);②表示(黄2,红1).故答案为:4;(红2,黄1);(黄2,红1);(3分)(2)甲的游戏规则是:随机摸出一个小球后不放回(填“放回”或“不放回”),再随机摸出一个小球;故答案为:不放回;…(5分)(3)乙游戏规则摸到颜色相同的小球的可能性更大.理由:∵在甲游戏规则中,从树形图看出,所有可能出现的结果共有12种,这些结果出现的可能性相同,而颜色相同的两个小球共有4种.…(6分)∴P(颜色相同)==.…(7分)∵在乙游戏规则中,从列表看出,所有可能出现的结果共有16种,这些结果出现的可能性相同,而颜色相同的两个小球共有8种.(8分)∴P(颜色相同)==.…(9分)∵<,∴乙游戏规则摸到颜色相同的小球的可能性更大.…(10分)点评:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.(12分)(2022•福州质检)如图,由6个形状、大小完全相同的小矩形组成矩形网格.小矩形的顶点称为这个矩形网格的格点.已知小矩形较短边长为1,△ABC的顶点都在格点上.(1)格点E、F在BC边上,的值是;(2)按要求画图:找出格点D,连接CD,使∠ACD=90°;(3)在(2)的条件下,连接AD,求tan∠BAD的值.考点:矩形的性质;全等三角形的判定与性质;勾股定理;锐角三角函数的定义分析:(1)根据图形即可得出AF=2BE,代入求出即可;(2)根据图形找出D点即可;(3)求出AB和BD值,求出∠ABD=90°,根据锐角三角函数的定义求出即可.解答:解:(1)由图形可知:==,故答案为:.(2)如图点D,连接CD.(3)解:连接BD,∵∠BED=90°,BE=DE=1,∴∠EBD=∠EDB=45°,BD===,由(1)可知BF=AF=2,且∠BFA=90°,∴∠ABF=∠BAF=45°,AB==2,∴∠ABD=∠ABF+∠FBD=45°+45°=90°.∴tan∠BAD===.点评:本题考查了勾股定理,锐角三角函数的定义的应用,主要考查学生的理解能力和观察图形的能力.20.(12分)(2022•福州质检)如图,半径为2的⊙E交x轴于A、B,交y轴于点C、D,直线CF交x轴负半轴于点F,连接EB、EC.已知点E的坐标为(1,1),∠OFC=30°.(1)求证:直线CF是⊙E的切线;(2)求证:AB=CD;(3)求图中阴影部分的面积.考点:圆的综合题分析:(1)首先过点E作EG⊥y轴于点G,由点E的坐标为(1,1),可得EG=1.继而可求得∠ECG的度数,又由∠OFC=30°,∠FOC=90°,可求得∠FCE=∠OCF+∠ECG=90°.(2)首先过点E作EH⊥x轴于点H,易证得Rt△CEG≌Rt△BEH,又由EH⊥AB,EG⊥CD,则可证得AB=CD;(3)连接OE,可求得OC=+1与∠OEB+∠OEC=210°,继而可求得阴影部分的面积.解答:解:(1)过点E作EG⊥y轴于点G,∵点E的坐标为(1,1),∴EG=1.在Rt△CEG中,sin∠ECG==,∴∠ECG=30°.∵∠OFC=30°,∠FOC=90°,∴∠OCF=180°﹣∠FOC﹣∠OFC=60°.∴∠FCE=∠OCF+∠ECG=90°.即CF⊥CE.∴直线CF是⊙E的切线.(2)过点E作EH⊥x轴于点H,∵点E的坐标为(1,1),∴EG=EH=1.在Rt△CEG与Rt△BEH中,∵,∴Rt△CEG≌Rt△BEH(HL).∴CG=BH.∵EH⊥AB,EG⊥CD,∴AB=2BH,CD=2CG.∴AB=CD.(3)连接OE,在Rt△CEG中,CG==,∴OC=+1.同理:OB=+1.∵OG=EG,∠OGE=90°,∴∠EOG=∠OEG=45°.又∵∠OCE=30°,∴∠OEC=180°﹣∠EOG﹣∠OCE=105°.同理:∠OEB=105°.∴∠OEB+∠OEC=210°.∴S阴影=﹣×(+1)×1×2=﹣﹣1.点评:此题考查了切线的判定、三角函数、勾股定理以及扇形的面积.此题难度较大,注意掌握数形结合思想的应用.21.(12分)(2022•福州质检)如图,Rt△ABC中,∠C=90°,AC=BC=8,DE=2,线段DE 在AC边上运动(端点D从点A开始),速度为每秒1个单位,当端点E到达点C时运动停止.F为DE中点,MF⊥DE交AB于点M,MN∥AC交BC于点N,连接DM、ME、EN.设运动时间为t秒.(1)求证:四边形MFCN是矩形;(2)设四边形DENM的面积为S,求S关于t的函数解析式;当S取最大值时,求t的值;(3)在运动过程中,若以E、M、N为顶点的三角形与△DEM相似,求t的值.考点:相似形综合题专题:压轴题.分析:(1)根据平行线的性质可以证得四边形MFCN的三个角是直角,则可以证得是矩形;(2)利用t表示出MN、MF的长,然后根据S=S△MDE+S△MNE=DE•MF+MN•MF即可得到关于t的函数,利用函数的性质即可求解;(3)当△NME∽△DEM时利用相似三角形的对应边的比相等即可求得t的值;当△EMN∽△DEM时,根据相似三角形的对应边的比相等可以得到=即EM2=NM•DE.然后在Rt△MEF中利用勾股定理即可得到一个关于t的方程,从而求解.解答:解:(1)证明:∵MF⊥AC,∴∠MFC=90°.∵MN∥AC,∴∠MFC+∠FMN=180°.∴∠FMN=90°.∵∠C=90°,∴四边形MFCN是矩形.(2)解:当运动时间为t秒时,AD=t,∵F为DE的中点,DE=2,∴DF=EF=DE=1.∴AF=t+1,FC=8﹣(t+1)=7﹣t.∵四边形MFCN是矩形,∴MN=FC=7﹣t.又∵AC=BC,∠C=90°,∴∠A=45°.∴在Rt△AMF中,MF=AF=t+1,∴S=S△MDE+S△MNE=DE•MF+MN•MF=×2(t+1)+(7﹣t)(t+1)=﹣t2+4t+∵S=﹣t2+4t+=﹣(t﹣4)2+∴当t=4时,S有最大值.(3)∵MN∥AC,∴∠NME=∠DEM.①当△NME∽△DEM时,∴=.∴=1,解得:t=5.②当△EMN∽△DEM时,∴=.∴EM2=NM•DE.在Rt△MEF中,ME2=EF2+MF2=1+(t+1)2,∴1+(t+1)2=2(7﹣t).解得:t1=2,t2=﹣6(不合题意,舍去)综上所述,当t为2秒或5秒时,以E、M、N为顶点的三角形与△DEM相似.点评:本题考查了矩形的判定,相似三角形的判定与性质,以及勾股定理,正确分情况讨论是关键.22.(14分)(2022•福州质检)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(1,0)、B(4,0)两点,与y轴交于C(0,2),连接AC、BC.(1)求抛物线解析式;(2)BC的垂直平分线交抛物线于D、E两点,求直线DE的解析式;(3)若点P在抛物线的对称轴上,且∠CPB=∠CAB,求出所有满足条件的P点坐标.考点:二次函数综合题分析:(1)将A(1,0)、B(4,0)、C(0,2)三点坐标代入抛物线y=ax2+bx+c(a≠0)中,列方程组求a、b、c的值即可;(2)如图1,设BC的垂直平分线DE交BC于M,交x轴于N,连接CN,过点M作MF⊥x 轴于F.可得△BMF∽△BCO,根据相似三角形的性质,垂直平分线的性质和勾股定理可求直线DE上两点M、N的坐标,再根据待定系数法可求直线DE的解析式;(3)①如图3,设直线DE交抛物线对称轴于点G,则点G(,2),以G为圆心,GA长为半径画圆交对称轴于点P1,以N为圆心,NB长为半径的⊙N与⊙G关于直线BC 对称,⊙N交抛物线对称轴于点P2,从而确定P点坐标.解答:解:(1)由题意,得:解得:.故这个抛物线的解析式为y=x2﹣x+2.(2)解法一:如图1,设BC的垂直平分线DE交BC于M,交x轴于N,连接CN,过点M作MF⊥x轴于F.∴△BMF∽△BCO,∴===.∵B(4,0),C(0,2),∴CO=2,BO=4,∴MF=1,BF=2,∴M(2,1)…(5分)∵MN是BC的垂直平分线,∴CN=BN,设ON=x,则CN=BN=4﹣x,在Rt△OCN中,CN2=OC2+ON2,∴(4﹣x)2=22+x2,解得:x=,∴N(,0).设直线DE的解析式为y=kx+b,依题意,得:,解得:.∴直线DE的解析式为y=2x﹣3.解法二:如图2,设BC的垂直平分线DE交BC于M,交x轴于N,连接CN,过点C作CF∥x轴交DE于F.∵MN是BC的垂直平分线,∴CN=BN,CM=BM.设ON=x,则CN=BN=4﹣x,在Rt△OCN中,CN2=OC2+ON2,∴(4﹣x)2=22+x2,解得:x=,∴N(,0).∴BN=4﹣=.∵CF∥x轴,∴∠CFM=∠BNM.∵∠CMF=∠BMN,∴△CMF≌△BMN.∴CF=BN.∴F(,2).设直线DE的解析式为y=kx+b,依题意,得:,解得:.∴直线DE的解析式为y=2x﹣3.(3)由(1)得抛物线解析式为y=x2﹣x+2,∴它的对称轴为直线x=.①如图3,设直线DE交抛物线对称轴于点G,则点G(,2),以G为圆心,GA长为半径画圆交对称轴于点P1,则∠CP1B=∠CAB.GA=,∴点P1的坐标为(,﹣).②如图4,由(2)得:BN=,∴BN=BG,∴G、N关于直线BC对称.∴以N为圆心,NB长为半径的⊙N与⊙G关于直线BC对称.⊙N交抛物线对称轴于点P2,则∠CP2B=∠CAB.设对称轴与x轴交于点H,则NH=﹣=1.∴HP2==,∴点P2的坐标为(,).综上所述,当P点的坐标为(,﹣)或(,)时,∠CPB=∠CAB.点评:本题考查了二次函数的综合运用.关键是由已知条件由待定系数法求函数解析式,以及相似三角形的性质,垂直平分线的性质和勾股定理的运用,综合性较强,有一定的难度.。

【质检试卷】2020学年福州市质检卷数学试题及答案

【质检试卷】2020学年福州市质检卷数学试题及答案

2020年福州市九年级质量检测数 学 试 题一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在实数π4,227-,2.02002 A .π4 B .227- C .2.02002D2.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是赵爽弦图笛卡尔心形线科克曲线斐波那契螺旋线ABCD3.下列运算中,结果可以为3-4的是 A .32÷36 B .36÷32C .32×36D .(3-)×(3-)×(3-)×(3-) 4.若一个多边形的内角和是540°,则这个多边形是A .四边形B .五边形C .六边形D .七边形 5.若aa +1,其中a 为整数,则a 的值是A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为A .911616x yx y -=⎧⎨+=⎩B .911616x yx y-=⎧⎨-=⎩C .911616x yx y +=⎧⎨+=⎩D .911616x yx y +=⎧⎨-=⎩7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是 A .b 一定增大,c 可能增大 B .b 可能不变,c 一定增大 C .b 一定不变,c 一定增大 D .b 可能增大,c 可能不变8.若一个粮仓的三视图如图所示(单位:m ),则它的体积(参考公式:V 圆锥=13S 底h ,V 圆柱=S 底h )是 A .21π m 3B .36π m 3C .45π m 3D .63π m 39.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 长为半径作EF ,交CD 于点F ,连接AE ,AF .若AB =6,∠B =60°,则阴影部分的面积是 A .632π+ B .633π+ C .933π-D .932π-10.小明在研究抛物线2()1y x h h =---+(h 为常数)时,得到如下结论,其中正确的是A .无论x 取何实数,y 的值都小于0B .该抛物线的顶点始终在直线y =x 1-上C .当1-<x <2时,y 随x 的增大而增大,则h <2D .该抛物线上有两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2,x 1+x 2>2h ,则y 1>y 2第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分.ADBCFE4 6主视图76 左视图11.计算:12cos60-+︒=.12.能够成为直角三角形三条边长的三个正整数称为勾股数.若从2,3,4,5中任取3个数,则这3个数能构成一组勾股数的概率是.13.一副三角尺如图摆放,D是BC延长线上一点,E是AC上一点,∠B=∠EDF=90°,∠A=30°,∠F=45°,若EF∥BC,则∠CED等于度.14.若m(m-2)=3,则(m-1)2的值是.15.如图,在⊙O中,C是AB的中点,作点C关于弦AB的对称点D,连接AD并延长交⊙O于点E,过点B作BF⊥AE于点F,若∠BAE=2∠EBF,则∠EBF等于度.16.如图,在平面直角坐标系xOy中,□ABCD的顶点A,B分别在x,y轴的负半轴上,C,D在反比例函数kyx=(x>0)的图象上,AD与y轴交于点E,且AE=23AD,若△ABE的面积是3,则k的值是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分8分)解不等式组26312xx x⎧⎪⎨+>⎪⎩,①②.并把不等式组的解集在数轴上表示出来.12345-1-2-3-4-50ACFEDBCDBAEFOxyBCDEA O18.(本小题满分8分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:∠A =∠D .19.(本小题满分8分) 先化简,再求值:22111121x x x x x +÷-++++,其中31x =-.20.(本小题满分8分)AFDEBC如图,已知∠MON ,A ,B 分别是射线OM ,ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD =2CD ,并证明OD =2CD .21.(本小题满分8分)甲,乙两人从一条长为200 m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息.图1是甲出发后行走的路程y (单位:m )与行走时间x (单位:min )的函数图象,图2是甲,乙两人之间的距离s (单位:m )与甲行走时间x (单位:min )的函数图象. (1)求甲,乙两人的速度; (2)求a ,b 的值.M A图1 图222.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照0≤x <4,4≤x <8,…,28≤x <32分成8组,制成了如图所示的频数分布直方图.(1)写出a 的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m ,请判断若以(1)中所求得的平均数作为标准m 是否合理?并说明理由.y x 1202 O xsb aO 4323.(本小题满分10分)如图,在Rt △ABC 中,AC <AB ,∠BAC 90°,以AB 为直径作⊙O 交BC 于点D ,E 是AC 的中点,连接ED .点F 在BD 上,连接BF 并延长交AC 的40280 220 180 a 60 20 月均用水量(单位:t )频数(户数)延长线于点G .(1)求证:DE 是⊙O 的切线;(2)连接AF ,求AF BG的最大值.24.(本小题满分12分)已知△ABC ,AB =AC ,∠BAC =90°,D 是AB 边上一点,连接CD ,E 是CD上一点,且∠AED =45°. (1)如图1,若AE =DE ,①求证:CD 平分∠ACB ;②求AD DB 的值; (2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.图1 图2BA CDEB AC DEBDF O25.(本小题满分14分)在平面直角坐标系xOy中,抛物线C:22=+-的对称轴是y轴,过点y kx k k x(4)F(0,2)作一直线与抛物线C相交于P,Q两点,过点Q作x轴的垂线与直线OP相交于点A.(1)求抛物线C的解析式;(2)判断点A是否在直线y=2-上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切.过抛物线C上的任意一点(除顶点外)作该抛物线的切线l,分别交直线y=2和直线y=2-于点M,N,求22MF NF-的值.2020年福州市九年级质量检测数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、选择题:共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂.1.A2.C3.A4.B5.B6.A7.B8.C9.C10.D二、填空题:共6小题,每小题4分,满分24分,请在答题卡的相应位置作答.13.1511.112.1414.415.1816.94三、解答题:共9小题,满分86分,请在答题卡的相应位置作答.17.(本小题满分 8 分) 解:解不等式①,得 x≤3.························································································································3 分 解不等式②,得 x> 1.·····················································································································5 分 ∴原不等式组的解集是 1<x≤3,····································································································6 分 将该不等式组解集在数轴上表示如下:-5 -4 -3 -2 -1 0 1 2 3 4 5···············································································8 分18.(本小题满分 8 分)证明:∵点 E,F 在 BC 上,BE CF,∴BE EF CF EF,即 BF CE.········································································································································3 分在△ABF 和△DCE 中,AD AB DC, B C, ∴B△FABCF≌E,△DCE,········································································B·······E·····················F········C················6 分∴∠A ∠D.····································································································································8 分19.(本小题满分 8 分)解:原式x2 1 (x 1)2 (x 1) (x1)·············································································································· 3分 x2 1 (x 1)(x 1) ··················································································································4 分x 1x 1 x2 1 x2 1 ·····························································································································5 分 x 1 x 1x2 1.········································································································································ 6分当 x 3 1时,原式 2 ·······································································································7 分 3 112 3 2 3 .············································································································8 分 320.(本小题满分 8 分) 解: 画法一:M AOC DBN画法二:M AOCD BN···············································································4 分 如图,点 C,D 分别为(1),(2)所求作的点. ······································································5 分(2)证明如下:由(1)得BC∥OA,BC1 2OA,∴∠DBC ∠DAO,∠DCB ∠DOA,∴△DBC∽△DAO,···································································································7 分11∴DC DOBC AO1 2,∴OD 2CD. ·············································································································8 分21.(本小题满分 8 分)解:(1)由图 1 可得甲的速度是120 2=60 m/min. ···············································································2 分由图 2 可知,当 x 4 时,甲,乙两人相遇, 3故(60v乙 ) 4 3200,解得 v乙 90 m/min. ····················································································································4 分 答:甲的速度是 60 m/min,乙的速度是 90 m/min. (2)由图 2 可知:乙走完全程用了 b min,甲走完全程用了 a min,∴b200 9020 9,··························································································································6分a200 6010 3.·························································································································· 8分∴a的值为10 3,b的值为20 9.22.(本小题满分 10 分)解:(1)依题意得 a 100 .·······················································································································2 分这 1000 户家庭月均用水量的平均数为:x240610010180 14280 18 1000220221002660302014.72,········ 6分∴估计这 1000 户家庭月均用水量的平均数是 14.72.(2)解法一:不合理.理由如下: ····································································································7 分由(1)可得 14.72 在 12≤x<16 内,∴这 1000 户家庭中月均用水量小于 16 t 的户数有40 100 180 280 600(户), ··········································································8 分∴这1000户家庭中月均用水量小于16t的家庭所占的百分比是600 1000100%60%,∴月均用水量不超过 14.72 t 的户数小于 60%. ·······················································9 分∵该市政府希望 70%的家庭的月均用水量不超过标准 m,而 60%<70%,∴用 14.72 作为标准 m 不合理. ·············································································10 分解法二:不合理.理由如下: ····································································································7 分∵该市政府希望 70%的家庭的月均用水量不超过标准 m,∴数据中不超过 m 的频数应为 700, ········································································8 分即有 300 户家庭的月均用水量超过 m.又 20 60 100 160 300 , 20 60 100 220 380 300,∴m 应在 16≤x<20 内.·····························································································9 分而 14.72<16,∴用 14.72 作为标准 m 不合理. ·············································································10 分23.(本小题满分 10 分)(1)证明:连接 OD,AD.∵AB 为⊙O 直径,点 D 在⊙O 上,B∴∠ADB 90°, ······················································································································1 分∴∠ADC 90°. ∵E 是 AC 的中点,FOD∴DE=AE,∴∠EAD ∠EDA. ······································································A··········E··········C·············G··········2 分 ∵OA OD,12∴∠OAD ∠ODA. ················································································································3 分∵∠OAD ∠EAD ∠BAC 90°,∴∠ODA ∠EDA 90°,即∠ODE 90°, ······················································································································4 分∴OD⊥DE.∵D 是半径 OD 的外端点,∴DE 是⊙O 的切线. ·············································································································5 分(2)解法一:过点 F 作 FH⊥AB 于点 H,连接 OF,∴∠AHF 90°.B∵AB 为⊙O 直径,点 F 在⊙O 上, ∴∠AFB 90°, ∴∠BAF ∠ABF 90°.HFOD∵∠BAC 90°,∴∠G ∠ABF 90°,A ECG∴∠G ∠BAF.··················································································································6 分又∠AHF ∠GAB 90°,∴△AFH∽△GBA,·············································································································7 分∴AF GBFH BA. ····················································································································8分由垂线段最短可得 FH≤OF,·····························································································9 分当且仅当点 H,O 重合时等号成立.∵AC<AB,∴ BD 上存在点 F 使得 FO⊥AB,此时点 H,O 重合,∴AF GBFH BA≤OF BA1 2,································································································10分即 AF 的最大值为 1 .GB2解法二:取 GB 中点 M,连接 AM.∵∠BAG 90°,∴AM 1BGB.····················································································································6 分2∵AB 为⊙O 直径,点 F 在⊙O 上, ∴∠AFB 90°,FOM D∴∠AFG 90°,∴AF⊥GB.·················································································A··········E··········C·············G········7 分 由垂线段最短可得 AF≤AM,····························································································8 分当且仅当点 F,M 重合时等号成立,此时 AF 垂直平分 GB,即 AG=AB.∵AC<AB,∴ BD 上存在点 F 使得 F 为 GB 中点,∴AF≤ 1 GB,······················································································································9 分 2∴AF GB≤1 2,·····················································································································10分即 AF 的最大值为 1 .GB224.(本小题满分 12 分) (1)①证明:∵∠AED 45°,AE DE,∴∠EDA 180 45 67.5°.···························································································1 分 2∵AB AC,∠BAC 90°, ∴∠ACB ∠ABC 45°,∠DCA 22.5°,··········································································2 分13。

【质检试卷】2020学年福州市质检卷数学试题及答案

【质检试卷】2020学年福州市质检卷数学试题及答案

2020年福州市九年级质量检测数 学 试 题一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在实数π4,227-,2.02002 A .π4 B .227- C .2.02002D2.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是赵爽弦图笛卡尔心形线科克曲线斐波那契螺旋线ABCD3.下列运算中,结果可以为3-4的是 A .32÷36 B .36÷32C .32×36D .(3-)×(3-)×(3-)×(3-) 4.若一个多边形的内角和是540°,则这个多边形是A .四边形B .五边形C .六边形D .七边形 5.若aa +1,其中a 为整数,则a 的值是A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为A .911616x yx y -=⎧⎨+=⎩B .911616x yx y-=⎧⎨-=⎩C .911616x yx y +=⎧⎨+=⎩D .911616x yx y +=⎧⎨-=⎩7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是 A .b 一定增大,c 可能增大 B .b 可能不变,c 一定增大 C .b 一定不变,c 一定增大 D .b 可能增大,c 可能不变8.若一个粮仓的三视图如图所示(单位:m ),则它的体积(参考公式:V 圆锥=13S 底h ,V 圆柱=S 底h )是 A .21π m 3B .36π m 3C .45π m 3D .63π m 39.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 长为半径作EF ,交CD 于点F ,连接AE ,AF .若AB =6,∠B =60°,则阴影部分的面积是 A .632π+ B .633π+ C .933π-D .932π-10.小明在研究抛物线2()1y x h h =---+(h 为常数)时,得到如下结论,其中正确的是A .无论x 取何实数,y 的值都小于0B .该抛物线的顶点始终在直线y =x 1-上C .当1-<x <2时,y 随x 的增大而增大,则h <2D .该抛物线上有两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2,x 1+x 2>2h ,则y 1>y 2第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分.ADBCFE4 6主视图76 左视图11.计算:12cos60-+︒=.12.能够成为直角三角形三条边长的三个正整数称为勾股数.若从2,3,4,5中任取3个数,则这3个数能构成一组勾股数的概率是.13.一副三角尺如图摆放,D是BC延长线上一点,E是AC上一点,∠B=∠EDF=90°,∠A=30°,∠F=45°,若EF∥BC,则∠CED等于度.14.若m(m-2)=3,则(m-1)2的值是.15.如图,在⊙O中,C是AB的中点,作点C关于弦AB的对称点D,连接AD并延长交⊙O于点E,过点B作BF⊥AE于点F,若∠BAE=2∠EBF,则∠EBF等于度.16.如图,在平面直角坐标系xOy中,□ABCD的顶点A,B分别在x,y轴的负半轴上,C,D在反比例函数kyx=(x>0)的图象上,AD与y轴交于点E,且AE=23AD,若△ABE的面积是3,则k的值是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分8分)解不等式组26312xx x⎧⎪⎨+>⎪⎩,①②.并把不等式组的解集在数轴上表示出来.12345-1-2-3-4-50ACFEDBCDBAEFOxyBCDEA O18.(本小题满分8分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:∠A =∠D .19.(本小题满分8分) 先化简,再求值:22111121x x x x x +÷-++++,其中31x =-.20.(本小题满分8分)AFDEBC如图,已知∠MON ,A ,B 分别是射线OM ,ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD =2CD ,并证明OD =2CD .21.(本小题满分8分)甲,乙两人从一条长为200 m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息.图1是甲出发后行走的路程y (单位:m )与行走时间x (单位:min )的函数图象,图2是甲,乙两人之间的距离s (单位:m )与甲行走时间x (单位:min )的函数图象. (1)求甲,乙两人的速度; (2)求a ,b 的值.M A图1 图222.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照0≤x <4,4≤x <8,…,28≤x <32分成8组,制成了如图所示的频数分布直方图.(1)写出a 的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m ,请判断若以(1)中所求得的平均数作为标准m 是否合理?并说明理由.y x 1202 O xsb aO 4323.(本小题满分10分)如图,在Rt △ABC 中,AC <AB ,∠BAC 90°,以AB 为直径作⊙O 交BC 于点D ,E 是AC 的中点,连接ED .点F 在BD 上,连接BF 并延长交AC 的40280 220 180 a 60 20 月均用水量(单位:t )频数(户数)延长线于点G .(1)求证:DE 是⊙O 的切线;(2)连接AF ,求AF BG的最大值.24.(本小题满分12分)已知△ABC ,AB =AC ,∠BAC =90°,D 是AB 边上一点,连接CD ,E 是CD上一点,且∠AED =45°. (1)如图1,若AE =DE ,①求证:CD 平分∠ACB ;②求AD DB 的值; (2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.图1 图2BA CDEB AC DEBDF O25.(本小题满分14分)在平面直角坐标系xOy中,抛物线C:22=+-的对称轴是y轴,过点y kx k k x(4)F(0,2)作一直线与抛物线C相交于P,Q两点,过点Q作x轴的垂线与直线OP相交于点A.(1)求抛物线C的解析式;(2)判断点A是否在直线y=2-上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切.过抛物线C上的任意一点(除顶点外)作该抛物线的切线l,分别交直线y=2和直线y=2-于点M,N,求22MF NF-的值.2020年福州市九年级质量检测数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、选择题:共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂.1.A2.C3.A4.B5.B6.A7.B8.C9.C10.D二、填空题:共6小题,每小题4分,满分24分,请在答题卡的相应位置作答.13.1511.112.1414.415.1816.94三、解答题:共9小题,满分86分,请在答题卡的相应位置作答.17.(本小题满分 8 分) 解:解不等式①,得 x≤3.························································································································3 分 解不等式②,得 x> 1.·····················································································································5 分 ∴原不等式组的解集是 1<x≤3,····································································································6 分 将该不等式组解集在数轴上表示如下:-5 -4 -3 -2 -1 0 1 2 3 4 5···············································································8 分18.(本小题满分 8 分)证明:∵点 E,F 在 BC 上,BE CF,∴BE EF CF EF,即 BF CE.········································································································································3 分在△ABF 和△DCE 中,AD AB DC, B C, ∴B△FABCF≌E,△DCE,········································································B·······E·····················F········C················6 分∴∠A ∠D.····································································································································8 分19.(本小题满分 8 分)解:原式x2 1 (x 1)2 (x 1) (x1)·············································································································· 3分 x2 1 (x 1)(x 1) ··················································································································4 分x 1x 1 x2 1 x2 1 ·····························································································································5 分 x 1 x 1x2 1.········································································································································ 6分当 x 3 1时,原式 2 ·······································································································7 分 3 112 3 2 3 .············································································································8 分 320.(本小题满分 8 分) 解: 画法一:M AOC DBN画法二:M AOCD BN···············································································4 分 如图,点 C,D 分别为(1),(2)所求作的点. ······································································5 分(2)证明如下:由(1)得BC∥OA,BC1 2OA,∴∠DBC ∠DAO,∠DCB ∠DOA,∴△DBC∽△DAO,···································································································7 分11∴DC DOBC AO1 2,∴OD 2CD. ·············································································································8 分21.(本小题满分 8 分)解:(1)由图 1 可得甲的速度是120 2=60 m/min. ···············································································2 分由图 2 可知,当 x 4 时,甲,乙两人相遇, 3故(60v乙 ) 4 3200,解得 v乙 90 m/min. ····················································································································4 分 答:甲的速度是 60 m/min,乙的速度是 90 m/min. (2)由图 2 可知:乙走完全程用了 b min,甲走完全程用了 a min,∴b200 9020 9,··························································································································6分a200 6010 3.·························································································································· 8分∴a的值为10 3,b的值为20 9.22.(本小题满分 10 分)解:(1)依题意得 a 100 .·······················································································································2 分这 1000 户家庭月均用水量的平均数为:x240610010180 14280 18 1000220221002660302014.72,········ 6分∴估计这 1000 户家庭月均用水量的平均数是 14.72.(2)解法一:不合理.理由如下: ····································································································7 分由(1)可得 14.72 在 12≤x<16 内,∴这 1000 户家庭中月均用水量小于 16 t 的户数有40 100 180 280 600(户), ··········································································8 分∴这1000户家庭中月均用水量小于16t的家庭所占的百分比是600 1000100%60%,∴月均用水量不超过 14.72 t 的户数小于 60%. ·······················································9 分∵该市政府希望 70%的家庭的月均用水量不超过标准 m,而 60%<70%,∴用 14.72 作为标准 m 不合理. ·············································································10 分解法二:不合理.理由如下: ····································································································7 分∵该市政府希望 70%的家庭的月均用水量不超过标准 m,∴数据中不超过 m 的频数应为 700, ········································································8 分即有 300 户家庭的月均用水量超过 m.又 20 60 100 160 300 , 20 60 100 220 380 300,∴m 应在 16≤x<20 内.·····························································································9 分而 14.72<16,∴用 14.72 作为标准 m 不合理. ·············································································10 分23.(本小题满分 10 分)(1)证明:连接 OD,AD.∵AB 为⊙O 直径,点 D 在⊙O 上,B∴∠ADB 90°, ······················································································································1 分∴∠ADC 90°. ∵E 是 AC 的中点,FOD∴DE=AE,∴∠EAD ∠EDA. ······································································A··········E··········C·············G··········2 分 ∵OA OD,12∴∠OAD ∠ODA. ················································································································3 分∵∠OAD ∠EAD ∠BAC 90°,∴∠ODA ∠EDA 90°,即∠ODE 90°, ······················································································································4 分∴OD⊥DE.∵D 是半径 OD 的外端点,∴DE 是⊙O 的切线. ·············································································································5 分(2)解法一:过点 F 作 FH⊥AB 于点 H,连接 OF,∴∠AHF 90°.B∵AB 为⊙O 直径,点 F 在⊙O 上, ∴∠AFB 90°, ∴∠BAF ∠ABF 90°.HFOD∵∠BAC 90°,∴∠G ∠ABF 90°,A ECG∴∠G ∠BAF.··················································································································6 分又∠AHF ∠GAB 90°,∴△AFH∽△GBA,·············································································································7 分∴AF GBFH BA. ····················································································································8分由垂线段最短可得 FH≤OF,·····························································································9 分当且仅当点 H,O 重合时等号成立.∵AC<AB,∴ BD 上存在点 F 使得 FO⊥AB,此时点 H,O 重合,∴AF GBFH BA≤OF BA1 2,································································································10分即 AF 的最大值为 1 .GB2解法二:取 GB 中点 M,连接 AM.∵∠BAG 90°,∴AM 1BGB.····················································································································6 分2∵AB 为⊙O 直径,点 F 在⊙O 上, ∴∠AFB 90°,FOM D∴∠AFG 90°,∴AF⊥GB.·················································································A··········E··········C·············G········7 分 由垂线段最短可得 AF≤AM,····························································································8 分当且仅当点 F,M 重合时等号成立,此时 AF 垂直平分 GB,即 AG=AB.∵AC<AB,∴ BD 上存在点 F 使得 F 为 GB 中点,∴AF≤ 1 GB,······················································································································9 分 2∴AF GB≤1 2,·····················································································································10分即 AF 的最大值为 1 .GB224.(本小题满分 12 分) (1)①证明:∵∠AED 45°,AE DE,∴∠EDA 180 45 67.5°.···························································································1 分 2∵AB AC,∠BAC 90°, ∴∠ACB ∠ABC 45°,∠DCA 22.5°,··········································································2 分13。

2020-2021学年度福州市九年级数学质量检测试卷及答案

2020-2021学年度福州市九年级数学质量检测试卷及答案

九年级数学—1—(共5页)准考证号: 姓名:(在此卷上答题无效)2020-2021学年度福州市九年级质量检测数 学 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,完卷时间120分钟,满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑. 4.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.3−的相反数是 A .3 B .13C .13− D .3−2.我国首次火星探测任务“天问一号”探测器环绕火星成功,成为我国第一颗人造火星卫星后,于2021年2月24日成功实施第三次近火制动,进入近火点280千米,远火点5.9万千米,周期2个火星日的火星停泊轨道.此次“天问一号”探测器进入的火星停泊轨道是与火星的最远距离为59 000千米的椭圆形轨道.将数据59 000用科学记数法表示,其结果是A .35.910×B .35910×C .45.910×D .55.910×3.如图所示的几何体,其左视图是AB CD从正面看九年级数学—2—(共5页)4.如图,正五边形ABCDE 中,F 为CD 边中点,连接AF ,则∠BAF 的度数是 A .50° B .54°C .60°D .72° 5.下列计算结果是5a 的是 A .23a a + B .102a a ÷C .23a a ⋅D .23()a 6.一家鞋店在一段时间内销售了某款运动鞋30双,该款的各种尺码鞋销售量如图所示.鞋店决定在下一次进货时增加一些尺码为23.5 cm 的该款运动鞋,影响鞋店这一决策的统计量是 A .平均数 B .中位数 C .众数 D .方差7.我国古典数学文献《增删算法统宗·六均输》中有一个“隔沟计算”的问题:“甲乙隔沟牧放,二人暗里参详.甲云得乙九只羊,多乙一倍之上.乙说得甲九只,两家之数相当.二人闲坐恼心肠,画地算了半晌.”翻译成现代文,其大意如下:甲乙两人隔一条沟放牧,二人心里暗中合计.甲对乙说:“我得到你的九只羊,我的羊就比你多一倍.”乙对甲说:“我得到你的九只羊,咱俩家的羊一样多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年福州市初中数学二检试卷一.选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.3-的相反数是A . 3B .3-C . 13D .13-2.今年参加福州市中考的总人数约为78000人,可将78000用科学记数法表示为A .478.010⨯B .47.810⨯C . 57.810⨯D .60.7810⨯3.某几何体的三种视图如图所示,则该几何体是 A .三棱柱 B .长方体 C .圆柱 D .圆锥4.下列各图中,∠1与∠2是对顶角的是A B C D 5.下列计算正确的是A 32a a -=B 333236b b b ⋅=C 3233a a a ÷= D ()437aa =6.230a b -++=,a b +的值是A .2B .0C .1D 1-7.某班体育委员记录了第一组七位同学定点投篮(每人投十个),投进篮筐的个数情况依次为:5,6,5,3,6,8,9.则这组数据的平均数和中位数分别是A .6,6B .6,8C .7,6D .7,88.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m .依题意,下面所列方程正确的是A . 120x =100x +10 B .120x =100x -10C .120x -10=100x D .120x +10=100x第 10 题CAB GFD EO第 9 题9.如图,△ABC 的中线BD 、CE 交于点O ,连接OA ,点G 、F 分别为OC 、OB 的中点,BC =4,AO =3,则四边形DEFG 的周长为A .6B .7C .8D .1210.如图,抛物交于点A 0),顶点坐标为C (1,与的交点在(0,2)、(0,3)之间(不包含端点),取值范围是A .2 3B4 C4D . 3 4二.填空题(共5小题,每小题4分.满分20分;请将正确答案填在答题卡相应位置)11.分解因式=____________.12.“任意打开一本200页的数学书,正好是第50页” .这是___________事件(选填“随机”,“必然”或“不可能”).13.已知反比例函图象经过(1,-2).14.不等解集是_________.15.如图,已知∠AOB =60°,在OA 上取过OA 交OB 于过OB 交OA 于过OA 交OB 于OB 交OA 于…,按此作法继续下去,值是 .三.解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分) ⑴.计算:123O第 17(2)题⑵.先化简,再求值其中a17.(每小题7分,共14分)(1)如图,CA =CD ,∠1=∠2,BC =EC .求证:AB =DE .(2)如图,点A4),B 0)将△OAB 绕点O 顺时针旋转90°,得到①画出并直接写出坐标; ②求出旋转过程中点A 所经过的路径长(结果保留π).18.(满分12分)为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳等体育活动项目的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如下两幅不完整统计图,请根据图中提供的信息解答下列各题.(1=______%,这次共抽取了_______名学生进行调查;并补全条形图; (2)请你估计该校约有 名学生喜爱打篮球;(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?19.(满分11分)某商店决定购进一批某种衣服.若商店以每件60元卖出,盈利率为20%.(1)试求这种衣服的进价;(2)商店决定试销售这种衣服时,每件售价不低于进价,又不高于每件70元,若试销中销售件)与销售单元)的关系是一次函数(如图).问当销售单价定为多少元时,商店销售这种衣服的利润最大?20.(满分12分)如图,在⊙O 中,点P 为直径BA 延长线上一点,PD 切⊙O 于点D ,过点B 作BH ⊥PE ,点H 为垂足,交⊙O 于点C ,连接BD .(1)求证:BD 平分∠ABH ;(2)如果AB =10,BC =6,求BD 的长;(3)在(2)的条件下,当E中点,DE 交AB 于点F ,值.21.(满分13分)如图,直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AB =7,AD =4,CA =5,动点M 以每秒1个单位长得速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C →D →A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M作直AD ,与线段CD 交于点E ,与折线A —C —B 的交点为Q ,设点M 的运动时间 (1)当点P 在线段CD 上时,CE = ,CQ = ;(用含t 的代数式表示)(2)在(1)的条件下,如果以C 、P 、Q 为顶点的三角形为等腰三角形,值; (3)当点P 运动到线段AD 上时,PQ 与AC 交于点G ,值.22.(满分14分)已知抛物经过点A (1,0)、B (3,0)、 C (0,3),顶点为D . (1)求抛物线的解析式;(2)在x 轴下方的抛物有一点G ,使得∠GAB =∠BCD ,求点G 的坐标; (3)设△ABD 的外为⊙E ,直过点B⊙E 上异于A 、B 的任意一点,直线AP 点M ,连接EM 、PB .值.DCAB DC A BM Q l EP←→DCA BB2014年福州市初中数学二检试卷参考答案及评分标准一、选择题1.A 2.B 3.C 4.D 5.C 6.D 7.A 8. B 9. B 10.C 二、填空题11 12.随机 131415三、解答题16.(1)解··················································· 6分 =2. ·························································· 7分(2)解:原式······································ 4分················································ 5分 式=-2+5=3. ································ 7分 17.(1)证明:∵∠1=∠2,·············································· 2分················································ 3分················································· 5分················································ 6分 ················································ 7分 (2)①画图正确2分, 4,3)0,3)……………4分;②如图,在Rt ,………………5分 …………………6分因此经过的路径长 ·································· 7分学生体育活动条形统计图18.(150;如图所示; …………………………………6分 (2)360;………………………8分 (3)列树状图如下:……10分由树状图可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种. …………………11分∴抽到一男一女的概率 ····································· 12分 解法二:列表如下:………10分由列表可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种.………………………………11分∴抽到一男一女的概率 ····································· 12分 19.解种衣服每件,依题意得: ··········· 1分················································· 3分··················································· 4分答:购进这种衣服每件需50元. ···························· 5分 (2)设一次函数解析式由图像可得: ·············· 6分解得···························· 7分∴利润 ························· 8分女男3男2男1女男2男1女男3男1女男3男2男3男2男1=2(75)625x --+. ·········································· 9分∵函数2(75)625x ω=--+的图像开口向下,对称轴为直线75x =, ∴当5070x ≤≤时,ω随x 的增大而增大, ························· 10分 ∴当70x =时,600ω=最大.答:当销售单价定为70元时,商店销售这种衣服的利润最大.…11分 20.解:(1)证明:连接OD . ········································· 1分 ∵PD 是O 的切线,∴OD ⊥PD .又∵BH ⊥PD ,∴90PDO PHB ∠=∠=︒,……2分∴OD ∥BH ,∴ODB DBH ∠=∠.……………………………3分 而OD OB =,∴ODB OBD ∠=∠,……………4分 ∴OBD DBH ∠=∠,∴BD 平分ABH ∠. ……………………………5分 (2)过点O 作OG BC ⊥,G 为垂足,则3BG CG ==, ··························································· 6分 在Rt △OBG 中,OG =22BG OB -=4. ∵90ODH DHG HGO ∠=∠=∠=︒, ∴四边形ODHG 是矩形. ················································· 7分 ∴5,OD GH == 4,DH OG == 8.BH = ································· 8分 在Rt △DBH 中,45BD =.·············································· 9分 (3)连接,AD AE ,则,AED ABD ∠=∠ 90ADB ∠=︒.在Rt △ADB 中,25AD =. ··············································· 10分 又∵E 是AB 的中点,即AE BE =,∴ADE EDB ∠=∠,∴△ADE ∽△FDB . ····················································· 11分 即DE ADDB FD=,∴40DE FD DB AD ⋅=⋅=. ································ 12分 21.解:(1)3CE t =-, ··············································· 1分553CQ t =-; ···························································· 3分(2)当CP CQ =时,得:553t -=t ,解得: t =158;………………………………4分 当QC QP =时(如图1), ∵QE CD ⊥,DC ABM QlE P图 1→←图1····························································· 5分····························································· 6分由勾股定理可得:············································· 7分整理得解得舍去)·········································· 8分 解法二:如图2,,过垂足,∵解得························································· 8分 C 、P 、Q 为顶点的三角形为等腰三角形.………9分···································· 10分 ∶3 . ···················································· 11分 得 ·················································· 12分解得:214t =. ························································· 13分 因此当214t =时,:1:3PCG CQG S S ∆∆=.22.解:(1)由抛物线2y ax bx c =++经过点A 、B 、C ,可得:30930c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得:143a b c =⎧⎪=-⎨⎪=⎩,····································· 3分 ∴抛物线的解析式为243y x x =-+. ·································· 4分(2)解:过点G 作GF x ⊥轴,垂足为F .设点G 坐标为(m ,243m m -+),∵点D (2,1-), ···························································· 5分 又∵B (3,0),C (0,3),∴由勾股定理得:CD =25,BD =2,BC =32,∵222CD BC BD =+,∴△CBD 是直角三角形,………………………6分 ∴1tan tan 3GAF BCD ∠=∠=. ∵1tan 3GF GAF AF ∠==, ∴ AF =3GF ……7分 即 23(43)1m m m --+=-, 解得:11m =(舍去),383m =. ····································· 8分 ∴点G 的坐标为(83,59-). ······································ 9分(3)∵点D 的坐标为(2,1-),∴△ABD 是等腰直角三角形,∴圆心E 是线段AB 的中点,即E (2,0),半径为1,………10分设P (1x ,1y )(1<1x <3,10y ≠),M (3,0y ),作PF x ⊥轴,F 为垂足. ∵点A 、P 、M 三点在一条直线上, ∴01121y y x =-,即10121y y x =-.……11分∵AB为直径,∴∠APB=90°,∴∠PBA =∠APF, ……………12分……………13分……………14分另解:同上,连∵PE=1,,在Rt△PEF中, 根据勾股定理得…………………………………………………12分,………………………………………………13分.……14分(没有加绝对值或没有分类讨论扣1分)。

相关文档
最新文档