四川省2019届高三数学理一轮复习典型题专项训练:函数

合集下载

高考数学一轮复习知识点与练习均值和方差

高考数学一轮复习知识点与练习均值和方差

1.离散型随机变量的均值与方差一般地,若离散型随机变量X 的概率分布为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n(1)均值:称E (X )=μ=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)方差:称V (X )=σ2=(x 1-μ)2p 1+(x 2-μ)2p 2+…+(x n -μ)2p n =∑ni =1x 2i p i -μ2为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根σ=V (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)V (aX +b )=a 2V (X ).(a ,b 为常数) 3.两点分布与二项分布的均值、方差(1)若X 服从两点分布,则E (X )=__p __,V (X )=p (1-p ). (2)若X ~B (n ,p ),则E (X )=__np __,V (X )=np (1-p ). 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.( )(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量的平均程度越小.( )(3)若随机变量X 的取值中的某个值对应的概率增大时,期望值也增大.( ) (4)均值是算术平均数概念的推广,与概率无关.( )1.(教材改编)某射手射击所得环数ξ的概率分布如下:ξ 7 8 9 10 Px0.10.3y已知ξ的均值E (ξ)=8.9,则y 的值为________.2.(2014·陕西改编)设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为__________.3.设随机变量X 的概率分布为P (X =k )=15(k =2,4,6,8,10),则V (X )=________.4.(2014·浙江改编)随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则V (ξ)=________.5.(教材改编)抛掷两枚骰子,当至少一枚5点或一枚6点出现时,就说这次试验成功,则在10次试验中成功次数的均值为________.题型一 离散型随机变量的均值、方差命题点1 求离散型随机变量的均值、方差例1 (2015·福建)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X ,求X 的概率分布和均值.命题点2 已知离散型随机变量的均值与方差,求参数值例2 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的概率分布;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E (η)=53,V (η)=59,求a ∶b ∶c .命题点3 与二项分布有关的均值与方差例3 某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布及均值E (ξ).思维升华 离散型随机变量的均值与方差的常见类型及解题策略(1)求离散型随机变量的均值与方差.可依题设条件求出离散型随机变量的概率分布,然后利用均值、方差公式直接求解.(2)由已知均值或方差求参数值.可依据条件利用均值、方差公式得出含有参数的方程,解方程即可求出参数值.(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.(1)(2014·山东)乒乓球台面被球网分隔成甲、乙两部分,如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:①小明两次回球的落点中恰有一次的落点在乙上的概率; ②两次回球结束后,小明得分之和ξ的概率分布与均值.(2)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示. 将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.①求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率; ②用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的概率分布,均值E (X )及方差V (X ).题型二 均值与方差在决策中的应用例4 (2014·湖北)计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X 40<X<8080≤X≤120X>120发电机最多可运行台数12 3若某台发电机运行,则该台年利润为5 000万元;若某台发电机未运行,则该台年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?思维升华随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定.某投资公司在2015年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.8.离散型随机变量的均值与方差问题典例 (14分)甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m 个球,乙袋中共有2m个球,从甲袋中摸出1个球为红球的概率为25,从乙袋中摸出1个球为红球的概率为P 2.(1)若m =10,求甲袋中红球的个数;(2)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是13,求P 2的值;(3)设P 2=15,若从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次.设ξ表示摸出红球的总次数,求ξ的概率分布和均值.求离散型随机变量的均值和方差问题的一般步骤 第一步:确定随机变量的所有可能值. 第二步:求每一个可能值所对应的概率. 第三步:列出离散型随机变量的概率分布. 第四步:求均值和方差.第五步:反思回顾.查看关键点、易错点和答题规范.温馨提醒 (1)本题重点考查了概率、离散型随机变量的概率分布、均值.(2)本题解答中的典型错误是计算不准确以及解答不规范.如第(3)问中,不明确写出ξ的所有可能值,不逐个求概率,这都属于解答不规范.[方法与技巧] 1.均值与方差的性质(1)E (aX +b )=aE (X )+b ,V (aX +b )=a 2V (X )(a ,b 为常数). (2)若X 服从两点分布,则E (X )=p ,V (X )=p (1-p ).(3)若X 服从二项分布,即X ~B (n ,p ),则E (X )=np ,V (X )=np (1-p ).2.求离散型随机变量的均值与方差的基本方法(1)已知随机变量的概率分布求它的均值、方差,按定义求解.(2)已知随机变量X 的均值、方差,求X 的线性函数Y =aX +b 的均值、方差,可直接用X 的均值、方差的性质求解.(3)如果所给随机变量是服从常用的分布(如两点分布、二项分布等),利用它们的均值、方差公式求解. [失误与防范]1.在没有准确判断概率分布模型之前不能随便套用公式.2.对于应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的概率分布,然后按定义计算出随机变量的均值、方差.A 组 专项基础训练(时间:45分钟)1.若X ~B (n ,p ),且E (X )=6,V (X )=3,则P (X =1)的值为________.2.随机变量ξ的概率分布如下,其中a 、b 、c 为等差数列,若E (ξ)=13,则V (ξ)的值为________.ξ -1 0 1 Pabc3.某班从4名男生、2名女生中选出3人参加志愿者服务,若选出的男生人数为ξ,则ξ的方差V (ξ)=________.4.一个袋子中装有6个红球和4个白球,假设每一个球被摸到的可能性是相等的.从袋子中摸出2个球,其中白球的个数为X ,则X 的均值是________.5.设随机变量ξ~B (5,0.5),又η=5ξ,则E (η)和V (η)的值分别是________.6.已知随机变量ξ的概率分布为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________.7.签盒中有编号为1、2、3、4、5、6的六支签,从中任意取3支,设X 为这3支签的号码之中最大的一个,则X 的均值为________.8.某超市为了响应环保要求,鼓励顾客自带购物袋到超市购物,采取了如下措施:对不使用超市塑料购物袋的顾客,超市给予9.6折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现从这36人中随机抽取两人.(1)求这两人都享受折扣优惠或都不享受折扣优惠的概率;(2)设这两人中享受折扣优惠的人数为ξ,求ξ的概率分布和均值.9.现有一游戏装置如图,小球从最上方入口处投入,每次遇到黑色障碍物等可能地向左、右两边落下.游戏规则为:若小球最终落入A槽,得10张奖票;若落入B槽,得5张奖票;若落入C槽,得重投一次的机会,但投球的总次数不超过3次.(1)求投球一次,小球落入B槽的概率;(2)设玩一次游戏能获得的奖票数为随机变量X,求X的概率分布及均值.B组专项能力提升(时间:30分钟)10.老师为研究男女同学数学学习的差异情况,对某班50名同学(其中男同学30名,女同学20名)采取分层抽样的方法,抽取一个样本容量为10的样本进行研究,某女同学甲被抽到的概率为________.11.袋中装有大小完全相同,标号分别为1,2,3,…,9的九个球.现从袋中随机取出3个球.设ξ为这3个球的标号相邻的组数(例如:若取出球的标号为3,4,5,则有两组相邻的标号3,4和4,5,此时ξ的值是2),则随机变量ξ的均值E(ξ)为________.12.马老师从课本上抄录一个随机变量ξ的概率分布如下表:x 12 3P(ξ=x)?!?请小牛同学计算ξ的均值.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ξ)=________.13.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,对人体健康和大气环境质量的影响很大.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从360天的市区PM2.5监测数据中,随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).(1)在这15天的数据中任取3天的数据,记ξ表示空气质量达到一级的天数,求ξ的概率分布;(2)以这15天的PM2.5日均值来估计这360天的空气质量情况,则其中大约有多少天的空气质量达到一级.14.气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如下:日最高气温t(单位:℃)t≤2222<t≤28 28<t≤32 t>32天数612Y Z由于工作疏忽,统计表被墨水污染,Y和Z数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.某水果商根据多年的销售经验,六月份的日最高气温t(单位:℃)对西瓜的销售影响如下表:日最高气温t(单位:℃)t≤2222<t≤28 28<t≤32 t>32日销售额X (单位:千元)2568(1)求Y,Z的值;(2)若视频率为概率,求六月份西瓜日销售额的均值和方差;(3)在日最高气温不高于32℃时,求日销售额不低于5千元的概率.专注·专业·口碑·极致- 11 -。

高考数学一轮复习 必考部分 第十一篇 复数 算法 推理与证明 第4节 综合法 分析法 反证法课件 文 北师大版

高考数学一轮复习 必考部分 第十一篇 复数 算法 推理与证明 第4节 综合法 分析法 反证法课件 文 北师大版
解析:至少有一个”的反面应是“一个都没有”.故应选B.
4.设a,b是两个实数,给出下列条件: ①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1. 其中能推出:“a,b中至少有一个大于1”的条件是
(填序号).
解析:当 a= 2 ,b= 2 时,a+b= 4 >1,排除①;
33
3
证明:法一 因为 a+b+c=1,
所以(a+b+c)2=a2+b2+c2+2ab+2ac+2bc≤
a2+b2+c2+a2+b2+a2+c2+b2+c2=3(a2+b2+c2),所以 a2+b2+c2≥ 1 . 3
法二 设 a= 1 +α,b= 1 +β,c= 1 +γ.则由 a+b+c=1 可知α+β+γ=0,
(2)试用反证法证明 1 >c. a
证明:(2)假设 1 <c,又 1 >0,
a
a
由 0<x<c 时,f(x)>0,
知 f( 1 )>0,与 f( 1 )=0 矛盾,
a
a
所以 1 ≥c, a
又因为 1 ≠c, a
所以 1 >c. a
备选例题
【例题】 (2014 高考北京卷)对于数对序列 P:(a1,b1),(a2,b2),…,(an,bn), 记 T1(P)=a1+b1,Tk(P)=bk+max{Tk-1(P),a1+a2+…+ak}(2≤k≤n),其中 max{Tk-1(P),a1+a2+…+ak}表示 Tk-1(P)和 a1+a2+…+ak 两个数中最大的数, (1)对于数对序列 P:(2,5),(4,1),求 T1(P),T2(P)的值;

2024年高考数学专项复习马尔科夫链(与数列结合的概率递推问题)(解析版)

2024年高考数学专项复习马尔科夫链(与数列结合的概率递推问题)(解析版)

马尔科夫链(与数列结合的概率递推问题)如果要评选出 2023 年各地模拟题中最“成功”的题目,我想非“马尔科夫链”莫属了,尽管2023 年新高考I 卷出乎了很多“命题专家”的意料,但第 21 题考察了马尔科夫链,可谓为广大“专家”“名卷”“押题卷”挽回了一些颜面。

2023年新高考I 卷第21题的投篮问题是马尔可夫链;再往前的热点模考卷中,2023年杭州二模第21题的赌徒输光问题是马尔可夫链,2023年茂名二模的摸球问题是马尔可夫链;再往更前的2019年全国I 卷药物试验也是马尔可夫链,在新人教A 版选择性必修三 P91 页 拓展探索中的第10题是传球问题,是马尔科夫链的典型模型,可以看出自从新教材引入全概率公式(新人教A 版选择性必修三 P49 页),可想而知,未来会有越来越多的递推型概率难题出现模考试题中!因此,在复习备考中全概率等系列内容需要格外关注马尔科夫链作为一种命题模型出现了,马尔科夫链在题中的体现可以简单的概括为全概率公式+数列递推,对于高中生而言,马尔科夫链其实也不难理解。

本文主要介绍了马尔科夫链和一维随机游走模型在高考中的几种具体的应用情形,希望对各位接下来的复习和备考有一些帮助。

基本原理虽然贝叶斯公式不做要求,但是全概率公式已经是新高考考查内容了,利用全概率公式,我们既可以构造某些递推关系求解概率,还可以推导经典的一维随机游走模型,即:设数轴上一个点,它的位置只能位于整点处,在时刻0=t 时,位于点)(+∈=N i i x ,下一个时刻,它将以概率α或者β(1),1,0(=+∈βαα)向左或者向右平移一个单位. 若记状态i t X =表示:在时刻t 该点位于位置)(+∈=N i i x ,那么由全概率公式可得:)|()()|()()(1111111+==++=−==+−==+⋅+⋅=i t i t i t i t i t i t i t X X P X P X X P X P X P另一方面,由于αβ==+==+−==+)|(,)|(1111i t i t i t i t X X P X X P ,代入上式可得:11−+⋅+⋅=i i i P P P βα.进一步,我们假设在0=x 与),0(+∈>=N m m m x 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,1,00==m P P .随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:2024年高考数学专项复习马尔科夫链(与数列结合的概率递推问题)(解析版)11+−++=i i i i cP bP aP P2023·新高考Ⅰ卷T211.乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==−===⋅⋅⋅,则11n ni i i i E X q == = ∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .2019·全国Ⅰ卷2.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1−分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1−分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列.(2)若甲药、乙药在试验开始时都赋予4分,)0,1,2,,8(i p i =⋅⋅⋅表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11()127i i i i p ap bp cp i ==++…-+,,,,其中)1(a P X ==-,(0)b P X == (1)c PX ==. 假设0.5α=,0.8β=. ①证明:1)0{,1,2,,}7(i i p p i−=⋅⋅⋅+为等比数列; ②求4p ,并根据4p 的值解释这种试验方案的合理性.课本原题:人教A版数学《选择性必修三》P913.甲、乙、丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.求n次传球后球在甲手中的概率.重点题型·归类精讲3.从甲、乙、丙等5人中随机地抽取三个人去做传球训练.训练规则是确定一人第一次将球传出,每次传球时,2023届惠州一模4.为了避免就餐聚集和减少排队时间,某校开学后,食堂从开学第一天起,每餐只推出即点即取的米饭套餐和面食套餐. 已知某同学每天中午会在食堂提供的两种套餐中选择,已知他第一天选择米饭套餐的概率为23,而前一天选择了米饭套餐后一天继续选择米饭套餐的概率为14,前一天选择面食套餐后一天继续选择面食套餐的概率为12,如此往复.(1)求该同学第二天中午选择米饭套餐的概率(2)记该同学第n天选择米饭套餐的概率为n P(Ⅰ)证明:25nP−为等比数列;(Ⅱ)证明:当2n≥时,512nP≤.2023届佛山二模·165.有n 个编号分别为1,2,3,,n ⋅⋅⋅的盒子,第1个盒子中有2个白球1个黑球,其余盒子均为1个白球1个黑球,现从第1个盒中任取一球放入第2个盒子,再从第2个盒子中任取一球放入第3个盒子,以此类推,则从第2个盒子中取到白球的概率是 ,从第n 个盒子中取到白球的概率是 .2023·唐山调研6.甲、乙、丙三人玩传球游戏,第1次由甲传出,每次传球时,传球者都等可能地将球传给另外两人中的任何一人.设第k 次传球后球在甲手中的概率为*N k p k ∈,,则下列结论正确的有( )A. 10p =B. 213p = C. 121k k p p ++= D. 202313p >2024届武汉高三九月调研T167.甲,乙,丙三人进行传球游戏,每次投掷一枚质地均匀的正方体骰子决定传球的方式:当球在甲手中时,若骰子点数大于3,则甲将球传给乙,若点数不大于3,则甲将球保留;当球在乙手中时,若骰子点数大于4,则乙将球传给甲,若点数不大于4,则乙将球传给丙;当球在丙手中时,若骰子点数大于3,则丙将球传给甲,若骰子点数不大于3,则丙将球传给乙.初始时,球在甲手中,投掷n 次骰子后(),记球在甲手中的概率为,则 ; .2024届·湖北荆荆恩高三9月起点联考·218.甲、乙两个盒子中都装有大小、形状、质地相同的2个黑球和1个白球,现从甲、乙两个盒子中各任取一个球交换放入另一个盒子中,重复次这样的操作后,记甲盒子中黑球的个数为,甲盒中恰有2个黑球的概率为,恰有3个黑球的概率为.(1)求;(2)设,证明:;(3)求的数学期望的值. *n ∈N n p 3p =n p =()*n n ∈N n X n p n q 11,p q 2n n n c p q =+11233n n c c +=+n X ()n E X2023·济南开学考10.甲、乙两人进行抛掷骰子游戏,两人轮流地掷一枚质均匀的骰子.规定:先掷出点数6的获胜,游戏结束.(1)记两人抛掷骰子的总次数为X,若每人最多抛掷两次骰子,求比赛结束时,X的分布列和期望;(2)已知甲先掷,求甲恰好抛掷n 次骰子并获得胜利的概率.2023届·杭州二模11.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是…,2t X −,1t X −,t X ,1t X +,…,那么1t X +时刻的状态的条件概率仅依赖前一状态t X ,即()()t 1t 2t 1t t 1t ,,,X X X X X X P P +−−+= ∣∣. 现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B 元,赌徒停止赌博.记赌徒的本金为*(,)A A N A B ∈<元,赌博过程为如图所示的数轴.当赌徒手中有n 元()0,n B n N ≤≤∈时,最终输光的概率为()P n ,请回答下列问题:(1)请直接写出()0P 与()P B 的数值;(2)证明(){}P n 是一个等差数列,并写出公差d ;(3)当100A =时,分别计算200B =,1000B =时,()P A 的数值,并结合实际,解释当B →+∞时,()P A 的统计含义.12.校足球队中的甲、乙、丙、丁四名球员将进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能的将球传给另外三个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到。

高考一轮复习理科数学课件绝对值不等式的解法及其应用

高考一轮复习理科数学课件绝对值不等式的解法及其应用

知识点梳理和归纳总结
01
绝对值不等式的定义 和性质
明确绝对值不等式的概念,掌握其基 本性质,如正数的绝对值是其本身, 负数的绝对值是它的相反数,0的绝 对值是0。
02
绝对值不等式的解法
熟练掌握绝对值不等式的解法,包括 分段讨论法、平方法、几何意义法等 ,能够根据不同的题型选择合适的解 法。
03
绝对值不等式的应用
了解绝对值不等式在解决实际问题中 的应用,如求解最值问题、证明不等 式等。
针对性地进行专项训练和模拟考试
专项训练
针对绝对值不等式的各类题型进行专 项训练,如含参绝对值不等式、绝对 值三角不等式等,提高解题速度和准 确率。
模拟考试
定期进行模拟考试,模拟真实考试环 境,检验自己的备考效果,查漏补缺 。
其他相关定理和性质介绍
绝对值的非负性
对于任意实数x,都有|x|≥0,且 |x|=0当且仅当x=0。
绝对值的单调性
对于任意实数x、y,若x≤y,则 |x|≤|y|。但反之不成立,即若|x|≤|y|
,不能推出x≤y。
绝对值的几何意义
在数轴上,一个数到原点的距离叫 做该数的绝对值。因此,绝对值与 距离、长度等几何概念密切相关。
绝对值不等式分类
03
根据不等号方向分类
可分为严格不等式(如$|x|<a$)和非严 格不等式(如$|x|leq a$)。
根据涉及绝对值个数分类
可分为单一绝对值不等式(如$|x-1|<2$ )和多个绝对值不等式(如$|x1|+|x+2|geq 3$)。
根据解法不同分类
可分为可直接去绝对值符号求解的不等式 和需要讨论绝对值内部表达式正负情况求 解的不等式。

高考化学一轮复习晶体的结构与性质专项训练知识点及练习题含答案

高考化学一轮复习晶体的结构与性质专项训练知识点及练习题含答案

高考化学一轮复习晶体的结构与性质专项训练知识点及练习题含答案一、晶体的结构与性质1.有四种不同堆积方式的金属晶体的晶胞如图所示,有关说法正确的是A.晶胞中原子的配位数分别为①6,②8,③8,④12B.空间利用率的大小关系为①<②<③<④C.①为简单立方堆积,②为镁型,③为钾型,④为铜型D.每个晶胞含有的原子数分别为①1个,②2个,③2个,④4个2.有关常见晶体的叙述正确的是( )A.氯化铯晶体中,每1个Cs+与其他8个Cs+等距离紧邻B.干冰晶体中,每1个CO2分子与其他12个CO2分子等距离紧邻C.石墨中由非极性键构成的最小碳环有6个碳原子,每个该小环平均分配6个碳原子D.氯化钠晶体中,每个Na+与其他6个Na+等距离紧邻3.三硫化四磷用于制造火柴即火柴盒摩擦面,分子结构如图所示。

下列有关三硫化四磷的说法正确的是()A.该物质中磷元素的化合价为+3B.22 g P4S3含硫原子数目约为1.806×1023C.该物质分子结构中S、P最外层电子数均不为8D.该物质分子中全是极性共价键4.已知C3N4晶体具有比金刚石还大的硬度,且构成该晶体的微粒间只以单键结合。

下列关于C3N4晶体的说法错误的是A.该晶体属于原子晶体,其熔、沸点很高B.该晶体中每个碳原子上连有4个氮原子,每个氮原子连接3个碳原子C.该晶体中碳原子和氮原子都满足最外层8电子结构D.该晶体的结构与金刚石类似,都是原子间以非极性键形成的空间网状结构5.美国某国家实验室成功地在高压下将CO2转化为具有类似SiO2结构的原子晶体,下列关于CO2的原子晶体的说法正确的是()A.CO2的原子晶体和分子晶体互为同分异构体B.在一定条件下,CO2的原子晶体转化为分子晶体是物理变化C.CO2的原子晶体和分子晶体具有相同的物理性质D.在CO2的原子晶体中,每个C原子周围结合4个O原子,每个O原子与2个碳原子结合6.下列叙述正确的是A.离子晶体中,只存在离子健,不可能存在其它化学键B.可燃冰中甲烷分子与水分子之间存在氢键C.Na2O2、NaHSO4晶体中的阴、阳离子个数比均为12D.晶体熔点:金刚石>食盐>冰>干冰7.氟在自然界中常以CaF2的形式存在。

【步步高】高考数学第一轮大复习(基础+思想典型题+题组专练)6.4 数列求和文档专练 文 新人教a版

【步步高】高考数学第一轮大复习(基础+思想典型题+题组专练)6.4 数列求和文档专练 文 新人教a版

§6.4 数列求和1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式 (Ⅰ)当q =1时,S n =na 1;(Ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1;(2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n .1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( √ ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ )(3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × ) (4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( √ )(6)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )2.(2012·大纲全国)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为 ( )A.100101B.99101C.99100D.101100答案 A解析 利用裂项相消法求和.设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×(5-1)2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1, ∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n (n +1)=1n -1n +1, ∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.3.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n 为 ( )A.2n +n 2-1B.2n +1+n 2-1C.2n +1+n 2-2D.2n +n 2-2答案 C解析 S n =(2+22+23+…+2n )+(1+3+5+…+(2n -1)) =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.4.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-400答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.5.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =________.答案 4-n +42n解析 设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n +1. 两式相减得12S =3×12+(122+123+…+12n )-n +22n +1.∴S =3+(12+122+…+12n -1)-n +22n=3+12[1-(12)n -1]1-12-n +22n =4-n +42n.题型一 分组转化求和例1 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项和S n .思维启迪 先写出通项,然后对通项变形,分组后利用等差数列、等比数列的求和公式求解. 解 由已知得,数列{a n }的通项公式为 a n =3n +2n -1=3n -1+2n , ∴S n =a 1+a 2+…+a n=(2+5+…+3n -1)+(2+22+…+2n ) =n (2+3n -1)2+2(1-2n )1-2=12n (3n +1)+2n +1-2. 思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.求和S n =1+⎝⎛⎭⎫1+12+⎝⎛⎭⎫1+12+14+…+⎝⎛⎭⎫1+12+14+…+12n -1. 解 和式中第k 项为 a k =1+12+14+…+12k -1=1-⎝⎛⎭⎫12k1-12=2⎝⎛⎭⎫1-12k . ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…+⎝⎛⎭⎫1-12n =2[(1+1+…+1)-(12+122+…+12n )]n 个=2⎝ ⎛⎭⎪⎫n -12⎝⎛⎭⎫1-12n 1-12=12n -1+2n -2. 题型二 错位相减法求和例2 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n .思维启迪 (1)列方程组求{a n }的首项、公差,然后写出通项a n . (2)q =1时,b n 为等差数列,直接求和;q ≠1时,用错位相减法求和. 解 (1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧ 3a 1+3d =68a 1+28d =-4,解得⎩⎪⎨⎪⎧a 1=3d =-1. 故a n =3+(n -1)·(-1)=4-n . (2)由(1)得,b n =n ·q n -1,于是S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1.若q ≠1,将上式两边同乘以q 有 qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n .两式相减得到(q -1)S n =nq n -1-q 1-q 2-…-q n -1=nq n-q n -1q -1=nq n +1-(n +1)q n +1q -1.于是,S n =nq n +1-(n +1)q n +1(q -1)2.若q =1,则S n =1+2+3+…+n =n (n +1)2.所以S n=⎩⎪⎨⎪⎧n (n +1)2,q =1nq n +1-(n +1)q n +1(q -1)2,q ≠1.思维升华 (1)错位相减法是求解由等差数列{b n }和等比数列{c n }对应项之积组成的数列{a n },即a n =b n ×c n 的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练. (2)注意错位相减法中等比数列求和公式的应用范围.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1. 故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n2n -1,① 故S 1=1,S n 2=a 12+a 24+…+a n2n .②所以,当n >1时,①-②得 S n2=a 1+a 2-a 12+…+a n -a n -12n 1-a n 2n =1-(12+14+…+12n -1)-2-n 2n=1-(1-12n -1)-2-n 2n =n2n . 所以S n =n2n -1.当n =1时也成立.综上,数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和S n =n2n -1.题型三 裂项相消法求和例3 在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .思维启迪 第(1)问利用a n =S n -S n -1 (n ≥2)后,再同除S n -1·S n 转化为⎩⎨⎧⎭⎬⎫1S n 的等差数列即可求S n .第(2)问求出{b n }的通项公式,用裂项相消法求和. 解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12, a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n , ①由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝⎛⎭⎫1-12n +1=n2n +1.思维升华 利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2,n ∈N *.(1)求证:数列{a n }是等差数列;(2)设b n =12S n,T n =b 1+b 2+…+b n ,求T n .(1)证明 ∵S n =a n (a n +1)2,n ∈N *,∴当n =1时,a 1=S 1=a 1(a 1+1)2(a n >0),∴a 1=1.当n ≥2时,由⎩⎪⎨⎪⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1 得2a n =a 2n +a n -a 2n -1-a n -1.即(a n +a n -1)(a n -a n -1-1)=0, ∵a n +a n -1>0,∴a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,以1为公差的等差数列. (2)解 由(1)可得a n =n ,S n =n (n +1)2, b n =12S n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+b 3+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1.四审结构定方案典例:(12分)(2012·江西)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .S n =-12n 2+kn 及S n 最大值为8S n 是n 的二次函数 n =k 时(S n )max =S k =8(根据S n 的结构特征确定k 值) k =4,S n =-12n 2+4n利用a n 、S n 的关系 a n =92-n9-2a n 2n =n2n -1 根据数列的结构特征,确定求和方法:错位相减法 T n =1+22+322+…+n -12n -2+n 2n -1①①式两边同乘以22T n =2+2+32+…+n -12n -3+n2n -2②错位相减T n =2+1+12+…+12n -2-n2n -1=4-n +22n -1.规范解答解 (1)当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分] 当n ≥2时,a n =S n -S n -1=92-n .[6分]当n =1时,上式也成立,综上,a n =92-n .(2)因为9-2a n 2n =n2n -1,所以T n =1+22+322+…+n -12n -2+n2n -1,①[7分]所以2T n =2+2+32+…+n -12n -3+n2n -2 ②②-①:2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n2n -1=4-n +22n -1[11分]故T n =4-n +22n -1.[12分]温馨提醒 (1)根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据{9-2a n2n }的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案; (2)利用S n 求a n 时不要忽视n =1的情况;错位相减时不要漏项或算错项数.方法与技巧非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. 失误与防范1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.A 组 专项基础训练 (时间:40分钟)一、选择题1.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n 为( )A.nn +1 B.4n n +1C.3n n +1D.5n n +1答案 B解析 a n =1+2+3+…+n n +1=n2,∴b n =1a n a n +1=4n (n +1)=4(1n -1n +1),∴S n =4[(1-12)+(12-13)+…+(1n -1n +1)]=4(1-1n +1)=4nn +1.2.已知数列{a n }是等差数列,若a 9+3a 11<0,a 10·a 11<0,且数列{a n }的前n 项和S n 有最大值,那么当S n 取得最小正值时,n 等于( )A.20B.17C.19D.21答案 C解析 由a 9+3a 11<0,得2a 10+2a 11<0, 即a 10+a 11<0,又a 10·a 11<0,则a 10与a 11异号, 因为数列{a n }的前n 项和S n 有最大值,所以数列{a n }是一个递减数列,则a 10>0,a 11<0, 所以S 19=19(a 1+a 19)2=19a 10>0,S 20=20(a 1+a 20)2=10(a 10+a 11)<0. 故使S n 取值最小正值的n 为19.3.已知函数f (n )=⎩⎪⎨⎪⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A.0B.100C.-100D.10 200答案 B解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012 =-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101) =-1+101=100.故选B.4.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为( )A.31B.120C.130D.185答案 C解析 a 1+…+a k +…+a 10=240-(2+…+2k +…+20) =240-(2+20)×102=240-110=130.5.数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( )A.-10B.-9C.10D.9答案 B解析 数列的前n 项和为11×2+12×3+…+1n (n +1)=1-1n +1=n n +1=910, ∴n =9,∴直线方程为10x +y +9=0. 令x =0,得y =-9,∴在y 轴上的截距为-9. 二、填空题6.数列32,94,258,6516,…的前n 项和S n 为________.答案n (n +1)2+1-12n 解析 ∵32=1+12,94=2+14,258=3+18,6516=4+116,… ∴S n =32+94+258+6516+…+(n +12n )=(1+2+3+…+n )+(12+122+123+…+12n )=n (n +1)2+12[1-(12)n ]1-12=n (n +1)2+1-12n .7.设f (x )=4x 4x +2,若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________.答案 1 007解析 ∵f (x )=4x 4x +2,∴f (1-x )=41-x41x +2=22+4x ,∴f (x )+f (1-x )=4x 4x +2+22+4x =1.S =f (12 015)+f (22 015)+…+f (2 0142 015),① S =f (2 0142 015)+f (2 0132 015)+…+f (12 015),②①+②得,2S =[f (12 015)+f (2 0142 015)]+[f (22 015)+f (2 0132 015)]+…+[f (2 0142 015)+f (12 015)]=2 014,∴S =2 0142=1 007.8.(2012·课标全国)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为________. 答案 1 830解析 利用数列的递推式的意义结合等差数列求和公式求解. ∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+…+234 =15×(10+234)2=1 830.三、解答题9.已知数列{a n }是首项为a 1=14,公比为q =14的等比数列,设b n +2=3log 14a n (n ∈N *),数列{c n }满足c n =a n ·b n .(1)求数列{b n }的通项公式; (2)求数列{c n }的前n 项和S n . 解 (1)由题意,知a n =(14)n (n ∈N *),又b n =3log 14a n -2,故b n =3n -2(n ∈N *).(2)由(1),知a n =(14)n ,b n =3n -2(n ∈N *),所以c n =(3n -2)×(14)n (n ∈N *).所以S n =1×14+4×(14)2+7×(14)3+…+(3n -5)×(14)n -1+(3n -2)×(14)n ,于是14S n =1×(14)2+4×(14)3+7×(14)4+…+(3n -5)×(14)n +(3n -2)×(14)n +1.两式相减,得34S n =14+3[(14)2+(14)3+…+(14)n ]-(3n -2)×(14)n +1=12-(3n +2)×(14)n +1. 所以S n =23-3n +23×(14)n (n ∈N *).10.若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列. (1)求等比数列S 1,S 2,S 4的公比; (2)若S 2=4,求数列{a n }的通项公式;(3)在(2)的条件下,设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .解 (1)因为{a n }为等差数列,设{a n }的公差为d (d ≠0), 所以S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d . 因为S 1,S 2,S 4成等比数列且设其公比为q , 所以S 1·S 4=S 22.所以a 1(4a 1+6d )=(2a 1+d )2.所以2a 1d =d 2. 因为公差d ≠0.所以d =2a 1. 所以q =S 2S 1=4a 1a 1=4.(2)因为S 2=4,所以2a 1+d =4.又d =2a 1,所以a 1=1,d =2.所以a n =2n -1. (3)因为b n =3(2n -1)(2n +1)=32(12n -1-12n +1),所以T n =32[(1-13)+(13-15)+…+(12n -1-12n +1)]=32(1-12n +1)<32.要使T n <m20对所有n ∈N *都成立,则有m 20≥32,即m ≥30.因为m ∈N *,所以m 的最小值为30.B 组 专项能力提升 (时间:30分钟)1.已知数列2 008,2 009,1,-2 008,-2 009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 014项之和S 2 014等于( )A.2 008B.2 010C.1D.0答案 B解析 由已知得a n =a n -1+a n +1(n ≥2), ∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008, -2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0. ∵2 014=6×335+4,∴S 2 014=S 4 =2 008+2 009+1+(-2 008)=2 010.2.(2013·课标全国Ⅰ)设△A n B n C n 的三边长分别为a n 、b n 、c n ,△A n B n C n 的面积为S n ,n =1,2,3,…,若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n2,则( )A.{S n }为递减数列B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列 答案 B解析 因为b 1>c 1,不妨设b 1=4a 13,c 1=2a 13;故S 1=3a 12·a 12·a 16·5a 16=1512a 21; a 2=a 1,b 2=23a 1+a 12=56a 1,c 2=43a 1+a 12=76a 1,S 2=3a 12·a 12·2a 13·a 13=66a 21. 显然S 2>S 1;a 3=a 1,b 3=76a 1+a12=1312a 1,c 3=56a 1+a 12=1112a 1,S 3=3a 12·a 12·5a 112·7a 112=10524a 21,显然S 3>S 2. 3.(2013·湖南)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则:(1)a 3=________;(2)S 1+S 2+…+S 100=________.答案 (1)-116 (2)13⎝⎛⎭⎫12100-1 解析 ∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1,∴a n =(-1)n a n -(-1)n -1a n -1+12n .当n 为偶数时,a n -1=-12n ,当n 为奇数时,2a n +a n -1=12n ,∴当n =4时,a 3=-124=-116.根据以上{a n }的关系式及递推式可求. a 1=-122,a 3=-124,a 5=-126,a 7=-128,a 2=122,a 4=124,a 6=126,a 8=128.∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…,∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝⎛⎭⎫12+122+123+…+12100 =⎝⎛⎭⎫12+123+…+1299-⎝⎛⎭⎫12+122+…+12100 =13⎝⎛⎭⎫12100-1. 4.已知数列{a n }的前n 项和S n ,满足:S n =2a n -2n (n ∈N *). (1)求数列{a n }的通项a n ;(2)若数列{b n }满足b n =log 2(a n +2),T n 为数列{b n a n +2}的前n 项和,求证:T n ≥12.(1)解 当n ∈N *时,S n =2a n -2n , 则当n ≥2时,S n -1=2a n -1-2(n -1),两式相减得a n =2a n -2a n -1-2,即a n =2a n -1+2, ∴a n +2=2(a n -1+2),∴a n +2a n -1+2=2,当n =1时,S 1=2a 1-2,则a 1=2,∴{a n +2}是以a 1+2=4为首项,2为公比的等比数列, ∴a n +2=4·2n -1,∴a n =2n +1-2;(2)证明 b n =log 2(a n +2)=log 22n +1=n +1,∴b n a n +2=n +12n +1,则T n =222+323+…+n +12n +1,12T n =223+324+…+n2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2=14+14(1-12n )1-12-n +12n +2 =14+12-12n +1-n +12n +2=34-n +32n +2, ∴T n =32-n +32n +1,当n ≥2时,T n -T n -1=-n +32n +1+n +22n =n +12n +1>0,∴{T n }为递增数列,∴T n ≥T 1=12.5.直线l n :y =x -2n 与圆C n :x 2+y 2=2a n +n 交于不同的两点A n ,B n ,n ∈N *.数列{a n }满足:a 1=1,a n +1=14|A n B n |2.(1)求数列{a n }的通项公式;(2)若b n =⎩⎪⎨⎪⎧2n -1(n 为奇数),a n (n 为偶数),求数列{b n }的前n 项和T n .解 (1)由题意,知圆C n 的圆心到直线l n 的距离d n =n , 半径r n =2a n +n ,所以a n +1=(12|A n B n |)2=r 2n -d 2n =(2a n +n )-n =2a n . 又a 1=1,所以a n =2n -1.(2)当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n ) =[1+5+…+(2n -3)]+(2+23+…+2n -1)=n (n -1)2+2(1-2n )1-4=n 2-n 2+23(2n -1).当n 为奇数时,n +1为偶数, T n +1=(n +1)2-(n +1)2+23(2n +1-1)=n 2+n 2+23(2n +1-1).而T n +1=T n +b n +1=T n +2n,所以T n =n 2+n 2+13(2n -2).所以T n=⎩⎨⎧n 2-n 2+23(2n-1)(n 为偶数),n 2+n 2+13(2n-2)(n 为奇数).。

【步步高】高考数学第一轮大复习(基础+思想典型题+题组专练)2.2函数的单调性与最值文档专练 文

【步步高】高考数学第一轮大复习(基础+思想典型题+题组专练)2.2函数的单调性与最值文档专练 文

§2.2 函数的单调性与最值1.函数的单调性 (1)(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 2.结论M 为最大值1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( × )(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D ,且(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( √ )(3)函数y =|x |是R 上的增函数. ( × )(4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞). ( × ) (5)函数f (x )=log 5(2x +1)的单调增区间是(0,+∞).( × ) (6)函数y =1-x 21+x 2的最大值为1.( √ ) 2.函数y =x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .先递增再递减答案 C解析 作出函数y =x 2-6x +10的图象(图略), 根据图象可知函数在(2,4)上是先递减再递增.3.(2013·安徽)“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件答案 C解析 本题利用函数的图象确定字母的取值范围,再利用充要条件的定义进行判断. 当a =0时,f (x )=|(ax -1)x |=|x |在区间(0,+∞)上单调递增;当a <0时,结合函数f (x )=|(ax -1)x |=|ax 2-x |的图象知函数在(0,+∞)上单调递增,如图(1)所示;当a >0时,结合函数f (x )=|(ax -1)x |=|ax 2-x |的图象知函数在(0,+∞)上先增后减再增,不符合条件,如图(2)所示.所以,要使函数f (x )=|(ax -1)x |在(0,+∞)上单调递增只需a ≤0.即“a ≤0”是“函数f (x )=|(ax -1)x |在(0,+∞)上单调递增”的充要条件.4.函数f (x )=2xx +1在[1,2]的最大值和最小值分别是________________________________________________________________________.答案 43,1解析 f (x )=2x x +1=2(x +1)-2x +1=2-2x +1在[1,2]上是增函数,∴f (x )max =f (2)=43,f (x )min =f (1)=1.5.函数y =log 21(2x 2-3x +1)的单调减区间为________.答案 (1,+∞)解析 由2x 2-3x +1>0,得函数的定义域为(-∞,12)∪(1,+∞).令t =2x 2-3x +1,则y =log 21t ,∵t =2x 2-3x +1=2(x -34)2-18,∴t =2x 2-3x +1的单调增区间为(1,+∞).又y =log 21t 在(1,+∞)上是减函数,∴函数y =log 21(2x 2-3x +1)的单调减区间为(1,+∞).题型一 函数单调性的判断例1 讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性.思维启迪 可根据定义,先设-1<x 1<x 2<1,然后作差、变形、定号、判断. 解 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数f (x )在(-1,1)上为减函数.思维升华 利用定义法证明或判断函数单调性的步骤:(1)已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数;(2)求函数y =x 2+x -6的单调区间.(1)证明 设x 1,x 2是任意两个正数,且0<x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2 =x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,又x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,又x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.(2)解 令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的复合函数. 由u =x 2+x -6≥0,得x ≤-3或x ≥2.∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在(0,+∞)上是增函数.∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞). 题型二 利用函数的单调性求参数例2 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A .a >-14 B .a ≥-14C .-14≤a <0D .-14≤a ≤0(2)已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.思维启迪 利用函数的单调性求参数或参数的取值范围,解题思路为视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参.答案 (1)D (2)[32,2)解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得0>a ≥-14.综合上述得-14≤a ≤0.(2)由已知条件得f (x )为增函数,∴⎩⎪⎨⎪⎧2-a >0a >1(2-a )×1+1≤a, 解得32≤a <2,∴a 的取值范围是[32,2).思维升华 已知函数的单调性确定参数的值或范围要注意以下两点:①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3 (2)已知f (x )=⎩⎪⎨⎪⎧a x (x >1),⎝⎛⎭⎫4-a 2x +2 (x ≤1)是R 上的单调递增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)答案 (1)C (2)B 解析 (1)y =x -5x -a -2=1+a -3x -(a +2),由函数在(-1,+∞)上单调递增,有⎩⎪⎨⎪⎧a -3<0a +2≤-1,解得a ≤-3. (2)因为f (x )是R 上的单调递增函数,所以可得⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥4-a 2+2.解得4≤a <8,故选B.题型三 函数的单调性和最值例3 已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.思维启迪 抽象函数的问题要根据题设及所求的结论来适当取特殊值,证明f (x )为单调减函数的首选方法是用单调性的定义来证.问题(3)用函数的单调性即可求最值. (1)解 令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明 任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝⎛⎭⎫x 1x 2<0, 即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)解 ∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9).由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得, f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.思维升华 (1)抽象函数的单调性的判断要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x 1,x 2在所给区间内比较f (x 1)-f (x 2)与0的大小,或f (x 1)f (x 2)与1的大小.有时根据需要,需作适当的变形:如x 1=x 2·x 1x 2或x 1=x 2+x 1-x 2等;(2)利用函数单调性可以求函数最值,若函数f (x )在[a ,b ]上单调递增,则f (x )的最小值是f (a ),最大值是f (b ).(1)如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x-1),那么函数f (x )在[-2,0]上的最大值与最小值之和为( )A .2B .3C .4D .-1(2)函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.答案 (1)C (2)6解析 (1)根据f (1+x )=f (-x ),可知函数f (x )的图象关于直线x =12对称.又函数f (x )在[12,+∞)上单调递增,故f (x )在(-∞,12]上单调递减,则函数f (x )在[-2,0]上的最大值与最小值之和为f (-2)+f (0)=f (1+2)+f (1+0)=f (3)+f (1)=log 28+log 22=4. (2)易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4. ∴a +b =6.函数单调性的应用典例:(12分)函数f(x)对任意的m、n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.思维启迪(1)对于抽象函数的单调性的证明,只能用定义.应该构造出f(x2)-f(x1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本小题的切入点.要构造出f(M)<f(N)的形式.规范解答(1)证明设x1,x2∈R,且x1<x2,∴x2-x1>0,∵当x>0时,f(x)>1,∴f(x2-x1)>1. [2分]f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1,[4分]∴f(x2)-f(x1)=f(x2-x1)-1>0⇒f(x1)<f(x2),∴f(x)在R上为增函数.[6分](2)解∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,[8分]f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),[10分]∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2).[12分]解函数不等式问题的一般步骤:第一步:确定函数f(x)在给定区间上的单调性;第二步:将函数不等式转化为f(M)<f(N)的形式;第三步:运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步:解不等式或不等式组确定解集;第五步:反思回顾.查看关键点,易错点及解题规范.温馨提醒本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1.构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视M、N的取值范围,即忽视f(x)所在的单调区间的约束.方法与技巧1.利用定义判断或证明函数的单调性 设任意x 1,x 2∈[a ,b ]且x 1<x 2,那么 ①f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.②(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数. 函数的单调性是对某个区间而言的. 2.求函数的单调区间首先应注意函数的定义域,函数的单调区间都是其定义域的子集;其次掌握一次函数、二次函数等基本初等函数的单调区间.常用方法:根据定义、利用图象和单调函数的性质、利用导数的性质. 3.复合函数的单调性对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或者(g (b ),g (a ))上是单调函数,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数;若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数. 简称:同增异减. 失误与防范函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间要分开写,即使在两个区间上的单调性相同,也不能用并集表示.A 组 专项基础训练一、选择题1.函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1x B .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)答案 A解析 由题意知f (x )在(0,+∞)上是减函数.A 中,f (x )=1x满足要求;B 中,f (x )=(x -1)2在[0,1]上是减函数,在(1,+∞)上是增函数;C 中,f (x )=e x 是增函数;D 中,f (x )=ln(x +1)是增函数.2.若函数f (x )=-x 2+2ax 与g (x )=(a +1)1-x 在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]答案 D解析 ∵f (x )=-x 2+2ax =-(x -a )2+a 2在[1,2]上是减函数, ∴a ≤1.①又g (x )=(a +1)1-x 在[1,2]上是减函数.∴a +1>1,∴a >0.② 由①、②知,0<a ≤1.3.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( )A .(0,34)B .(0,34]C .[0,34)D .[0,34]答案 D解析 当a =0时,f (x )=-12x +5,在(-∞,3)上是减函数,当a ≠0时,由⎩⎪⎨⎪⎧a >0-4(a -3)4a ≥3,得0<a ≤34,综上a 的取值范围是0≤a ≤34.4.已知f (x )为R 上的减函数,则满足f (1x)>f (1)的实数x 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(-∞,0)∪(0,1)D .(-∞,0)∪(1,+∞)答案 D解析 依题意得1x <1,即x -1x >0,所以x 的取值范围是x >1或x <0.5.定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12答案 C解析 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2,∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 二、填空题6.函数f (x )=ln(4+3x -x 2)的单调递减区间是__________.答案 ⎣⎡⎭⎫32,4解析 函数f (x )的定义域是(-1,4),u (x )=-x 2+3x +4=-⎝⎛⎭⎫x -322+254的减区间为⎣⎡⎭⎫32,4,∵e>1,∴函数f (x )的单调递减区间为⎣⎡⎭⎫32,4.7.设函数f (x )=ax +1x +2a 在区间(-2,+∞)上是增函数,那么a 的取值范围是__________.答案 [1,+∞)解析 f (x )=ax +2a 2-2a 2+1x +2a =a -2a 2-1x +2a,∵函数f (x )在区间(-2,+∞)上是增函数.∴⎩⎪⎨⎪⎧ 2a 2-1>0-2a ≤-2⇒⎩⎪⎨⎪⎧2a 2-1>0a ≥1⇒a ≥1. 8.已知f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是______________. 答案 (-1,0)∪(0,1)解析 由f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),得⎪⎪⎪⎪1x >1, ∴1x >1或1x <-1,∴0<x <1或-1<x <0. 三、解答题9.函数f (x )=x 2-4x -4在闭区间[t ,t +1](t ∈R )上的最小值记为g (t ). (1)试写出g (t )的函数表达式; (2)求g (t )的最小值.解 (1)f (x )=x 2-4x -4=(x -2)2-8. 当t >2时,f (x )在[t ,t +1]上是增函数, ∴g (t )=f (t )=t 2-4t -4;当t ≤2≤t +1,即1≤t ≤2时,g (t )=f (2)=-8; 当t +1<2,即t <1时,f (x )在[t ,t +1]上是减函数, ∴g (t )=f (t +1)=t 2-2t -7.从而g (t )=⎩⎪⎨⎪⎧t 2-2t -7 (t <1),-8 (1≤t ≤2),t 2-4t -4 (t >2).(2)g (t )的图象如图所示,由图象易知g (t )的最小值为-8.10.已知函数f (x )=-2x +1,x ∈[0,2],求函数的最大值和最小值.解 设x 1,x 2是区间[0,2]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=-2x 1+1-(-2x 2+1)=-2(x 2+1-x 1-1)(x 1+1)(x 2+1)=-2(x 2-x 1)(x 1+1)(x 2+1). 由0≤x 1<x 2≤2,得x 2-x 1>0,(x 1+1)(x 2+1)>0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故f (x )在区间[0,2]上是增函数.因此,函数f (x )=-2x +1在区间[0,2]的左端点取得最小值,右端点取得最大值,即最小值是f (0)=-2,最大值是f (2)=-23. B 组 专项能力提升1.已知函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x在区间(1,+∞)上一定( ) A .有最小值B .有最大值C .是减函数D .是增函数答案 D 解析 由题意知a <1,∴g (x )=f (x )x =x +a x-2a , 当a <0时,g (x )在(1,+∞)上是增函数,当a >0时,g (x )在[a ,+∞)上是增函数,故在(1,+∞)上为增函数,∴g (x )在(1,+∞)上一定是增函数.2.已知函数f (x )=e |x -a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.答案 (-∞,1]解析 ∵f (x )=e |x -a |=⎩⎪⎨⎪⎧e x -a (x ≥a ),e -x +a (x <a ), ∴f (x )在[a ,+∞)上为增函数,则[1,+∞)⊆[a ,+∞),∴a ≤1.3.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.答案 1解析 依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2. 当0<x ≤2时,h (x )=log 2x 是增函数;当x >2时,h (x )=3-x 是减函数,∴h (x )在x =2时,取得最大值h (2)=1.4.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +a x>0, a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), a =1时,定义域为{x |x >0且x ≠1},0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时, g ′(x )=1-a x 2=x 2-a x 2>0恒成立, ∴g (x )=x +a x-2在[2,+∞)上是增函数. ∴f (x )=lg(x +a x-2)在[2,+∞)上是增函数. ∴f (x )=lg(x +a x-2)在[2,+∞)上的最小值为 f (2)=lg a 2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立. ∴a >3x -x 2,而h (x )=3x -x 2=-(x -32)2+94在x ∈[2,+∞)上是减函数, ∴h (x )max =h (2)=2.∴a >2.5.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.(1)证明 任取x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.(2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,∴a≤1. 综上所述知a的取值范围是(0,1].。

高考地理一轮复习专项训练《岩石圈物质循环》练习

高考地理一轮复习专项训练《岩石圈物质循环》练习

《岩石圈物质循环》练习一、综合题1.阅读图文材料,回答下列问题。

某研学小组到浙江省雁荡山进行研学考察,经研究发现雁荡山属于典型的中生代火山岩地貌。

该地貌演化经历了四个不同发育阶段,以锐峰、叠嶂、飞瀑称绝,凭借秀丽和雄伟的地貌景观而成为重要的旅游景区。

后期火山多次喷发形成厚达500米的流纹岩层,流纹岩层分布区沟谷众多,在地壳运动和外力作用下,在各溪流的源头沟谷段,沟床上往往出现呈多级分布、几乎直立的岩嶂和岩槛瀑布(图2)。

图1为雁荡山地貌阶段发育过程,图3为雁荡山地貌部分景观图。

(1)研学小组发现雁荡山地貌发育与丹霞地貌有相似之处,远看易混淆,请说出两种地貌特点异同。

(2)据图描述雁荡山地貌阶段发育过程。

(3)指出该地区多级岩嶂和岩槛瀑布形成的具体条件。

2.阅读图文材料,完成下列要求。

乌波卢岛位于太平洋板块向印度洋板块俯冲带。

第四纪以来,岩浆沿西北—东南向断裂间歇性喷出,形成多期火山岩。

其中,Q1火山岩抗蚀能力较弱,Q2、Q4火山岩垂直节理和裂缝发育。

各期火山岩表面土层厚度分别约为900cm、90cm、35cm。

岛屿西部局部地方Q1火山岩出露,构成高岗。

岛屿年平均降水量超过3000mm,但水资源较贫乏,其分布受岩性和地貌影响较大。

下图示意乌波卢岛地形及不同时期火山岩空间分布。

(1)说明乌波卢岛脊线的形成过程。

(2)从岩性和地貌角度,分析乌波卢岛地表水资源东部多于西部的原因。

(3)简析乌波卢岛西部Q1火山岩高岗形成的原因,并推断外力作用下其地形的演化。

3.读图完成下列问题。

锆是一种战略性稀有重金属。

锆资源集中分布在澳大利亚和非洲,绝大多数由澳大利亚、英国和美国的三大供应商开发,消费集中在中国、欧洲和北美。

莫桑比克锆砂矿资源丰富,其成矿物质主要来源于前寒武纪火成岩。

含锆重砂矿物多在海岸带低潮线附近富集,13月在高潮线以上也有大量沉积。

“一带一路”背景下,某中资企业与莫桑比克合作开发锆砂矿。

下图示意采矿区及所在区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省2019届高三数学理一轮复习典型题专项训练函数1、(2018全国III 卷高考)设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+2、(2017全国III 卷高考)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .-12B .13C .12D .13、(2016全国III 卷高考)已知432a =,254b =,1325c =,则(A )b a c << (B )a b c << (C )b c a << (D )c a b <<4、(成都市2018届高三第二次诊断)已知132a =,231()2b =,则2log ()ab = .5、(成都市2018届高三第三次诊断)已知实数ln 22a =,22ln 2b =+,()2ln 2c =,则,,a b c 的大小关系是( )A .c a b <<B .c b a <<C .b a c <<D .a c b <<6、(达州市2017届高三第一次诊断)若82a π=,11()log 2bb π=,2log sin3c π=,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >> 7、(德阳市2018届高三二诊考试)已知235log log log 0x y z ==<,则2x 、3y、5z 的大小排序为( ) A .235x y z << B .325y x z << C .523z x y << D .532z y x<< 8、(广元市2018届高三第一次高考适应性统考)已知定义在R 上的函数()f x 的图象关于(1,1)对称,3()(1)1g x x =-+,若函数()f x 图象与函数()g x 图象的次点为112220182018(,),(,),,(,)x y x y x y L ,则20181()iii x y =+=∑( )A .8072B .6054 C.4036 D .20189、(泸州市2018届高三第二次教学质量诊断)已知函数2,0()e ,xx x f x x >⎧=⎨⎩≤0,()e x g x =(e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有两个不等实根1x 、2x ,且12x x <,则21x x -的最小值为A .1(1ln 2)2-B .1ln 22+C .1ln2-D .1(1ln 2)2+10、(绵阳市2018届高三第一次诊断)已知01a b <<<,给出以下结论:①1123a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭;②1132a b >;③1123log log a b >;④11log log 23a b >.则其中正确的结论个数是( )A .1个B .2个C .3个D .4个11、(南充市2018届高三第二次高考适应性考试).设()x f 是周期为4的奇函数,当10≤≤x 时,())1(x x x f +=,则=⎪⎭⎫⎝⎛-29f ( )A .43-B .41- C.41 D .43 12、(仁寿县2018届高三上学期零诊)已知函数f (x )是定义在R 上的增函数,则函数y =f (|x -1|)-1的图象可能是A .B .C .D .13、(遂宁市2018届高三第一次诊断)定义在R 上的函数()f x 满足()()f x f x -=,且对任意的不相等的实数1x ,2[0,)x ∈+∞有1212()()0f x f x x x -<-成立,若关于x 的不等式(2ln 3)2(3)(2ln 3)f mx x f f mx x --≥--++在[1,3]x ∈上恒成立,则实数m 的取值范围A .1ln 6[,1]26e + B .1ln 6[,2]3e + C .1ln 3[,2]3e+D .1ln 3[,1]26e + 14、(宜宾市2018届高三第一次诊断)已知函数2()(2)(1)sin 2,f x x x x x π=--++则+++-+-+-)3()1()2()3(f f f f)5()4(f f +的值为A .16B .18C .20D .2215、(雅安市2018届高三下学期三诊)已知函数3()7sin f x x x x =--+,若2()(2)0f a f a +->,则实数a 的取值范围是( )A .(,1)-∞B .(,3)-∞C .(1,2)-D .(2,1)-16、(宜宾市2018届高三第一次诊断)已知函数x e b ax x x f )()(2++=,当1<b 时,函数)(x f 在),1(),2,(+∞--∞上均为增函数,则2-+a ba 的最大值为 . 17、(成都市石室中学高2018届高三下期二诊)已知函数()f x 对任意x ∈R 都有(4)()2(2)f x f x f +-=,若(1)y f x =-的图象关于直线1x =对称,则(2018)f =A.B. C.D.18、(2017全国III 卷高考)设函数1,0,()2,0,+⎧=⎨>⎩x x x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.19、(达州市2017届高三第一次诊断)函数2()0()x ax b f x g x ⎧+-⎪=⎨⎪⎩(0)(0)(0)x x x >=<在区间24(,4)a b b a +-+上满足()()0f x f x -+=,则(2)g -的值为( ) A .22- B .22 C .2- D .220、(德阳市2018届高三二诊考试)已知函数31()sin 31x xf x x x -=+++,若[2,1]x ∃∈-,使得2()()0f x x f x k ++-<成立,则实数k 的取值范围是( )A .(1,)-+∞B .(3,)+∞C .(0,)+∞D .(,1)-∞-21、(绵阳市2018届高三第一次诊断)已知偶函数()f x 在[)0,+∞上单调递减,且()21f =,若()211f x +<,则x 的取值范围是 .参考答案: 1、B解答:∵0.2log 0.3a =,2log 0.3b =,∴0.31log 0.2a =,0.31log 2b =, ∴0.311log 0.4a b +=,∴1101a b <+<即01a bab +<<, 又∵0a >,0b <,∴0ab a b <+<,故选B.2、【答案】C【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴, 由题意,()f x 有唯一零点, ∴()f x 的零点只能为1x =,即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.3、【答案】A【解析】因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A . 4、13-5、【答案】A 【解析】易知ln 2122<<,22ln 22+>,()20ln 21<<,所以c a b <<.故选A.6、A7、A8、C9、D 10、B11、A 12、B 13、D 14、B 15、D 16、2317、D 18、【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解析】()1,02 ,0+⎧=⎨>⎩x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:12-1211(,)44-1()2y f x =-1()y f x =-yx由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.19、B20、A21、)21()23(∞+--∞,,。

相关文档
最新文档