速算24

合集下载

24点速算技巧

24点速算技巧

24点速算是一种数学计算方法,旨在帮助人们快速算出两个数的乘积。

它的基本原理是利用乘法的分配律和乘法的结合律,将两个数的乘积分解成若干个较小的数的乘积之和,然后快速进行计算。

下面是24点速算的一些基本技巧:
1. 先考虑两个数的十位数和个位数。

例如,要计算24 × 35,可以先考虑4 × 5=20,
然后将20放在最后两位。

2. 再考虑两个数的千位数和百位数。

例如,在计算24 × 35时,可以先考虑2 × 3=6,
然后将6放在最后四位的前面。

3. 最后考虑两个数的万位数和千位数。

例如,在计算24 × 35时,可以先考虑2 × 3=6,
然后将6放在最后六位的前面。

4. 最后将所有位数的积相加,得到最终的结果。

例如,在计算24 × 35时,可以得到
最终的结果为840。

希望这些技巧对您有帮助。

数学24点速算练习题

数学24点速算练习题

数学24点速算练习题1. 给定四个数字:3, 4, 6, 8,使用加、减、乘、除四种运算,计算出24点。

2. 请用1, 5, 5, 5这四个数字,通过数学运算得到24点。

3. 利用数字2, 3, 4, 6,通过加、减、乘、除的组合,求出24点。

4. 给定数字7, 7, 7, 1,通过数学运算得到结果24。

5. 使用数字9, 9, 2, 6,计算出24点。

6. 给定数字1, 2, 7, 7,通过加、减、乘、除的运算,求得24点。

7. 利用数字3, 3, 7, 7,通过数学运算得到24点。

8. 给定数字4, 4, 10, 10,计算出24点。

9. 使用数字5, 5, 5, 1,通过加、减、乘、除的组合,求出24点。

10. 给定数字6, 6, 2, 4,通过数学运算得到结果24。

11. 利用数字8, 8, 3, 3,通过加、减、乘、除的组合,求得24点。

12. 给定数字2, 5, 5, 10,通过数学运算得到24点。

13. 使用数字1, 3, 4, 6,计算出24点。

14. 给定数字7, 7, 2, 2,通过加、减、乘、除的运算,求得24点。

15. 利用数字9, 9, 1, 6,通过数学运算得到24点。

16. 给定数字3, 3, 8, 8,计算出24点。

17. 使用数字4, 4, 7, 7,通过加、减、乘、除的组合,求出24点。

18. 给定数字5, 5, 6, 6,通过数学运算得到结果24。

19. 利用数字1, 2, 8, 9,通过加、减、乘、除的运算,求得24点。

20. 给定数字6, 6, 1, 9,通过数学运算得到24点。

24点巧算速算方法和技巧心得

24点巧算速算方法和技巧心得

24点巧算速算方法和技巧心得计算24点,这个学习方法对于我们用四则运算有很大的帮助,下面是在计算过程中得到的心得:一、乘法解决(4×6=24、3×8=24、2*12=24)1.利用3×8=24、4×6=24 求解。

见6想4。

习题:2、1、7、6可用7-2-1=4,4乘6得24。

3、3、6、10 可组成(10—6÷3)×3=24 等见8想3习题:5、9、7、8、可用5+7-9=3,3乘8得24。

2、3、3、7 可组成(7+3—2)×3=24实践证明,这种方法是利用率最大、命中率最高的一种方法。

2.利用2×7=14、14+10=24 求解。

见7想2习题:10、5、10、7可用10除以5的商乘7再+10得243.利用3×9=27、27-3=24 求解。

从1到9机会多如8、3、1、3可用8+1的和乘3减3可得24。

4.利用5×6=30、30-6=24 求解。

见6多想18和30如1、6、4、6可用4+1的和乘6减6得24或4-1的差乘6再+6。

5.利用5×5=25、25-7+6=24 求解。

见5想5。

如5、5、6、7可用5乘5减7 + 6得24。

二、利用加减法解决:(25-1=24、27-3=24、28-4=24、30-6=24)最有趣的是两组相同的数字,如3、3、4、4。

可以3乘4得12后两组数字相加得24。

10、10、4、4,难度就要大一点了。

先10乘10的积减4的差除以4得24。

三张10,只有碰到6时才得24。

三张8,在碰到7、8、9时是得不到24点的。

三张9和三张7时只有碰到3才能得24。

三张6碰到5、7是不能算到24点的。

三张5只有碰到4、5、6才能得24。

三张4和3是什么数都可以的。

最有意思的是碰到10也可以算。

三张2只有碰到1、2、6、9是不能算24的。

三张1只有碰到8才能算到24。

速算24点的技巧

速算24点的技巧

速算24点的技巧巧算24点”是一种数学游戏,游戏方式简单易学,能健脑益智,是一项极为有益的活动.巧算24点”的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1〜10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24 •每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)X8X3 或3X8+(9—8)或(9—8吒)X3 等.算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题.计算时,我们不可能把牌面上的4个数的不同组合形式一一去试,更不能瞎碰乱凑.这里向大家介绍几种常用的、便于学习掌握的方法:1.利用3X8 = 24、4X6 = 24 求解.把牌面上的四个数想办法凑成3和8、4和6,再相乘求解.如3、3、6、10可组成(10 —6七)X3 = 24等.又如2、3、3、7可组成(7 + 3—2)X3 = 24等.实践证明,这种方法是利用率最大、命中率最高的一种方法.2 .利用0、11的运算特性求解.如3、4、4、8 可组成3X3 + 4—4= 24 等.又如4、5、J、K 可组成11X(5—4)+ 13 = 24 等.3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数)①(a—b) X (c + d)如(10—4) X (2 + 2 )= 24 等.S a + b)充X d如(10 + 2)吃X4 = 24 等.3( a — bp) X d如(3—2 吃)X12 = 24 等.a +b —c) X d如(9 + 5—2) X2 = 24 等.⑤ axb + c—d如11X3 + —10 = 24 等.®( a —b) >C+ d如(4—l)>6 + 6 = 24 等.需要说明的是:经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820 种不同组合,其中有458个牌组算不出24点,如A、A、A、5.【课堂特训】4 5 8 9 5 7 8 10 2 4 8 9 4 4 6 9 (9-5) X 4+8 (5+7) X (10-8) (9-2-4) X 8 (4+4) X (9-6) 13 5 7 1 3 7 10 5 7 8 9 3 6 7 8 (3-1) X (5+7) (3-1) X 7+10 (5+7-9) X 8 3X 8X (7-6)3 3 6 6 3 8 9 10 7 3 6 1 9 7 8 5 (6 - 3+6) X 3 (3X 8)X (10-9) (7-3) X 6X 1 (5+7-9) X 82 3 4 9 1 7 10 6 5 6 7 9 3 4 5 6 2X (4X 9-3) (7-1) X (10-6) (7-5) X 9+6 6X (3+5-4)3 4 8 9 10 6 7 4 8 5 3 8 3 5 3 93+4+8+9 7X 4-(10-6) 8+(5-3) X 8 (3+3) X (9-5) 4 7 9 8 3 5 7 9 2 2 6 7 4 7 8 94X 7X (9-8) 3+5+7+9 (6+7) X 2-2 4X 7X (9-8)1 3 4 10 3 3 8 9 8 4 7 1 32 5 5(3-1) X 10+4 (9-3-3) X 8 (8-4) X (7-1) (3+5) X (5-2)。

速算24点的小窍门

速算24点的小窍门

速算24点的小窍门
解题思路:利用3×8=24、4×6=24、12×2=24求解。

把牌面上的四个数想办法凑成3和8、4和6,再相乘求解,如3、3、6、10可组成(10-6÷3)×3=24等,又如2、3、3、7可组成(7+3-2)
×3=24等,这种方法是利用率最大、命中率最高的一种方法。

例题:1555算24点。

解释分析:在该公式中,出现的数字为题目中要求的“1、5、5、6”,先算括号里的(5-1÷5)会得到4.8,乘以5后就会获得24。

扩展资料:
24点具体玩法:
24点具体的玩法是:拿一副牌,抽去大小王后(初练也可以把
J/Q/K/大小王也拿走),剩下1~10这40张牌,用1代替A。

任意抽取4张牌,用加、减、乘、除把牌面上的数算成24。

每张牌
必须用且只能用一次。

如抽出的牌是3、8、8、9,那么算式为(9-
8)×8×3=24。

速算24点的技巧

速算24点的技巧

速算24点的技巧“巧算24点”是一种数学游戏,游戏方式简单易学,能健脑益智,是一项极为有益的活动.“巧算24点”的游戏内容如下:一副牌中抽去大小王剩下52张,(假如初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24.每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等.“算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题.计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑.这里向大家介绍几种常用的、便于学习掌握的方法:1.利用3×8=24、4×6=24求解.把牌面上的四个数想办法凑成3和8、4和6,再相乘求解.如3、3、6、10可组成(10—6÷3)×3=24等.又如2、3、3、7可组成(7+3—2)×3=24等.实践证明,这种方法是利用率最大、命中率最高的一种方法.2.利用0、11的运算特性求解.如3、4、4、8可组成3×8+4—4=24等.又如4、5、J、K可组成11×(5—4)+13=24等.3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数)①(a—b)×(c+d)如(10—4)×(2+2)=24等.②(a+b)÷c×d如(10+2)÷2×4=24等.③(a-b÷c)×d如(3—2÷2)×12=24等.④(a+b-c)×d如(9+5—2)×2=24等.⑤a×b+c—d如11×3+l—10=24等.⑥(a-b)×c+d如(4—l)×6+6=24等.游戏时,同学们不妨按照上述方法试一试.需要说明的是:经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,如A、A、A、5.不难看出,“巧算24点”能极大限度地调动眼、脑、手、口、耳多种感官的协调活动,对于培养我们快捷的心算水平和反应水平很有协助.。

二十四点速算技巧

二十四点速算技巧

二十四点速算技巧算24点题目的技巧公式为:3×8=24,4×6=24,把牌面上的四个数想办法凑成3和8、4和6,再相乘求解,如3、3、6、10可组成(10-6÷3)×3=24等,又如2、3、3、7可组成(7+3-2)×3=24等。

巧算24点,是一种数学游戏,游戏方式简单易学,能健脑益智,是一项极为有益的活动,游戏规则是给定四个自然数,通过加减乘除的方式,可以交换数的位置,可以随意的添加括号,但每个数只能用一次,最后得到24。

二十四点是一种益智游戏,它能在游戏中锻炼人们的心算,它往往要求人们将四个或者五个数字进行加减乘除四则混合运算(允许使用括号)求得二十四。

算法求得二十四。

利用计算程序来完成这个计算二十四点的程序方法如下:首先穷举的可行性问题。

把表达式如下分成三类——1、无括号的简单表达式。

2、有一个括号的简单表达式。

3、有两个括号的较复杂表达式。

在栈中,元素的插入称为压入(push)或入栈,元素的删除称为弹出(pop)或退栈。

栈的基本运算有三种,其中包括入栈运算、退栈运算以及读栈顶元素,这些请参考相关数据结构资料。

根据这些基本运算就可以用数组模拟出栈来。

那么作为栈的著名应用,表达式的计算可以有两种方法。

第一种方法:首先建立两个栈,操作数栈OVS和运算符栈OPS。

其中,操作数栈用来记忆表达式中的操作数,其栈顶指针为topv,初始时为空,即topv=0;运算符栈用来记忆表达式中的运算符,其栈顶指针为topp,初始时,栈中只有一个表达式结束符,即topp=1,且OPS(1)=‘;’。

此处的‘;’即表达式结束符。

然后自左至右的扫描待处理的表达式,并假设当前扫描到的符号为W,根据不同的符号W做如下不同的处理:1、若W为操作数2、则将W压入操作数栈OVS3、且继续扫描下一个字符4、若W为运算符5、则根据运算符的性质做相应的处理:6、若运算符为左括号或者运算符的优先级大于运算符栈栈顶的运算符(即OPS(top)),则将运算符W压入运算符栈OPS,并继续扫描下一个字符。

24点速算比赛作文600字

24点速算比赛作文600字

24点速算比赛作文600字24点速算比赛作文作为一名高中生,我参加过许多比赛和竞赛,但最近参加的“24点速算比赛”给我留下了深刻的印象。

这场比赛虽然说是数学类的竞赛,但是背后体现出来的,是更深层次的思维能力和解决能力。

在比赛现场,我们每位参赛者都拿到了一副纸牌,纸牌上有4张数字卡牌,例如2,4,6,8等等。

比赛的规则很简单,我们需要在五分钟的时间内通过相加、相减、相乘、相除等运算,将这四张卡牌变成24。

这看似十分简单,但却不容易。

前几分钟,我们每个人都在全力纳闷,思维飞速地运转,为的就是让这个看似简单的运算式能够答案正确的出现在我们纸牌的背面。

时间的流逝,大家分别运用各自的方法,有的人花费较多时间,有的人则独具匠心,快速得到答案。

伴随着比赛的进行,最后赢家的不断出现,当教练宣布比赛结束以后,我仔细回想之前的那五分钟,发现这场比赛利用的不仅是思维方式,还有内心的坚定和不懈的努力。

这场比赛,让我体验到思维的飞跃,发现了数学的创新点。

数学是一门神奇的学问,它不单单是为了计算,也包含了数理逻辑,严整性和精确度。

数学教学也不单纯只是灌输知识,更包含启发和鼓励学生的思考,激发他们的潜能。

在这次比赛中,我收获了深刻的体验和收获。

首先,这些题目丰富了我的思维方式,让我知道了数学计算可以有很多种途径,而不仅是本脚木马论“数”.他还开创了新的算路。

“二十四点”这道题目,同样的数字公式,每个人的出题方式、计算方式都不一样。

这让我认识到,每一个人的思维方式是独立的,学习也需要自主思考,摒除唯一的模式。

其次,这个比赛教育我们,如何在极短时间内做出正确的决策。

每张牌都给我们带来了一些不可思议的想象空间。

我们学会运用心算来应对两倍增加、减少和除去数量等等非常有趣的暗示,有些人想出了大量的富有创意的计算系列,有些人利用更为先进的方法来轻松地获取最终答案。

在这个过程中,我们不断地加深对数学思维的理解,也在思想层级上得到了一些提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 应用技术学院 课 程 设 计 报 告 课程名称 C语言课程设计 课题名称 速算24 专 业 电气工程及其自动化 班 级 0783 学 号 200713010311 姓 名 吴汀槐 指导教师 王颖

2008年3月21日 2

湖南工程学院 课 程 设 计 任 务 书

课程名称 C语言课程设计 课 题 运动会分数统计系统

专业班级 电气工程及其自动化 学生姓名 吴汀槐 学 号 200713010311 指导老师 王 颖 审 批

任务书下达日期:2008 年3月16日 任务完成日期:2008年3月20日 3

目录 正文 ..................................................... 4 一、课题的主要功能 .................................... 4 二、课题的设计目的 .................................... 4 三、课题的功能模块的划分: ............................. 4 四、主要功能的实现 .................................... 7 五、调试分析过程描述: ............................... 14 附件 ................................................. 16 /* 源程序*/ .......................................... 16 总结 ................................................. 29 参考文献 ............................................. 30 应用技术学院课程设计评分表 .............................. 31 4

正文 一、课题的主要功能 速算24扑克牌是一种扑克牌智力数学游戏,游戏方式简单易学,能健脑益智,是一项极为有益的活动。不难看出,能极大限度地调动眼、脑、手、口、耳多种感官的协调活动,对于培养我们快捷的心算能力和反应能力很有帮助。 速算24扑克牌游戏的规则是由系统发出4张牌,用户利用扑克牌的数字及运算符号“+”、“-”、“*”、“/”及括号“(”和“)”组成一个计算表达式,从键盘输入该计算表达式,系统运行后得出计算结果,如果结果等于24,则显示“very good ”,“wrong!!!”,接着询问是否继续,按字符n后程序结束,够则系统重复上述步骤。 本程序所使用的方法是从键盘输入中缀表达式,然后将中缀表达式转换为后缀表达式.利用后缀表达式求值。

二、课题的设计目的 通过本程序可以掌握C程序的字符串处理、数学运算,又可以掌握堆栈的概念。堆战的运算以及栈的应用——算术表达式的编译方法。

三、课题的功能模块的划分: (1)main()主函数 主函数是程序的入口,采用模块化设计,主函数不宜复杂,功能尽量在各模块中实现。 (2) init()图象初始化

使用到图形系统编程,应首先调用初始化函数来初始话图形系统。 5

(3) play()和randl()发牌函数 发牌函数先用函数画出牌的背景区域,然后调用函数画矩形作为牌的边框线,调用函数,生成两个随机数,根据这两个数取扑克牌数组中的元素,一旦牌取过后,将数组元素置为-1,以后不能在取,根据花色和大小将其按照字符形式显示到屏幕上。

(4) change()转换函数 将中缀表达式转换为等价的后缀表达式。 1)置初值 2)从左到右扫描中缀表达式,逐步转换成等价的后缀表达式 3)结束处理 (5)computer() 计算函数 计算后缀表达式的值,使用栈扫描表达式,然后将计算结果压入堆栈,直到表达式最后一个运算符号处理完毕,送入栈顶的值才是后缀表达式的值。 (6)堆栈运算 1)栈的初始话initstack(),将栈顶指针置为空,返回栈顶指针 6

2)入栈运算push(),栈1的类型为整型,栈2为字符型 3)出栈运算pop(),进行指针变动 4)读栈顶元素topx(),栈保持不变 5)ptop()取出栈顶元素,然后删除 6)判断栈是否为空empty()

(7) text()文本输出函数 在图形方式下显示字符串,由调用函数传递,实际再主函数中调用两次,一次是当结果等于 24时显示“very good”,用text(“very good”),一次是结果不等于24时,显示“wrong!!!”信息,用text(“wrong!!!”)。 ⑻图形关闭close() 调用图形关闭函数,关闭图形系统。 7

四、主要功能的实现: ⑴ main()主函数 主函数是程序的入口,采用模块化设计,主函数不宜复杂,功能尽量在各模块中实现。先调用发牌函数,随机生成四张牌,并显示提示输入计算中缀表达式信息,然后调用转换函数,将返回的表达式字符串作为参数调用计算函数,计算结果,然后对结果进行处理,显示结果后按任意键,询问是否继续,如果输入字符则结束程序,否则重新发牌运算.其程序流程图如下:

结束 发四张牌 调用change函数将中缀变 后缀表达s

输入表达式字符串sl

调用compute函数计算表达 式的值返回结果result

Result==24 调用text输出“wrong!!!”

真 假

是否继续 假

开始 调用text输出“very 8

(2)、 change()转换函数

为了将中缀表达式转换成等价的后缀表达式,需要从左到右扫描中缀表达式,并使用栈2来存放表达式中的开括号“(”和暂时不能确定计算次序的运算符号。中缀表达式是字符串e,后缀表达式是字符串a,由于按字符串格式读入字符串,实际是最后一个字符’\0’结尾符号的字符数组,这样处理是按照字符数组的处理方法,根据数组元素的下标访问数组元素,w为临时变量,具体算法如下: (1)置初值 i=0;j=0;分别表示中缀和后缀表达式字符串的下标。 (2)从左向右扫描中缀表达式,逐步转换成等价的后缀表达式。 循环,当时反复执行下列语句: 分以下情况执行: ①当e[i]为数字’0’,’1’„’9’时,执行: I.当e[i]!=’.’时,反复执行 a[j]=e[i]; /*将数字原样拷贝到数组a中*/ j++; /*e数组的下标加1*/ j++; /* a数组的下标加1*/ II a[j]=’.’; j++; ②当e[i]==’(’时,执行: 将e[i]压入堆栈 ③当e[i]==’)’时,执行: I取出栈顶元素存入w II循环当w!=’(’时反复执行: a[j]=w; /*将栈顶元素w存入a数组*/ j++; /*下标加1*/ 取出栈顶存入w元素,并从栈顶删除该元素 ④当e[i]==’+’或e[i]==’-’时,执行: I如栈不为空,则: 读栈顶元素存入w 循环当w!=’(’时反复执行; 9

a[j]=w;j++; /*将栈顶元素存入表达式a中,a的下标加1*/ 删除栈顶元素 如果栈为空,则跳出循环,否则读栈顶元素。 II将当前e字符元素压入堆栈 ⑤当e[i]==’*’ 或e[i]==’/’ 是乘或除号时 I.如栈不为空,则: 读栈顶元素存入w 循环当w==’*’或w==’/’时反复执行; a[j]=w; j++; /*将栈顶元素存入字符串a中,a的下标加1*/ 删除栈顶元素 如果栈为空则跳出循环,否则读栈顶元素 II当前e字符元素压入堆栈 2)i++;/*e的下标加1*/ (3) 结束程序. 1) 当栈不为空时反复执行下列语句: 将栈顶元素存入数组a中 j++; 2) a[j]=’\0’;将字符串结束标志写入后缀表达式最后一个数组元素中,构成字符串 10

假 真

真 假 真 假 假 真 假 真

真 假

假 真 真 假 假 真

假 真

开始 i=0;j=0

e[i]!=‘/0’ e[i]等于‘+’或‘-’ e[i]!==‘)’ e[i]!==‘(’

s[i]为数

字0~9 e[i]为‘*’或‘/’

e[i]!入栈 w=栈顶元素 栈是否为空 栈是否为空

w!=‘(’ w!=‘*’或

w=栈顶元素 w=栈顶元素

a[j]!=w;j++;出栈 a[j]!=w;j++;出栈

栈是否为空 栈是否为空

w=读栈顶元素 w=读栈顶元素

e[i]入栈 e[i]入栈

w!=‘(’ a[j]!=w;j++ w=读栈顶元素

w!=‘(’ a[j]=e[i] i++;j++

a[j]!=‘.’;j++

w!=‘(’ a[j]=读栈顶元素;j++ 返回结果后缀表达式

i++

相关文档
最新文档