2019-2020年人教版高中数学第一章1.3-1.3.2函数的极值与导数

合集下载

2019-2020学年高中数学选修2-2人教A版课件:第1章 导数及其应用 1.3 1.3.2

2019-2020学年高中数学选修2-2人教A版课件:第1章 导数及其应用 1.3 1.3.2
由 y=b 与 y=f(x)的图象有 3 个交点可知 32ln 2-21<b< 16ln 2-9.
[名 师 点 拨] 研究方程的根的问题,可以转化为研究相应函数的图象问 题,即方程 f(x)=0 的根即为函数 f(x)的图象与 x 轴交点的横坐 标,方程 f(x)=g(x)的根即为函数 f(x)与 g(x)的图象的交点的横坐 标,这类问题经常利用导数先判断函数的单调性,再研究极值, 从而确定函数的大致图象,再根据图象判定.
3.(2019·平顶山期末调研)函数 f(x)=x3+bx2+cx+d 的图象 如图所示,则 x21+x22等于( )
2 A.3
B.43
8 C.3
16 D. 3
解析:由图象可得 f(x)=0 的根为 0,1,2,故 d=0,f(x)=x(x2 +bx+c),则 1,2 为 x2+bx+c=0 的根,由根与系数的关系得 b =-3,c=2,故 f(x)=x3-3x2+2x,则 f′(x)=3x2-6x+2,由题 图可得 x1,x2 为 3x2-6x+2=0 的根,则 x1+x2=2,x1x2=23, 故 x21+x22=(x1+x2)2-2x1x2=83.故选 C.
x,f′(x),f(x)取值情况如下表:
x (-1,1) 1 (1,3) 3 (3,+∞)
f′(x) +
0

0

f(x)
极大值
极小值
∴f(x)极大值=f(1)=16ln 2-9, f(x)极小值=f(3)=32ln 2-21.
(2)由(1)知 f(x)在(-1,1)上单调递增,在(1,3)上单调递减,在 (3,+∞)上单调递增.
当 x 变化时,f′(x),f(x)的变化情况如下表:
x (-∞,-2) -2 (-2,2) 2 (2,+∞)

高中数学第一章导数及其应用1.3.2函数的极值与导数课件新人教A版选修2_2

高中数学第一章导数及其应用1.3.2函数的极值与导数课件新人教A版选修2_2
典例 4 已知函数 f(x)=x3-3ax-1,a≠0. (1)求 f(x)的单调区间; (2)若 f(x)在 x=-1 处取得极大值,直线 y=m 与 y=f(x)的图象有三个不同的 交点,求 m 的取值范围.
[解析] (1)f ′(x)=3x2-3a=3(x2-a), 当 a<0 时,对 x∈R,有 f ′(x)>0, ∴当 a<0 时,f(x)的单调增区间为(-∞,+∞). 当 a>0 时,由 f ′(x)>0 解得 x<- a或 x> a; 由 f ′(x)<0 解得- a<x< a, ∴当 a>0 时,f(x)的单调增区间为(-∞,- a),( a,+∞);f(x)的单调减区 间为(- a, a).
• A.(-∞,-1)D
B.(0,+∞)
• C.(0,1) D.(-1,0)
(2)(2017·湖北重点中学期中联考)设 a∈R,若函数 y=ex+ax,x∈R,有大于
零的极值点,则( C )
A.a<-1e
B.a>-1
C.a<-1
D.a>-1e
[解析] (1)若 a<-1,∵f ′(x)=a(x+1)(x-a), ∴f(x)在(-∞,a)上单调递减,在(a,-1)上单调递增,∴f(x)在 x=a 处取得 极小值,与题意不符; 若-1<a<0,则 f(x)在(-1,a)上单调递增,在(a,+∞)上单调递减,从而在 x=a 处取得极大值. 若 a>0,则 f(x)在(-1,a)上单调递减,在(a,+∞)上单调递增,与题意矛盾, ∴选 D. (2)y′=ex+a,由题意知 a<0. ∵函数有大于零的极值点,x=x0 为其极值点, ∴ex0+a=0,x0>0,∴a<-1,故选 C.

2020学年高中数学第1章导数及其应用1.3导数在研究函数中的应用1.3.2函数的极值与导数课件新人教A版选修2_2

2020学年高中数学第1章导数及其应用1.3导数在研究函数中的应用1.3.2函数的极值与导数课件新人教A版选修2_2
(1)不要忽略函数的定义域; (2)要正确地列出表格,不要遗漏区间和分界点.
变式训练
1.求下列函数的极值: (1)f(x)=x2e-x; (2)f(x)=sin x(1+cos x)(0<x<2π).
解析 (1)函数的ห้องสมุดไป่ตู้义域为 R.
f′(x)=2xe-x+x2·e-x(-x)′
=2xe-x-x2e-x=x(2-x)e-x.
【问题2】 问题1中a,b,c,d,e,f,g,h哪些是 极小值点,哪些是极大值点?
答案 极小值点有a,c,e,g;极大值点有b,d, f,h.
【问题3】 结合问题1、2思考:函数的极大值一定 大于极小值吗?在同一区间内极值点唯一吗?
答案 函数的极大值与极小值并无确定的大小关 系,一个函数的极大值未必大于极小值,例如图(2)中f(c) 为极小值,f(f)为极大值,但f(c)>f(f);在区间内可导函数 的极大值或极小值可以不止一个.

0

0

y

极大值 ↘
极小值

由上表可以看出,当 x=-1 时,函数 y=f(x)有极大
值 f(-1)=10;
当 x=3 时,函数 y=f(x)有极小值 f(3)=-22.
●规律方法
求可导函数f(x)极值的步骤 (1)求函数的导数f′(x); (2)令f′(x)=0,求出全部的根x0; (3)列表,方程的根x0将整个定义域分成若干个区间, 把x,f′(x),f(x)在每个区间内的变化情况列在这个表格 内; (4)判断得结论,若导数在x0附近左正右负,则在x0处 取得极大值;若左负右正,则取得极小值. [注意事项]
f′(x)

0

0

高中数学 第一章《1.3.2函数的极值与导数(2课时)》教案 新人教A版选修2-2

高中数学 第一章《1.3.2函数的极值与导数(2课时)》教案 新人教A版选修2-2

§1.3.2函数的极值与导数(2课时)教学目标:1.理解极大值、极小值的概念;2.能够运用判别极大值、极小值的方法来求函数的极值;3.掌握求可导函数的极值的步骤;教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤.教学过程:一.创设情景观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数()h t 在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律?放大t a =附近函数()h t 的图像,如图3.3-9.可以看出()h a ';在t a =,当t a <时,函数()h t 单调递增,()0h t '>;当t a >时,函数()h t 单调递减, ()0h t '<;这就说明,在t a =附近,函数值先增(t a <,()0h t '>)后减(t a >,()0h t '<).这样,当t 在a 的附近从小到大经过a 时,()h t '先正后负,且()h t '连续变化,于是有()0h a '=.对于一般的函数()y f x =,是否也有这样的性质呢?附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号二.新课讲授2.函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如图 3.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数()f x 在0x 附近单调递增;在1x x =处,'0()0f x <,切线是“左上右下”式的,这时,函数()f x 在1x 附近单调递减. 结论:函数的单调性与导数的关系在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增;如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数.3.求解函数()y f x =单调区间的步骤:(1)确定函数()y f x =的定义域;(2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间;(4)解不等式'()0f x <,解集在定义域内的部分为减区间.三.典例分析例1.(课本例4)求()31443f x x x =-+的极值 解: 因为()31443f x x x =-+,所以 ()'24(2)(2)f x x x x =-=-+。

2019-2020年高中数学 1.3.2 函数的极值与导数导学案 新人教A版选修2-2

2019-2020年高中数学 1.3.2  函数的极值与导数导学案 新人教A版选修2-2

2019-2020年高中数学 1.3.2 函数的极值与导数导学案 新人教A 版选修2-2学习目标:1、了解极大(小)值的概念;2、结合图象,了解函数在某点取得极值的充要条件;3、能利用导数求不超过三次的多项式函数的极大值、极小值。

一、主要知识:1、极小值: 。

2、极大值: 。

3、判别是极大、极小值的方法:解方程,当时:(1)如果在附近的左侧 ,右侧 ,那么是极大值,是极大值点;(2)如果在附近的左侧 ,右侧 ,那么是极小值,是极小值点。

二、典例分析:〖例1〗:(1)求函数的极值;(2)求函数的极值。

〖例2〗:设函数()2132x f x x e ax bx -=⋅++,已知和为的极值点。

(1)求的值;(2)讨论的单调性。

〖例3〗:设函数。

(1)对于,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围。

三、课后作业:1、若可导,则在点处的导数是在该点处取得极值的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件2、函数有( )A 、极大值,极小值B 、极大值,极小值C 、极大值,极小值D 、极大值,极小值3、函数在时有( )A 、极小值B 、极大值C 、既有极大值又有极小值D 、无极值4、函数的极大值为( )A 、B 、C 、D 、5、若函数在处有极小值,则( )A 、B 、C 、D 、6、已知()()3261f x x ax a x =++++有极大值和极小值,则的取值范围为( )A 、B 、C 、D 、7、函数()3226187f x x x x =--+的极大值为 ;极小值为 。

8、若函数()()3230f x x a x a a =-+>的极大值为正数,极小值为负数,则的取值范围是 。

9、若函数在处取得极值,则 。

10、已知函数()()32210f x x mx m x m =+-+>有极大值,则 。

11、已知函数()32143cos 0322f x x x πθθ⎛⎫=-+≤≤ ⎪⎝⎭。

2019版高中数学 第一章 1.3.2 函数的极值与导数(一)学案 新人教A版选修2-2

2019版高中数学 第一章   1.3.2 函数的极值与导数(一)学案 新人教A版选修2-2

1.3.2 函数的极值与导数(一)学习目标 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.知识点一函数的极值点和极值思考观察函数y=f(x)的图象,指出其极大值点和极小值点及极值.答案极大值点为e,g,i,极大值为f(e),f(g),f(i);极小值点为d,f,h,极小值为f(d),f(f),f(h).梳理(1)极小值点与极小值若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,就把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)极大值点与极大值若函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,就把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极大值点、极小值点统称为极值点;极大值、极小值统称为极值.知识点二函数极值的求法与步骤(1)求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时,①如果在x0附近的左侧函数单调递增,即f′(x)>0,在x0的右侧函数单调递减,即f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧函数单调递减,即f′(x)<0,在x0的右侧函数单调递增,即f′(x)>0,那么f(x0)是极小值.(2)求可导函数f(x)的极值的步骤①确定函数的定义区间,求导数f′(x);②求方程f′(x)=0的根;③列表;④利用f′(x)与f(x)随x的变化情况表,根据极值点左右两侧单调性的变化情况求极值.1.导数为0的点一定是极值点.( ×)2.函数的极大值一定大于极小值.( ×)3.函数y=f(x)一定有极大值和极小值.( ×)4.极值点处的导数一定为0.( × )类型一 求函数的极值点和极值 命题角度1 不含参数的函数求极值 例1 求下列函数的极值. (1)f (x )=2x x 2+1-2;(2)f (x )=ln xx. 考点 函数在某点处取得极值的条件 题点 不含参数的函数求极值问题 解 (1)函数f (x )的定义域为R . f ′(x )=2(x 2+1)-4x 2(x 2+1)2=-2(x -1)(x +1)(x 2+1)2. 令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可以看出,当x =-1时,函数有极小值,且极小值为f (-1)=-3; 当x =1时,函数有极大值,且极大值为f (1)=-1. (2)函数f (x )=ln xx的定义域为(0,+∞),且f ′(x )=1-ln x x2. 令f ′(x )=0,解得x =e.当x 变化时,f ′(x )与f (x )的变化情况如下表:↗因此,x =e 是函数的极大值点,极大值为f (e)=1e,没有极小值.反思与感悟 函数极值和极值点的求解步骤 (1)确定函数的定义域. (2)求方程f ′(x )=0的根.(3)用方程f ′(x )=0的根顺次将函数的定义域分成若干个小开区间,并列成表格. (4)由f ′(x )在方程f ′(x )=0的根左右的符号,来判断f (x )在这个根处取极值的情况. 特别提醒:当实数根较多时,要充分利用表格,使极值点的确定一目了然. 跟踪训练1 求下列函数的极值点和极值. (1)f (x )=13x 3-x 2-3x +3;(2)f (x )=x 2e -x.考点 函数在某点处取得极值的条件 题点 不含参数的函数求极值问题 解 (1)f ′(x )=x 2-2x -3. 令f ′(x )=0,得x 1=-1,x 2=3,当x 变化时,f ′(x ),f (x )的变化情况如下表:↘由上表可以看出,当x =-1时,函数有极大值,且极大值f (-1)=143,当x =3时,函数有极小值,且极小值f (3)=-6.(2)函数f (x )的定义域为R .f ′(x )=2x e -x -x 2e -x =x (2-x )e -x .令f ′(x )=0,得x =0或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:当x =2时,函数有极大值,且极大值为f (2)=4e -2. 命题角度2 含参数的函数求极值例2 已知函数f (x )=(x 2+ax -2a 2+3a )e x(x ∈R ),当实数a ≠23时,求函数f (x )的单调区间与极值.考点 函数在某点处取得极值的条件 题点 含参数求极值问题解 f ′(x )=[x 2+(a +2)x -2a 2+4a ]e x. 令f ′(x )=0,解得x =-2a 或x =a -2, 由a ≠23知-2a ≠a -2.分以下两种情况讨论: ①若a >23,则-2a <a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在(-∞,-2a ),(a -2,+∞)上是增函数,在(-2a ,a -2)上是减函数,函数f (x )在x =-2a 处取得极大值f (-2a ),且f (-2a )=3a e -2a,函数f (x )在x =a -2处取得极小值f (a -2),且f (a -2)=(4-3a )ea -2.②若a <23,则-2a >a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在(-∞,a -2),(-2a ,+∞)上是增函数,在(a -2,-2a )上是减函数,函数f (x )在x =a -2处取得极大值f (a -2),且f (a -2)=(4-3a )ea -2,函数f (x )在x =-2a 处取得极小值f (-2a ),且f (-2a )=3a e-2a.反思与感悟 讨论参数应从f ′(x )=0的两根x 1,x 2相等与否入手进行. 跟踪训练2 已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.考点 函数在某点处取得极值的条件 题点 含参数求极值问题解 函数f (x )的定义域为(0,+∞),f ′(x )=1-a x. (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0),因而f (1)=1,f ′(1)=-1.所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax,x >0,知①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a . 又当x ∈(0,a )时,f ′(x )<0, 当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值. 类型二 利用函数的极值求参数例3 (1)已知函数f (x )的导数f ′(x )=a (x +1)(x -a ),若f (x )在x =a 处取到极大值,则a 的取值范围是( ) A .(-∞,-1) B .(0,+∞) C .(0,1)D .(-1,0)(2)已知函数f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a =________,b =________. 考点 利用导数研究函数的极值 题点 已知极值点求参数 答案 (1)D (2)2 9解析 (1)若a <-1,因为f ′(x )=a (x +1)(x -a ), 所以f (x )在(-∞,a )上单调递减,在(a ,-1)上单调递增, 所以f (x )在x =a 处取得极小值,与题意不符;若-1<a <0,则f (x )在(-1,a )上单调递增,在(a ,+∞)上单调递减,从而在x =a 处取得极大值. 若a >0,则f (x )在(-1,a )上单调递减,在(a ,+∞)上单调递增,与题意不符,故选D. (2)因为f (x )在x =-1时有极值0,且f ′(x )=3x 2+6ax +b ,所以⎩⎪⎨⎪⎧f ′(-1)=0,f (-1)=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0, 所以f (x )在R 上为增函数,无极值,故舍去.当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-3,-1)时,f (x )为减函数, 当x ∈(-1,+∞)时,f (x )为增函数,所以f (x )在x =-1处取得极小值,因此a =2,b =9. 反思与感悟 已知函数的极值求参数时应注意两点(1)待定系数法:常根据极值点处导数为0和极值两个条件列出方程组,用待定系数法求解.(2)验证:因为导数值为0不一定此点就是极值点,故利用上述方程组解出的解必须验证. 跟踪训练3 设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点. (1)试确定常数a 和b 的值;(2)判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由. 考点 利用导数研究函数的极值 题点 已知极值点求参数 解 (1)∵f (x )=a ln x +bx 2+x , ∴f ′(x )=ax+2bx +1,∴f ′(1)=f ′(2)=0,∴a +2b +1=0且a2+4b +1=0,解得a =-23,b =-16.(2)由(1)可知f (x )=-23ln x -16x 2+x ,且定义域是(0,+∞),f ′(x )=-23x -1-13x +1=-(x -1)(x -2)3x.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,2)时,f ′(x )>0; 当x ∈(2,+∞)时,f ′(x )<0.故x =1是函数f (x )的极小值点,x =2是函数f (x )的极大值点.1.函数f (x )的定义域为R ,它的导函数y =f ′(x )的部分图象如图所示,则下面结论错误的是( )A .在(1,2)上函数f (x )为增函数B .在(3,4)上函数f (x )为减函数C .在(1,3)上函数f (x )有极大值D .x =3是函数f (x )在区间[1,5]上的极小值点 考点 函数极值的综合应用 题点 函数极值在函数图象上的应用 答案 D解析 根据导函数图象知,x ∈(1,2)时,f ′(x )>0,x ∈(2,4)时,f ′(x )<0,x ∈(4,5)时,f ′(x )>0.∴f (x )在(1,2),(4,5)上为增函数,在(2,4)上为减函数,x =2是f (x )在[1,5]上的极大值点,x =4是极小值点.故选D. 2.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 考点 函数在某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 D解析 函数f (x )=2x+ln x 的定义域为(0,+∞).f ′(x )=1x -2x2,令f ′(x )=0,即1x -2x2=0得,x =2,当x ∈(0,2)时,f ′(x )<0,当x ∈(2,+∞)时,f ′(x )>0. 因为x =2为f (x )的极小值点,故选D.3.函数f (x )=ax -1-ln x (a ≤0)在定义域内的极值点的个数为________. 考点 函数在某点处取得极值的条件 题点 判断极值点的个数 答案 0解析 因为x >0,f ′(x )=a -1x =ax -1x,所以当a ≤0时,f ′(x )<0在(0,+∞)上恒成立, 所以函数f (x )在(0,+∞)上单调递减, 所以f (x )在(0,+∞)上没有极值点.4.已知曲线f (x )=x 3+ax 2+bx +1在点(1,f (1))处的切线斜率为3,且x =23是y =f (x )的极值点,则a +b =________.考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 -2解析 f ′(x )=3x 2+2ax +b ,由题意知⎩⎪⎨⎪⎧f ′(1)=3,f ′⎝ ⎛⎭⎪⎫23=0,即⎩⎪⎨⎪⎧3+2a +b =3,43+43a +b =0,解得⎩⎪⎨⎪⎧a =2,b =-4,则a +b =-2.5.已知函数f (x )=ax 2+b ln x 在x =1处有极值12.(1)求a ,b 的值;(2)判断f (x )的单调区间,并求极值. 考点 利用导数研究函数的极值 题点 已知极值(点)求参数 解 (1)f ′(x )=2ax +b x,由题意得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=12, 即⎩⎪⎨⎪⎧2a +b =0,a =12,∴a =12,b =-1.(2)由(1)得,f ′(x )=x -1x =x 2-1x =(x +1)(x -1)x.又f (x )的定义域为(0,+∞), 令f ′(x )=0,解得x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞).f (x )极小值=f (1)=12.1.求函数极值的步骤 (1)确定函数的定义域; (2)求导数f ′(x );(3)解方程f ′(x )=0得方程的根;(4)利用方程f ′(x )=0的根将定义域分成若干个小开区间,列表,判定导函数在各个小开区间的符号; (5)确定函数的极值,如果f ′(x )的符号在x 0处由正(负)变负(正),则f (x )在x 0处取得极大(小)值. 2.已知函数极值,确定函数解析式中的参数时,注意两点(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证充分性.一、选择题1.下列函数中存在极值的是( ) A .y =1xB .y =x -e xC .y =2D .y =x 3考点 利用导数研究函数的极值 题点 极值存在性问题 答案 B解析 对于y =x -e x ,y ′=1-e x,令y ′=0,得x =0. 在区间(-∞,0)上,y ′>0; 在区间(0,+∞)上,y ′<0.故x =0为函数y =x -e x的极大值点.2.函数f (x )=ln x -x 在区间(0,e)上的极大值为( ) A .-e B .1-e C .-1D .0考点 函数在某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 C解析 f (x )的定义域为(0,+∞),f ′(x )=1x-1.令f ′(x )=0,得x =1.当x ∈(0,1)时,f ′(x )>0,当x ∈(1,e)时,f ′(x )<0, 故f (x )在x =1处取得极大值f (1)=ln 1-1=0-1=-1.3.已知函数f (x )=2x 3+ax 2+36x -24在x =2处有极值,则该函数的一个递增区间是( ) A .(2,3) B .(3,+∞) C .(2,+∞)D .(-∞,3)考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 B解析 因为f ′(x )=6x 2+2ax +36,且在x =2处有极值,所以f′(2)=0,即24+4a+36=0,解得a=-15,所以f′(x)=6x2-30x+36=6(x-2)(x-3),由f′(x)>0,得x<2或x>3.4.设三次函数f(x)的导函数为f′(x),函数y=xf′(x)的图象的一部分如图所示,则( )A.f(x)极大值为f(3),极小值为f(-3)B.f(x)极大值为f(-3),极小值为f(3)C.f(x)极大值为f(-3),极小值为f(3)D.f(x)极大值为f(3),极小值为f(-3)考点函数极值的综合应用题点函数极值在函数图象上的应用答案 D解析当x<-3时,y=xf′(x)>0,即f′(x)<0;当-3<x<3时,f′(x)≥0;当x>3时,f′(x)<0.∴f(x)的极大值是f(3),f(x)的极小值是f(-3).5.已知函数f(x)=x3-px2-qx的图象与x轴切于点(1,0),则f(x)的( )A.极大值为427,极小值为0B.极大值为0,极小值为427C.极小值为-427,极大值为0D.极大值为-427,极小值为0考点函数某点处取得极值的条件题点不含参数的函数求极值问题答案 A解析f′(x)=3x2-2px-q.由函数f(x)的图象与x轴切于点(1,0),得p+q=1,∴q=1-p,①3-2p-q=0,②联立①②,解得p=2,q=-1,∴函数f(x)=x3-2x2+x,精 品 试 卷则f ′(x )=3x 2-4x +1,令f ′(x )=0得x =1或x =13.当x ≤13时,f ′(x )≥0,f (x )单调递增,当13<x <1时,f ′(x )<0,f (x )单调递减, 当x ≥1时,f ′(x )≥0,f (x )单调递增,∴f (x )极大值=f ⎝ ⎛⎭⎪⎫13=427,f (x )极小值=f (1)=0.故选A.6.设a <b ,函数y =(x -a )2(x -b )的图象可能是( )考点 函数极值的综合应用 题点 函数极值在函数图象上的应用 答案 C解析 y ′=(x -a )(3x -a -2b ),由y ′=0得x 1=a ,x 2=a +2b3.当x =a 时,y 取得极大值0, 当x =a +2b3时,y 取得极小值且极小值为负,故选C.7.已知函数f (x )=e x(sin x -cos x ),x ∈(0,2 017π),则函数f (x )的极大值之和为( ) A.e 2π(1-e 2 018π)e 2π-1B.e π(1-e 2 016π)1-e 2πC.e π(1-e 1 008π)1-e2πD.e π(1-e 1 008π)1-eπ考点 函数某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 B解析 f ′(x )=2e xsin x ,令f ′(x )=0得sin x =0, ∴x =k π,k ∈Z ,当2k π<x <2k π+π时,f ′(x )>0,f (x )单调递增, 当(2k -1)π<x <2k π时,f ′(x )<0,f (x )单调递减,∴当x =(2k +1)π时,f (x )取到极大值, ∵x ∈(0,2 017π),∴0<(2k +1)π<2 017π, ∴0≤k <1 008,k ∈Z . ∴f (x )的极大值之和为S =f (π)+f (3π)+f (5π)+…+f (2 015π)=e π+e 3π+e 5π+…+e 2 015π=e π[1-(e 2π)1 008]1-e 2π=e π(1-e 2 016π)1-e2π,故选B.二、填空题8.函数y =x e x在其极值点处的切线方程为________. 考点 函数某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 y =-1e解析 令y ′=e x +x e x =(1+x )e x=0, 得x =-1,∴y =-1e,∴在极值点处的切线方程为y =-1e.9.若函数f (x )=(x -2)(x 2+c )在x =2处有极值,则函数f (x )的图象在x =1处的切线的斜率为________. 考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 -5解析 ∵函数f (x )=(x -2)(x 2+c )在x =2处有极值, ∴f ′(x )=(x 2+c )+(x -2)×2x ,令f ′(2)=0,∴(c +4)+(2-2)×2×2=0,∴c =-4, ∴f ′(x )=(x 2-4)+(x -2)×2x .∴函数f (x )的图象在x =1处的切线的斜率为f ′(1)=(1-4)+(1-2)×2=-5.10.若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为________.考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 -1解析 函数f (x )=(x 2+ax -1)e x -1,则f ′(x )=(2x +a )e x -1+(x 2+ax -1)·ex -1=ex -1·[x 2+(a +2)x +a -1].由x =-2是函数f (x )的极值点,得f ′(-2)=e -3·(4-2a -4+a -1)=(-a -1)e -3=0,所以a =-1.所以f (x )=(x 2-x -1)ex -1,f ′(x )=e x -1·(x 2+x -2).由ex -1>0恒成立,得当x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当x >1时,f ′(x )>0.所以x =1是函数f (x )的极小值点. 所以函数f (x )的极小值为f (1)=-1.11.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则f (-1)=________. 考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 30 解析 由题意知⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,解得⎩⎪⎨⎪⎧a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3.经检验知,当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )≥0,不合题意.∴f (x )=x 3+4x 2-11x +16,则f (-1)=30. 三、解答题12.设函数f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.考点 函数在某点处取得极值的条件 题点 不含参数函数求极值 解 (1)f ′(x )=a x -12x 2+32. 由题意知,曲线在x =1处的切线斜率为0,即f ′(1)=0, 从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0), f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=(3x +1)(x -1)2x2. 令f ′(x )=0,解得x 1=1,x 2=-13(舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为单调递减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为单调递增函数.故f (x )在x =1处取得极小值,极小值为f (1)=3.13.已知函数f (x )=x 3+12mx 2-2m 2x -4(m 为常数,且m >0)有极大值-52,求m 的值.考点 利用导数研究函数的极值 题点 已知极值(点)求参数解 ∵f ′(x )=3x 2+mx -2m 2=(x +m )(3x -2m ), 令f ′(x )=0,得x =-m 或x =23m .当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )有极大值f (-m )=-m 3+12m 3+2m 3-4=-52,∴m =1. 四、探究与拓展14.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )考点 函数极值的综合应用 题点 函数极值在函数图象上的应用答案 C解析由题意可得f′(-2)=0,而且当x∈(-∞,-2)时,f′(x)<0,此时xf′(x)>0;排除B,D,当x∈(-2,+∞)时,f′(x)>0,此时若x∈(-2,0),xf′(x)<0,若x∈(0,+∞),xf′(x)>0,所以函数y=xf′(x)的图象可能是C.15.已知函数f(x)=(x2+ax+a)e x(a≤2,x∈R).(1)当a=1时,求f(x)的单调区间;(2)是否存在实数a,使f(x)的极大值为3?若存在,求出a的值,若不存在,请说明理由.考点利用导数研究函数的极值题点已知极值(点)求参数解(1)f(x)=(x2+x+1)e x,f′(x)=(2x+1)e x+(x2+x+1)e x=(x2+3x+2)e x.当f′(x)>0时,解得x<-2或x>-1,当f′(x)<0时,解得-2<x<-1,所以函数的单调递增区间为(-∞,-2),(-1,+∞);单调递减区间为(-2,-1).(2)令f′(x)=(2x+a)e x+(x2+ax+a)e x=[x2+(2+a)x+2a]e x=(x+a)(x+2)e x=0,得x=-a或x=-2.当a=2时,f′(x)≥0恒成立,函数无极值,故舍去;当a<2时,-a>-2.当x变化时,f′(x),f(x)的变化情况如下表:由表可知,f(x)极大值=f(-2)=(4-2a+a)e-2=3,解得a=4-3e2<2,所以存在实数a<2,使f(x)的极大值为3,此时a=4-3e2.。

高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选修2-2

高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选修2-2
复习课件
高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选 修2-2
1.3.2 函数的极值与导数
目标定位
重点难点
1.了解函数在某点取得极值的必要条 重点:求函数极值的
件和充分条件 方法和步骤
2.理解极大值和极小值的概念 难点:函数极值的概
3.掌握求可导函数极大值和极小值的 念的理解
设f(x)在x0处连续且f′(x0)=0,判别f(x0)是极大(小)值的方 法:
(1)若在x0两侧f′(x)符号相同,则x0不是f(x)的极值点; (2)若在x0附近的左侧f′(x)>0,右侧f′(x)<0,则f(x0)是极 大值;
(3)若在x0附近的左侧f′(x)<0,右侧f′(x)>0,则f(x0)是极 小值.
解得ab==4-,11 或ab==3-. 3, 故a+b=-7或a+b=0.
【错因分析】可导函数在一点的导数值为0是函数在这 一点取得极值的必要条件,而非充分条件,本题忽略了对所得 两组解进行检验,从而出现了错误.
【正解】(接错解)当a=4,b=-11时, f(x)=x3+4x2-11x+16, 得f′(x)=3x2+8x-11=(3x+11)(x-1). 当x∈-131,1时,f′(x)<0; 当x∈(1,+∞)时,f′(x)>0.
(3) 如 果 f′(x) 在 点 x0 的 左 右 两 侧 符 号 不 变 , 则 f(x0) _不__是__极__值___.
1.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则( )
A.0<b<1
B.b<0
C.b>0 【答案】A
D.b<12
2.已知函数y=x3-3x+2,则( ) A.y无极小值,也无极大值 B.y有极小值0,但无极大值 C.y有极小值0,极大值4 D.y有极大值4,但无极小值 【答案】C

最新人教版高中数学选修第1章1.3.2-函数的极值与导数ppt课件

最新人教版高中数学选修第1章1.3.2-函数的极值与导数ppt课件

(1)y′=6x(x2-1)2=6x(x+1)2(x-1)2.
令y′=0解得x1=-1,x2=0,x3=1. 当x变化时,y′,y的变化情况如下表:
x y′ y (-∞,-1) - -1 0 无极值 (- 1,0) - 0 0 极小值0 (0,1) + 1 0 无极值 (1,+∞) +
∴当x=0时,y有极小值且y极小值=0. 函数的草图如图所示
1-ln x ln x (2)函数f(x)= x 的定义域为(0,+∞),且f′(x)= x2 . 令f′(x)=0,解得x=e. 当x变化时,f′(x)与f(x)的变化情况如下表:
x f′(x) f(x) (0,e) + 单调递增 e 0 1 e (e,+∞) - 单调递减
1 因此,x=e是函数的极大值点,极大值为f(e)= e , 没有极小值. 函数的草图如图所示.
课标 解读
1.了解极大值、极小值的概念.(难点) 2.了解函数在某点取得极值的必要条件和充分条件.(重点、易 混点) 3.会用导数求函数的极大值、极小值.(重点)
极值点与极值
【问题导思】 1.从远处看大山,一个个山头此起彼伏,山峰与山谷彼此 相邻,如果这样的美景在数学中可看作函数的图象,那么一个 个山峰和山谷又称作什么呢?
,右侧 f′(x)>0
,那
求函数的极值
求下列函数的极值,并画出函数的草图: ln x (1)f(x)=(x -1) +1;(2)f(x)= x .
2 3
【思路探究】
求导数f′(x)→解方程f′(x)=0→判断使
f′(x)=0的点x左,右两侧的符号→利用极值定义求对应点处的 极值→画草图.
【自主解答】
+1),易判断x0=-1为f(x)的极大值点,但显然f(x0)不是最大 值,故排除A. 因为f(-x)=-x3+3x,f′(-x)=-3(x+1)(x-1),易知, -x0=1为f(-x)的极大值点,故排除B; 又-f(x)=-x3+3x,[-f(x)]′=-3(x+1)(x-1),易知, -x0=1为-f(x)的极大值点,故排除C; ∵-f(-x)的图象与f(x)的图象关于原点对称,由函数图象 的对称性可得-x0应为函数-f(-x)的极小值点.故D正确.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档