经济数学基础综合练习及参考答案(积分部分)
经济应用数学基础(一)微积分_试题及答案

;
; ; ;
3 2 6、函数 f ( x ) = x − x + 1 的极大点是
′ 7、设 f ( x ) = x ( x − 1)( x − 2)……(x − 2006) ,则 f (1) =
x 8、曲线 y = xe 的拐点是
; ; ;
9、
∫
2
0
x − 1dx
=
� � � � � � � � � � a = i + 3 j − 2 k , b = i − j + λ k 10、设 ,且 a ⊥ b ,则 λ =
;
⎧ 2x f ( x) = ⎨ ⎩a + x 2、设函数
x<0 x ≥ 0 在点 x = 0 连续,则 a =
; ;
4 3、曲线 y = x − 5 在(-1,-4)处的切线方程是
f ( x )dx = x 4、已知 ∫
1 x lim(1 − ) 2 x = 5、 x →∞
3
+C
,则 f ( x ) =
(A)极限不存在 (B)极限存在但不连续 (C)连续但不可导 (D)可导
9.设函数 f ( x ) 在 ( −∞, ∞) 上连续,且 f (0) = 0 , f ′(0) 存在,则函数 (A)在 x = 0 处左极限不存在 (B)有跳跃间断点 x = 0 (C)在 x = 0 处右极限不存在 (D)有可去间断点 x = 0
ln cos x dx 2 ∫ 3. cos x
4.
∫
x 2 dx
1 − x2
三、求解下列各题(每题 7 分,共 28 分) ⎧ e −2 x , x≤o ⎪ 2 f ( x) = ⎨ x 1 , x >0 ⎪ 2 ∫ f (t )dt ⎩1 + x
经济数学基础综合练习及参考答案

经济数学基础综合练习及参考答案第一部分 微分学一、单项选择题.函数()1lg +=x xy 的定义域是( )..1->x .0≠x .0>x .1->x 且0≠x.若函数)(x f 的定义域是[,],则函数)2(x f 的定义域是( ). .1],0[ .)1,(-∞ .]0,(-∞ )0,(-∞.下列各函数对中,()中的两个函数相等..2)()(x x f =,x x g =)( .11)(2--=x x x f ,x x g =)(.2ln x y =,x x g ln 2)(=.x x x f 22cos sin )(+=,1)(=x g.设11)(+=xx f ,则))((x f f (). .11++x x .x x +1 .111++x .x+11.下列函数中为奇函数的是( ). .x x y -=2.xxy -+=e e.11ln+-=x x y .x x y sin =.下列函数中,( )不是基本初等函数..102=y .xy )21(=.)1ln(-=x y .31xy = .下列结论中,( )是正确的..基本初等函数都是单调函数 .偶函数的图形关于坐标原点对称 .奇函数的图形关于坐标原点对称 .周期函数都是有界函数. 当x →0时,下列变量中( )是无穷大量..001.0x . xx 21+ . x . x-2 . 已知1tan )(-=xxx f ,当( )时,)(x f 为无穷小量.. x →0 . 1→x . -∞→x . +∞→x.函数sin ,0(),0xx f x x k x ⎧≠⎪=⎨⎪=⎩ 在 处连续,则 ( )...- . .. 函数⎩⎨⎧<-≥=0,10,1)(x x x f 在 处( ).. 左连续 . 右连续 . 连续 . 左右皆不连续 .曲线11+=x y 在点(, )处的切线斜率为( )..21-.21 .3)1(21+x .3)1(21+-x. 曲线x y sin =在点(, )处的切线方程为( ).. . . 21..若函数x xf =)1(,则)(x f '( )..21x .21x.x 1 .x 1.若x x x f cos )(=,则='')(x f ( )..x x x sin cos + .x x x sin cos - .x x x cos sin 2+ .x x x cos sin 2-- .下列函数在指定区间(,)-∞+∞上单调增加的是( ).. . . . .下列结论正确的有( )..是 ()的极值点,且f '()存在,则必有f '() .是 ()的极值点,则必是 ()的驻点 .若f '() ,则必是 ()的极值点.使)(x f '不存在的点,一定是 ()的极值点. 设需求量对价格的函数为p p q 23)(-=,则需求弹性为( )..p p32- .--pp32 .32-pp.--32pp二、填空题.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 的定义域是 ..函数x x x f --+=21)5ln()(的定义域是. .若函数52)1(2-+=+x x x f ,则=)(x f. .设函数1)(2-=u u f ,xx u 1)(=,则=))2((u f..设21010)(xx x f -+=,则函数的图形关于对称..已知生产某种产品的成本函数为() ,则当产量 时,该产品的平均成本为 ..已知某商品的需求函数为 – ,其中为该商品的价格,则该商品的收入函数(). . =+∞→xxx x sin lim..已知xxx f sin 1)(-=,当 时,)(x f 为无穷小量.. 已知⎪⎩⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在),(∞+-∞内连续,则=a .. 函数1()1exf x =-的间断点是 . .函数)2)(1(1)(-+=x x x f 的连续区间是 ..曲线y =)1,1(处的切线斜率是..函数 的单调增加区间为 ..已知x x f 2ln )(=,则])2(['f . .函数y x =-312()的驻点是 . .需求量对价格p 的函数为2e 100)(p p q -⨯=,则需求弹性为E p =..已知需求函数为p q 32320-=,其中为价格,则需求弹性 .三、计算题.423lim 222-+-→x x x x .231lim 21+--→x x x x.0x → .2343lim sin(3)x x x x →-+-.2)1tan(lim 21-+-→x x x x .))32)(1()23()21(lim 625--++-∞→x x x x x x.已知y x x xcos 2-=,求)(x y ' ..已知)(x f x x xln sin 2+=,求)(x f ' ..已知xy cos 25=,求)2π(y ';.已知32ln x ,求y d . .设x y x5sin cos e +=,求y d . .设xx y -+=2tan 3,求y d ..已知2sin 2cos x y x -=,求)(x y ' ..已知xx y 53e ln -+=,求)(x y ' ..由方程2e e )1ln(=++xy x y 确定y 是x 的隐函数,求)(x y '..由方程0e sin =+yx y 确定y 是x 的隐函数,求)(x y '..设函数)(x y y =由方程y x y e 1+=确定,求0d d =x x y..由方程x y x y=++e )cos(确定y 是x 的隐函数,求y d .四、应用题.设生产某种产品x 个单位时的成本函数为:x x x C 625.0100)(2++=(万元), 求:()当10=x 时的总成本、平均成本和边际成本; ()当产量x 为多少时,平均成本最小?.某厂生产一批产品,其固定成本为元,每生产一吨产品的成本为元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求:()成本函数,收入函数; ()产量为多少吨时利润最大?.设某工厂生产某产品的固定成本为元,每生产一个单位产品,成本增加元.又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,试求:()价格为多少时利润最大?()最大利润是多少?.某厂生产某种产品件时的总成本函数为() (元),单位销售价格为 (元件),试求:()产量为多少时可使利润达到最大?()最大利润是多少?.某厂每天生产某种产品q 件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?.已知某厂生产q 件产品的成本为C q q q ()=++25020102(万元).问:要使平均成本最少,应生产多少件产品?试卷答案一、 单项选择题. . . . . . . . . . . . . . . . . 二、填空题.[,] . (, ) . 62-x .43-. 轴 . – . . 0→x . .0x = .)1,(--∞,)2,1(-,),2(∞+ . (1)0.5y '= .(,∞) . .x =1 .2p- . 10-p p三、极限与微分计算题.解 423lim 222-+-→x x x x )2)(2()1)(2(lim 2+---→x x x x x )2(1lim 2+-→x x x 41.解:231lim 21+--→x x x x )1)(2)(1(1lim 1+---→x x x x x21)1)(2(1lim1-=+-→x x x.解l i x →l i 1)x →。
经济数学基础积分学部分复习要求与综合练习

经济数学基础积分学部分复习要求与综合练习第一部分:复习要求 第1章 不定积分1.理解原函数与不定积分概念。
这里要解决下面几个问题: (1)什么是原函数?若函数)(x F 的导数等于)(x f ,即)()(x f x F =',则称函数)(x F 是)(x f 的原函数。
(2)原函数不是唯一的。
由于常数的导数是0,故c x F +)(都是)(x f 的原函数(其中c 是任意常数)。
(3)什么是不定积分?原函数的全体c x F +)((其中c 是任意常数)称为)(x f 的不定积分,记为⎰x x f d )(=c x F +)(。
(4)知道不定积分与导数(微分)之间的关系。
不定积分与导数(微分)之间互为逆运算,即先积分,再求导,等于它本身;先求导,再积分,等于函数加上一个任意常数,即⎰')d )((x x f =)(x f ,⎰)d )(d(x x f =x x f d )(,c x f x x f +='⎰)(d )(,c x f x f +=⎰)()(d2.熟练掌握不定积分的计算方法。
常用的积分方法有 (1)运用积分基本公式直接进行积分; (2)第一换元积分法(凑微分法);(3)分部积分法,主要掌握被积函数是以下类型的不定积分:①幂函数与指数函数相乘; ②幂函数与对数函数相乘;③幂函数与正(余)弦函数相乘;第2章 定积分1.了解定积分的概念,知道奇偶函数在对称区间上的积分结果.要区别不定积分与定积分之间的关系。
定积分的结果是一个数,而不定积分的结果是一个表达式。
奇偶函数在对称区间上的积分有以下结果: 若f x ()是奇函数,则有f x x a a()d -⎰=0若f x ()是偶函数,则有f x x f x x f x x aa a a()()()d d d --⎰⎰⎰==2202.熟练掌握定积分的计算方法。
常用的积分方法有(1)运用积分基本公式直接进行积分; (2)第一换元积分法(凑微分法);注意:定积分换元,一定要换上、下限,然后直接计算其值(不要还原成原变量的函数).(3)分部积分法,主要掌握被积函数是以下类型的定积分: ①幂函数与指数函数相乘; ②幂函数与对数函数相乘;③幂函数与正(余)弦函数相乘;3.知道无穷限积分的收敛概念,会求简单的无穷限积分。
经济数学(二重积分习题及答案)

第九章二重积分习题 9-11.设0),(≥y x f ,试阐述二重积分(,)d Df x y σ⎰⎰的几何意义.解 当0),(≥y x f 时,二重积分(,)d D f x y σ⎰⎰表示的是以xy 平面上的有界闭区间为底,以曲面),(y x f z =为顶,母线平行于z 轴,准线为区域D 的边界的一个曲顶柱体的体积.2.试确定下列积分的符号并说明理由:221(1)ln()d d x y x y x y+<+⎰⎰224(2)d x y x y*+≤⎰⎰解 (1) 因1x y +<,则将此式两边平方,得220121x y xy ≤+<-<于是 0)ln(22<+y x 故221ln()d d 0.x y x y x y +<+<⎰⎰(2)因为224d x y x y+≥⎰⎰222222221122343d d d d x y x y x y x y x y x yx y x y+≤<+≤<+≤<+≤=+++⎰⎰⎰⎰⎰⎰⎰⎰当221x y +≤1,且此区域面积为π,则221d x y x y π+≤≤⎰⎰当2212x y <+≤0,且此区域面积为π,则2212d 0xy x y <+≤≤⎰⎰当2223x y <+≤1-,且此区域面积为π,则2223d x y x y π<+≤≤-⎰⎰当2234x y <+≤≤且此区域面积为π,则2243d x y x y <+≤≤⎰⎰故 224d 00x y x y ππ+≤≤+--=<⎰⎰.3.试用二重积分的定义证明:(1) d DDS σ=⎰⎰(其中D S 为D 之面积)(2) (,)d (,)d DDkf x y k f x y σσ=⎰⎰⎰⎰(k 为常数)证 (1) 由二重积分的定义,有.1(,)d lim (,)n i i ii Df x y f λσεησ→==∆∑⎰⎰则当1),(≡y x f 时,上式变为01d lim lim ni D Di DS S λλσσ→→==∆==∑⎰⎰.(2) 由二重积分的定义,有,1,101(,)d lim () lim () lim (,)n i iioi Dni i ioi ni i ii kf x y kf k f k f λλλσξησξησξησ→=→=→==∆=∆=∆∑⎰⎰∑∑ (,)d .Dk f x y σ=⎰⎰4.根据二重积分的性质,比较下列积分的大小.()2(1) d Dx y σ+⎰⎰与3()d Dx y σ+⎰⎰,其中D 由x 轴、y 轴及直线1x y +=围成;()2(2) d Dx y σ+⎰⎰与3()d Dx y σ+⎰⎰,其中D 由圆2(2)x -+ 2(1)2y -=围成.解 (1) 积分区域D 如图9-1 所示. 因在所围区域内有10≤+≤y x ,所以 32)()(y x y x +≥+故 ()23d ()d D D x y x y σσ+≥+⎰⎰⎰⎰. 图9-1 (2) 积分区域D 如图9-2 所示.因圆22(2)(1)2x y -+-=的参数方程为22cos 12sin x y θθ⎧=+⎪⎨=+⎪⎩则32(sin cos )32sin()4x y πθθθ+=++=++图9-2min ()321,1,x y x y +=-=+≥而且于是32)()(y x y x +≤+故 ()23d ()d .D D x y x y σσ+≤+⎰⎰⎰⎰5.利用二重积分的性质,估计下列积分的值.(1) ()d DI xy x y σ=+⎰⎰, :01,01D x y ≤≤≤≤22(2) sin sin d DI x y σ=⎰⎰, :0,0D x y ππ≤≤≤≤(3) (1)d DI x y σ=++⎰⎰, :01,02D x y ≤≤≤≤22(4) (49)d DI x y σ=++⎰⎰,22:4D x y +≤ 解 (1) 因01,01x y ≤≤⎧⎨≤≤⎩则0102xy x y ≤≤⎧⎨≤+≤⎩故00d 2d 2d 2 2.D DDDI S σσσ=≤≤===⎰⎰⎰⎰⎰⎰(2) 因0,0x y ππ≤≤⎧⎨≤≤⎩则0sin 10sin 1x y ≤≤⎧⎨≤≤⎩于是 220sin sin 1x y ≤≤ 故200d d .D DDI S σσπ=≤≤==⎰⎰⎰⎰(3)因0102x y ≤≤⎧⎨≤≤⎩,则411≤++≤y x故d (1)d 4d DDDx y σσσ≤++≤⎰⎰⎰⎰⎰⎰即 28.I ≤≤(4) 因4022≤+≤y x ,则22229494()925x y x y ≤++≤++≤于是99d 25d 25D DDDS I S σσ=≤≤=⎰⎰⎰⎰而 24D S r ππ== 故 36100.I ππ≤≤习题 9-21.计算下列二重积分:22(1) ()d ,Dx y σ+⎰⎰其中D 是矩形区域:1,1x y ≤≤;22(2) ()d ,Dx y x σ+-⎰⎰其中D 由直线22y y x y x ===、与所围成;2(3) d ,Dxy σ⎰⎰其中D2y x y x ==由抛物线和直线所围成; 2111sin (4) d d .y x y x x -⎰⎰解 (1)积分区域D 如图9-3 所示.11222211()d d ()d Dxy x x y yσ--+=+⎰⎰⎰⎰12128(2)d .33x x -=+=⎰ 图9-3(2)积分区域D 如图9-4所示.22222102 ()d d ()d yyDx y x y x y x xσ+-=+-⎰⎰⎰⎰232019313()2486y y dy =-=⎰图9-4(3)积分区域D 如图9-5所示.2112232001 d d d ()d 3xx D xxy x xy y x y xx σ==⋅⎰⎰⎰⎰⎰ 1470111()d 3340x x x =-=⎰图9-5(4)积分区域D 如图9-6所示.22111110110sin sin d d d d sin d sin1cos1.x y xx y x x yx x x x x +-===-⎰⎰⎰⎰⎰图9-62.积分区域}{(,),D x y a x b c y d =≤≤≤≤,且被积函数为()(),f x g y ⋅求证:()()d d ()d ()d bdacDf xg y x y f x x g y y⋅=⎰⎰⎰⎰.证 积分区域D 如图9-7所示.()()d d d ()()d b dacDf xg y x y x f x g y y=⎰⎰⎰⎰()[()d ]d ()d ()d ()d ()d b dacd bcab dacf xg y y xg y y f x xf x xg y y ==⋅=⋅⋅⎰⎰⎰⎰⎰⎰ 图9-73.设(,)f x y 在D 上连续且D 由y x y a x b b a ===>、与()围成,求证:d (,)d d (,)d .bx b baa a y x f x y y y f x y x =⎰⎰⎰⎰证 积分区域D 如图9-8 所示. 交换等式左边二次积分的积分顺序有d (,)d d (,)d b xb baaayx f x y y y f x y x=⎰⎰⎰⎰图9-84.下列条件下,将(,)d DI f x y σ=⎰⎰按不同积分顺序化为二次积分:2(1) 4D y x y x ==由与所围成;(2) D x 由轴与半圆周()2220x y r y +=≥所围成. 解 (1) 由24y x =和y x =,得交点为(0,0),(4,4). y=x积分区域D 如图9-9 所示. 于是将I 化为先对y 后对x 的二次积分,得420d (,)d xxI x f x y y=⎰⎰将I 化为先对x 后对y 的二次积分,得2414d (,)d .y y I y f x y x =⎰⎰(2)积分区域D 如图9-10 所示. 图9-9将I 化为先对y 后对x 的二次积分,得22d (,)d rr x rI x f x y y--=⎰⎰将I 化为先对x 后对y 的二次积分,得2222d (,)d rr y r y I y f x y x---=⎰⎰图9-105.更换下列二次积分的积分顺序:10(1) d (,)d yy y f x y x⎰⎰10(2) d (,)d yy f x y x⎰⎰1(3) d (,)d e ln xx f x y y⎰⎰221101(4) d (,)d y y y f x y x---⎰⎰2113(3)2001(5) d (,)d d (,)d x x x f x y y x f x y y-+⎰⎰⎰⎰解 (1)因为原积分区域{}(,)01,D x y y y x y=≤≤≤≤为Y 型区域, 其图形如图9-11 所示. 交换积分次序区域D 应视为X 型区域. 故211d (,)d d (,)d .yxyxy f x y x x f x y y =⎰⎰⎰⎰(2) 因为原积分区域{}(,)01,0D x y y x y =≤≤≤≤为Y 型区域, 其图形如图9-12 所示. 交换积分次序区域D 应视为X 型区域. 故111d (,)d d (,)d .yoxy f x y x x f x y y =⎰⎰⎰⎰(3)因为原积分区域{}(,)1,0ln D x y x e y x=≤≤≤≤为X 型区域, 其 图形如图9-13 所示. 交换积分次序区域D 应视为Y 型区域.图9-11 图9-12故ln 11d (,)d d (,)d .xexee xf x y y y f x y x =⎰⎰⎰⎰(4)因为原积分区域{}22(,)01,11D x y y y x y =≤≤≤≤---为Y 型区域, 其图形如图9-14 所示. 交换积分次序区域D 应视为X 型区域.故2221111011d (,)d d (,)d .y x yy f x y x x f x y y -----=⎰⎰⎰⎰图9-13 图9-14(5)因为原积分区域{}2121,(,)01,0D D D D x y x y x =+=≤≤≤≤其中21(,)13,032D x y x y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭(-)为X 型区域, 其图形如图9-15 所示. 交换积分次序区域D 应视为Y 型区域.图9-15 图9-16 2113(3)20011320d (,)d d (,)d d (,)d .故x x y yx f x y y x f x y yy f x y x --+=⎰⎰⎰⎰⎰⎰6.求由平面0011x y x y ====、、、所围成的柱体被平面0z =与2x + 3y + z = 6所截得的立体的体积.解 该曲顶柱体如图9-16所示.习题 9-31.作适当变换,计算下列二重积分:()22(1) ()sin d d Dx y x y x y-+⎰⎰.D 是顶点为(,0)(2,)(,2)πππππ、、、(0,)π的四边形;22(2) d d ,Dx y x y ⎰⎰1240D xy xy y x y x x ====>由、、和所围成且、0y >;(3) d d ,yx yDex y +⎰⎰ D 由x 轴,y 轴和直线1x y +=所围成;()()1100623d d 7d 623d .2DV x y x yx x y y =--=--=⎰⎰⎰⎰2222(4) ()d d ,D y x x y a b +⎰⎰2222:1y x D a b +≤.解 (1) 积分区域D 如图9-17所示.令x y ux y v -=⎧⎨+=⎩,解得()()1212x u v y v u ⎧=+⎪⎪⎨⎪=-⎪⎩ 于是原积分区域D 的边界x y π+=、3x y π+=、x y π-=、x y π-=-与 图9-17新积分区域D’的边界3v π=、v π=、u π=、u π=-相对应. 其积分区域D’的图形如图9-18所示.因为11(,)12211(,)222x x x y u v J y y u v u v ∂∂∂∂∂====∂∂∂-∂∂故()()22sin d d Dx y x y x y -+⎰⎰22'322321sin d d 21d sin d 231sin 2324D u v u vu u v v u v v ππππππππ-=⋅=⎛⎫⎛⎫=⋅- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎰⎰⎰⎰ 图9-183431().3223ππππ=⋅-=(2) 积分区域D 如图9-19所示.令 xy u yv x =⎧⎪⎨=⎪⎩,解得u x v y uv ⎧=⎪⎨⎪=⎩则新积分区域D’由u = 1,u = 2,v = 1,v = 4围成.其积分区域D’的图形如图9-20所示. 图9-19因为(,)(,)x xx y u v J y yu v u v ∂∂∂∂∂==∂∂∂∂∂2111()122222v v u u v u v v v u uvuv⋅-==22'2'1d d d d 211 d d 2DD D u x y x y uv u v v v u u v v =⋅⋅=⎰⎰⎰⎰⎰⎰故 图9-2024211117d d ln 2.23u u v v ==⎰⎰ (3)积分区域D 如图9-21所示.令x y u y v +=⎧⎨=⎩,解得x u vy v =-⎧⎨=⎩则新积分区域D’由u = v 、v = 0和u = 1围成. 图9-21其积分区域D’的图形如图9-22所示.因为11(,)101(,)xxx y u v J y y u v u v∂∂-∂∂∂====∂∂∂∂∂图9-22故 10'd d 1d d d d y v v x yuuuoDD ex y e u v u e v+=⋅⋅=⎰⎰⎰⎰⎰⎰()1011d 2e u e u -=-=⎰.(4)积分区域D 如图9-23所示.令 cos sin x ar y br θθ=⎧⎨=⎩则新积分区域为 (){}',02,01D r r θθπ=≤≤≤≤ 图9-23因为(,)(,)x xx y r J yyr r θθθ∂∂∂∂∂==∂∂∂∂∂cos sin sin cos a ar abrb br θθθθ-==22222'21300 ()d d d d 1d d .2DD y xx y r abr r a bab r r ab πθθπ+===⎰⎰⎰⎰⎰⎰故2.用变量替换,求下列区域D 的面积:(1)334851500.D xy xy xy xy x y ====>>由曲线、、和所围成且、 (2)D 由曲线333344y x y x x y x y ====、、、所围成且00.x y ≥≥、解 (1) 令3u xy v xy =⎧⎨=⎩,解得,u vx u y v u ==则新积分区域D’由 u = 4、u = 8、v = 5、v = 15围成.因为(,)(,)x xx y u vJy yu vu v∂∂∂∂∂==∂∂∂∂∂31221211122u u uv v vvvu u uv-==-81515545'd d111d d d d4ln2ln3.222DDDS x yu v u v vv v====⋅=⎰⎰⎰⎰⎰⎰故图9-24(2) 令33yuxxvy⎧=⎪⎪⎨⎪=⎪⎩,解得838311xu vyuv⎧=⎪⎪⎨⎪=⎪⎩则新积分区域D’由u = 1、u = 4、v = 1和v = 4围成. 其积分区域D’的图形如图9-25所示.因为(,)(,)x xx y u vJy yu vu v∂∂∂∂∂==∂∂∂∂∂图9-25 1113988883293111888831188()81388u v u vuvu v v u-----------==--故d dDDS x y=⎰⎰()33442211342111d d d()d8811d.88Duv u v u uv vu u---====⎰⎰⎰⎰⎰’100D x y x y+===3.设由直线、与所围成,求证:1cos()d d sin1.2Dx yx yx y-=+⎰⎰证积分区域D如图9-26所示.令x y vx y u+=⎧⎨-=⎩,解得()()1212x v uy v u⎧=+⎪⎪⎨⎪=-⎪⎩则新积分区域'D由v = 1,v = -u, 及v = u围成. 图9-26因为11(,)12211(,)222x x x y u v J y yu v u v ∂∂∂∂∂====∂∂∂-∂∂'1cos d d cos d d 2D D x y u x y u vx y v -=⋅+⎰⎰⎰⎰故 图9-27101d cos d 2vv uv uv -=⎰⎰101[sin ]d 21sin1d sin1.2v v u v v v v v =-==⎰⎰4.选取适当变换,求证:()()11d d d , : 1.Df x y x y f u u D x y -+=+≤⎰⎰⎰证 积分区域D 如图9-28所示.令x y ux y v +=⎧⎨-=⎩, 解得()()1212x u v y u v ⎧=+⎪⎪⎨⎪=-⎪⎩则新积分区域'D 由u = 1, u = -1,v = 1及v = -1所围成其积分区域D’的图形如图9-29所示. 图9-28因为 11(,)12211(,)222x x x y u v J y y u v u v ∂∂∂∂∂====-∂∂∂-∂∂ 故'1()d d ()d d 2DD f x y x y f u u v +=-⎰⎰⎰⎰1111111d ()d ()d .2u f u v f u u ---==⎰⎰⎰习题 9-41.画出下列积分区域D 并把积分(),d d Df x y x y⎰⎰化成极坐标形式:()22222(1) 0 (2) 2x y a a x y x +≤>+≤()2222(3) 0 (4) 0101a x y b a b y x x ≤+≤<<≤≤-≤≤且 解 积分区域D 如图9-30所示.(1)令cos sin x r y r θθ=⎧⎨=⎩则积分区域D 被夹在0θ=与2θπ=之间,且远近极点的边界方程分别为0r a r ==与,故 图9-30()20,d d d (cos ,sin )d .aDf x y x y f r r r r πθθθ=⎰⎰⎰⎰(2) 积分区域D 如图9-31所示.令 cos sin x r y r θθ=⎧⎨=⎩则远近极点的边界方程分别为r=2cos θ与r = 0.由r ≥0和2cos 0θ≥得22ππθ-≤≤图9-31 则D 被夹在22ππθθ==-和之间, 故2cos 22(,)d d d (cos ,sin )d Df x y x y f r r r rπθπθθθ-=⎰⎰⎰⎰.(3) 积分区域D 如图9-32所示.令 cos sin x r y r θθ=⎧⎨=⎩则远近极点的边界方程分别为r a r b ==与, 图9-32而D 被夹在02θθπ==与之间, 故20(,)d d d (cos ,sin )d .baDf x y x y f r r r r πθθθ=⎰⎰⎰⎰(4) 积分区域D 如图9-33所示.令 cos sin x r y r θθ=⎧⎨=⎩则远近极点的边界方程分别为图9-331cos sin r θθ=+0r =与,而D 被夹在02πθθ==和之间,故12cos sin 0(,)d d d (cos ,sin )d .Df x y x y f r r r r πθθθθθ+=⎰⎰⎰⎰2.将下列二次积分化为极坐标形式:2222222222001122222000(1) d ()d (2) d d (3) d ()d (4) d ()d aax x axxa a y xx x y y x x y y x x y y yx y x---++++⎰⎰⎰⎰⎰⎰⎰⎰解 (1)积分区域D 如图9-34所示.令 cos sin x r y r θθ=⎧⎨=⎩则22y ax x =-的极坐标方程为2cos ,r a θ=而D 被夹在02πθθ==与之间, 故 图9-342222cos 22320d ()d d d .aax x a x x y y r r πθθ-+=⎰⎰⎰⎰(2) 积分区域D 如图9-35所示.令cos sin x r y r θθ=⎧⎨=⎩ 则0x a x ==与的极坐标方程分别为图9-26cos a r θ=与0;r =0y x y ==与的方程分别为04πθθ==与,故sec 22240d d d d .axa x x y y r r πθθ+=⎰⎰⎰⎰(3) 积分区域D 如图9-36所示.令cos sin x r y r θθ=⎧⎨=⎩则2y x y x ==与的极坐标方程分别为 图9-36 tan sec r θθ=4πθ=与,故211tan sec 2224000d ()d d d .xx x x y y r πθθθ-+=⎰⎰⎰⎰(4) 积分区域D 如图9-37所示.令cos sin x r y r θθ=⎧⎨=⎩则222x y a +=上方程为,r a =而D 被夹在02πθθ==与之间, 故222232000d ()d d d .aa y ay x y x r r πθ-+=⎰⎰⎰⎰ 图9-373.用极坐标计算下列各题:22(1) d ,xy De σ+⎰⎰D 由圆周224x y +=所围成;22(2) d ,Dx y σ+⎰⎰{}2222(,);D x y a x y b =≤+≤(3) arctand ,Dy x σ⎰⎰2222140D x y x y y y x +=+===由、、和所围成的第I 象限部分;222224 d , :.DR x y D x y Rx σ--+≤⎰⎰()解 (1) 积分区域D 如图9-38所示.令 cos sin x r y r θθ=⎧⎨=⎩ {}(,)02,02D r r θθπ=≤≤≤≤则,故222220d d d x y r Dee r r πσθ+=⎰⎰⎰⎰图9-382224012d (1)2re r e ππ==-⎰.(2) 积分区域D 如图9-39所示.令cos sin x r y r θθ=⎧⎨=⎩(){},,02D r a r b θθπ=<<≤≤则,故 图9-39222203333d d d 22().33baDx y r rb a b a πσθππ+=-=⋅=⋅-⎰⎰⎰⎰(3) 积分区域D 如图9-40所示.令cos sin x r y r θθ=⎧⎨=⎩(),12,04D r r πθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭则,故 图9-40 2224401013arctan d d d d d .64D y r r r r x ππσθθθθπ===⎰⎰⎰⎰⎰⎰(4) 积分区域D 如图9-41所示.令cos sin x r y r θθ=⎧⎨=⎩(),0cos ,22D r r R ππθθθ⎧⎫=≤≤-≤≤⎨⎬⎩⎭则, 故 图9-41 ()cos 22222202cos 2220322220 d d d 2d d cos 2 d 03R DR R x y R r r rR r r rR R r πθππθπσθθθθ---=-⋅=-⋅⎡⎤=--⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰33332024 (sin )d ()333R R R πθθπ=--=-⎰.4.选择适当的坐标系,计算下列各题:()22(1) ()d d 30Dx y x y D y x y x a y a y a a +==+==>⎰⎰,由、、、所围成;222(2) d d :,00;Dy x y D x y a x y +=≥≥⎰⎰,、(3) d d 212;Dxy x y D y x y x xy xy ====⎰⎰,由、、与围成()2(4) d d :1,2,,2.Dx xy x y D x y x y y x y x ++=+===⎰⎰,解 (1) 令,y x uy v -=⎧⎨=⎩得变换式x v u y v =-⎧⎨=⎩则新积分区域D’由u = 0、u = a 、v = a 及v = 3a 所围成. D ’如图9-42所示.因为 11(,)101(,)x y J u v -∂===-∂()22222'322032230 ()d d 1d d d (22)d 2(1882)d 14.3DD aaa x y x y v u u u vu v vu u va a u au u u a ⎡⎤+=-+⋅-⎣⎦=-+=-+-=⎰⎰⎰⎰⎰⎰⎰故图9-42(2)积分区域D 如图9-43所示.令cos sin x r y r θθ=⎧⎨=⎩(),0,02D r r a πθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭则,故32d d d sin d .3aDa y x y r r r πθθ==⎰⎰⎰⎰图9-43(3)令y u xxy v ⎧=⎪⎨⎪=⎩. 得变换式v x u y vu ⎧=⎪⎨⎪=⎩则新积分区域D’由u = 1、u = 2、v =1、 v = 2所 围成.D’如图9-44所示.因为()11122(,)1,21122v x y u u vu J u v uv u uv-∂===-∂- 图9-44故'2211113d d d d d d ln 2.224DD v xy x y v u v u v u u =-=⋅=⎰⎰⎰⎰⎰⎰(4)令x y u y v x +=⎧⎪⎨=⎪⎩,得变换式11u x vuv y v ⎧=⎪⎪+⎨⎪=⎪+⎩则新积分区域D’由u = 1、u = 2、v = 1、v =2所 围成. D’如图9-44所示.因为 ()()()()()222111,,111uv v x y uJ v u u v v v v -++∂===∂+++()'22()d d d d 11D D u ux xy x y u u v v v +=⋅⋅++⎰⎰⎰⎰故 ()322233111525d d d .72961u u v u u v ===+⎰⎰⎰5.试求区域D 的面积,其中D 为()()12,.r ϕθϕθαθβ≤≤≤≤解 积分区域D 如图9-45所示.21()()d d d d .D DS x y r r βϕθαϕθθ==⎰⎰⎰⎰图9-45习题 9-51.计算下列广义二重积分:{}()20(1) d d . (,),0 (2)d d x yy Dx yxe x y D x y y x x e x y-+-≤≤=≥≥⎰⎰⎰⎰解 (1)积分区域D 如图9-46所示.220 d d d d 1 d .2y y xDx xe x y x xe yxex +∞+∞--+∞-===⎰⎰⎰⎰⎰故(2)积分区域D 如图9-47所示. 图9-46()()020d d d d 1 d .2x yx y xDx e x y x e ye x +∞+∞-+-++∞-===⎰⎰⎰⎰⎰故2.用极坐标计算下列广义积分:(){}2222()()22221224(1) d d (2) cos()d d d d (3) ,1.()x y x y De x y e x y x y x y D x y xy x y +∞+∞-+-∞-∞+∞+∞-+-∞-∞+=+≤+⎰⎰⎰⎰⎰⎰, 图9-47解 (1)cos sin x r y r θθ=⎧⎨=⎩令 (){},0,02D r r θθπ=≤≤+∞≤≤则,故22222()1d d d d d .2x y re x y e r r ππθθπ+∞+∞+∞-+--∞-∞===⎰⎰⎰⎰⎰(2)cos sin x r y r θθ=⎧⎨=⎩令 (){},0,02D r r θθπ=≤≤+∞≤≤则,故()2222()222200222020cos()d d d cos d 1 sin cos d 041 d .42x y r r e x y x ye r r re r r πππθθπθ+∞+∞-+-∞-∞+∞--+=⋅⎡⎤+∞=-⎢⎥⎣⎦==⎰⎰⎰⎰⎰⎰(3) 积分区域D 如图9-48所示.cos sin x r y r θθ=⎧⎨=⎩令(){},01,02D r r θθπ=≤≤≤≤则,故 图9-48212100224d d 124d d d 33()Dx yr r rx y ππθθπ=⋅==+⎰⎰⎰⎰⎰.3.计算下列广义积分:()()224452(1) d (2)1d x x x ex x x e x+∞+∞-++--∞-∞++⎰⎰解()()22445214(1) d d x x x ex ex+∞+∞-++-+--∞-∞=⎰⎰()2221441d(21)2121d ()212x t e e x t x e e t e +∞-+--∞+∞---∞-=+=+=⎰⎰由普阿松积分 ()222222222212332 (2) 1d d d d d ,d ,d 0.x x x x x x x x x e x x e x xe x e x I x e x I xe x I e x I I +∞+∞+∞+∞-----∞-∞-∞-∞+∞+∞+∞----∞-∞-∞++=++=====⎰⎰⎰⎰⎰⎰⎰令则由普阿松积分可得 由奇函数的性质可得 ()22222222221222224220d d d d d d cos ,sin d sin cos d x x x y x yr I x e x x e xx e x y e y x y ex yx r y r r e r rπθθθθθ+∞+∞---∞-∞+∞+∞---∞-∞+∞+∞-+-∞-∞+∞-======⎰⎰⎰⎰⎰⎰⎰⎰而 2225002201d sin 2d 411 sin 2d 44r e r r ππθθθθπ+∞-==⎰⎰⎰1I ==即()221d 0x x x e x +∞--∞++++⎰综合习题九1.选择填空:(1) 设D由x 轴、ln y x x e ==、围成,则(,)d d ( ).D f x y x y =⎰⎰① ln 1d (,)d exx f x y y⎰⎰②ln 0d (,)d ex x f x y y⎰⎰③1d (,)d ye yf x y x⎰⎰④10d (,)d yee yf x y x⎰⎰(2) 当( )a =时,有221d .xy x y π+≤=⎰⎰① 1 ②③④(3) 下列不等式中,( )是正确的.①||1||1(1)d 0x y x σ<<->⎰⎰ ②22221()d 0x y x y σ+≤-->⎰⎰③ ||1||1(1)d 0x y y σ≤≤->⎰⎰④ ||1||1(1)d 0x y x σ≤≤+>⎰⎰(4) 设3123d d d 444DD Dx y x y x yI I I σσσ+++===⎰⎰⎰⎰⎰⎰,,,22:(1)(1)1,D x y -+-≤ 则有( ).① 123I I I << ② 231I I I <<③ 312I I I << ④ 321I I I << 解 (1) ① ④; (2) ②; (3) ④; (4) ①. 2.计算下列二重积分:.25512100d (1) d (2) d dln y xyxy x ey y x-⎰⎰⎰⎰2222(3) d , :,12D xy D y x x y x y σ≥≤+≤+⎰⎰2222(4) 1()()d d , :()()1Dy y x xx y D a b a b -++≤⎰⎰22222(5) ln()d , :1Dx y D x y σε+≤+≤⎰⎰,并求此二重积分当0ε→时之极限.解 积分区域D 如图9-49所示.交换积分次序,得55511151d d d ln ln d 4.x y yx y dx y x y xx ===⎰⎰⎰⎰⎰故(2) 积分区域D 如图9-50所示. 图9-49 交换积分次序,得2221112200d d d d y y xyx eyy ex--=⎰⎰⎰⎰21220(1)d y ey y-=-⎰22112220d y y edy y ey--=-⎰⎰22222112211122220d d()1d d .0y y y y y ey y eeyyee y e ------=+=+-=⎰⎰⎰⎰图9-50(3) 积分区域D 如图9-51所示. cos sin x r y r θθ=⎧⎨=⎩令 ()5,12,44D r r ππθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭则,故 图9-51522422214544cos sin d d d d 3sin 2d 0.xyr x y r rx y rππππθθθθθ=+==⎰⎰⎰⎰⎰D(4)积分区域D 如图9-52所示. 图9-52cos sin x ar y br θθ=⎧⎨=⎩令{},01,02D r r θθπ≤≤≤≤则=()(如图9-53)因为(,)(,)x xx y r J y yr r θθθ∂∂∂∂∂==∂∂∂∂∂ 图9-53 cos sin sin cos a ar abrb br θθθθ-==212222220021201()()d d d 1cos sin d 2d 1cos 2d .3Dy xx y r r abr ra b ab r r r ab ππθθθθθπ-+=-+=-⋅=⎰⎰⎰⎰⎰⎰故(5) 积分区域D 如图9-54所示. cos sin x r y r θθ=⎧⎨=⎩令(){},1,02D r r θεθπ=≤≤≤≤则,故2122202220222 ln()d d ln d 1 (ln )d 2(ln 1)Dx y r r rπεπσθεεεθπεεε+=⋅-=--=--⎰⎰⎰⎰⎰ 图9-5422ln()d ,DI x y σ=+⎰⎰令则2220220lim lim (ln 1)ln lim 2lim.I εεεεπεεεεπεπππε→→-→→=--=--=-3.改变下列积分次序:2222sin 120sin211221(1) d (,)d (2) d (,)d(3) d (,)d (4) d (,)d d (,)d yx x xx x e y y x f x y y x f x y y y f x y x y f x y x y f x y xπ----+--+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰解 (1)因为积分区域{}2(,)12,22D x y x x y x x =≤≤-≤≤-为X 型区域, 其图形如图9-55 所示. 交换积分次序区域D 应视为Y 型区域. 故22221111202d (,)d d (,)d .x x y x yx f x y y y f x y x -+---=⎰⎰⎰⎰(2)因为积分区域(,)0,sin sin 2x D x y x y x π⎧⎫=≤≤-≤≤⎨⎬⎩⎭为X 型区域, 其图形如图9-56 所示. 交换积分次序区域D 应视为Y 型区域. 故sin 0sin21arcsin 12arcsin 0arcsin d (,)d d (,)d d (,)d .xx yyyx f x y yy f x y x y f x y x πππ----=+⎰⎰⎰⎰⎰⎰图9-55 图9-56(3)因为积分区域{}(,)01,0yD x y y x e =≤≤≤≤为Y 型区域, 其图形如图9-57 所示. 交换积分次序区域D 应视为X 型区域.故11111ln d (,)d d (,)d d (,)d .ye exy f x y x x f x y y x f x y y =+⎰⎰⎰⎰⎰⎰(4)因为积分区域{}121,(,)21,02D D D D x y y x y =+=-≤≤-≤≤+{}22(,)10,0D x y y x y =-≤≤≤≤为Y 型区域, 其图形如图9-58所示. 交换积分次序区域D 应视为X 型区域.故2121212d (,)d d (,)d d (,)d .y y xx y f x y x y f x y x x f x y y -+----+=⎰⎰⎰⎰⎰⎰图9-57 图9-58 4.计算下列二重积分:24212(1) d sin d d sin d 22x x x x x x y x yy y ππ+⎰⎰⎰⎰112111224(2) d d d d y y yyxxyy e x y e x+⎰⎰⎰⎰22222(3) d d ,Dxy x y D x y a x y+≤+⎰⎰是由曲线位于第一象限的部分;22(4) d d ,(1cos )D x y x y D r a θ+=-⎰⎰由曲线所组成;22(5) d d :()() 1.Dy xy x y D a b +≤⎰⎰,()0,0(6) (,)d d (,).0x y D ex y f x y x y f x y -+⎧>>⎪=⎨⎪⎩⎰⎰且其它解 (1)积分区域D 如图9-59所示.24212d sin d d sin d 22x x x x x x y x yy y ππ+⎰⎰⎰⎰2222222221222221222113d sind d sind d sind 222d sind d sind 222d sind (cos)d 224(2).y y yyy y y yy yxxxy x y x y xyyyxxy x y xyyxyy x y yyππππππππππ=++=+==-+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(2)积分区域D 如图9-60所示.22112111224212122212112222d d d d d d d d d d yyyyx x yy y y x x x x x x x y e xy e x x e y x e y x e y+=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222122122112d d d d d d .82y y xxx x x x yxxx x e yx e ye e x e y =+==-⎰⎰⎰⎰⎰⎰图9-59 图9-60(3)积分区域D 如图9-61所示.cos sin x r y r θθ=⎧⎨=⎩令 (),0,02D r r a πθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭则,故 222222220cos sin d d d d 1 sin 2d .24aDxy r x y r rx yra a ππθθθθθ=+==⎰⎰⎰⎰⎰ 图9-61(4) 积分区域D 如图9-62所示.cos sin x r y r θθ=⎧⎨=⎩令(){},0(1cos ),02D r r a θθθπ=≤≤-≤≤则,故2(1cos )22023330d d d d 15 (1cos )d .33a Dx y x y r r ra a πθπθπθθ-+=⋅=-=⎰⎰⎰⎰⎰图9-62(5)积分区域D 如图9-63所示. cos sin x ar y br θθ=⎧⎨=⎩令因为 (,)(,)xxx y r J yyr r θθθ∂∂∂∂∂==∂∂∂∂∂cos sin sin cos a ar abrb br θθθθ-== 图9-63(){},01,02D r r θθπ=≤≤≤≤则,故222222221(0)1(0)d d d d ()d d Dx y x y y y a b a b y x y y x y y x y+=≥+≤<=+-⎰⎰⎰⎰⎰⎰112d sin d d (sin )d 4.3br abr r br abr rab ππθθθθπ-=⋅+-⋅=⎰⎰⎰⎰()00020(6) (,)d d d d d d (d ) 1.x y Dx y xf x y x y x e y e x e y e x +∞+∞-++∞+∞--+∞-==⋅==⎰⎰⎰⎰⎰⎰⎰5.设(,)f x y 在xoy 平面上连续且(0,0),f a =求22221lim (,)d d .t x y t I f x y x y tπ+→+≤=⎰⎰解222222(,)(,)lim lim x y t t t f x y dxdyf t I tt ξηπππ+++≤→→==⎰⎰222((,)x y t ξη+≤其中为圆域的内点)0(,)(0,0)t ξη→→当圆域半径时,必有,故 (,)0,0)lim (,)(0,0).f f a ξηξη→==(6.设()[0,]f x a 在上连续,求证:202[()d ()d ][()d ].aaaxf x x f y y f x x =⎰⎰⎰证 令21200()d ()d [()d ]a a ax I f x x f y y I f x x ==⎰⎰⎰,I 1的积分区域D 1与交换积分次序后的积分区域D 2如图9-64所示.而102()d ()d ()d ()d aaaaxxI f x x f y y f x x f y y=+⎰⎰⎰⎰()d ()d ()d ()d aaaaxyf x x f y y f y y f x x=+⎰⎰⎰⎰12()()d d ()()d d D D f x f y x y f x f y x y=+⎰⎰⎰⎰12()()d d D D f x f y x y⋃=⎰⎰则20()d ()d a a I f x x f x x=⎰⎰()d ()d d ()()d aaaaf x x f y y x f x f y y==⎰⎰⎰⎰ 图9-64 12()()d d D D f x f y x y⋃=⎰⎰.7.已知()[,]f x a b 在上连续,求证:当0n >时,有11d ()()d ()()d .1byb n n aaa y y x f x xb x f x x n +-=-+⎰⎰⎰证 因为积分区域{}(,),D x y a y b a x y =≤≤≤≤为Y 型区域, 其图形如图9-65所示.交换积分次序区域D 应视为X 型区域.故d ()()d d ()()d bybbnn aaaxy y x f x x x y x f x y-=-⎰⎰⎰⎰111()[()]d 1()[()]d 11()()d .1n ba n ba b n a b y x f x x x n b x f x x n b x f x x n +++-=+-=+=-+⎰⎰⎰8.设()[,]f x a b 在上连续,求证: 图9-6522[()d ]()()d .b baaf x x b a f x x ≤-⎰⎰证 ,()()[,],k R f x g x a b ∀∈若与在上连续则必有2[()()]0f x kg x -≥从而2[()()]d 0baf x kg x x k -≥∆≤⎰关于的0.222()()]4()()bbbaaaf xg x dx f x dx g x dx ∆-≤⎰⎰⎰即=[0故222[()()]()()b b baaaf xg x dx f x dx g x dx≤⎰⎰⎰在上式中令()1,g x ≡则22[()d ]()()d .b baaf x x b a f x x ≤-⎰⎰.9.求证:221(sin cos )d 2.Dx y σ≤+≤⎰⎰其中{}(,)0101.D x y x y =≤≤≤≤,解 积分区域D 如图9-66所示.考虑 22(,)sin cos f x y x y =+在D 内的最值,为此解方程组222cos 2sin x y f x x f y y ⎧'=⎪⎨'=-⎪⎩ 图9-66得驻点(0,0)(0,0) 1.f =且而在该区域内y x =上,有222(,)sin cos 2sin()4f x y x y x π=+=+因23301,1444244x x ππππππ≤≤≤+≤+<+=则 由正弦函数的性质知min 0,0,1;x y f ===当时 max ,, 2.22x y f ππ===当时则 1(,)2f x y ≤≤故22(sin cos )d 2.Dx y σ≤+≤⎰⎰110.已知()[0,1]f x 在上连续,求证:11()()0d d 1.f x f y e x e y -⋅≥⎰⎰证 令()(),f x F x e =则()[0,1]()0.F x F x >在上连续,且 由综合习题六的第9题知2d ()d ()()b b a a x F x x b a F x ≥-⎰⎰即11()2()00d d (10)1f x f x x e x e ⋅≥-=⎰⎰故11()()0d d 1.f x f y e x e y -⋅≥⎰⎰11.求球体22224x y z a ++≤与圆柱体222x y ax +≤的公共部分的体积. 解 由题意所求立体的图形如图9-67所示.上半球面的方程为 2224z a x y =-- 由对称性,得12221 444d d cos ,sin , d d = d d D V V a x y x yx r y r x y r r θθθ==--==⎰⎰令 图9-671(,)0,02cos 2D r r a πθθθ⎧⎫=<<<<⎨⎬⎩⎭则 ,其图形如图9-68所示.11222122 4d d 4d d D D V a x y x ya r r r θ=--=-⋅⎰⎰⎰⎰2cos 2220d 4d a a r r rπθθ=-⋅⎰⎰图9-682cos 2222203222233201 d 4d(4)22cos 1 [(4)]d 031(2)(sin 1)d 3a a r a r a a r a πθππθθθθθ=---=--=--⎰⎰⎰⎰3220233031(2)[(1cos )d cos ]3281[(cos cos )]33282().323a x a a πππθθπθθπ=----=--+-=-⎰312432().69V V a π==-所以。
经济数学基础练习题微积分部分

经济——微积分部分一、填空题1.函数xx x f --+=21)5ln()(的定义域是 .2.若函数52)1(2-+=+x x x f ,则=)(x f .3.设函数xx x f -=1)(,则)1(xf = 。
4.函数2)(xxaa x f --=是_____________函数。
5.设3e)21(lim -∞→=+kxx x,则=k _____________.6.=+∞→xxx x sin lim. 6.若函数3ln =y ,则y '=. 7.若y = x (x – 1)(x – 2)(x – 3),则y '(0) = . 8.曲线x y =在点(4, 2)处的切线方程是.9.函数y x =-312()的单调增加区间是 . 10.函数y x =-312()的驻点是 .11.设某产品的需求量q 为价格p 的函数,且pq 5.0e1000-=,则需求对价格的弹性为 .12.过点)3,1(且切线斜率为x 2的曲线方程是y = . 13.已知)(x f 的一个原函数为x-e,则)(x f = .14.若)(x f '存在且连续,则='⎰])(d [x f . 15.若c x F x x f +=⎰)(d )(,则x f x x )d e (e --⎰= . 二、单项选择题1.设1)(+=x x f ,则)1)((+x f f =( ).A . xB .x + 1C .x + 2D .x + 3 2.下列函数中,( )不是基本初等函数.A . x y )e1(= B . 2ln x y = C . xx y cos sin =D . 35x y =3.下列极限计算正确的是( ).A .e )11(lim 0=+→xx xB .e )1(lim 1=+∞→x x xC .11sinlim =∞→x x x D .1sin lim=∞→xx x4.已知441x y =,则y ''=( ). A . 3x B . 23x C . x 6 D . 64.设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos ' C .x x x f d 2sin )2(cos 2' D .x x x f d22sin )2(cos '- 5.若函数f (x )在点x 0处可导,则( )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 6..下列函数在指定区间(,)-∞+∞上单调增加的是( ). A .sin x B .e x C .x 2 D .3 - x7.设某商品的需求函数为2e10)(p p q -=,则当p =6时,需求弹性为( ).A .--53eB .-3C .3D .-128.=-⎰)d(e x x ().A .c x x+-eB .c x xx++--e eC .c x x+--e D .c x xx +---ee9.下列等式成立的是( ) . A .xx x 1dd ln = B .21d d 1xx x-= C .x x x sin d d cos = D .xx x1dd 12=10.下列无穷限积分收敛的是( ).A .x xx ed ln ⎰∞+ B .x xx ed ln ⎰∞+C .x x x ed )(ln 12⎰∞+ D .x xx ed ln 1⎰∞+三、计算题 1.xx xx sin 11lim2-+→2.xx x x )13(lim +-∞→3.232lim222+---→x x x x x4.设)11)(1(-+=xx y , 求d y .5.设x x y xsin e +=,求y d .6设121lncos-+=x x y ,求y '.7已知)(x f xx x x+-+=11ln cos 2,求y d8.设1e )cos(=++y y x ,求y d .9.由方程0e ln 23=-+y x y x 确定y 是x 的隐函数,求y '. 10.x x xxd )2sin ln 1(++⎰11.x x x d 2cos 20⎰π12.x xxd ln 51e 1⎰+13.求微分方程0e32=+'+yy xy 满足初始条件3)1(=-y 的特解.14.求微分方程22x y y +='的通解. 15.求微分方程x xy y =+'的通解.四、应用题1.生产某种产品的固定成本为1万元,每生产一个该产品所需费用为20元,若该产品出售的单价为30元,试求:(1) 生产x 件该种产品的总成本和平均成本; (2) 售出x 件该种产品的总收入;(3) 若生产的产品都能够售出,则生产x 件该种产品的利润是多少?2.生产某种产品q 台时的边际成本10005.2)(+='q q C (元/台),固定成本500元,若已知边际收入为,20002)(+='q q R 试求(1)获得最大利润时的产量;(2)从最大利润的产量的基础再生产100台,利润有何变化?3.某厂生产某种商品q 千件的边际成本为36)(+='q q C (万元/千件),其固定成本是9800(万元).求(1)产量为多少时能使平均成本最低?(2)最低平均成本是多少?4.已知某产品的边际成本为q q C 4)(='(万元/百台),边际收入为q q R 1260)(-='(万元/百台)。
经济应用数学基础(一)-微积分-课后习题答案_高

第一章 函 数习 题 一(A)1.解下列不等式,并用区间表示解集合(其中δ>0):(1)(x-2)2>9; (2)|x+3|>|x-1|;(3)|x-x0|<δ;(4)0<|x-x0|<δ.解 (1)由(x-2)2>9得|x-2|>3,从而解得x-2>3 或 x-2<-3由此得 x>5或x<-1.因此,解集合为(-∞,-1)∪(5,+∞)(2)由绝对值的几何意义知,不等式|x+3|>|x-1|表示点x与-3的距离大于点x与1的距离,如下图所示:因此,该不等式的解集合为(-1,+∞)(3)由|x-x0|<δ得-δ<x-x0<δ,由此得x0-δ<x<x0+δ,因此,解集合为(x0-δ,x0+δ)(4)由0<|x-x0|知x≠x0,由|x-x0|<δ知x0-δ<x<x0+δ.因此,解集合为(x0-δ,x0)∪(x0,x0+δ)2.证明如下不等式:(1)|a-b|≤|a|+|b|;(2)|a-b|≤|a-c|+|c-b|证 (1)由绝对值性质(4),有|a-b|≤|a|+|-b|=|a|+|b|.(2)|a-b|=|a-c+c-b|≤|a-c|+|c-b|.3.判断下列各对函数是否相同,并说明理由:(1)y=x与y=x2;(2)y=1-x2+x与y=(1-x)(2+x);(3)y=1与y=sin2x+cos2x;(4)y=2cosx与y=1+cos2x;(5)y=ln(x2-4x+3)与y=ln(x-1)+ln(x-3);(6)y=ln(10-3x-x2)与y=ln(2-x)+ln(5+x).解 (1)因y=x2=|x|与y=x的对应规则不同(值域也不同),故二函数不相同.(2)因y=1-x2+x与y=(1-x)(2+x)的定义域均为D f=[-2,1],故此二函数相同.(3)因sin2x+cos2x≡1,x∈(-∞,+∞),故此二函数相同.(4)因y=1+cos2x=2cos2x=2|cosx|与y=2cosx的对应规则不同,可知此二函数不相同.(5)因y=ln(x2-4x+3)=ln[(x-1)(x-3)]的定义域为D f=(-∞,1)∪(3,+∞);y=ln(x-1)+ln(x-3)的定义域为D f=(3,+∞).因此,此二函数不相同.(6)因y=ln(10-3x-x2)=ln[(2-x)(5+x)]与y=ln(2-x)+ln(5+x)的定义域均为D f=(-5,2),故此二函数相同.4.求下列函数的定义域:(1)y=x2+x-2; (2)y=sin(x);(2)y=9-x2+1ln(1-x);(4)y=lnx2-9x10;(5)y=1x-3x+10x-10;(6)y=(x-1)(x-3)x-3.解 (1)使该函数有定义的x应满足条件:x2+x-2=(x-1)(x+2)≥0由此解得x≥1或x≤-2.因此,该函数定义域为D f=(-∞,2]∪[1,+∞).(2)使该函数有定义的x应满足条件:x≥0 且 sinx≥0而由sinx≥0得2kπ≤x≤(2k+1)π,k=0,1,2,….因此,该函数的定义域为D f=∪∞k=0[(2kπ)2,(2k+1)π2].(3)使该函数有定义的x应满足如下条件:9-x2≥0, 1-x>0, 1-x≠1解得 |x|≤3且x<1且x≠0.因此,该函数定义域为D f=[-3,0)∪(0,1).(4)使该函数有定义的x应满足条件:x2-9x10≥1由此得 x2-9x-10=(x+1)(x-10)≥0,解得x≥10或x≤-1因此,该函数定义域为D f=(-∞,-1]∪[10,+∞)(5)使该函数有定义的x应满足如下条件:x-3≠0, x-10≠0, x+10x-10≥0由此解得x>10或x≤-10.因此,该函数定义域为D f=(-∞,-10]∪(10,+∞).(6)使该函数有定义的x应满足条件:x-3≠0, (x-1)(x-2)x-3≥0即(x-1)(x-2)≥0 且 x-3>0痴x>3(x-1)(x-2)≤0 且 x-3<0痴1≤x≤2因此,该函数定义域为D f=[1,2]∪(3,+∞).5.已知函数f(x)=q-x2,|x|≤3x2-9,|x|>3求函数值f(0),f(±3),f(±4),f(2+a).解 因为x=0,x=±3时,|x|≤3,所以f(0)=9=3, f(±3)=9-(±3)2=0又因为x=±4时,|x|>3,所以f(±4)=(±4)2-9=7当|2+a|≤3即-5≤a≤1时,f(2+a)=q-(2+a)2=(1-a)(5+a)当|2+a|>3即a>1或a<-5时,f(2+a)=(2+a)2-9=(a-1)(a+5)所以f(2+a)=(1-a)(5+a),-5≤a≤1(a-1)(5+a),a<-5或a>1.6.讨论下列函数的单调性:(1)y=1+6x-x2; (2)y=e|x|.解 (1)易知该函数定义域为D f=[0,6].设x1,x2∈(0,6), x1<x2则f(x1)-f(x2)=6x1-x21-6x2-x22=(6x1-x21)-(6x2-x22)6x1-x21+6x2-x22=6(x1-x2)-(x21-x22)6x1-x21+6x2-x22=[6-(x1+x2)](x1-x2)6x1-x21+6x2-x22<0,0<x1<x2<3>0,3<x1<x2<6所以该函数在区间(0,3)上单调增加,在区间(3,6)上单调减少.另解,因6x-x2=9-(x-3)2,所以y=1+6x-x2是圆(x-3)2+(y-1)2=32的上半圆.由此可知,该函数在(0,3)上单调增加,在(3,6)上单调减少.(2)因y=e|x|=ex,x≥0e-x,x<0所以,该函数在[0,+∞)上单调增加,在(-∞,0]上单调减少.7.讨论下列函数是否有界:(1)y =x 21+x2; (2)y =e-x 2;(3)y =sin1x;(4)y =11-x.解 (1)因为|y |=x21+x 2=1-11+x2≤1所以,该函数有界.(2)因为|y |=e-x 2=1ex 2≤1e0=1所以,该函数有界.(3)因为sin1x≤1(x ≠0),所以,该函数有界.(4)对任意给定的正数M >0,令x 0=1-12M≠1,则|y (x 0)|=11-1-12M=2M >M此式表明,对任意给定的M >0,存在点x 0∈D f ,使|y (x 0)|>M .因此,该函数无界.8.讨论下列函数的奇偶性:(1)f (x )=x sinx +cosx ; (2)y =x 5-x 3-3;(3)f (x )=ln(x +1-x 2);(4)f (x )=1-x ,x <0,1,x =0,1+x ,x >0.解 (1)因为f (-x )=(-x )sin(-x )+cos(-x )=x sinx +cosx =f (x ),x ∈(-∞,+∞)所以,该函数为偶函数.(2)因为f (-x )=-x 5+x 3-3≠f (x )或-f (x )所以,该函数既不是偶函数,也不是奇函数.(3)因为f (-x )=ln(-x +1+x 2)=ln(1+x 2)-x2x +1+x2=-ln(x+1+x2)=-f(x), x∈(-∞,+∞)所以,该函数为奇函数.(4)因为x>0(即-x<0)时, f(-x)=1-(-x)=1+xx<0(即-x>0)时, f(-x)=1+(-x)=1-x所以f(-x)=1-x,x<01,x=01+x,x>0=f(x)因此,该函数为偶函数.9.判别下列函数是否是周期函数,若是周期函数,求其周期:(1)f(x)=sinx+cosx; (2)f(x)=|sinx|;(3)f(x)=xcosx;(4)f(x)=1+sinπx.解 (1)因为f(x)=sinx+cosx=2sinx+π4所以f(x+2π)=2sinx+2π+π4=2sinx+π4=f(x)因此,该函数为周期函数,周期为2π.(2)因f(x+π)=|sin(x+π)|=|-sinx|=|sinx|=f(x)所以,该函数为周期函数,周期为π.(3)因cosx是以2π为周期的周期函数,但是f(x+2π)=(x+2π)cos(x+2π)=(x+2π)cosx≠xcosx=f(x)所以,该函数不是周期函数.(4)因为f(x+2)=1+sin(x+2)π=1+sinπx=f(x)所以,该函数为周期函数,周期为2.10.求下列函数的反函数及其定义域:(1)y=1-x1+x; (2)y=12(ex-e-x);(3)y=1+ln(x-1);(4)y=53x-5;(5)y=2sinx3, x∈-π2,π2;(6)y=2x-1,0<x≤12-(x-2)2,1<x≤2.解 (1)由y=1-x1+x 解出x,得x=1-y1+y因此,反函数为y=1-x1+x其定义域为D(f-1)=(-∞,-1)∪(-1,+∞)(2)由所给函数解出ex,得ex=y±1+y2=y+1+y2(因为ex>0,所以舍去“-”号)由此得x=ln(y+1+y2)因此反函数为y=ln(x+1+x2)其定义域为D(f-1)=(-∞,+∞).(3)所给函数定义域为D(f)=(1,+∞),值域为Z(f)=(-∞,+∞).由所给函数解出x,得x=1+ey-1,故反函数为y=1+ex-1其定义域为D(f-1)=(-∞,+∞).(4)所给函数定义域、值域分别为D(f)=(-∞,+∞), Z(f)=(-∞,+∞)由所给函数解出x,得x=13(y5+5), y∈Z(f)=(-∞,+∞)所以,反函数为y=13(x5+5)其定义域为D(f-1)=Z(f)=(-∞,+∞)(5)由所给函数解出x,得x=3arcsiny2所以,反函数为y=3arcsinx2其定义域为D(f-1)=Z(f)=[-1,1].(6)由所给函数可知:当0<x≤1时,y=2x-1,y∈(-1,1];当1<x≤2时,y=2-(x-2)2,y∈(1,2];由此解出x,得x=12(1+y),-1<y≤12-2-y,1<y≤2 (舍去“+”号,因1<x≤2)因此,反函数为y=12(1+x),-1<x≤12-2-x,1<x≤2其定义域为D(f-1)=Z(f)=(-1,2].11.分析下列函数由哪些基本初等函数复合而成:(1)y=loga x; (2)y=arctan[tan2(a2+x2)];(3)y=e2x/(1-x2);(4)y=cos2x2-x-1.解 (1)所给函数由对数函数y=loga u与幂函数u=x复合而成;(2)所给函数由反正切函数y=arctanu、幂函数u=v2、正切函数v=tanw 和多项式函数w=a2+x2复合而成;(3)所给函数由指数函数y=eu和有理分式函数u=2x1+x2复合而成;(4)所给函数由幂函数y=u2、余弦函数u=cosv、幂函数v=w与多项式函数w=x2-x-1复合而成.12.设销售某种商品的总收入R是销售量x的二次函数,且已知x=0,10,20时,相应的R=0,800,1200,求R与x的函数关系.解 设总收入函数为R(x)=ax2+bx+c(a≠0)已知R(0)=0 所以c=0又知R(10)=800, R(20)=1200即有100a+10b=800, 400a+20b=1200整理后,得联立方程组10a+b=80, 20a+b=60由此解得 a=-2,b=100.因此,总收入函数为R(x)=100x-2x2=x(100-2x).13.某种电视机每台售价为2000元时,每月可售出3000台,每台售价降为1800元时,每月可多售出600台,求该电视机的线性需求函数.解 设该电视机的线性需求函数为Q=a-bp则由已知条件有Q(2000)=a-2000b=3000Q(1800)=a-1800b=3600由此解得a=9000,b=3.因此,该商品的线性需求函数为Q=9000-3p.14.已知某商品的需求函数与供给函数分别由下列方程确定:3p+Q2d+5Q d-102=0p-2Q2s+3Q s+71=0试求该商品供需均衡时的均衡价格p e和均衡数量Q e.解 供需均衡的条件为Q d=Q s=Q e,对应均衡价格为p e,于是有3p3+Q2e+5Q-102=0p e-2Q2e+3Q e+71=0由其中第二个方程得p e=2Q2e-3Q3-71 (倡)将上式代入第一个方程,得7Q2e-4Q e-315=0由此解得Q e=7(舍去负根).将Q e=7代入(倡)得p e=6.因此,该商品供需均衡时,均衡价格p e=6,均衡数量Q e=7.(B)1.填空题:(1)已知函数f(x)的定义域为(0,1],则函数f(ex)的定义域为,函数f x-14+f x+14的定义域为;(2)已知函数f(x)=x1+x2,则f(sinx)=;(3)已知函数f(x)=x1-x,则f[f(x)]=,f{f[f(x)]}=;(4)已知f(3x-2)=x2,则f(x)=;(5)已知某商品的需求函数、供给函数分别为:Q d=100-2p, Q s=-20+10p,则均衡价格p e=,均衡数量Q e=;答 (1)(-∞,0],14,34; (2)sinx|cosx|;(3)x1-2x,x1-3x;(4)19(x+2)2;(5)10,80.解 (1)由0<ex≤1得x∈(-∞,0],由0<x-14≤1且0<x+14≤1,得x∈14,34;(2)f(sinx)=sinx1-sin2x=sinxcos2x=sinx·|cosx|;(3)f[f(x)]=f(x)1-f(x)=x1-2x,f{f[f(x)]}=f[f(x)]1-f[f(x)]=x1-3x;(4)令t=3x-2,则x=13(t+2),于是f(t)=f(3x-2)=x2=13(t+2)2=19(t+2)2所以f(x)=19(x+2)2(5)由Q d=Q s=Q e,得100-2p e=-20+10p e解得 p e=10,从而Q e=80.2.单项选择题:(1)若函数y=x+2与y=(x+2)2表示相同的函数,则它们的定义域为.(A)(-∞,+∞); (B)(-∞,2];(C)[-2,+∞);(D)(-∞,-2].(2)设f (x )=1,|x |<1,0,|x |>1,则f {f [f (x )]}=.(A)0;(B)1(C)1,|x |<1,0,|x |≥1;(D)1,|x |≥1,0,|x |<1.(3)y =sin1x在定义域内是.(A)周期函数;(B)单调函数;(C)偶函数;(D)有界函数.(4)设函数f (x )在(-∞,+∞)内有定义,下列函数中,必为偶函数.(A)y =|f (x )|;(B)y =[f (x )]2;(C)y =-f (-x );(D)y =f (x 2)cosx .(5)设函数f (x )在(-∞,+∞)内有定义,且f (x +π)=f (x )+sinx ,则f (x ).(A)是周期函数,且周期为π;(B)是周期函数,且周期为2π;(C)是周期函数,且周期为3π;(D)不是周期函数.答 (1)C; (2)C; (3)D; (4)D; (5)B.解 (1)由(x +2)2=|x +2|=x +2≥0可知x ≥-2,故选(C).(2)因f [f (x )]=1,|f (x )|<10,|f (x )|≥1=1,|x |≥10,|x |<1f {f [f (x )]}=1,|f [f (x )]|<10,|f [f (x )]|≥1=1,|x |<10,|x |≥1故选(C).(3)因sin1x≤1,橙x ≠0,故选(D).(4)因f ((-x )2)cos(-x )=f (x 2)cosx ,故选(D).(5)因f (x +2π)=f (x +π)+sin(x +π)=f (x )+sinx -sinx =f (x )故f (x )为周期函数,且周期为2π,选(B).3.设f2x +12x -2-12f (x )=x ,求f (x ).解 令t =2x +12x -2,则x =2t +12t -2,代入所给方程,得f (t )-12f 2t +12t -2=2t +12t -2其中,由所给方程有f2t +12t -2=t +12f (t )于是得f (t )-12t +12f (t )=2t +12t -2由此得f (t )=23t 2+t +1t -1因此f (x )=23x 2+x +1x -1.4.证明下列各题:()若函数f (x ),g (x )在D 上单调增加(或单调减少),则函数h (x )=f (x )+g (x )在D 上单调增加(或单调减少).(2)若函数f (x )在区间[a ,b ],[b ,c ]上单调增加(或单调减少),则f (x )在区间[a ,c ]上单调增加(或单调减少).证 (1)对任意的x 1,x 2∈D ,且x 1<x 2,因f (x ),g (x )单调增加(减少),故有f (x 1)<f (x 2) (f (x 1)>f (x 2))g (x 1)<g (x 2) (g (x 1)>g (x 2))于是h (x 1)=f (x 1)+g (x 1)<f (x 2)+g (x 2)=h (x 2)(h (x 1)>h (x 2))所以,h (x )=f (x )+g (x )在D 上单调增加(减少).(2)对任意的x1,x2∈[a,c],x1<x2,若 a≤x1<x2≤b或b≤x1<x2≤c,则由题设有f(x1)<f(x2) (或f(x1)>f(x2))若 a≤x1≤b<x2≤c,则由题设有f(x1)≤f(b)<f(x2) (或f(x1)≥f(b)>f(x2))综上所述,f(x)在[a,c]上单调增加(或单调减少).5.设函数f(x)与g(x)在D上有界,试证函数f(x)±g(x)与f(x)g(x)在D 上也有界.证 因f(x)与g(x)在D上有界,故存在常数M1>0与M2>0,使得|f(x)|<M1, |g(x)|<M2, 橙x∈D.令M=M1+M2>0,则有|f(x)±g(x)|≤|f(x)|+|g(x)|<M1+M2=M,橙x∈D因此,f(x)±g(x)在D上有界.再令M=M1M2,则有|f(x)g(x)|=|f(x)||g(x)|<M1M2=M,橙x∈D因此,f(x)g(x)在D上有界.6.证明函数f(x)=xsinx在(0,+∞)上无界.证 要证f(x)=xsinx在(0,+∞)上无界,只需证明:对任意给定的常数M>0,总存在x0∈(0,+∞),使得|x0sinx0|>M.事实上,对任意给定的M>0,令x0=π2+2(1+[M])π∈(0,+∞)([M]为M的整数部分),则有|f(x0)|=π2+2(1+[M])π·sinπ2+2(1+[M])π=π2+2(1+[M])πsinπ2=π2+2(1+[M])π>M于是,由M>0的任意性可知,f(x)=xsinx在(0,+∞)上无界.7.已知函数函数f(x)满足如下方程af(x)+bf1x=c x,x≠0其中a,b,c为常数,且|a|≠|b|.求f (x ),并讨论f (x )的奇偶性.解 由所给方程有af1x+bf (x )=cx于是,解方程组af (x )+bf 1x=c xaf1x+bf (x )=cx可得f (x )=ac -bcx 2(a 2-b 2)x因为f (-x )=ac -bc (-x )2(a 2-b 2)(-x )=-ac -bcx2(a 2-b 2)x=-f (x )所以,f (x )为奇函数.8.某厂生产某种产品1000吨,当销售量在700吨以内时,售价为130元/吨;销售量超过700吨时,超过部分按九折出售.试将销售总收入表示成销售量的函数.解 设R (x )为销售总收入,x 为销售量(单位:吨).依题设有当0≤x ≤700时,售价p =130(元/吨);当700<x ≤1000时,超过部分(x -700)的售价为p =130×0.9=117(元/吨).于是,销售总收入函数为R (x )=130x , 0≤x ≤700130×700+117×(x -700), 700<x ≤1000=130x ,0≤x ≤700117x +9100,700<x ≤1000可见销售总收入R (x )为销售量x 的分段函数.9.某手表厂生产一只手表的可变成本为15元,每天固定成本为2000元,每只手表的出厂价为20元,为了不亏本,该厂每天至少应生产多少只手表?解 设每天生产x 只手表,则每天总成本为C (x )=15x +2000因每只手表出厂价为20元,故每天的总收入为20x (元),若要不亏本,应满足如下关系式:20x ≥15x +2000解得x≥400(只)即,若要不亏本,每天至少应生产400只手表.10.某玩具厂每天生产60个玩具的成本为300元,每天生产80个玩具的成本为340元,求其线性成本函数.该厂每天的固定成本和生产一个玩具的可变成本各为多少?解 设线性成本函数为C(x)=ax+b其中C(x)为总成本,x为每天的玩具生产量.由题设有C(60)=60a+b=300(元)C(80)=80a+b=340(元)由此解得a=2, b=180因此,每天的线性成本函数为C(x)=2x+180其中a=2元为生产一个玩具的可变成本,b=180元为每天的固定成本.第二章 极限与连续习 题 二(A)1.观察判别下列数列的敛散性;若收敛,求其极限值:(1)u n=5n-3n; (2)u n=1ncosnπ;(3)u n=2+-12n;(4)u n=1+(-2)n;(5)u n=n2-1n;(6)u n=a n(a为常数).解 (1)将该数列具体写出来为2,72,4,174,225,…,5-3n,…观察可知u n→5(n→∞).因此,该数列收敛,其极限为5.(2)因为u n=1ncosnπ=1n(-1)n=1n→0(n→∞)所以,该数列收敛,其极限为0.(3)因为u n-2=-12n=12n→0(n→∞)所以,该数列收敛,其极限为2.(4)该数列的前五项分别为:-1,5,-7,17,-31,…观察可知u n→∞(n→∞).因此,该数列发散.(5)该数列的前五项分别为0,32,83,154,245,…观察可知u n→∞(n→∞).所以,该数列发散.(6)当a<1时,u n=a n→0(n→∞);当a>1时,u n=a n→∞(n→∞);当a=1时,u n=1→1(n→∞);当a=-1时,u n=(-1)n,发散因此,a<1时,数列收敛,其极限为0;a=1时,数列收敛,其极限为1;a ≤-1或a>1时,数列发散.2.利用数列极限的定义证明下列极限:(1)limn→∞-13n=0; (2)limn→∞n2+1n2-1=1;(3)limn→∞1n+1=0;(4)limn→∞n2+a2n=1(a为常数).证 (1)对任意给定的ε>0(不妨设0<ε<1),要使u n-0=13n<ε只需n>log31ε (∵0<ε<1,∴log31ε>0)取正整数N=1+log31ε>log31ε,则当n>N时,恒有-13n-0<ε因此limn→∞-13n=0.(2)对任意给定的ε>0,要使u n-1=n2+1n2-1-1=2n2-1=2n+1·1n-1≤1n-1<ε只需n>1+1ε.取正整数N=1+1ε,则当n>N时,恒有n2+1n2-1-1<ε由此可知limn →∞n 2+1n 2-1=1.(3)对任意给定的ε>0,要使u n -0=1n +1-0=1n +1<1n<ε只需n >1ε2.取正整数N =1ε2+1,则当n >N >1ε2时,恒有1n +1-0<ε.由此可知limn→∞1n +1=0.(4)对任意给定的ε>0,要使u n -1=n 2+a2n -1=a2n (n 2+a 2+n )<a22n2<ε只需n >a2ε.取正整数N =a 2ε+1,则当n >N >a2ε时,恒有n 2+a2n-1<ε因此limn →∞n 2+a2n=1.3.求下列数列的极限:(1)limn →∞3n +5n 2+n +4; (2)limn →∞(n +3-n );(3)limn →∞(1+2n+3n+4n)1/n;(4)limn →∞(-1)n+2n(-1)n +1+2n +1;(5)limn →∞1+12+122+…+12n ;(6)limn →∞1+12+122+…+12n1+14+142+…+14n.解 (1)因为3n +5n 2+n +4=3+5n1+1n +4n 2→3(n →∞)所以limn→∞3n +5n 2+n +4=3.(2)因为n +3-n =3n +3+n →0(n →∞)所以limn →∞(n +3-n )=0.(3)因为(1+2n+3n+4n)1/n=414n+24n+34n+11/n→4(n →∞)所以limn→∞(1+2n+3n+4n)1/n=4.(4)因为(-1)n+2n(-1)n +1+2n +1=12·-12n+1-12n +1+1→12(n →∞)所以limn →∞(-1)n+2n(-1)n +1+2n +1=12.(5)因为 1+12+122+…+12n =1-12n +11-12=21-12n +1→2(n →∞)所以limn →∞1+12+122+…+12n =2.(6)因为1+12+122+…+12n =21-12n +1,1+14+142+…+14n =1-14n -11-14=431-14n +1于是1+12+122+…+12n 1+14+142+…+14n =32·1-12n +11-14n +1→32(n →∞)所以limn →∞1+12+122+…+12n1+14+142+…+14n=32.4.利用函数极限的定义,证明下列极限:(1)limx →3(2x -1)=5; (2)limx →2+x -2=0;(3)limx →2x 2-4x -2=4;(4)limx →1-(1-1-x )=1.证 (1)对任意给定的ε>0,要使(2x -1)-5=2x -3<ε只需取δ=ε2>0,则当0<x -3<δ时,恒有(2x -1)-5=2x -3<2δ=ε因此limx →3(2x -1)=5.(2)对任意给定的ε>0,要使x -2-0=x -2<ε只零取δ=ε2>0,则当0<x -2<δ时,恒有x -2-0=x -2<δ=ε所以limx →2+x -2=0.(3)对任意给定的ε>0,要使(x ≠2)x 2-4x -2-4=(x +2)-4=x -2<ε只需取δ=ε>0,则当0<x -2<δ时,恒有x 2-4x -2-4=x -2<δ=ε因此limx →2x 2-4x -2=4.(4)对任意给定的ε>0,要使(1-1-x )-1=1-x <ε只需0<1-x <ε2取δ=ε2>0,则当0<1-x <δ时,恒有(1-1-x )-1=1-x <δ=ε因此limx →1-(1-1-x )=1.5.讨论下列函数在给定点处的极限是否存在?若存在,求其极限值:(1)f (x )=1-1-x ,x <1,在x =1处;x -1,x >0(2)f (x )=2x +1,x ≤1,x 2-x +3,1<x ≤2,x 3-1,2<x ,在x =1与x =2处.解 (1)因为f (1-0)=limx →1-f (x )=limx →1-(1-1-x )=1f (1+0)=limx →1+f (x )=limx →1+(x -1)=0这表明f (1-0)≠f (1+0).因此,limx →1f (x )不存在.(2)在x =1处,有f (1-0)=limx →1-(2x +1)=3.f (1+0)=limx →1+(x 2-x +3)=3.因f (1-0)=f (1+0)=3,所以,limx →1f (x )=3(存在);在x =2处,有f (2-0)=limx →2-(x 2-x +3)=5f (2+0)=limx →2+(x 3-1)=7因f(2-0)≠f(2+0),所以limx→2f(x)不存在.6.观察判定下列变量当x→?时,为无穷小:(1)f(x)=x-2x2+2; (2)f(x)=ln(1+x);(3)f(x)=e1-x;(4)f(x)=1ln(4-x).解 (1)因为当x→2或x→∞时,x-2x2+2→0因此,x→2或x→∞时,x-2x2+2为无穷小.(2)因为当x→0时,ln(1+x)→0因此,x→0时,ln(1+x)为无穷小.(3)因为当x→+∞时,e1-x=eex→0,因此,x→+∞时,e1-x为无穷小.(4)因为当x→4-或x→-∞时,1ln(4-x)→0因此,x→4-或x→-∞时,1ln(4-x)为无穷小.7.观察判定下列变量当x→?时,为无穷大:(1)f(x)=x2+1x2-4; (2)f(x)=ln1-x;(3)f(x)=e-1/x;(4)f(x)=1x-5.解 (1)因为当x→±2时,x2-4x2+1→0因此当x→±2时,x2+1x2-4→∞所以,x→±2时,x2+1x2-4为无穷大.(2)因为当x→1时,1-x→0+当x→∞时,-x→+∞因此当x→1时,ln1-x→-∞当x→∞时,ln1-x→+∞所以,x→1或x→∞时,ln1-x为无穷大.(3)因为limn→0--1x=+∞所以limx→0-e-1/x=+∞由此可知,x→0-时,e-1/x为无穷大.(4)因为limx→5+x-5=0所以limx→5+1x-5=+∞由此可知,x→5+时,1x-5为无穷大.8.求下列函数的极限:(1)limx→3(3x3-2x2-x+2); (2)limx→05+42-x;(3)limx→16x-5x+4x-16;(4)limx→0(x+a)2-a2x(a为常数);(5)limx→0x2+a2-ax2+b2-b(a,b为正的常数);(6)limx→1x+x2+…+x n-nx-1(提示:x+x2+…+x n-n=(x-1)+(x2-1)+…+(x n-1))解 (1)由极限的线性性质,得原式=3limx→3x3-2limx→3x2-limx→3x+2=3x33-2×32-3+2=62(2)因为limx→0(2-x)=2≠0,所以原式=5+limx →042-x =5+4limx →0(2-x )=5+42=7.(3)因为x -5x +4=(x -4)(x -1),x -16=(x -4)(x +4).所以原式=limx →16(x -4)(x -1)(x -4)(x +4)=limx →16x -1x +4=38.(4)因为(x +a )2-a 2=x (x +2a ),所以原式=limx →0x (x +2a )x=limx →0(x +2a )=2a .(5)原式=limx →0(x 2+a 2-a )(x 2+a 2+a )(x 2+a 2+b )(x 2+b 2-b )(x 2+b 2+b )(x 2+a 2+a )=limx →0x 2(x 2+b 2+b )x 2(x 2+a 2+a )=limx →0x 2+b 2+bx 2+a 2+a=b a(6)因为 x +x 2+…+x n-n =(x -1)+(x 2-1)+…+(x n-1)=(x -1)[1+(x +1)+…+(xn -1+xn -2+…+1)]所以原式=limx →1(x -1)[1+(x +1)+…+(xn -1+xn -2+…+1)]x -1=limx →1[1+(x +1)+…+(x n -1+xn -2+…+1)]=1+2+…+n =12n (n +1).9.求下列函数的极限:(1)limx →∞[x 2+1-x 2-1]; (2)limx →∞(x -1)10(3x -1)10(x +1)20;(3)limx →+∞5x 3+3x 2+4x 6+1;(4)limx →∞(x +31-x 3);(5)limx →+∞x (3x -9x 2-6);(6)limx →+∞(a x+9)-a x+4(a >0).解 (1)原式=limx →∞2x 2+1+x 2-1=0.(2)原式=limx→∞1-1x103-1x 101+1x20=310(3)原式=limx →+∞5+(3/x )+(4/x 3)1+(1/x 3)=5.(4)因为(x +31-x 3)[x 2-x31-x 3+(31-x 3)2]=x 3-(31-x 3)3=1所以原式=limx→∞1x 2-x 31-x 3+(31-x 3)2=0.(5)因为x (3x -9x 2-6)=x (3x -9x 2-6)(3x +9x 2-6)3x +9x 2-6=x [9x 2-(9x 2-6)]3x +9x 2-6=6x3x +9x 2-6所以原式=limx →+∞6x3x +9x 2-6=limx →+∞63+9-(6/x 2)=1(6)原式=limx →+∞5a x+9+a x+4=1,0<a <110-5,a =10,a >1.10.求下列各题中的常数a 和b :(1)已知limx →3x -3x 2+ax +b=1;(2)已知limx →+∞(x 2+x +1-ax -b )=k (已知常数).解 (1)由于分子的极限limx →3(x -3)=0,所以分母的极限也应为0(否则原式=0≠1),即有limx →3(x 2+ax +b )=9+3a +b =0另一方面,因分子=x -3,故分母x 2+ax +b =(x -3)(x -c ),于是原式=limx →3x -3(x -3)(x -c )=limx →31x -c =13-c=1由此得c =2.于是得x 2+ax +b =(x -3)(x -2)=x 2-5x +6由此得a =-5,b =6(2)原式可变形为原式=limx →+∞[x 2+x +1-(ax +b )][x 2+x +1+(ax +b )]x 2+x +1+ax +b=limx →+∞(1-a 2)x 2+(1-2ab )x +(1-b 2)x 2+x +1+ax +b显然应有1-a 2=0,即有a =±1.于是原式=limx →+∞(1-2ab )x +(1-b 2)x 2+x +1+ax +b=limx →+∞1-2ab +(1-b 2)/x1+(1/x )+(1/x 2)+a +(b /x )=1-2ab1+a=k (a ≠-1)由上式可知,a ≠-1,于是a =1,从而有1-2b2=k 痴b =12-k .11.已知f (x )=2+x1+x(1-x )/(1-x )(1)limx →0f (x ); (2)limx →1f (x ); (3)limx →∞f (x ).解 令g (x )=2+x 1+x ,h (x )=1-x1-x.(1)因为limx →0g (x )=2,limx →0h (x )=1所以limx →0f (x )=limx →0g (x )h (x )=21=2.(2)因为 limx →1g (x )=32>0limx →1h (x )=limx →1(1-x )(1+x )(1-x )(1+x )=limx →111+x =12所以limx →1f (x )=limx →1g (x )h (x )=3212(3)因为limx →∞g (x )=limx →∞1+(2/x )1+(1/x )=1>0limx →∞h (x )=limx→∞(1/x )-(1-x )(1/x )-1=0所以limx →∞f (x )=limx→∞g (x )h (x )=10=1.12.求下列极限:(1)limx →0sin3x sin2x ; (2)limx →0tan5xsin2x ;(3)limx →0arctan4x arcsin2x;(4)limx →∞x sin1x;(5)limx →0sin2(2x )x2;(6)limx →0tan3x -sin2xx;(7)limx →01-cosxx sinx;(8)limx →0ax -sinbxtankx(a ,b ,k >0).解 (1)原式=limx →0sin3x3x·2x sin2x ·32=32.(2)原式=limx →0tan5x 5x ·2x sin2x ·52=52.(3)原式=limx →0arctan4x 4x ·2x arcsin2x ·42=2.(4)令u =1x,则x →∞时u →0.于是原式=limu →0sinu u=1.(5)原式=limx →0sin2(2x )(2x )2·4=4limx →0sin2x 2x 2=4.(6)原式=3limx →0tan3x 3x -2limx →0sin2x2x =3-2=1(7)因为1-cosx ~12x 2(x →0),所以原式=12limx →0x 2x sinx =12limx →0x sinx =12(8)原式=limx →0a k ·kx tankx -b k ·sinbx bx ·kxtankx=a k -b k =a -bk.13.求下列极限:(1)limx →∞1-1xx; (2)limx →∞1+5xx;(3)limx →0(1-sinx )1/x;(4)limx →0(1+3x )1/x;(5)limx →01-x22/x;(6)limx →∞x -2x +2x.解(1)原式=limx→∞1+1-x-x-1=1e.(2)原式=limx→∞1+1x /5x /55=e5.(3)令u =sinx ,则x →0时,u →0.于是原式=limu →0(1+u )1/u u /arcsin(-u )=e-1.(4)原式=limx →0[(1+3x )1/(3x )]3=e3(5)原式=limx →01-x 2-2/x-1=e-1(6)原式=limx →∞1-4x +2x=limx→∞1-4x +2-(x +2)/4-4x /(x +2)=e-4另解,令u =-x +24,则x =-4u -2,且u →∞(x →∞时),于是原式=limu →∞1+1u-4u -2=limu →∞1+1uu -4·limu →∞1+1u-2=e-4.14.求下列极限:(1)limx →0(cosx )1/(1-cosx ); (2)limx →0(sec2x )cot2x;(3)limx →π/2(1+cosx )5secx;(4)limx →0sinx -tanxsinx3;(5)limx →0(sinx 3)tanx1-cosx 2;(6)limx →π/61-2sinxsin(x -π/6);(7)limx →π/4(tan2x )tanπ4-x .解(1)令u =1-cosx ,则cosx =1-u ,且u →0(x →0时),因此原式=limu →0(1-u )1/u=e-1.(2)令u =cot2x ,则sec2x =1+1cot2x=1+1u ,且x →0时,u →+∞.因此原式=limu →+∞1+1uu=e(3)令u =cosx ,则secx =1u ,且x →π2时,u →0.因此原式=limu →0(1+u )5/u=limu →0(1+u )1/u 5=e5.(4)因为x →0时,sinx ~x ,sinx 3~x 3,cosx -1~-x22所以 原式=limx →0sinx (cosx -1)cosx ·sinx3=limx →0x ·(-x 2/2)x 3cosx=-12limx →01cosx =-12.(5)因为x →0时,sinx 3~x 3,tanx ~x ,1-cosx 2~12(x 2)2,所以原式=limx →0x 3·xx 4/2=2(6)令u =x -π6,则x →π6时,u →0,且有sinx =sinu +π6=12(3sinu +cosu )于是有 原式=limu →01-(3sinu +cosu )sinu=limu →01-cosu sinu -3=limu →0u 2/2sinu-3=-3.(7)因为tan2x =sin2x cos2x =sin2xcos2x -sin2xtanπ4-x =sinπ4-x cosπ4-x =cosx -sinx cosx +sinx所以tan2x tanπ4-x =sin2x cos2x -sin2x ·cosx -sinx cosx +sinx =sin2x (cosx +sinx )2从而原式=limx →π/4sin2x (cosx +sinx )2=122+222=12.15.讨论下列函数的连续性:(1)f (x )=x1-1-x ,x <0,x +2,x ≥0;(2)f (x )=e1/x,x <0,0,x =0,1xln(1+x 2),x >0.解 (1)由题设知f (0)=2,且f (0-0)=limx →0-x 1-1-x=limx →0-x (1+1-x )x =2f (0+0)=limx →0+(x +2)=2可见limx →0f (x )=2=f (0).所以,该函数在x =0处连续.另一方面,x1-1-x 在(-∞,0)内为初等函数,连续;x +2在(0,+∞)内为线性函数,连续.综上所述,该函数在(-∞,+∞)内连续.(2)因f (0)=0,且 f (0-0)=limx →0-e1/x=0, f (0+0)=limx →0+1xln(1+x 2)=limx →0+x ln(1+x 2)1/x 2=0·1=0所以 limx →0f (x )=0=f (0).因此,该函数在x =0处连续.另一方面,e1/x在(-∞,0)内连续,1xln(1+x 2)在(0,+∞)内连续.综上所述,该函数在(-∞,+∞)内连续.16.指出下列函数的间断点及其类型;如为可去间断点,将相应函数修改为连续函数;作出(1)、(2)、(3)的图形:(1)f (x )=1-x21+x ,x ≠-1,0,x =-1;(2)f (x )=x 2,x ≤0,lnx ,x >0;(3)f (x )=x x ; (4)f (x )=x sin1x.解 (1)由题设知f (-1)=0,而limx →-1f (x )=limx →-11-x 21+x =limx →-1(1-x )=2≠f (0)所以,x =-1为该函数的可去间断点.令f (-1)=2,则f ~(x )=1-x 21+x ,x ≠-12,x =-1=1-x在(-∞,+∞)内连续.f (x )的图形如图2.1所示.图2.1图2.2(2)由题设有f (0)=0,而f (0-0)=limx →0-x 2=0,f (0+0)=limx →0+lnx =-∞所以,x =0为该函数的无穷间断点.f (x )的图形如图2.2所示.(3)该函数在x =0处无定义,而f (0-0)=limx →0-xx =limx →0-x-x =-1,f (0+0)=limx →0+x x=limx →0+x x=1.图2.3因为左、右极限均存在但不相等,所以,x =0为该函数的跳跃间断点.f (x )的图形如图2.3所示.(4)该函数在x =0处无定义.因limx →0f (x )=limx →0x sin1x=0,故x =0为该函数的可去间断点.若令f (0)=0,则函数f ~(x )=x sin1x,x ≠00,x =0在(-∞,+∞)内连续.17.确定下列函数的定义域,并求常数a ,b ,使函数在定义域内连续:(1)f (x )=1x sinx ,x <0,a ,x =0,x sin1x+b ,x >0;(2)f (x )=ax +1,x ≤1,x 2+x +b ,x>1;(3)f (x )=1-x 2,-45<x <35,a +bx ,其他.解 (1)D f =(-∞,+∞).因f (x )在D f 的子区间(-∞,0)与(0,+∞)内均为初等函数.因此,f (x )在(-∞,0)∪(0,+∞)内连续.现讨论f (x )在分界点x =0处的连续性.已知f (0)=a ,而且f (0-0)=limx →0-sinxx =1,f (0+0)=limx →0+x sin1x+b =b 当f (0-0)=f (0+0)=f (0)时,即当a =b =1时,f (x )在x =0处连续.综上所述,当a =b =1时,该函数在其定义域(-∞,+∞)内连续.(2)D f =(-∞,+∞).因为f (-1)=1-a ,且f (-1-0)=limx →(-1)-(x 2+x +b )=bf (-1+0)=limx →(-1)+(ax +1)=1-a 所以,当a +b =1时,f (x )在x =-1处连续.又因f (1)=1+a ,且f (1-0)=limx →1-(ax +1)=a +1f (1+0)=limx →1+(x 2+x +b )=2+b所以,当a +1=2+b ,即a -b =1时,f (x )在x =1处连续.综上所述,当a +b =1且a -b =1,即a =1,b =0时,f (x )在x =-1和x =1处连续,从而f (x )在其定义域(-∞,+∞)内连续.(3)D f =(-∞,+∞).因f -45=a -45b ,且f -45-0=limx →-45-(ax +b )=a -45b f -45+0=limx →-45+1-x 2=35所以,当a -45b =35,即5a -4b =3时,f (x )在点x =-45处连续.又因f35=a +35b ,且f35-0=limx →35-1-x 2=45f35+0=limx →35+(a +bx )=a +35b 所以,当a +35b =45,即5a +3b =4时,f (x )在点x =35处连续.综上所述,当5a -4b =3且5a +3b =4,即a =57,b =17时,f(x)在x=-45与x=35处连续,从而f(x)在其定义域(-∞,+∞)内连续.(B)1.填空题:(1)limn→∞1n2+1(n+1)2+…+1(2n)2= ;(2)limx→0ln(x+a)-lnax(a>0)= ;(3)limx→a+x-a+x-ax2-a2(a>0)= ;(4)若limx→+∞xx n+1-(x-1)n+1=k≠0,n为正整数,则n= ,k= ;(5)x→0时,1+x-1-x是x的 无穷小;(6)设f(x)=sinx·sin1x,则x=0是f(x)的 间断点;(7)设f(x)=x x,则x=0是f(x)的 间断点;(8)函数f(x)=1x2-5x+6的连续区间是 .答 (1)0; (2)1a; (3)12a;(4)2008,12008; (5)等价;(6)可去; (7)跳跃; (8)(-∞,2)∪(3,+∞).解 (1)因为14n≤1n2+1(n+1)2+…+1(2n)2≤1n且limn→∞14n=0,limn→∞1n=0.所以,由夹逼定理可知,原式=0.(2)原式=limx→0ln1+x a1/x=1alimx→0ln1+x a a/x=1alnlimx→01+x a a/x=1alne=1a.(3)因为x-a+x-ax2-a2=x-ax+a(x+a)+1x+a且limx→a+x-ax+a(x+a)=0,limx→a+1x+a=12a所以,原式=12a.(4)因为x n+1-(x-1)n+1=[x-(x-1)][x n+x n-1(x-1)+…+x(x-1)n-1+(x-1)n]=x n1+1-1x+…+1-1x n-1+1-1x n所以,由题设有原式=limx→+∞x2008-n1+1-1x+…+1-1x n-1+1-1x n=k≠0显然,要上式成立,应有2008-n=0,即n=2008.从而原式=limx→+∞11+1-1x+…+1-1x n-11-1x n=1n=k所以,k=1n=12008.(5)因为limx→01+x-1-xx=limx→021+x+1-x=1所以,x→0时,1+x-1-x是x的等价无穷小.(6)因为limx→0sinx·sin1x=limx→0sinx x·limx→0xsin1x=1×0=0.所以,x=0是f(x)的可去间断点(令f(0)=0,即可).(7)因为f (0-0)=limx →0--x x =-1,f (0+0)=limx →0+xx=1左、右极限存在,但不相等,故x =0为跳跃间断点.(8)该函数有定义的条件是x 2-5x +6=(x -2)(x -3)>0由此得x <2或x >3.因此,该函数的连续区间为(-∞,2)或(3,+∞).2.单项选择题:(1)函数f (x )在点x 0处有定义,是极限limx →x 0f (x )存在的 .(A)必要条件; (B)充分条件;(C)充分必要条件;(D)无关条件.(2)下列“结论”中,正确的是 .(A)无界变量一定是无穷大;(B)无界变量与无穷大的乘积是无穷大;(C)两个无穷大的和仍是无穷大;(D)两个无穷大的乘积仍是无穷大.(3)设函数f (x )=1,x ≠1,0,x =1,则limx →1f (x )= .(A)0; (B)1; (C)不存在; (D)∞.(4)若limx →2x 2+ax +bx 2-3x +2=-1,则 .(A)a =-5,b =6; (B)a =-5,b =-6;(C)a =5,b =6;(D)a =5,b =-6.(5)设f (x )=1-x 1+x,g (x )=1-3x ,则当x →1时, .(A)f (x )与g (x )为等价无穷小;(B)f (x )是比g (x )高阶的无穷小;(C)f (x )是比g (x )低阶的无穷小;(D)f (x )与g (x )为同阶但不等价的无穷小.(6)下列函数中,在定义域内连续的是 .(A)f (x )=cosx ,x ≤0,sinx ,x >0; (B)f (x )=1x,x >0,x ,x ≤0;(C)f (x )=x +1,x ≤0,x -1,x >0;(D)f (x )=1-e-1/x 2,x ≠0,1,x =0.(7)下列函数在区间(-∞,1)∪[3,+∞]内连续的是 .(A)f (x )=x 2+2x -3; (B)f (x )=x 2-2x -3;(C)f (x )=x 2-4x +3;(D)f (x )=x 2+4x +3.(8)若f (x )在区间 上连续,则f (x )在该区间上一定取得最大、最小值.(A)(a ,b ); (B)[a ,b ]; (C)[a ,b ); (D)(a ,b ].答 (1)D; (2)D; (3)B;(4)A;(5)D; (6)D; (7)C; (8)B.解 (1)limx →x 0f (x )是否存在与f (x )在点x 0是否有定义无关,故应选(D).(2)(A)、(B)、(C)都不正确.例如n →∞时n sinn 是无界变量,而不是无穷大;n →∞时,n sinn 是无界变量,n 是无穷大,而n ·n sinn =n 2sinn 是无界变量,不是无穷大;n →∞时,n 与-n 都是无穷大,但n +(-n )=0是一常量,不是无穷大.(D)正确.例如,设limu →∞u 0=∞, limu →∞v n =∞则对任意给定的M >0,存在正整数N 1,N 2,使当n =N 1,n >N 2时,恒有u n>M ,v n >M取N =max{N 1,N 2},则当n >N 时,恒有u n v n=u n ·v n>M ·M =M2这表明limn →∞u n v n =∞.(3)易知f (1-0)=f (1+0)=1,从而limx →1f (x )=1,故应选(B).(4)因为limx →2(x 2-3x +2)=limx →2(x -2)(x -1)=0,因此,分子的极限也应为0,即应有x 2+ax +b =(x -2)(x -c )=x 2-(2+c )x +2c由此得a =-(2+c ),b =2c于是,由题设有limx →2x 2+ax +b x 2-3x +2=limx →2(x -2)(x -c )(x -2)(x -1)=limx →2x -cx -1=2-c =-1由此得c =3,从而得a =-5,b =6.故应选(A).(5)因为。
经济数学基础 微积分 第六章习题解答

2
2 1
8
(8) 2 (1 x)5 dx 0
1(1 x)5dx 2 (x 1)5dx
0
1
1(1 x)5d(1 x) 2 (x 1)5d(x 1)
0
1
(1 x)6 1 (x 1)6 2
6
6
0
1
1 3
16
(9)
1
dx
0 x9 x
2
5
1 ln 21 2 20
(4) 2 (ex x)dx 0 (ex 1 x2 ) 2 20 e2 3
b
(5) a xdx (a b)
解:b a 0, 原式
b
xdx
1 x2 b 1 (b2 a2 )
a
2 a2
b 0 a,
原式
f (2) e4 0 极小值点 x 2
5、利用牛—莱公式计算下列积分:
4
21
(1) 1 (1 x )
dx x
4
2
21 (1 x) d x
4
2
2 (1 x) d(1 x)
1
2 (1
4
x )3
3
1
2
3
(2) 2 1 x3 dx
1 x2 x3
1 16
9 0 ( x 9 x)dx
1 16
1 16
9 0 x 9d(x 9) 9 0 xdx
1
2
(x
3
9) 2
16
1
2
3
x2
16
93
经济数学(定积分习题及答案)

第六章 定积分习题 6-11.利用定积分的定义,计算由抛物线2y x =、直线x = a , x = b 及x 轴所围的图形的面积(0)S a b ≤≤.解 将区间[],a b n 等分,则每个小区间的长均为i b ax n -∆=于是第i 个小区间为 (1),b a b a a i a i n n --⎡⎤+-+⎢⎥⎣⎦,取小区间的右 端点为i ξ,即ib a a i n ξ-=+,则2()()(1,2,,)i b a f a i i n n ξ-=+=因为222211()()()(2)nnn i i i i a b a b a b aS f x a i i n n n ξ==---=∆=++∑∑ 2222111()2n n ni i i b a b a b a a a i i n n n ===⎡⎤---=++⎢⎥⎣⎦∑∑∑222(1)()(1)(21)226n n b a n n n b a b a na a n n n ⎡⎤+-++--=++⎢⎥⎣⎦222()(1)()(1)(21)()6a b a n b a n n b a a n n ⎡⎤-+-++=-++⎢⎥⎣⎦ 而222()(1)()(1)(21)lim ()6lim n n n a b a n b a n S n b a a n n →∞→∞⎡⎤-+-++=-++⎢⎣=⎥⎦()22()()3b a b a a a b a ⎡⎤-=-+-+⎢⎥⎣⎦223311()()()33b a a ab b b a =-++=-所以 2331d ().3b a x x b a =-⎰2.利用定积分的定义,计算下列积分:(1)1d x x⎰ (2)10d x e x ⎰解 (1) 将区间[]0,1n 等分,则每个小区间的长均为1i x n ∆=,于是第i 个小区间为1,i i n n -⎡⎤⎢⎥⎣⎦, 取小区间的右端点i x 为i ξ,即i i n ξ=,则()(1,2,,)i i f i n n ξ== 因为()11221()1112nn i i i nni i n n S f x i i n n n n ξ===+⋅=∆=∑∑∑ = =两端取极限,得2(1)1li l 22m m i n n n n n n S →→∞∞+== 所以11d 2x x =⎰.(2) 将区间[]0,1n 等分,则每个小区间的长均为1i x n ∆=,于是第i 个小区间为1,i i n n -⎡⎤⎢⎥⎣⎦, 取小区间的右端点i x 为i ξ,即iin ξ=,则 ()(1,2,,)i n i f e i n ξ==因为111112111(()()())nn i i i n n n n n n i i e e e e n S f x n ξ==⎡⎤===+++⎢⎥⎢⎥⎣⎦∆∑∑111(1)1nn e e n e -=-两端取极限,得1111(1)(1l )1lim lim111imnnn n n nn ne e e e S e ne e n∞→∞→→∞--===---所以 10d 1x e x e =-⎰.2.利用定积分的几何意义,说明下列等式:(1)4π=⎰ (2)⎰-232cos ππx d x = 0(3)22sin 0xdx ππ-=⎰ (4)⎰-22cos ππxd x =2⎰20cos πxd x解 (1) 因为单位圆221x y +=在第一象限的方程为y =所以根据定积分的几何意义知0x⎰为单位园在第一象限的面积.故4x π=⎰.(2) 因为 当322x ππ-≤≤时,曲线cos y x =在x 轴的上方和下方的曲边梯形的面积相等.所以根据定积分的几何意义知,322cos d 0x x ππ-=⎰.(3) 因为当22x ππ-≤≤时,函数sin y x =在x 轴上方和下方的曲边梯形的面积相等,所以根据定积分的几何意义知,22sin d 0x x ππ-=⎰.(4) 因为 cos y x =在,22ππ⎡⎤-⎢⎥⎣⎦上为偶函数,其图形关于y 轴对称且都在x轴的上方,所以根据定积分的几何意义知,222cos d2cos dx x x x πππ-=⎰⎰.4.将下列极限表示成定积分:(1)2111 lim()14n n n n nn n n →∞++++++(2)1 lim n n →∞解(1)因为211114nn n nn n n++++++222211111121()1()1() 111()ninnn n ninn=⎡⎤⎢⎥=+++⎢⎥⎢⎥+++⎢⎥⎣⎦=+∑所以21lim)(1114n nn n nn n n→∞++++++1221111lim d11()nnixi n xn→∞===++∑⎰.(2)令1yn=[]1ln ln(1)ln(2)ln(2)lny n n n n n=⋅+++++-[] 1ln(1)ln(2)ln(2)lnn n n n n n=⋅+++++-112ln(1)ln(1)ln(1)nn n n n⎡⎤=⋅++++++⎢⎥⎣⎦111ln(1)nin n==+⋅∑因为lim lnny→∞=11lim ln(1)nniin n→∞=+⋅∑=1ln(1)dx x+⎰而yey ln=,所以1lim ln ln(1)dlim ny x xny e e→∞+→∞⎰==.习题6-2 1.确定下列定积分的符号:(1)21ln d x x x⎰ (2)4401cos d 2xx π-⎰(3)10sin cos d cos sin x x x x x x x -+⎰ (4)11||d x x-⎰解 (1) 因为被积函数()ln f x x x =在[1,2]上连续,且()0f x ≥,但()f x 不恒等于0,所以由性质6知,21ln d 0.x x x >⎰(2) 因为被积函数41cos ()2x f x -=在0,4π⎡⎤⎢⎥⎣⎦上连续,且()0f x ≥,但()f x 不恒等于0,所以由性质6知, 4401cos d 0.2x x π->⎰(3) 因为被积函数sin cos ()cos sin x x x f x x x x -=+在[]0,1上连续,且()0f x ≤,但()f x 不恒等于0,所以由性质6知, 10sin cos d 0.cos sin x x xx x x x -<+⎰(4) 因为被积函数()||f x x =在[-1,1]上连续,且()0f x ≥,但()f x 不恒等于0,所以由性质6知 11||d 0.x x ->⎰2.不计算定积分,比较下列各组定积分值的大小.(1)120d x x⎰与130d x x⎰ (2)320d x x⎰与330d x x ⎰(3)21ln d x x⎰与221ln d x x⎰ (4)43ln d x x⎰与423ln d x x⎰解 (1) 因为在[]0,1上,232(1)0x x x x -=-≥,即 23x x ≥ 所以 11230d d .x x x x ≥⎰⎰(2) 因为在[]1,3上,232(1)0x x x x -=-≤, 即 23x x ≤所以 1123d d x x x x≤⎰⎰.(3) 因为在[]1,2上,20ln 1,ln ln ln (1ln )0x x x x x ≤<-=-≥即 2ln ln x x ≥所以 22211ln d ln d .x x x x ≥⎰⎰(4)因为在[3,4]上,1ln x <,()2ln ln ln 1ln 0x x x x -=-< 即 2ln ln x x <所以 44233ln d ln d .x x x x <⎰⎰3.估计下列积分值: (1)()4211d xx+⎰ (2)()52441sin d x x ππ+⎰(3)arctan d x x(4)202d x xe x -⎰解 (1) 因为被积函数2()1f x x =+在区间[]1,4上单调递增,所以在区间[]1,4上有22117x ≤+≤,14x ≤≤即故由定积分的估值定理,得()42161d 51xx ≤+≤⎰(2) 设被积函数()21sin f x x =+,则由()'sin20f x x ==,得驻点为 12,2x x ππ==.且()3532,1,,24242f f f f ππππ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即 211sin 2x ≤+≤故由定积分的估值定理,得()52441s i n d 2x x ππππ≤+≤⎰.(3) 设被积函数()arctan f x x x =,x ∈⎣ 因为'2()a r c t a n 01x f x x x =+>+,则()f x在⎣上单调递增,所以当x ∈⎣时,arctan f x x f ≤≤即arctan x x ≤故由定积分的估值定理,得2a r c t a n d.93x x ππ≤≤(4) 因为22022d d x x xxe x e x--=-⎰⎰,设被积函数2()x xf x e-=,[]0,2x ∈令()2'()210x xf x x e-=-=,得驻点为1411,(),(0)1,22x f e f -===且2(2)f e =,所以当[]0,2x ∈时, 2124xxee e --≤≤ 故由定积分的估值定理,得 212242d 2xxee x e --≤≤⎰即2102422d 2.x x e e x e---≤≤-⎰4.证明下列不等式:(1)2x π≤≤(2) 1126x π≤≤⎰证 (1)0,2x π⎡⎤∈⎢⎥⎣⎦而 20cos 1x ≤≤所以10,2x π⎡⎤∈⎢⎥⎣⎦ 故由定积分的估值定理,得2x π≤≤(2)令()f x =()f x 在[]0,1上连续,且'()f x =令'()0f x =,得驻点23x =,且12(0)(1),()23f f f ===所以1[0,1]2x ∈故由定积分的估值定理,得1126x π≤⎰5.求下列极限:(1)10limd 1n xxn x e xe →∞+⎰(2)120lim d 1nn xxx→∞+⎰解 (1) 设被积函数()1n xx x e f x e =+,则[]()0,1f x 在上连续,由积分中值定理知,在区间(0,1)内,至少存在一点ξ,使得10d (0,1)11n x n x x e e x e e ξξξξ=∈++⎰ 故 10lim lim 01d 1n x n x n n x e e x e e ξξξ→∞→∞==++⎰.(2) 设被积函数1()1,()0,12n x f x f x x ⎡⎤=≤⎢⎥+⎣⎦则在上连续,由积分中值定理知,在区间10,2⎡⎤⎢⎥⎣⎦内,至少存在一点ξ,使得1201d (0,)112n n x x x ξξξ=∈++⎰故120d l 1im lim 01n n n nx x x ξξ→∞→∞=++=⎰.6*. 设f (x ), g (x )在[a ,b ]上连续,求证:(1) 若在[a , b ]上,f (x )≥0且()d baf x x⎰=0,则在[a , b ]上, f (x )≡0;(2) (2) 若在[a , b ]上, f (x )≤g (x ) 且()d ()d bbaaf x xg x x=⎰⎰,则在[a , b ]上,必有 f (x )≡ g (x )解 (1)用反证法.若)(x f 不恒等于为零,则至少存在一点] ,[0b a x ∈,使得)(0x f 0≠.不妨假设)(0x f >0,且) ,(0b a x ∈,则由)(x f 在]b , [a 的连续性知,0lim ()()0x x f x f x →=>,根据定理 2.3得推论2知,在点0x 的某个邻域内,就必有0)(21)(0>>x f x f .于是由性质4,得0000()d ()d ()d ()d bx x baax x f x x f x x f x x f x xδδδδ-+-+=++⎰⎰⎰⎰0000001()d ()d ()02x x x x f x x f x x f x δδδδδ++--≥>⋅=⋅>⎰⎰由此与已知⎰=bax x f 0d )(矛盾,反证法之假设不成立,即()0f x ≡.(2)令)()()(x f x g x F -=,则在]b , [a 上就必有0)(≥x F ,且d )(=⎰x x F ba.由(1)的结论可知,在]b , [a 上就必有0)(≡x F ,即)()(x g x f ≡.7*. 设f (x )在区间[a , b ]上连续,g(x)在区间[a , b ]上连续且不变号,求证至少存在一点ξ∈(a , b),使得⎰⎰=ba b a x x g f x x g x f d )()(d )()(ξ.证 因为)(x f 在]b , [a 上连续,必有最大值M 和最小值m ,所以 ] , [b a x ∈∀,有()m f x M ≤≤.设0)(>x g ,则有 )()()()(x Mg x g x f x mg ≤≤由定积分的性质5,得⎰⎰⎰≤≤bababaxx g M x x g x f x x g m d )(d )()(d )(于是,有Mxx g xx g x f m baba≤≤⎰⎰d )(d )()(又由介值定理知,在( , )a b 内,必存在一点ξ,使得()()d ()()d baba f x g x xf g x xξ=⎰⎰故⎰⎰=b abaxx g f x x g x f d )()(d )()(ξ (,)a b ξ∈.习题 6-31. 1. 已知函数sin d xy t t=⎰,求当x = 0及4x π=时, 此函数的导数.解 因为'sin d )'si (n xy x x x==⎰所以 00'|sin |sin 00x x y x =====44'|sin |sin4x x y x πππ====2. 2. 求由00d cos d 0y xt e t t t +=⎰⎰决定的隐函数y (x )对x 的导数. 解 将方程两边对x 求导并注意到y 为x 得函数,得'cos 0y e y x ⋅+=解出'y ,得 'c o s yy e x -=-.3. 3. 当x 为何值时,2()d x t I x te t-=⎰有极值?此极值是极大值还是极小值?解 由2'()0xI x xe -==,得驻点0x =,而当0x <时,'()0I x <,当0x >时,'()0I x >所以,当0x =时,()I x 有极值,此极值是极小值(0)0I =.4. 4. 计算下列导数:(1)20d d x t x ⎰(2)32d d x x t x ⎰202d (3)cos d d x t t t x ⎰解(1) 22'0d ()2d xt x x ==⎰323'2'd (2))()d x x t x x x =-⎰2=20224234d (3)cos d cos ()'2cos .d x t t t x x x x x x =-⋅=-⎰5. 5. 计算下列定积分:(1) 2214()d x t x x ++⎰(2) 220()d x a x +(3) 1⎰ (4) 42021331d 1x x xx -+++⎰(5)52032d x x x-+⎰ (6)101d x x -⎰| (7)(1)d xt t t-⎰ (8)d ()bax x a b <⎰(9) 21(1)()1(1)2x x f x xx ⎧+≤⎪=⎨>⎪⎩, 求20()d f x x ⎰.解 (1)23221147()d (4ln )4ln 233x x t x x tx tx ++=++=++⎰.00222d()d 11(2)1 1 (().033)x x a a x x a aa aa ππ===-=++(3) 1110012d()11arcsin 222x xπ===⎰⎰.420222113013311(4)d (3)d 11(arctan )| 1.4x x x x xx x x x π---++=+++=+=+⎰⎰(5) 因为被积函数22232,01,2532(32),12x x x x x x x x x ⎧-+≤≤≤≤⎪-+=⎨--+<<⎪⎩或所以122201520(32)32d (32d d )x x x x x x xx x =-+--++-⎰⎰⎰5221(32)d 14.2x x x +-+=⎰ (6) 因为在本题中,变量为x 且01x ≤≤,t 为参数,但是可以取任意 实数,即本题结果应为t 的函数. 所以设1()d I t x t x=-⎰,则当0t ≤时,得111()d ()d 2I t x t x x t x t =-=-=-⎰⎰当01t <<时, 得11201()d ()d ()d 2ttI t x t x t x x x t x t t =-=-+-=-+⎰⎰⎰当1t ≥时, 得111()d ()d 2I t x t x t x x t =-=-=-⎰⎰故 21, 021(), 0121, 12t t I t t t t t t ⎧-≤⎪⎪⎪=-+<<⎨⎪⎪-≥⎪⎩.(7) 因为被积函数(1), 0(1)(1),01(1), 1t t t t t t t t t t t -≤⎧⎪-=--<≤⎨⎪-≥⎩,且x 为参数可取一切实数,所以应分下列情况讨论:当0x ≤时,有320()(1)d 32xx x I x t t t =-=-⎰当01x <<时,有320()(1)d 32xx x I x t t t =-=-+⎰ 当1x ≥时,有320111()(1)d (1)d 323xx x I x t t t t t t =-+-=-+⎰⎰故 323232,032(),01321,1323x x x x x I x x x x x ⎧-≤⎪⎪⎪=-+<<⎨⎪⎪-+≥⎪⎩.(8) 令被积函数0x =,得0x =,按数0在区间[],a b 的不同位置状况,可分为下列几种情况:① 当0a b <<时,得221d d ()2b b a a I x x x x b a ==-=--⎰⎰② 当0a b <<时,得02201d d ()2b a I x x x x b a =-+=+⎰⎰ ③ 当0a b <<时,得221d ()2b a I x x b a ==-⎰故综上所述,有2222221(), 021(), 21(), 002bab a a b b a b a I x dx a bb a --<<+⎧⎪⎪⎪==<<⎨⎪-<<⎪⎪⎩⎰.(9) 因为21(1)()1(1)2x x f x x x ⎧+≤⎪=⎨>⎪⎩所以 212120101208()d ()d (1)d ()d 23d f x x f x x f x x x x x x +=++==⎰⎰⎰⎰⎰.6. 6. 求下列极限:(1)001lim (1sin 2)d xx t tx →+⎰(2) 2001lim arctan d x x t t x →⎰(3)22limcos d x x x t t → (4)* 2220lim d xx t x e t e t x-→∞⎰解 (1) 0001lim(1sin lim(1sin 2) 1.2)d xx x t x t x →→+==+⎰(2)202000arctan 1lim arc 21lim lim 222(1tan )d x x x x x x x t t x →→→==+=⎰.(3)2222400cos dlim4cos0d.xx xxxtxtxt t→→→===222222222222dlim lim(12)1(4)lim dlim.2(12)x txx xx xtx x xxt e t x exe e xxxet e tx-*→→∞→∞→∞∞=+==+=⎰⎰7*. 设23,[0,1)(),[1,2]x xf xx x⎧∈⎪=⎨∈⎪⎩,求()()dxx f t tΦ=⎰在[0,2]的表达式,并讨论Φ(x)在[0, 2]上的连续性与可导性.解因为当10<≤x时,⎰==Φxxttx323d)(当21≤≤x时,4123011()d d124x xx t t t tΦ=+=+⎰⎰所以)(xΦ的表达式为34, 013()1, 12412xxxxx⎧≤<⎪⎪Φ=⎨⎪+≤≤⎪⎩又因为)(xf在区间)1,0[与]2,1(上为初等函数,显然为连续函数.2311111lim()lim1,lim()lim1lim()1x x x xxf x x f x xf x--++→→→→→=====而即由1lim()(1)1xf x f→==知,)(xf在1=x处连续. 所以)(xf在区间]2,0[上连续. 故由定理6.5知,函数)(xΦ在区间]2,0[上可导.8*.设f(x)在[a, b]上可积,求证:当x∈(a, b)时,Φ(x)=0()dxf t t⎰在[a, b]上连续(提示: 注意可积函数的有界性).证因为设对任意的x, x x+∆∈(a, b)时,有()()()()d()d()dx x x x xa a xx x x x f t t f t t f t t+∆+∆Φ=Φ+∆-Φ=-=⎰⎰⎰又由f(x)在[a, b]上可积知,存在常数M>0, 使得()f x M≤所以()()d dx x x xx xx f t t M t M x+∆+∆∆Φ=≤≤∆⎰⎰而00lim0,lim()0x xx x∆→∆→∆=∆Φ=则故()xΦ在[a, b] 上任意一点x处连续, 即()xΦ在[a, b]上连续.习题6-41. 计算下列定积分:(1)30(1sin )d x xπ-⎰(2) 1x(3)x(4)2120d t tet-⎰(5)21ex⎰ (6)22cos cos 2d x x x ππ-⎰(7)22xππ-⎰(8)xπ⎰解 (1) 330(1sin )d d sin d x x x x xπππ-=-⎰⎰⎰20d (1cos )d cos x x xππ=+-⎰⎰3014(cos cos )33x x x ππ=+-=-12242222224422244cos (2)sin d sin sin cos 1sin d d sin sin 1 d d 1.4sin t x x t txtt t t tt tt t tπππππππππππ=-===-=-⎰⎰⎰⎰⎰令202201(3)21 13).()2x x a a x =-==--(4)222120112122200d()1.2d t t t te e t e et ------=-=-=⎰⎰2221211121(5)(1ln )d(1ln )2(1ln)1).e e e x x x x -=++=+=⎰⎰22202222032200(6)cos cos 2d 2(12sin )d sin 2d sin 4sin d sin 42 2sinsin .33x x x x xx x xx x πππππππ-=-=-=-=⎰⎰⎰⎰22(7)2x xππ-=⎰11222203222sin(cos )d 2(cos )d cos 24 2(cos ).33x x xx x x πππ==-=-⋅=⎰⎰2202(8)d d d x x xx x x xxx πππππππ==-=-=⎰⎰⎰2. 2. 利用函数的奇偶性计算下列定积分:(1)sin d x x ππ-⎰ (2)422sin d x xππ-⎰(3)12x⎰(4)323423tan d 21x xx x x -++⎰解 (1)因为sin x 在[],ππ-上为奇函数,所以sin d 0x x ππ-=⎰.(2)因为4sin x 在,22ππ⎡⎤-⎢⎥⎣⎦上是偶函数,所以 22202422222000122111 sin 21cos 2sin d ()d (12cos 2cos 2)d 21cos 4d 2113 sin 4.4422826212x x x x x x x xx x x πππππππππππ---++===⋅-=⋅++⋅+⋅=⎰⎰⎰⎰(3)因为221)(arcsin x x -在11,22⎡⎤-⎢⎥⎣⎦上是偶函数,所以1122202x x=⎰⎰11323220022(arcsin )d(arcsin )(arcsin )|.3324x x x π===⎰(4)因为3242tan 21x x x x ++在[]3,3-上是奇函数,所以323423tan d 021x xx x x -=++⎰.3. 证明下列各题:(1) 1122111d d 11x x t tt t =++⎰⎰(2)11(1)d (1)d mn n m x x x x x x-=-⎰⎰(3) 20sin d 2sin d nn x x x x ππ=⎰⎰证 (1) 令211,d d t t y y y ==-,则11112222111d d 1d d 1111xxxx y y t t ty yt =-===++++⎰⎰⎰⎰左端 = 右端.10111(1)d 1(1)d (1)d (1)d m n m n n m n m x x x x u u u uu u u x x x =-=---=-=-=⎰⎰⎰⎰(2)左端令右端.2022202(3)sin d sin ()d()222cos d 2cos d n n nn x x x u u u u u u uπππππππππ--==+++==⎰⎰⎰⎰左端令2022sin d 2sin d 2nn u y y y x x πππ===--⎰⎰令右端.4.* 设()f x 在[0,1]上连续且单调减少,求证:对任给()0,1α∈,均有1()d ()d f x x f x xαα>⎰⎰证 由于1()d ()d f x x x t f t tαααα=⎰⎰令, 则当01,0t α<<<<时,01,0t t t αα<<<<<且又由已知()f x 在[0,1]上单调减少,所以()()f x f x α≥于是11()d ()d ()d f x t f t t f t tαααα=>⎰⎰⎰即 10()()f x dx f x dxαα>⎰⎰.5. 5. 计算下列积分:(1)1d x xe x -⎰ (2)1ln d ex x x⎰(3)41x⎰ (4)1arctan d x x x⎰ (5) 220cos d x e x x π⎰ (6)2(sin )d x x xπ⎰ (7)1ln d e ex x⎰(8)1(1)3d xx x-⎰(9)21cos ln d e x x xπ⎰解 (1)1111100002d d 1.x x x x xe x xe e x e e e -----=-+=--=-⎰⎰(2)22221111111ln d (1).2224l 4n d eee ex e x x x x x x e x -==-=+⎰⎰(3)44112ln x x =⎰⎰411422112ln 2d 8ln 244(2ln 21)x x x x-=-=-=-⎰.221011020101arctan |d 221111 ( 4)arcta (arctan ).24d 22n 4x x x x x x xx x x ππ-+=⋅--=-=⎰⎰222222022220220sin 2sin d 2cos 4cos d 24(5)c c s o o s d d xxx xx x exe x xe exe x xe e x x xex ππππππππ-=-=+=--⎰⎰⎰⎰移项解得 22c o sd 1(2)5.xe x x e ππ=-⎰22003203230301 si 1(6)(sin n 2642)d (1cos 2)d 21 cos 2d 62si 1 co n s 2.644642d cos 2d x x x x x xx x x x x x x x x x x x xππππππππππππ=-+=-+=--=-=⎰⎰⎰⎰⎰ (7) 令 ln 0x =,则1x =1111111111ln d ln d ln d 1 ln d ln |d 2(1).eeeee eeex x x x x xx x x x x x e =-+=-++-=-⎰⎰⎰⎰⎰111101221(8)(1)3d (1)3ln 3(1)1 33ln 3ln 311ln 32 3.ln 3(ln 3)ln 3x x xxxx x x d x dx -=--=--=-=⎰⎰⎰222211121(cos(ln)|sin(ln )d9)cos ln 1cos(ln d d )e e e e x x x x x xe x xπππππ+=--=⎰⎰⎰移项解得 212co 1(1s ln d ).2e x x e x ππ=-⎰6. 已知20cos d (2)x x x π+⎰= m , 求20sin cos d 1x x x x π+⎰.解2200sin cos sin 2d d 2122x x x x x t x x x ππ==++⎰⎰01sin d 22t t t π+⎰ 02011d(cos )221cos 1cos 111d ().0222222(2)t t t t t m t t ππππ=-+=-⋅+=+-+++⎰⎰ 7. 设2(2),()d .xyba bf x a xe f t t ++=⎰求解 设2t x a =+,则222222()d 2(2) d 2d 2d (2).y a y a x b b x y a y a yb a b bbx y a b bf t t f x a x x e xxbe b e x b y a b e b ----+-=+=⋅⎡⎤=⋅-=--⋅⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰8. 设1(2)2f =,'(2)0f =,20()d 1f x x =⎰,求12''0(2)d x f x x⎰. 解 201''2011(2 d )d (2)2x f x x f x x '=⎰⎰习题 6-51. 利用定义判断下列广义积分的敛散性,如果收敛,试计算其值.(1)411d x x +∞⎰ (2)2d 22xx x +∞-∞++⎰(3)0d axe x +∞⎰(4)0(1)d a x x+∞+⎰(5)21x⎰(6)1e⎰(7)220d (1)x x -⎰(8)2()d (0)aax a xa α->⎰解 (1)344111111d limd lim ()3ttt t x x x xx +∞-→+∞→+∞==-⎰⎰3111lim ().333t t -→+∞=-+=(2)02220d d d 222222x x xx x x x x x +∞+∞-∞-∞=+++++++⎰⎰⎰02200220d d lim lim 2222d(1)d(1)lim lim .1(1)1(1)t t t t t t t t x x x x x x x x x x π→-∞→+∞→-∞→+∞=+++++++=+=++++⎰⎰⎰⎰(3)当a < 0时, 01lim d t ax t e x a →+∞=-⎰,所以广义积分收敛于1a -; 当a ≥0时,0limd t axt e x→+∞=+∞⎰,所以广义积分发散.(4)当a < -1时,01lim (1)d 1a t x x a +∞→+∞+=-+⎰, 所以广义积分收敛于11a -+;当a ≥-1时,0lim (1)d a t x x +∞→+∞+=∞⎰, 所以广义积分发散.(5)因为21210lim lim 1)d t tεεε+++→→+⎰30182lim (33t t ε+→=+=所以广义积分收敛且收敛于83.(6)因为 x = e 为瑕点,且存在ε>0,有0011lim lim e e εεεε++--→→=⎰⎰01lim arcsin(ln )lim[arcsin ln()arcsin(ln1)]e x e εεεε++-→→==--arcsin12π==.所以原瑕积分收敛,且1.2eπ=⎰(7)因为212222001d d d (1)(1)(1)x x xx x x =+---⎰⎰⎰且112(1)1lim lim 1x dxxεεεε++---→→==+∞-⎰即120d (1)x x -⎰发散, 所以原瑕积分发散.(8) 因为212()()d 1aaaax a x a x ααα+--=+⎰,且当 α= -1时,2()d aax a xα-⎰原式发散;当α< -1时,221()d 1(1)()aaaax a x x αααα-==∞--+-⎰发散;当 α> -1时,原式=12()d (1)aaa x a x ααα+-=+⎰收敛.所以当α≤-1时,原式发散;当α> -1时,原式收敛于1(1)a αα++.2. 2. 当k 为何值时,广义积分2d (ln )k xx x +∞⎰收敛?k 为何值时,该广义积分发散?k 为何值时,该广义积分取得最小值?解 因为1222(ln )d (ln )d(ln )lim1(ln )bk kkb x x x x kx x -+∞+∞-→∞==-⎰⎰而 当1=k 时,广义积分发散;当1<k 时,112d 1lim[ln ln 2]1(ln )k kk b x b k x x +∞--→∞=-=∞-⎰,广义积分发散;当1>k 时,1122d 11lim(ln )(1)(ln )(1)(ln 2)bkk k b x x x k x k +∞--→∞-==--⎰所以当1≤k 时,积分发散;当1>k 时,广义积分收敛于11(1)(ln 2)k k --.又设1(ln 2)()1k F k k -=-,则12(ln 2)[ln(ln 2)ln(ln 2)1]()(1)k k F k k --+'=-由0)(='k F ,得驻点011ln(ln 2)k =-,且当0k k <时0)(<'k F ,当0k k >时0)(>'k F ,故当11ln(ln 2)k =-时,该广义积分取得最小值. 3. 已知0sin d 2x x x π+∞=⎰,求证: (1)0sincos d 4x x x x π+∞=⎰ (2)220sin d 2x x x π+∞=⎰ 证(1)00sin cos 1sin 21d d(2).22224x x x x x x x ππ+∞+∞==⋅=⎰⎰ 222002000sin 1(2)d sin d()sin 2sin cos d 0sin 2sin d 2d .2xx x x x x x x xx xx t x t x t x t π+∞+∞+∞+∞+∞=-+∞=-+===⎰⎰⎰⎰⎰4*.求函数2()(2)dx tf x t e t-=-⎰的最大和最小值.解因f(x)为偶函数,则只需求f(x)在[0,+∞)内的最值.令222'()2(2)0xf x x x e-=-=,则得驻点为x=且当0x<'()f x> 0,当x>, '()f x< 0,故x=f(x)在[0,+∞]的极大值点,也是最大值点,且222200max()(2)d(2)d1t t tf x f t e t t e e t e----==-=--=+⎰⎰-而000()lim()(2)d(2)d1t t txf f x t e t t e e t+∞+∞+∞---→+∞+∞==-=---=⎰⎰(0)0f=所以min()(0)0.f x f==5. 用欧拉函数表示下列积分,并指出它们的收敛范围:(1)0d(0)nxe x n+∞->⎰(2)101(ln)d p xx⎰(3)()d0nm xx e x n+∞-≠⎰(4)1d(1)mnxxx-+∞+⎰解(1)11100111d d() (0)nx un ne x x u e u x nn n n-+∞+∞--==Γ>⎰⎰(2)10(1)10011(ln)d ln d dp p u u px u u e u e u ux x+∞--+-+∞=-=⎰⎰⎰(1) (1)p p=Γ+>-.(3)11001111d d()(0)nmm x n u nm mx e x u x e u un n n n+-+∞+∞--++==Γ>⎰⎰.(4)111()100d, (1)d11(1)mm n mnx x ux u x u u ux ux-+∞---==-+-+⎰⎰(,) (0)m n m n mβ=->>6. 利用欧拉积分计算下列积分:(1)0x⎰(2)642sin cos dx x xπ⎰解(1)331112233(1)d(,)22x x x xβ--=-=⎰⎰311311112(,)(,)22242228πββ-==⋅=.(2)令112221sin,d(1)d2u x x u u u--==-7511164222001sin cos d(1)d2x x x u u uπ--=-⎰⎰1751155133(,)(,).2222222888512ππββ=⋅=⋅=⋅⋅=7*.判别下列广义积分的敛散性:(1)21ln sin d xx x x +∞⎰(2)11d x x +∞⎰(3)0x ⎰ (4)201(1cos )d x x x π-⎰解 (1)因为 [)1,,x ∀∈+∞有ln sin ()0x x f x x x =⋅≥而32lim ()limsin 0x x x f x x →+∞==故广义积分21ln sin d xx x x +∞⎰收敛.(2)因为 [)1,,x ∀∈+∞有1arctan 1()0f x x==≥而121sin lim()lim201x x x x f x x→+∞=⋅=>故广义积分11d xx +∞⎰发散.(3)因为 x = 0为瑕点,且(]0,1,x ∀∈恒有()01f x e=≥-且连续.而12sin 0lim ()lim lim 1sin 1x x x x x xx f x x e +++→→→⋅===-故广义积分1sin 0d 1x x e -⎰收敛.(4)因为x = 0为瑕点,且0,2x π⎛⎤∀∈ ⎥⎝⎦,恒有1cos ()0nx f x x -=≥ 而 2000, 21lim ()lim 0, 2 2p n p x x n p x f x n p x ++--→→>-≥⎧=⎨=-<⎩ 所以当1p ≥时,得 12n -≥,即3n ≥时,该积分发散;当0< p < 1时,得n - 1 < 2,即n < 3时,广义积分201(1cos )d x x x π-⎰收敛.综合习题六1.填空: (1) 若1120()d ()d ,a xf x x f x x =⎰⎰则a = .(2)12(2)d ()d ,b xf x x xf x x =⎰⎰若则b = .(3 ) 若2(23)d 0, .kx xx k -==⎰ 则(4 ) 若(1)d ,xy t t =-⎰则y 的极小值为 .解(1)2 ; (2) 4; (3)1 、0; (4)12-.2. 单项选择:(1)下面积分错误的是( ).①22sin d 0x x ππ-=⎰②122x x π-==⎰⎰③1211d 121xx x -=-=--⎰④22(6x x π--=-⎰(2)下列广义积分中,( )不收敛. ①11lnd 1x x -⎰②12()d 112e x x x +∞+-+⎰③42x⎰④e+∞⎰(3)若1(1ln )d e I x x=-⎰,则下列不等式( )是正确的.①10I e <<②1I e -<<③01I e ≤≤- ④1I e <<(4)若011()d ()22xf t t f x =-⎰且f (0)=1,则f (x )=( ). ①2xe ②12x e ③2x e ④212x e解(1)③; (2)④; (3)③; (4)③.3.计算下列极限:(1)1lim n n i n →∞= (2)112limp p p p n n n +→∞+++(3)lim ()d x ax a x f t t x a →-⎰(其中()f t 为连续函数)(4)2(arctan )d limxx t t 解 (1)11lim n n i x n →∞==⎰=1)x +⎰()32122(1)133x =+=|10(2)11121limlim pp p pn p n n i n i n n n +→∞→∞=+++⎛⎫= ⎪⎝⎭∑ 1011d 1p x p x ==+⎰(3)因为f (x )为连续函数,(()d )'()xaf t t f x =⎰且由积分中值定理有()()d ()xaf t t f x a ξ=-⎰且a x ξ<<所以 ()()l i m ()d l i m x a x a x a x x f x a f t t x a x a ξ→→⋅⋅-=--⎰lim ()().x axf af a ξ→==(4)2(arctan )d limxx t t2(arctan )d limxx t t x ⋅=2220(arctan )d limlim (arctan )4xx x t tx xπ→+∞→+∞===⎰4.计算下列积分:(1)20sin d 1cos x xxx π++⎰ (2)40ln(1tan )d x xπ+⎰(3)20(sin )d x x xπ⎰(4)2201d 1cos xx π+⎰解(1)因为222000sin sin d d d 1cos 1cos 1cos x x x x x x x xx x πππ+=++++⎰⎰⎰而 222200d 1sec d d(tan )1cos 222x x x x x x x x πππ==+⎰⎰⎰ =2200tan tan d ln 2222x x x x πππ⋅-=-⎰2200sin 1d d(1cos )1cos 1cos x x x x x ππ=-+++⎰⎰20ln(1cos )ln 2x π=-+=所以20sin d (ln 2)ln 21cos 22x x x x πππ+=-+=+⎰.(2)因为4ln(1tan )d 4x x x tππ+=-⎰令041tan ln[1] d(-)1tan tt t π-++⎰440[ln 2ln(1tan )] d ln 2ln(1tan )d 4t t x xπππ=-+=-+⎰⎰所以41ln(1tan )d ln 2ln 2248x x πππ+=⋅=⎰.(3)因为222001(sin )d d cos 2 d 22x x x x x x x x πππ=-⋅⎰⎰⎰而 230 d 26x x ππ=⎰220020011cos 2 d d(sin2)2411 sin 2sin 2 d d(cos 2) 424x x x x x x x x x x x x πππππ==-=⎰⎰⎰⎰0cos 2sin 2484x x x πππ⋅=-=所以 32(sin )d 64x x x πππ=-⎰.(4)令 tan x = t, 则x = arctan t,2d d 1t x t =+ 且221cos 1x t =+22200021d 1d 1cos 21t x xt π+∞+∞=+++⎰⎰⎰lim b →+∞=. 5. 计算下列广义积分.(1)221ln d (1)x xxx +∞+⎰(2)3022arctan d (1)x xx +∞+⎰(3) ⎰2d sin ln πxx(4)1x⎰解 (1)22211ln 11d ln d()2(1)1x x x x x x +∞+∞=-++⎰⎰22111ln 111lim ()lim d 2211bb b b x x x x x →+∞→+∞=-+⋅++⎰2111lim ()d 21b b xx x x →+∞=-+⎰20111lim ln ln(1)ln 2224bb x x →+∞⎡⎤=-+=⎢⎥⎣⎦.(2) 2arctan , tan , d d sec x t x t x t t ===令则 且2223/223/200arctan d sec d (1)(1tan )x t x t t x t π+∞==++⎰⎰2cos d t t tπ⎰222000d(sin )sin sin 1.2t t t ttdt ππππ==-=-⎰⎰(3) 因为1211/2ln sin lim ()lim lim (2)cos 0sin x x x x xx f x x x xx+++-→→→==-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 经济数学基础综合练习及参考答案 第二部分 积分学 一、单项选择题 1.在切线斜率为2x的积分曲线族中,通过点(1, 4)的曲线为( ). A.y = x2 + 3 B.y = x2 + 4 C.y = 2x + 2 D.y = 4x
2. 若10d)2(xkx= 2,则k =( ).
A.1 B.-1 C.0 D.21 3.下列等式不成立的是( ). A.)d(edexxx B.)d(cosdsinxxx
C.xxxdd21 D.)1d(dlnxxx
4.若cxxfx2ed)(,则)(xf=( ). A. 2ex B. 2e21x C. 2e41x D. 2e41x 5. )d(exx( ). A.cxxe B.cxxxee C.cxxe D.cxxxee 6. 若cxxfxx11ede)(,则f (x) =( ). A.x1 B.-x1 C.21x D.-21x 7. 若)(xF是)(xf的一个原函数,则下列等式成立的是( ). A.)(d)(xFxxfxa B.)()(d)(aFxFxxfxa
C.)()(d)(afbfxxFba D.)()(d)(aFbFxxfba 8.下列定积分中积分值为0的是( ). A.xxxd2ee11 B.xxxd2ee11
C.xxxd)cos(3 D.xxxd)sin(2 9.下列无穷积分中收敛的是( ). A.1dlnxx B.0dexx C.12d1xx D.13d1xx
10.设R(q)=100-4q ,若销售量由10单位减少到5单位,则收入R的改变量是( ). A.-550 B.-350 C.350 D.以上都不对 11.下列微分方程中,( )是线性微分方程. A.yyyxln2 B.xxyyye2 C.yyxye D.xyyxyxlnesin 12.微分方程0)()(432xyyyy的阶是( ). 2
A. 4 B. 3 C. 2 D. 1 二、填空题 1.xxded2 . 2.函数xxf2sin)(的原函数是 . 3.若cxxxf2)1(d)(,则)(xf . 4.若cxFxxf)(d)(,则xfxx)de(e= .
5.e12dx)1ln(ddxx . 6.1122d)1(xxx . 7.无穷积分02d)1(1xx是 .(判别其敛散性) 8.设边际收入函数为R(q) = 2 + 3q,且R (0) = 0,则平均收入函数为 . 9. 0e)(23yyx是 阶微分方程. 10.微分方程2xy的通解是 .
三、计算题 ⒈ xxxd1sin2 2.xxxd2 3.xxxdsin 4.xxxd1)ln( 5.xxxd)e1(e3ln02 6.xxxdlne1
7.2e11d1lnxxx 8.xxxd2cos2π0 9.xxd)1ln(1e0 10.求微分方程12xxyy满足初始条件47)1(y的特解. 11.求微分方程0e32yyxy满足初始条件3)1(y的特解. 12.求微分方程xxyyln满足 11xy的特解. 13.求微分方程yyxylntan的通解. 14.求微分方程xxyyxln的通解. 15.求微分方程yxy2的通解. 16.求微分方程xxyyxsin的通解. 3
四、应用题 1.投产某产品的固定成本为36(万元),且边际成本为)(xC=2x + 40(万元/百台). 试求
产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低. 2.已知某产品的边际成本C(x)=2(元/件),固定成本为0,边际收益R(x)=12-0.02x,问产量为多少时利润最大?在最大利润产量的基础上再生产50件,利润将会发生什么变化? 3.生产某产品的边际成本为C(x)=8x(万元/百台),边际收入为R(x)=100-2x(万元/百台),其中x为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化? 4.已知某产品的边际成本为34)(xxC(万元/百台),x为产量(百台),固定成本为
18(万元),求最低平均成本. 5.设生产某产品的总成本函数为 xxC3)((万元),其中x为产量,单位:百吨.销售x百吨时的边际收入为xxR215)((万元/百吨),求: (1) 利润最大时的产量; (2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?
试题答案 一、 单项选择题 1. A 2.A 3. D 4. D 5. B 6. C 7. B 8. A 9. C 10. B 11. D 12. C
二、填空题
1. xxde2 2. -21cos2x + c (c 是任意常数) 3. )1(2x 4. cFx)e( 5. 0 6. 0 7. 收敛的 8. 2 + q23 9. 2 10. cxy33 三、计算题
⒈ 解 cxxxxxx1cos)1(d1sind1sin2 2.解 cxxxxxx22ln2)(d22d2 3.解 cxxxxxxxxxxsincosdcoscosdsin
4.解 xxxd1)ln(=xxxxxd1)(21ln1)(2122 =cxxxxx4)ln2(2122 5.解 xxxd)e1(e3ln02=3ln02)ed(1)e1(xx= 3ln03)e1(31x=356 4
6.解 )(lnd2ln2)2(dlndlne1e1e1e1xxxxxxxxx e1e
14e2d2e2xxx
e24d2e2e1xx
7.解 xxxdln112e1=)lnd(1ln112e1xx=2e1ln12x=)13(2
8.解 xxxd2cos20=202sin21xx-xxd2sin2120=202cos41x=21 9.解法一 xxxxxxxd1)1ln(d)1ln(1e01e01e0 =xxd)111(1e1e0 =1e0)]1ln([1exx=eln=1 解法二 令1xu,则 uuuuuuuxxd1lndlnd)1ln(e1e1e11e0=11eeee1u
10.解 因为 xxP1)(,1)(2xxQ 用公式 ]d1)e([ed12d1cxxyxxxx]d1)e([eln2lncxxxx xcxxcxxx24]24[1324
由 4712141)1(3cy, 得 1c 所以,特解为 xxxy1243 11.解 将方程分离变量:xyyxydede32 等式两端积分得 cxy3e31e212
将初始条件3)1(y代入,得 c33e31e21,c =3e61 所以,特解为:33ee2e32xy 12.解:方程两端乘以x1,得
xxxyxyln2
即 5
xxxyln)(
两边求积分,得 cxxxxxxxy2ln)(lndlndln2 通解为: cxxxy2ln2 由11xy,得1c 所以,满足初始条件的特解为:xxxy2ln2
13.解 将原方程分离变量 xxyyydcotlnd 两端积分得 lnlny = lnC sinx 通解为 y = eC sinx
14. 解 将原方程化为:xyxyln11,它是一阶线性微分方程,
xxP1)(,xxQln1)(
用公式 ()d()de[()ed]PxxPxxyQxxc]deln1[ed1d1cxxxxxx ]deln1[elnlncxxxx ]dln1[cxxxx )ln(lncxx 15.解 在微分方程yxy2中,xxQxP2)(,1)(
由通解公式)de2(e)de2(eddcxxcxxyxxxx )e2e2(e)de2e2(ecxcxxxxxxxx
)e22(xcx 16.解:因为xxP1)(,xxQsin)(,由通解公式得
)desin(ed1d1cxxyxxxx
=)desin(elnlncxxxx =)dsin(1cxxxx =)sincos(1cxxxx
四、应用题 1.解 当产量由4百台增至6百台时,总成本的增量为 64d)402(xxC
=642)40(xx= 100(万元)