(江苏专用)2013年高考数学二轮复习 专题17附加题21题学案
高考数学二轮复习 专题十三 附加题21题 试题

2021届高考数学〔苏教版〕二轮复习专题13 附加题21题本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
回忆2021~2021年的高考考题,附加题选做四选二中分别考察几何证明选讲、极坐标与参数方程、矩阵与变换、不等式选讲这四个内容,要求考生从中选择两个来完成,每一小题10分,难度不是很大,但是要求考生对所学知识点纯熟掌握.[典例1](2021·高考)如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连结BD并延长至点C,使BD=DC,连结AC,AE,DE.求证:∠E=∠C.[解] 证明:如图,连结AD.∵AB是圆O的直径,∴∠ADB=90°.∴AD⊥BD.又∵BD=DC,∴AD是线段BC的中垂线.∴AB=AC.∴∠B=∠C.又∵D,E为圆上位于AB异侧的两点,∴∠B=∠E.∴∠E =∠C .(1)此题利用中间量代换的方法证明∠E =∠C ,一方面考虑到∠B 和∠E 是同弧所对圆周角相等;另一方面根据线段中垂线上的点到线段两端的间隔 相等和等腰三角形等边对等角的性质得到∠B =∠C .(2)此题还可连结OD ,利用三角形中位线来证明∠B =∠C . [演练1](2021·期末)AD 是△ABC 的外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA 交△ABC 的外接圆于点F ,连结FB ,FC .(1)求证:FB =FC ;(2)假设AB 是△ABC 外接圆的直径,∠EAC =120°,BC =33,求AD 的长. 解:(1)证明:∵AD 平分∠EAC ,∴∠EAD =∠DAC . ∵四边形AFBC 内接于圆,∴∠DAC =∠FBC . ∵∠EAD =∠FAB =∠FCB , ∴∠FBC =∠FCB ,∴FB =FC .(2)∵AB 是圆的直径,∴∠ACD =90°.∵∠EAC =120°,∴∠DAC =12∠EAC =60°,∠D =30°.在Rt △ACB 中,∵BC =33,∠BAC =60°,∴AC =3. 又在Rt △ACD 中,∠D =30°,AC =3,∴AD =6. [典例2](2021·高考)矩阵A 的逆矩阵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12 -12,求矩阵A 的特征值.[解] ∵A -1A =E ,∴A =(A -1)-1.∵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12 -12,∴A =(A -1)-1=⎣⎢⎡⎦⎥⎤2 321.∴矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -3-2 λ-1=λ2-3λ-4.令f (λ)=0,解得矩阵A 的特征值λ1=-1,λ2=4.由矩阵A 的逆矩阵,根据定义可求出矩阵A ,从而可求出矩阵A 的特征值. [演练2](2021·期末)矩阵A =⎣⎢⎡⎦⎥⎤ 2 -1-4 3,B =⎣⎢⎡⎦⎥⎤4 -1-3 1,求满足AX =B 的二阶矩阵X .解:由题意得A -1=⎣⎢⎢⎡⎦⎥⎥⎤32 12 2 1,∵AX =B ,∴X =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤32 12 2 1⎣⎢⎡⎦⎥⎤ 4 -1-3 1=⎣⎢⎢⎡⎦⎥⎥⎤92 -1 5 -1. [典例3](2021·高考)在极坐标中,圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.[解] ∵圆C 圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,∴在ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32中令θ=0,得ρ=1.∴圆C 的圆心坐标为(1,0). ∵圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,∴圆C 的半径为PC =22+12-2×1×2cos π4=1.∴圆C 经过极点,∴圆C 的极坐标方程为ρ=2cos θ.求圆的方程的关键是求出圆心坐标和圆的半径. [演练3](2021·二模)在极坐标系中,圆C 1的方程为ρ=42cos ⎝⎛⎭⎪⎫θ-π4,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,圆C 2的参数方程⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ为参数),假设圆C 1与圆C 2相切,务实数a 的值.解:C 1:(x -2)2+(y -2)2=8, 圆心C 1(2,2),半径r 1=2 2.C 2:(x +1)2+(y +1)2=a 2,圆心C 2(-1,-1),半径r 2=|a |. ∴圆心距C 1C 2=3 2.两圆外切时,C 1C 2=r 1+r 2=22+|a |=32,a =±2; 两圆内切时,C 1C 2=|r 1-r 2|=|22-|a ||=32,a =±5 2.综上,a =±2或者a =±5 2. [典例4](2021·高考)实数x ,y 满足:|x +y |<13,|2x -y |<16,求证:|y |<518.[证明] ∵3|y |=|3y |=|2(x +y )-(2x -y )|≤2|x +y |+|2x -y |, 由题设知|x +y |<13,|2x -y |<16,∴3|y |<13+16=56.∴|y |<518.解决此题的关键是用(x +y )和(2x -y )表示y . [演练4](2021·二模)x ,y ,z 均为正数.求证:x yz +y zx +z xy ≥1x +1y +1z.证明:因为x ,y ,z 都为正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z.同理,可得y zx +z xy ≥2x ,z xy +x yz ≥2y.将上述三个不等式两边分别相加,并除以2, 得x yz +y zx +z xy ≥1x +1y +1z.[专题技法归纳](1)几何证明选讲主要考察直线与圆的相切关系,弦切角定理是沟通角的桥梁,解决与圆有关的线段问题常利用相交弦定理、割线定理、切割线定理、切线长定理,并结合三角形相似等知识;(2)矩阵与变换主要考察变换、矩阵的特征值与特征向量、逆矩阵、二阶矩阵的乘法;(3)极坐标与参数方程主要考察参数方程与普通方程的互化及应用参数方程求最值、范围等问题; (4)解绝对值不等式的关键是去掉绝对值符号化为不含绝对值的不等式,其过程表达了分类讨论思想的应用.1.(2021·苏北四三模)如图,圆O 的直径AB =4,C 为圆周上一点,BC =2,过C 作圆O 的切线l ,过A 作l 的垂线AD 分别与直线l ,圆O 交于点D ,E ,求线段AE 的长.解:在Rt △ABC 中,因为AB =4,BC =2,所以∠ABC =60°, 因为l 为过C 的切线,所以∠DCA =∠CBA , 所以∠DCA =∠ABC =60°. 又因为AD ⊥DC ,所以∠DAC =30°.在△AOE 中,因为∠EAO =∠DAC +∠CAB =60°,且OE =OA , 所以AE =AO =12AB =2.2.如图,⊙O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为⊙O上一点,AE =AC ,求证:∠PDE =∠POC .证明:因AE =AC ,AB 为直径, 故∠OAC =∠OAE . 所以∠POC =∠OAC +∠OCA =∠OAE +∠OAC =∠EAC .又∠EAC =∠PDE ,所以∠PDE =∠POC .3.(2021·期末)求矩阵M =⎣⎢⎡⎦⎥⎤-1 4 2 6的特征值和特征向量.解:f (λ)=(λ+1)(λ-6)-8=λ2-5λ-14=(λ-7)(λ+2), 由f (λ)=0,可得λ1=7,λ2=-2.由⎩⎪⎨⎪⎧7+1x -4y =0,-2x +7-6y =0可得属于λ1=7的一个特征向量为⎣⎢⎡⎦⎥⎤12.由⎩⎪⎨⎪⎧-2+1x -4y =0,-2x +-2-6y =0可得属于λ1=-2的一个特征向量为⎣⎢⎡⎦⎥⎤4-1. 4.(2021·二模)M =⎣⎢⎡⎦⎥⎤1221,β=⎣⎢⎡⎦⎥⎤17,计算M 5β. 解:矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -2-2 λ-1=λ2-2λ-3.令f (λ)=0,解得λ1=3,λ2=-1,从而求得它们对应的一个特征向量分别为α1=⎣⎢⎡⎦⎥⎤11,α2=⎣⎢⎡⎦⎥⎤ 1-1.令β=m α1+n α2,所以求得m =4,n =-3.M 5β=M 5(4α1-3α2)=4(M 5α1)-3(M 5α2)=4(λ51α1)-3(λ52α2)=4·35⎣⎢⎡⎦⎥⎤11-3(-1)5⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤975969. 5.矩阵A =⎣⎢⎡⎦⎥⎤112 1,向量β=⎣⎢⎡⎦⎥⎤12.求向量α,使得A 2α=β. 解:∵A =⎣⎢⎡⎦⎥⎤1121,∴A 2=⎣⎢⎡⎦⎥⎤1 121⎣⎢⎡⎦⎥⎤1 12 1=⎣⎢⎡⎦⎥⎤3243.设α=⎣⎢⎡⎦⎥⎤x y ,那么A 2α=β⇔⎣⎢⎡⎦⎥⎤3 243⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤12 ⇔⎣⎢⎡⎦⎥⎤3x +2y 4x +3y =⎣⎢⎡⎦⎥⎤12.∴⎩⎪⎨⎪⎧3x +2y =1,4x +3y =2,∴⎩⎪⎨⎪⎧x =-1,y =2,∴α=⎣⎢⎡⎦⎥⎤-1 2.6.P (x ,y )是椭圆x 24+y 2=1上的点,求M =x +2y 的取值范围.解:∵x 24+y 2=1的参数方程⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)∴设P (2cos θ,sin θ).∴M =x +2y =2cos θ+2sin θ=22sin ⎝ ⎛⎭⎪⎫θ+π4.∴M =x +2y 的取值范围是[-22,2 2 ].7.(2021·期末)曲线C 的极坐标方程为ρ=6sin θ,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =12t ,y =32t +1(t 为参数),求直线l 被曲线C 截得的线段长度.解:将曲线C 的极坐标方程化为直角坐标方程为x 2+y 2-6y =0,即x 2+(y -3)2=9,它表示以(0,3)为圆心,3为半径的圆. 直线方程l 的普通方程为y =3x +1,圆C 的圆心到直线l 的间隔 d =|3-1|3+1=1,故直线l 被曲线C 截得的线段长度为232-12=4 2.8.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =12t ,y =22+32t(t 为参数),假设以直角坐标系xOy 的O 点为极点,Ox 为极轴,且长度单位一样,建立极坐标系,得曲线C 的极坐标方程为ρ=2cos ⎝⎛⎭⎪⎫θ-π4. (1)求直线l 的倾斜角;(2)假设直线l 与曲线C 交于A ,B 两点,求AB . 解:(1)设直线l 的倾斜角为θ,那么⎩⎪⎨⎪⎧cos θ=12,sin θ=32且θ∈[0,π),∴θ=π3,即直线l 的倾斜角为π3.(2)l 的直角坐标方程为y =3x +22, ρ=2cos ⎝⎛⎭⎪⎫θ-π4的直角坐标方程为⎝ ⎛⎭⎪⎫x -222+⎝ ⎛⎭⎪⎫y -222=1,∴圆心⎝⎛⎭⎪⎫22,22到直线l 的间隔 d =64,∴AB =102. 9.对于实数x ,y ,假设|x -1|≤1,|y -2|≤1,求|x -y +1|的最大值. 解:法一:|x -y +1|=|(x -1)-(y -2)|≤|x -1|+|y -2|≤2. 当且仅当x =2,y =3或者x =0,y =1时,取等号.∴|x -y +1|的最大值为2. 法二:∵|x -1|≤1,∴0≤x ≤2. ∵|y -2|≤1,∴1≤y ≤3. ∴-3≤-y ≤-1. ∴-2≤x -y +1≤2. ∴|x -y +1|的最大值为2.10.假设正数a ,b ,c 满足a +b +c =1,求13a +2+13b +2+13c +2的最小值.解:因为正数a ,b ,c 满足a +b +c =1, 所以⎝⎛⎭⎪⎫13a +2+13b +2+13c +2[(3a +2)+(3b +2)+(3c +2)]≥(1+1+1)2,即13a +2+13b +2+13c +2≥1, 当且仅当3a +2=3b +2=3c +2,即a =b =c =13时,原式取最小值1.本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
2013高考数学第二轮复习学案 第1--8讲学案

第1讲 二次函数一. 【复习目标】1.准确理解函数的有关概念.2.体会数形结合及函数与方程的数学思想方法.二、【课前热身】1、 f(x)是定义在全体实数上的偶函数,它的图象关于x=2为轴对称,已知当x ∈(-2,2)时f(x)的表达式为-x 2+1,则当x ∈(-6,-2)时,f(x)的表达式是: ( ) (A)-x 2+1 (B )-(x-2)2+1 (C)-(x+2)2+1 (D )-(x+4)2+1 2、 已知f(x)=x 2+(lga+2)x+lgb 且f(-1)=-2,又f(x)≥2x 对一切x ∈R 都成立,求a+b = . 3、函数f(x)=x 4-2x 2+2的单调增区间是( )(A )[1,+∞), (B )(-∞,-1)∪[1,+∞), (C)[-1,0]∪[1,+∞), (D)以上都不对 4、已知方程x 2+2px+1=0有一个根大于1,有一个根小于1,则P 的取值为 。
三. 【例题探究】例1.已知函数21sin sin 42a y x a x =-+-+的最大值为2,求a 的值 .例2. 已知函数22()(21)2f x x a x a =--+-与非负x 轴至少有一个交点,求a 的取值范围.例3.对于函数()f x ,若存在0x R ∈,使00()f x x =,则称0x 是()f x 的一个不动点,已知函数2()(1)(1)(0)f x ax b x b a =+++-≠,(1)当1,2a b ==-时,求函数()f x 的不动点;(2)对任意实数b ,函数()f x 恒有两个相异的不动点,求a 的取值范围;(3)在(2)的条件下,若()y f x =的图象上,A B 两点的横坐标是()f x 的不动点,且,A B 两点关于直线2121y kx a =++对称,求b 的最小值.四、【方法点拨】1.讨论二次函数的区间最值问题:①注意对称轴与区间的相对位置;②函数在此区间上的单调性;2.讨论二次函数的区间根的分布情况一般需从三方面考虑:①判别式;②区间端点的函数值的符号;③对称轴与区间的相对位置.冲刺强化训练(1)班级 姓名 学号 日期 月 日1、函数2 ([0,))y x bx c x =++∈+∞是单调函数的充要条件是 ( ) A .0b ≥ B . 0b ≤ C . 0b > D . 0b <2、 函数x x y 22-=的定义域为{}3,2,1,0,那么其值域为 ( ) A .{}3,0,1- B .{}3,2,1,0 C .{}31≤≤-y y D .{}30≤≤y y3、若函数f (x )=4)2(2)2(2--+-x a x a 的图象位于x 轴的下方,则实数a 的取值范围是( ))2(]22(]22[)2(--∞---∞,、,、,、,、D C B A4、使函数542+-=x x y 具有反函数的一个条件是_____________________________。
2013年高考数学二轮复习学案:专题2函数的性质及应用试题和解析(II)

2013年高考数学二轮复习学案:专题2函数的性质及应用试题和解析(II )高考中考查函数性质的形式不一,时而填空题,时而解答题,时而与其他章节综合,在解决问题的某一步骤中出现.在二轮复习中要注重知识点之间的联系,同时还要注意结合函数图象解决问题.,此外,函数的对称性、周期性常与函数的奇偶性、单调性综合起来考查;函数的零点问题是近年来新增的一个考点,也要引起足够的重视.1.已知函数F (x )=f ⎝⎛⎭⎫x +12-1是R 上的奇函数,a n =f (0)+f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫2n +…+f ⎝⎛⎭⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项a n =________.解析:由题意知F (-x )=-F (x ),即f ⎝⎛⎭⎫-x +12-1=-f ⎝⎛⎭⎫x +12+1,f ⎝⎛⎭⎫x +12+f ⎝⎛⎭⎫-x +12=2.[来源:学科网]令t =x +12,则f (t )+f (1-t )=2.分别令t =0,1n ,2n ,…,n -1n ,n n ,得f (0)+f (1)=f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫n -1n = (2)∵a n =f (0)+f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫2n +…+f ⎝⎛⎭⎫n -1n +f (1), ∴由倒序相加法得2a n =2(n +1),故a n =n +1. 答案:n +12.(2012·徐州期末)设函数f (x )=x |x |+bx +c ,给出下列四个命题 ①当c =0,y =f (x )是奇函数;②当b =0,c <0时,方程f (x )=0只有一个实数根; ③y =f (x )的图象关于点(0,c )对称; ④方程f (x )=0至多有两个实数根. 其中命题正确的是________.解析:当c =0时f (-x )=-x |x |-bx =-f (x ),①正确;当b =0,c <0时由f (x )=0得x |x |+c =0,只有一个正根,②正确;若P (x ,y )是y =f (x )图象上的任意一点,则f (-x )=-x |x |-bx +c =2c -(x |x |+bx +c )=2c -y ,即P ′(-x,2c -y )也在y =f (x )的图象上,③正确;④不正确,如b =-2,c =0时,f (x )=0有3个实数根.答案:①②③3.已知函数f (x )=|x 2-2ax +b |(x ∈R ).给出下列命题: ①f (x )必是偶函数;②当f (0)=f (2)时,f (x )的图象必关于直线x =1对称; ③若a 2-b ≤0,则f (x )在区间[a ,+∞)上是增函数; ④f (x )有最大值|a 2-b |. 其中正确的序号是________.解析:①显然是错的;②由于函数加了绝对值,所以对于一个函数值可能对应的x 值有4个,故不一定得到对称轴是x =1;由于a 2-4≤0时,f (x )=x 2-2ax +b ,故③正确;④结合函数图象,可以判定函数无最大值.答案:③4.(2012·淮阴联考)给出下列四个结论:①函数y =k ·3x (k 为非零常数)的图象可由函数y =3x 的图象经过平移得到; ②不等式⎪⎪⎪⎪ax -1x >a 的解集为M ,且2∉M ,则a 的取值范围是⎝⎛⎭⎫14,+∞; ③定义域为R 的函数f (x )满足f (x +1)·f (x )=-1,则f (x )是周期函数;④已知f (x )满足对x ∈R 都有f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2成立,则f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=7. 其中正确结论的序号是________.(把你认为正确命题的序号都填上) 解析:由|k |·3x =3x +log 3|k |(k ≠0)知①正确;由2∉M 得⎪⎪⎪⎪2a -12≤a ,即a ≥14,故②不正确;由f (x +1)=-1f (x )得f (x +2)=f (x ),故③正确;由f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2得f (x )+f (1-x )=2且f ⎝⎛⎭⎫12=1,故f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=7正确.答案:①③④5.给出定义:若m -12<x ≤m +12(其中m 为整数),则m 叫做离实数x 最近的整数,记作{x },即{x }=m .在此基础上给出下列关于函数f (x )=|x -{x }|的四个命题: ①函数y =f (x )的定义域是R ,值域是⎣⎡⎦⎤0,12; ②函数y =f (x )的图象关于直线x =k2(k ∈Z )对称;③函数y =f (x )是周期函数,最小正周期是1; ④函数y =f (x )在⎣⎡⎦⎤-12,12上是增函数. 则其中真命题是________.解析:由m -12<x ≤m +12解得-12≤x -m ≤12,故命题①正确;由f (k -x )=|k -x -{k -x }|=|k -x -(k-{x })|=|-x +{x }|=f (x )知②正确,④不正确;同理③正确.答案:①②③[典例1](2012·泰兴中学调研)设n 为正整数,规定:f n (x )=f {f […f (x )]}n 个f ,已知f (x )=⎩⎪⎨⎪⎧2(1-x ),0≤x ≤1,x -1, 1<x ≤2.(1)解不等式f (x )≤x ;(2)设集合A ={0,1,2},对任意x ∈A ,证明:f 3(x )=x ; (3)探求f 2 012⎝⎛⎭⎫89;(4)若集合B ={x |f 12(x )=x ,x ∈[0,2]},证明:B 中至少包含有8个元素. [解] (1)①当0≤x ≤1时,由2(1-x )≤x 得, x ≥23.∴23≤x ≤1. ②当1<x ≤2时,∵x -1≤x 恒成立,∴1<x ≤2.由①,②得,f (x )≤x 的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫23≤x ≤2. (2)证明:∵f (0)=2,f (1)=0,f (2)=1, ∴当x =0时,f 3(0)=f (f (f (0)))=f (f (2))=f (1)=0; 当x =1时,f 3(1)=f (f (f (1)))=f (f (0))=f (2)=1; 当x =2时,f 3(2)=f (f (f (2)))=f (f (1))=f (0)=2.[来源:学科网ZXXK] 即对任意x ∈A ,恒有f 3(x )=x . (3)f 1⎝⎛⎭⎫89=f ⎝⎛⎭⎫89=2⎝⎛⎭⎫1-89=29, f 2⎝⎛⎭⎫89=f ⎝⎛⎭⎫f ⎝⎛⎭⎫89=f ⎝⎛⎭⎫29=149, f 3⎝⎛⎭⎫89=f ⎝⎛⎭⎫f 2⎝⎛⎭⎫89=f ⎝⎛⎭⎫149=149-1=59, f 4⎝⎛⎭⎫89=f ⎝⎛⎭⎫f 3⎝⎛⎭⎫89=f ⎝⎛⎭⎫59=2⎝⎛⎭⎫1-59=89. 一般地,f 4k +r ⎝⎛⎭⎫89=f r ⎝⎛⎭⎫89(k ∈N ,r ∈N *). ∴f 2 012⎝⎛⎭⎫89=f 4⎝⎛⎭⎫89=89.(4)由(1)知,f ⎝⎛⎭⎫23=23,∴f n ⎝⎛⎭⎫23=23.则f 12⎝⎛⎭⎫23=23.∴23∈B .[来源:学#科#网Z#X#X#K] 由(2)知,对x =0,或1,或2,恒有f 3(x )=x , ∴f 12(x )=f 4×3(x )=x .[来源:学+科+网] 则0,1,2∈B .由(3)知,对x =89,29,149,59,恒有f 12(x )=f 4×3(x )=x , ∴89,29,149,59∈B . 综上所述23,0,1,2,89,29,149,59∈B .∴B 中至少含有8个元素.本题给出新定义内容,第一问就是解不等式,第二问实际就是对定义的认识直接套用,第三问就需要对定义进行更深一步的认识,探究函数值之间存在的规律.[演练1]对于定义在D 上的函数y =f (x ),若同时满足(1)存在闭区间[a ,b ]⊆D ,使得任取x 1∈[a ,b ],都有f (x 1)=c (c 是常数); (2)对于D 内任意x 2,当x 2∉[a ,b ]时总有f (x 2)>c . 称f (x )为“平底型”函数.判断f 1(x )=|x -1|+|x -2|,f 2(x )=x +|x -2|是否是“平底型”函数?简要说明理由. 解:f 1(x )=|x -1|+|x -2|是“平底型”函数,[来源:学,科,网Z,X,X,K] 存在区间[1,2]使得x ∈[1,2]时,f (x )=1, 当x <1和x >2时,f (x )>1恒成立; f 2(x )=x +|x -2|不是“平底型”函数,不存在[a ,b ]⊆R 使得任取x ∈[a ,b ],都有f (x )=常数. [典例2](2012·南京一模)对于函数f (x ),若存在实数对(a ,b ),使得等式f (a +x )·f (a -x )=b 对定义域中的每一个x 都成立,则称函数f (x )是“(a ,b )型函数”.(1)判断函数f (x )=4x 是否为“(a ,b )型函数”,并说明理由;(2)已知函数g (x )是“(1,4)型函数”,当x ∈[0,2]时,都有1≤g (x )≤3成立,且当x ∈[0,1]时,g (x )=x 2-m (x -1)+1(m >0),试求m 的取值范围.[解] (1)函数f (x )=4x 是“(a ,b )型函数”, 因为由f (a +x )·f (a -x )=b ,得16a =b ,所以存在这样的实数对,如a =1,b =16. (2)由题意得,g (1+x )·g (1-x )=4, 所以当x ∈[1,2]时,g (x )=4g (2-x ),其中2-x ∈[0,1].而x ∈[0,1]时,g (x )=x 2+m (1-x )+1=x 2-mx +m +1>0,且其对称轴方程为x =m2.①当m2>1,即m >2时,g (x )在[0,1]上的值域为[g (1),g (0)],即[2,m +1].则g (x )在[0,2]上的值域为[2,m +1]∪⎣⎡⎦⎤4m +1,2=⎣⎡⎦⎤4m +1,m +1,由题意得⎩⎪⎨⎪⎧m +1≤3,4m +1≥1,此时无解;②当12≤m 2≤1,即1≤m ≤2时,g (x )的值域为⎣⎡⎦⎤g ⎝⎛⎭⎫m 2,g (0),即⎣⎡⎦⎤m +1-m 24,m +1, 所以g (x )在[0,2]上的值域为⎣⎡⎦⎤m +1-m 24,m +1∪⎣⎢⎡⎦⎥⎤4m +1,4m +1-m 24, 由题意得⎩⎨⎧4m +1-m24≤3,m +1≤3,且⎩⎨⎧m +1-m 24≥1,4m +1≥1,解得1≤m ≤2;③当0<m 2≤12,即0<m ≤1时,g (x )的值域为⎣⎡⎦⎤g ⎝⎛⎭⎫m 2,g (1),即⎣⎡⎦⎤m +1-m 24,2,则g (x )在[0,2]上的值域为⎣⎡⎦⎤m +1-m 24,2∪⎣⎢⎡⎦⎥⎤2,4m +1-m 24 =⎣⎢⎡⎦⎥⎤m +1-m 24,4m +1-m 24,则⎩⎪⎨⎪⎧m +1-m 24≥1,4m +1-m24≤3,解得2-263≤m ≤1.综上所述,所求m 的取值范围是⎣⎡⎦⎤2-263,2.本题主要考查函数的综合性质,分类讨论思想,第一问比较容易,好入手,第二问转化有点困难,应先把函数在[1,2]上的解析式求出来,然后求值域并转化为子集关系解题.求值域实质就是二次函数中轴动区间定的类型,并且同时研究两个二次函数,要进行比较.[演练2](2012·金陵中学期末)已知函数f (x )的图象在[a ,b ]上连续不断,定义: f 1(x )=min{f (t )|a ≤t ≤x }(x ∈[a ,b ]), f 2(x )=max{f (t )|a ≤t ≤x }(x ∈[a ,b ]).其中,min{f (x )|x ∈D }表示函数f (x )在区间上的最小值,max{f (x )|x ∈D }表示函数f (x )在区间上的最大值.若存在最小正整数k ,使得f 2(x )-f 1(x )≤k (x -a )对任意的x ∈[a ,b ]成立,则称函数为区间[a ,b ]上的“k 阶收缩函数”.(1)若f (x )=cos x ,x ∈[0,π],试写出f 1(x ),f 2(x )的表达式;(2)已知函数f (x )=x 2,x ∈[-1,4],试判断f (x )是否为[-1,4]上的“k 阶收缩函数”,如果是,求出相应的k ;如果不是,请说明理由;(3)已知b >0,函数f (x )=-x 3+3x 2是[0,b ]上的2阶收缩函数,求b 的取值范围. 解:(1)f 1(x )=cos x ,x ∈[0,π],f 2(x )=1,x ∈[0,π].(2)∵f 1(x )=⎩⎪⎨⎪⎧x 2,x ∈[-1,0),0,x ∈[0,4],f 2(x )=⎩⎪⎨⎪⎧1,x ∈[-1,1),x 2,x ∈[1,4],∴f 2(x )-f 1(x )=⎩⎪⎨⎪⎧1-x 2,x ∈[-1,0),1,x ∈[0,1),x 2,x ∈[1,4].当x ∈[-1,0]时,1-x 2≤k (x +1), ∴k ≥1-x ,即k ≥2;当x ∈(0,1)时,1≤k (x +1),∴k ≥1x +1,即k ≥1;当x ∈[1,4]时,x 2≤k (x +1),∴k ≥x 2x +1,即k ≥165.综上,存在k =4,使得f (x )是[-1,4]上的4阶收缩函数. (3)∵f ′(x )=-3x 2+6x =-3x (x -2),∴在(0,2)上f ′(x )>0,f (x )递增,在(2,+∞)上f ′(x )<0,f (x )递减. ①当0<b ≤2时,f (x )在[0,b ]上递增, ∴f 2(x )=f (x )=-x 3+3x 2,f 1(x )=f (0)=0. ∵f (x )=-x 3+3x 2是[0,b ]上的2阶收缩函数, ∴(ⅰ)f 2(x )-f 1(x )≤2(x -0)对x ∈[0,b ]恒成立, 即-x 3+3x 2≤2x 对x ∈[0,b ]恒成立, 即0≤x ≤1或x ≥2.∴0<b ≤1.(ⅱ)存在x ∈[0,b ],使得f 2(x )-f 1(x )>(x -0)成立.即存在x ∈[0,b ],使得x (x 2-3x +1)<0成立.即x <0或3-52<x <3+52,∴只需b >3-52.综上3-52<b ≤1.②当2<b ≤3时,f (x )在[0,2]上递增,在[2,b ]上递减, ∴f 2(x )=f (2)=4,f 1(x )=f (0)=0, f 2(x )-f 1(x )=4,x -0=x .∴当x =0时,f 2(x )-f 1(x )≤2(x -0)不成立. ③当b >3时,f (x )在[0,2]上递增,在[2,b ]上递减, ∴f 2(x )=f (2)=4,f 1(x )=f (b )<0, f 2(x )-f 1(x )=4-f (b )>4,x -0=x .∴当x =0时,f 2(x )-f 1(x )≤2(x -0)也不成立. 综上3-52<b ≤1.[典例3](2012·栟茶模拟)已知函数f (x )=a x +x 2-x ln a (a >0,a ≠1). (1)当a >1时,求证:函数f (x )在(0,+∞)上单调递增; (2)若函数y =|f (x )-t |-1有三个零点,求t 的值;(3)若存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1,试求a 的取值范围. [解] (1)证明:f ′(x )=a x ln a +2x -ln a =2x +(a x -1)·ln a , 由于a >1,故当x ∈(0,+∞)时,ln a >0,a x -1>0, 所以f ′(x )>0.故函数f (x )在(0,+∞)上单调递增.(2)当a >0,a ≠1时,因为f ′(0)=0,且f ′(x )在R 上单调递增, 故f ′(x )=0有惟一解x =0.所以x ,f ′(x ),f (x )的变化情况如下表所示:x (-∞,0)0 (0,+∞)f ′(x ) - 0 + f (x )递减极小值递增又函数y =|f (x )-t |-1有三个零点,所以方程 f (x )=t ±1有三个根,而t +1>t -1,所以t -1=(f (x ))min =f (0)=1,解得t =2.(3)因为存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1,所以当x ∈[-1,1]时,|f (x )max -f (x )min |=f (x )max-f (x )min ≥e -1.由(2)知,f (x )在[-1,0]上递减,在[0,1]上递增,所以当x ∈[-1,1]时,f (x )min =f (0)=1,[来源:学科网ZXXK] f (x )max =max{f (-1),f (1)}.而f (1)-f (-1)=(a +1-ln a )-⎝⎛⎭⎫1a +1+ln a =a -1a -2ln a , 记g (t )=t -1t-2ln t (t >0),因为g ′(t )=1+1t 2-2t =⎝⎛⎭⎫1t -12≥0(当且仅当t =1时取等号), 所以g (t )=t -1t -2ln t 在t ∈(0,+∞)上单调递增,而g (1)=0,所以当t >1时,g (t )>0;当0<t <1时,g (t )<0, 也就是当a >1时,f (1)>f (-1); 当0<a <1时,f (1)<f (-1). ①当a >1时,由f (1)-f (0)≥e -1 ⇒a -ln a ≥e -1⇒a ≥e ,②当0<a <1时,由f (-1)-f (0)≥e -1 ⇒1a +ln a ≥e -1⇒0<a ≤1e, 综上知,所求a 的取值范围为⎝⎛⎦⎤0,1e ∪[e ,+∞).本题考查函数与导数的综合性质,函数模型并不复杂,一二两问是很常规的,考查利用导数证明单调性,考查函数与方程的零点问题.第三问要将“若存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1”转化成|f (x )max -f (x )min |=f (x )max -f (x )min ≥e -1成立,最后仍然是求值域问题,但在求值域过程中,问题设计比较巧妙,因为在过程中还要构造函数研究单调性来确定导函数的正负.[演练3](2012·无锡期中)已知二次函数g (x )对任意实数x 都满足g (x -1)+g (1-x )=x 2-2x -1,且g (1)=-1.令f (x )=g ⎝⎛⎭⎫x +12+m ln x +98(m ∈R ,x >0). (1)求g (x )的表达式;(2)若∃x >0使f (x )≤0成立,求实数m 的取值范围; (3)设1<m ≤e ,H (x )=f (x )-(m +1)x ,证明:对∀x 1,x 2∈[1,m ],恒有|H (x 1)-H (x 2)|<1. 解:(1)设g (x )=ax 2+bx +c ,于是g (x -1)+g (1-x )=2a (x -1)2+2c =(x -1)2-2, 所以⎩⎪⎨⎪⎧a =12,c =-1.又g (1)=-1,则b =-12.所以g (x )=12x 2-12x -1.(2)f (x )=g ⎝⎛⎭⎫x +12+m ln x +98 =12x 2+m ln x (m ∈R ,x >0). 当m >0时,由对数函数性质,f (x )的值域为R ; 当m =0时,f (x )=x 22>0对∀x >0,f (x )>0恒成立;当m <0时,由f ′(x )=x +mx=0⇒x =-m ,列表:x (0,-m )-m (-m ,+∞)f ′(x ) - 0 + f (x )减极小值增这时,f (x )min =f (-m )=-m2+m ln -m .f (x )min >0⇔⎩⎪⎨⎪⎧-m 2+m ln -m >0,m <0⇒-e<m <0.所以若∀x >0,f (x )>0恒成立,则实数m 的取值范围是(-e,0]. 故∃x >0,使f (x )≤0成立,实数m 的取值范围(-∞,-e]∪(0,+∞).(3)证明:因为对∀x ∈[1,m ],H ′(x )=(x -1)(x -m )x ≤0,所以H (x )在[1,m ]内单调递减.于是|H (x 1)-H (x 2)|≤H (1)-H (m )=12m 2-m ln m -12.|H (x 1)-H (x 2)|<1⇔12m 2-m ln m -12<1⇔12m -ln m -32m<0. 记h (m )=12m -ln m -32m (1<m ≤e),则h ′(m )=12-1m +32m 2=32⎝⎛⎭⎫1m -132+13>0, 所以函数h (m )=12m -ln m -32m 在(1,e]上是单调增函数.所以h (m )≤h (e)=e 2-1-32e =(e -3)(e +1)2e <0,故命题成立.[专题技法归纳](1)对复杂函数的对称性应注意利用最根本的定义解决,奇偶性只是对称性中最特殊的一种. (2)对于形如:∀x 1,x 2∈[1,m ],恒有|H (x 1)-H (x 2)|<1的问题,要注意转化成最值问题处理.同时在利用导数的正负探究函数的单调性时,为判断导函数的正负,有时还需要设计成研究导函数的最值问题.1.定义域为R 的函数f (x )=⎩⎪⎨⎪⎧|lg|x -2||,x ≠2,1, x =2,则关于x 的方程f 2(x )+bf (x )+c =0有5个不同的实数根x 1,x 2,x 3,x 4,x 5,求f (x 1+x 2+x 3+x 4+x 5)=________.解析:作出函数f (x )的图象可以得到x 1+x 2+x 3+x 4+x 5=9.f (9)=|lg 7|=lg 7. 答案:lg 72.若函数f (x )满足:f (x +3)=f (5-x )且方程f (x )=0恰有5个不同实根,求这些实根之和为________. 解析:由题意可得到图象关于x =4对称,所以和为20. 答案:203.已知函数f (x )=x 3+bx 2+cx +d 在区间[-1,2]上是减函数,则b +c 的最大值是________. 解析:由题意f ′(x )=3x 2+2bx +c 在区间[-1,2]上满足f ′(x )≤0恒成立,则⎩⎪⎨⎪⎧ f ′(-1)≤0,f ′(2)≤0,即⎩⎪⎨⎪⎧ 2b -c -3≥0,4b +c +12≤0,此问题相当于在约束条件⎩⎪⎨⎪⎧2b -c -3≥0,4b +c +12≤0,下求目标函数z =b +c 的最大值.作出可行域(图略),由图可知,当直线l :b +c =z 过2b -c -3=0与4b +c +12=0的交点M ⎝⎛⎭⎫-32,-6时,z 最大,∴z max =-32-6=-152. 答案:-1524.某同学在研究函数f (x )=x1+|x |(x ∈R )时,分别给出下面几个结论: ①等式f (-x )+f (x )=0在x ∈R 时恒成立; ②函数f (x )的值域为(-1,1); ③若x 1≠x 2,则一定有f (x 1)≠f (x 2); ④函数g (x )=f (x )-x 在R 上有三个零点.其中正确结论的序号有________(请将你认为正确的结论的序号都填上) 解析:①显然正确;由|f (x )|=|x |1+|x |<1+|x |1+|x |=1知②正确;可以证明f (x )在(-∞,+∞)上是增函数,故③正确;由f (x )-x =0得x1+|x |=x ,此方程只有一根x =0,故④不正确.答案:①②③5.若关于x 的方程x 2=2-|x -t |至少有一个负数解,则实数t 的取值范围是________. 解析:方程等价于|x -t |=2-x 2,结合y =|x -t |与y =2-x 2图象,如图,找出两边临界值,可得-94≤t <2.答案:⎣⎡⎭⎫-94,2 6.已知函数f (x )=⎩⎪⎨⎪⎧2x , x ≥2,(x -1)3, x <2,若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.解析:f (x )=2x (x ≥2)单调递减且值域为(0,1],f (x )=(x -1)3(x <2)单调递增且值域为(-∞,1),f (x )=k 有两个不同的实根,则实数k 的取值范围是(0,1).答案:(0,1)7.对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b ,设f (x )=(2x -1)*(x -1),且关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.解析:由定义运算“*”可知f (x )=⎩⎪⎨⎪⎧(2x -1)2-(2x -1)(x -1),2x -1≤x -1,(x -1)2-(2x -1)(x -1),2x -1>x -1, =⎩⎨⎧2⎝⎛⎭⎫x -142-18,x ≤0,-⎝⎛⎭⎫x -122+14,x >0,画出该函数图象可知满足条件的取值范围是⎝⎛⎭⎪⎫1-316,0.答案:⎝⎛⎭⎪⎫1-316,08.定义在R 上的函数f (x )满足f (x +6)=f (x ).当-3≤x <-1时,f (x )=-(x +2)2,当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 012)=________.解析:由f (x +6)=f (x ),可知函数的周期为6,所以f (-3)=f (3)=-1,f (-2)=f (4)=0,f (-1)=f (5)=-1,f (0)=f (6)=0,f (1)=1,f (2)=2,所以在一个周期内有f (1)+f (2)+…+f (6)=1+2-1+0-1+0=1,所以f (1)+f (2)+…+f (2 012)=f (1)+f (2)+335×1=335+3=338.答案:3389.(2012·南师附中)设f (x )是定义在R 上的奇函数,且当x <0时,f (x )=x 2,对于任意x ∈[t -2,t ],不等式f (x +t )≥2f (x )恒成立,则实数t 的取值范围是________.解析:f (x +t )≥2f (x )等价于f (x +t )≥f (2x )根据奇偶性得到函数在定义域上是单调递减函数,所以x +t ≤2x 恒成立,解得t ≤- 2.答案:(-∞,- 2 ]10.(2012·北京高考)已知f (x )=m (x -2m )(x +m +3),g (x )=2x -2.若同时满足条件: ①∀x ∈R ,f (x )<0或g (x )<0; ②∃x ∈(-∞,-4),f (x )g (x )<0.则m 的取值范围是________.解析:当x <1时,g (x )<0,当x >1时,g (x )>0,当x =1时,g (x )=0.m =0不符合要求;当m >0时,根据函数f (x )和函数g (x )的单调性,一定存在区间[a ,+∞)使f (x )≥0且g (x )≥0,故m >0时,不符合第①条的要求;当m <0时,如图所示,如果符合①的要求,则函数f (x )的两个零点都得小于1,如果符合第②条要求,则函数f (x )至少有一个零点小于-4,问题等价于函数f (x )有两个不相等的零点,其中较大的零点小于1,较小的零点小于-4.函数f (x )的两个零点是2m ,-(m +3),故m 满足⎩⎪⎨⎪⎧m <0,2m <-(m +3),2m <-4,-(m +3)<1或者⎩⎪⎨⎪⎧m <0,-(m +3)<2m ,2m <1,-(m +3)<-4,解第一个不等式组得-4<m <-2,第二个不等式组无解,故所求m 的取值范围是(-4,-2).答案:(-4,-2 )11.(2012·栟茶一模)已知二次函数f (x )=ax 2+bx +c .(1)若a >b >c ,且f (1)=0,是否存在m ∈R ,使得f (m )=-a 成立时,f (m +3)为正数?若存在,证明你的结论;若不存在,说明理由;(2)若对x 1,x 2∈R ,且x 1<x 2,f (x 1)≠f (x 2),方程f (x )=12[f (x 1)+f (x 2)]有2个不等实根,证明必有一个根属于(x 1,x 2);(3)若f (0)=0,是否存在b 的值使{x |f (x )=x }={x |f [f (x )]=x }成立?若存在,求出b 的取值范围;若不存在,说明理由.解:(1)因为f (1)=a +b +c =0,且a >b >c , 所以a >0且c <0.∵f (1)=0,∴1是f (x )=0的一个根, 由韦达定理知另一根为ca .[来源:学科网ZXXK]∵a >0且c <0,∴ca <0<1.又a >b >c ,b =-a -c ,∴-2<c a <-12.假设存在这样的m ,由题意,则 a ⎝⎛⎭⎫m -c a (m -1)=-a <0,∴ca <m <1. ∴m +3>ca +3>-2+3=1.∵f (x )在(1,+∞)单调递增, ∴f (m +3)>f (1)=0,即存在这样的m 使f (m +3)>0. (2)令g (x )=f (x )-12[f (x 1)+f (x 2)],则g (x )是二次函数. ∵g (x 1)·g (x 2)=⎣⎡⎦⎤f (x 1)-f (x 1)+f (x 2)2⎣⎡⎦⎤f (x 2)-f (x 1)+f (x 2)2 =-14[f (x 1)-f (x 2)]2≤0,又∵f (x 1)≠f (x 2),g (x 1)·g (x 2)<0,∴g (x )=0有两个不等实根,且方程g (x )=0的根必有一个属于(x 1,x 2). (3)由f (0)=0得c =0,∴f (x )=ax 2+bx . 由f (x )=x ,得方程ax 2+(b -1)x =0, 解得x 1=0,x 2=1-b a,又由f [f (x )]=x 得a [f (x )]2+bf (x )=x . ∴a [f (x )-x +x ]2+b [f (x )-x +x ]=x .∴a [f (x )-x ]2+2ax [f (x )-x ]+ax 2+b [f (x )-x ]+bx -x =0. ∴[f (x )-x ][af (x )-ax +2ax +b +1]=0, 即[f (x )-x ][a 2x 2+a (b +1)x +b +1]=0. ∴f (x )-x =0或a 2x 2+a (b +1)x +b +1=0. (*) 由题意(*)式的解为0或1-ba 或无解,当(*)式的解为0时,可解得b =-1, 经检验符合题意;当(*)式的解为1-ba 时,可解得b =3,经检验符合题意;当(*)式无解时,Δ=a 2(b +1)2-4a 2(b +1)<0, 即a 2(b +1)(b -3)<0, ∴-1<b <3.综上可知,当-1≤b ≤3时满足题意. 12.已知函数f 1(x )=e |x-2a +1|,f 2(x )=e |x-a |+1,x ∈R ,1≤a ≤6.[来源:学|科|网](1)若a =2,求f (x )=f 1(x )+f 2(x )在[2,3]上的最小值;(2)若|f 1(x )-f 2(x )|=f 2(x )-f 1(x )对于任意的实数x 恒成立,求a 的取值范围;[来源:Z*xx*] (3)求函数g (x )=f 1(x )+f 2(x )2-|f 1(x )-f 2(x )|2在[1,6]上的最小值.解:(1)对于a =2,x ∈[2,3],f (x )=e |x -3|+e |x-2|+1=e 3-x +e x -1≥2e 3-x ·e x -1=2e ,当且仅当e 3-x =e x -1,即x =2时等号成立,∴f (x )min =2e.(2)|f 1(x )-f 2(x )|=f 2(x )-f 1(x )对于任意的实数x 恒成立,即f 1(x )≤f 2(x )对于任意的实数x 恒成立,亦即e |x-2a +1|≤e |x-a |+1对于任意的实数x 恒成立,∴|x -2a +1|≤|x -a |+1,即|x -2a +1|-|x -a |≤1对于任意的实数x 恒成立. 又|x -2a +1|-|x -a |≤|(x -2a +1)-(x -a )|=|-a +1|对于任意的实数x 恒成立, 故只需|-a +1|≤1,解得0≤a ≤2. 又1≤a ≤6,∴a 的取值范围为1≤a ≤2.(3)g (x )=f 1(x )+f 2(x )2-|f 1(x )-f 2(x )|2=⎩⎪⎨⎪⎧f 1(x ),f 1(x )≤f 2(x ),f 2(x ),f 1(x )>f 2(x ),①当1≤a ≤2时,由(2)知f 1(x )≤f 2(x ),g (x )=f 1(x )=e |x-2a +1|,图象关于直线x =2a -1对称,如右图,又此时1≤2a -1≤3,故对x ∈[1,6],g (x )min =f 1(2a -1)=1.②当2<a ≤6时,(2a -1)-a =a -1>0, 故2a -1>a . x ≤a 时,f 1(x )=e -x +(2a -1)>e-x +a +1=f 2(x ),g (x )=f 2(x )=e |x-a |+1;x ≥2a -1时,f 1(x )=e x -(2a -1)<e x-a +1=f 2(x ),g (x )=f 1(x )=e |x-2a +1|;a <x <2a -1时,由f 1(x )=e -x +(2a -1)≤e x-a +1=f 2(x ),得x ≥3a -22,其中a <3a -22<2a -1,故3a -22≤x <2a -1时,g (x )=f 1(x )=e |x -2a +1|,a <x <3a -22时,g (x )=f 2(x )=e |x -a |+1. 因此,2<a ≤6时,g (x )=⎩⎨⎧f 1(x ),x ≥3a -22,f 2(x ),x <3a -22.令f 1(x )=e |x -2a +1|=e ,得x 1=2a -2,x 2=2a ,且3a -22<2a -2,如右图. (ⅰ)当a ≤6≤2a -2,即4≤a ≤6时,g (x )min =f 2(a )=e ;(ⅱ)当2a -2<6≤2a -1,即72≤a <4时,g (x )min =f 1(6)=e |6-2a +1|=e 2a -7;[来源:学科网](ⅲ)当2a -1<6,即2<a <72时,g (x )min =f 1(2a -1)=1,g (x )min=⎩⎪⎨⎪⎧1,1≤a <72,e 2a -7,72≤a <4,e ,4≤a ≤6.。
2013年高考数学二轮复习学案:专题4导__数_II_(江苏专用)

|d|=2 时
两个 同 的根为 1 和 2. |d|<2 时 所 2 因为 f( 1) d=f(2) d=2 1,1,2 都 是 f(x)=d 的根 d>0 f(1) d=f( 2) d= 2 d<0
由(1)知 f (x)=3(x 1)(x 1) x∈(2 理 f(x)=d 在( ∞ x∈(1,2)时 断 所 ∞)时 f (x)>0 于是 f(x)是单调增函数 2) 无实根 f (x)>0 于是 f(x )是单调增函数 又 f(1) d<0 f(2) d>0 y=f(x) d 的图象 间 f(x)=d 在( 2 1)内 惟一实根 f(1) d<0 y=f(x) d 的图象 从而 f(x)>f(2)=2 时 f(x)=d 无实根 同
[典例1] (2012·江 高考)若函数 y=f(x)在 x=x0 处取得极大值或极小值 则 a b 是实数 1 和 1 是函数 f(x)=x3 ax2 bx 的两个极值点 x0 为函数 y=f(x)的极值点 已知
(1)求 a 和 b 的值 (2)设函数 g(x)的导函数 g (x)=f(x) 2 求 g(x)的极值点 (3)设 h(x)=f(f(x)) c 其中 c∈[ 2,2] 求函数 y=h(x)的零点个数 [解] (1)由题设知 f (x)=3x2 f ( 1)=3 2a b=0 解得 a=0 b= 3. (2)由(1)知 f(x)=x3 3x. 因为 f(x) 2=(x 1)2(x 2) 所 是 1 或 2. x< 2 时 g (x)<0 2<x<1 时 g (x)>0 故 2 是 g(x)的极值点 K] g (x)=0 的根为 x1=x2=1 x3= 2.于是函数 g(x)的极值点只可能 2ax b 且
江苏省2013高考数学二轮复习 专题18 附加题22题

江苏省2013届高考数学(苏教版)二轮复习专题18 附加题22题回顾2009~2012年的考题,离散型随机变量的概率分布与数学期望是考查的重点,但考查难度不大,考查的重点是根据题意分析写出随机变量的分布列.求解过程往往和排列、组合和概率相结合.数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在数学证明中有着广泛的应用.[典例1](2012·江苏高考)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P (ξ=0);(2)求ξ的分布列,并求其数学期望E (ξ).[解] (1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,所以共有8C 23对相交棱. 因此P (ξ=0)=8C 23C 212=8×366=411.(2)若两条棱平行,则它们的距离为1或2, 其中距离为2的共有6对, 故P (ξ=2)=6C 212=666=111,P (ξ=1)=1-P (ξ=0)-P (ξ=2)=1-411-111=611.所以随机变量ξ的分布列为:则其数学期望E (ξ)=1×611+2×111=6+211.本题考查概率分布、数学期望等基础知识.解题的关键是确定ξ的取值. [演练1](2012·扬州期末)口袋中有3个白球,4个红球,每次从口袋中任取一球,如果取到红球,那么继续取球,如果取到白球,就停止取球,记取球的次数为X .(1)若取到红球再放回,求X 不大于2的概率; (2)若取出的红球不放回,求X 的概率分布与数学期望. 解:(1)∵P (X =1)=37,P (X =2)=3×472=1249,∴P =P (X =1)+P (X =2)=3349.(2)∵X 可能取值为1,2,3,4,5,P (X =1)=A 13A 17=37,P (X =2)=A 14A 13A 27=27,P (X =3)=A 24A 13A 37=635,P (X =4)=A 34A 13A 47=335,P (X =5)=A 44A 13A 57=135.∴X 的概率分布列为:∴E (X )=1×37+2×27+3×635+4×335+5×135=2.即X 的数学期望是2. [典例2]已知△ABC 的三边长为有理数. (1)求证:cos A 是有理数;(2)求证:对任意正整数n ,cos nA 是有理数. [证明] (1)由AB ,BC ,AC 为有理数及余弦定理知cos A =AB 2+AC 2-BC 22AB ·AC是有理数.(2)用数学归纳法证明cos nA 和sin A ·sin nA 都是有理数. ①当n =1时,由(1)知cos A 是有理数, 从而有sin A ·sin A =1-cos 2A 也是有理数.②假设当n =k (k ≥1)时,cos kA 和sin A ·sin kA 都是有理数. 当n =k +1时,由cos(k +1)A =cos A ·cos kA -sin A ·sin kA ,sin A ·sin(k +1)A =sin A ·(sin A ·cos kA +cos A ·sin kA ) =(sin A ·sin A )·cos kA +(sin A ·sin kA )·cos A ,由①及归纳假设,知cos(k +1)A 与sin A ·sin(k +1)A 都是有理数. 即当n =k +1时,结论成立.综合①②可知,对任意正整数n ,cos nA 是有理数.本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力.[演练2](2012·常州)已知正项数列{a n }中,a 1=1,a n +1=1+a n1+a n(n ∈N *).用数学归纳法证明:a n <a n +1(n ∈N *).证明:当n =1时,a 2=1+a 11+a 1=32,a 1<a 2, 所以n =1时,不等式成立;假设当n =k (k ∈N *)时,a k <a k +1成立,显然a k >0. 则当n =k +1时,a k +2-a k +1=1+a k +11+a k +1-a k +1=1+a k +11+a k +1-⎝ ⎛⎭⎪⎫1+a k 1+a k=a k +1-a k+a k +a k +1>0,所以n =k +1时,不等式成立. 综上所述,不等式a n <a n +1(n ∈N *)成立. [典例3](2012·盐城二模)某班级共派出n +1个男生和n 个女生参加学校运动会的入场仪式,其中男生甲为领队.入场时,领队男生甲必须排第一个,然后女生整体在男生的前面,排成一路纵队入场,共有E n 种排法;入场后,又需从男生(含男生甲)和女生中各选一名代表到主席台服务,共有F n 种选法.(1)试求E n 和F n ;(2)判断ln E n 和F n 的大小(n ∈N *),并用数学归纳法证明. [解] (1)由题意知E n =A n n ·A n n =(n !)2,F n =C 1n +1·C 1n =n (n +1).(2)因为ln E n =2ln n !,F n =n (n +1),所以ln E 1=0<F 1=2,ln E 2=ln 4<F 2=6,ln E 3=ln 36<F 3=12,…,因此猜想;当n ∈N *时都有ln E n <F n ,即2ln n !<n (n +1).下面用数学归纳法证明2ln n !<n (n +1)(n ∈N *). ①当n =1时,该不等式显然成立.②假设当n =k (k ∈N *)时,不等式成立,即2ln k !<k (k +1),则当n =k +1时,2ln(k +1)!=2ln(k +1)+2ln k !<2ln(k +1)+k (k +1),要证当n =k +1时不等式成立,只要证2ln(k +1)+k (k +1)≤(k +1)(k +2),即只要证ln(k +1)≤k +1.令f (x )=ln x -x ,x ∈(1,+∞),因为f ′(x )=1-x x<0,所以f (x )在(1,+∞)上单调递减,从而f (x )<f (1)=-1<0,而k +1∈(1,+∞), 所以ln(k +1)≤k +1成立, 所以当n =k +1时,不等式也成立. 综合①②,当n ∈N *时,都有ln E n <F n .本题考查排列组合等基础知识,考查数学归纳法的应用以及综合运用数学知识分析问题和解决问题的能力.这类问题以排列组合为主线,利用数学归纳法进行推理.利用导数研究函数的单调性证明ln(k +1)<k +1是关键.[演练3](2012·扬州期末)已知p (p ≥2)是给定的某个正整数,数列{a n }满足:a 1=1,(k +1)a k +1=p (k -p )a k ,其中k =1,2,3,…,p -1.(1)设p =4,求a 2,a 3,a 4; (2)求a 1+a 2+a 3+…+a p . 解:(1)由(k +1)a k +1=p (k -p )a k , 得a k +1a k =p ×k -pk +1,k =1,2,3,…,p -1, 即a 2a 1=-4×4-12=-6,a 2=-6a 1=-6; a 3a 2=-4×4-23=-83,a 3=16;a 4a 3=-4×4-34=-1,a 4=-16. (2)由(k +1)a k +1=p (k -p )a k , 得a k +1a k =p ×k -pk +1,k =1,2,3,…,p -1, 即a 2a 1=-p ×p -12,a 3a 2=-p ×p -23,…, a k a k -1=-p ×p -k -k,以上各式相乘得a k a 1=(-p )k -1×p -p -p -p -k +1k !, ∴a k =(-p )k -1×p -p -p -p -k +k !=(-p )k -1×p -!k !p -k !=-pk -1p×p !k !p -k !=-(-p )k -2×C k p =-1p2C k p (-p )k,k =1,2,3,…,p .∴a 1+a 2+a 3+…+a p=-1p 2[C 1p (-p )1+C 2p (-p )2+C 3p (-p )3+…+C p p (-p )p]=-1p2[(1-p )p-1].[专题技法归纳]离散型随机变量的概率分布与数学期望是建立在传统的概率问题的基础之上的内容,高考新课程对这一内容的考查是B 级要求,常以实际应用题的形式出现,与数学建模能力的考查结合在一起,考查学生的数学应用意识以及运用数学知识分析和解决实际问题的能力.解决这一类问题,一定要注意认真审题,不仅要能在弄清题意的基础上,迅速地寻找出正确的解题思路,还要能够规范地表述解题的过程.这些,需要在复习中引起足够的重视,注意做好针对性的训练,力求做到求解这一类问题时能够得心应手、准确无误.1.有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排成一排组成.(1)求P (ξ=2);(2)求随机变量ξ的分布列和它的数学期望.解:(1)密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别总是1,2,即只能取表格第1,2列中的数字作为密码.∴P (ξ=2)=2343=18.(2)由题意可知,ξ的取值为2,3,4三种情形.若ξ=3,注意表格的第一排总含有数字1,第二排总含有数字2则密码中只可能取数字1,2,3或1,2,4.∴P (ξ=3)=2A 132C 23+43=1932. P (ξ=4)=A 13+A 22+A 23A 2243=932. ∴ξ的分布列为:∴E (ξ)=2×18+3×1932+4×32=32.2.同一种颜色鲜花,相邻区域使用不同颜色鲜花.(1)求恰有两个区域用红色鲜花的概率;(2)记花圃中红色鲜花区域的块数为ξ,求ξ的分布列及其数学期望E (ξ). 解:(1)设M 表示事件“恰有两个区域用红色鲜花”, 如图,当区域A 、D 同色时,共有5×4×3×1×3=180种; 当区域A 、D 不同色时,共有5×4×3×2×2=240种; 因此,所有基本事件总数为:180+240=420种.又因为A 、D 为红色时,共有4×3×3=36种;B 、E 为红色时,共有4×3×3=36种;因此,事件M 包含的基本事件有:36+36=72种.所以P (M )=72420=635.(2)随机变量ξ的分布列为:所以E (ξ)=0×635+1×2335+2×35=1.3.(2012·南通二模)某射击运动员向一目标射击,该目标分为3个不同部分,第一、二、三部分面积之比为1∶3∶6.击中目标时,击中任何一部分的概率与其面积成正比.(1)若射击4次,每次击中目标的概率为13且相互独立.设ξ表示目标被击中的次数,求ξ的分布列和数学期望E (ξ);(2)若射击2次均击中目标,A 表示事件“第一部分至少被击中1次或第二部分被击中2次”,求事件A 发生的概率.解:(1)依题意知ξ~B ⎝ ⎛⎭⎪⎫4,13,ξ的分布列:数学期望E (ξ)=0×1681+1×3281+2×2481+3×881+4×181=43.(2)法一:设A i 表示事件“第一次击中目标时,击中第i 部分”,i =1,2,3.B i 表示事件“第二次击中目标时,击中第i 部分”,i =1,2,3.依题意,知P (A 1)=P (B 1)=0.1,P (A 2)=P (B 2)=0.3,A =A 1B 1∪A 1B 1∪A 1B 1∪A 2B 2,所求的概率为 P (A )=P (A 1B 1)+P (A 1B 1)+P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1)+P (A 1)P (B 1)+P (A 1)P (B 1)+P (A 2)P (B 2) =0.1×0.9+0.9×0.1+0.1×0.1+0.3×0.3=0.28. 即事件A 发生的概率为0.28.法二:记“第一部分至少击中一次”为事件C ,“第二部分被击中二次”为事件D , 则P (C )=C 120.1×0.9+0.1×0.1=0.19,P (D )=0.3×0.3=0.09. P (A )=P (C )+P (D )=0.28.即事件A 发生的概率为0.28.4.(2012·南通二模)已知函数f (x )=(2x +1)ln(2x +1)-a (2x +1)2-x (a >0).(1)若函数f (x )在x =0处取极值,求a 的值;(2)如图,设直线x =-12,y =-x 将坐标平面分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域(不含边界),若函数y =f (x )的图象恰好位于其中一个区域内,判断其所在的区域并求对应的a 的取值范围;(3)比较32×43×54×…×2 0122 011与23×34×45×…×2 0112 012的大小,并说明理由.解:(1)f (x )=(2x +1)ln(2x +1)-a (2x +1)2-x (a >0),f ′(x )=2ln(2x +1)-4a (2x +1)+1.∵f (x )在x =0处取极值, ∴f ′(0)=-4a +1=0. ∴a =14⎝ ⎛⎭⎪⎫经检验a =14符合题意. (2)因为函数的定义域为⎝ ⎛⎭⎪⎫-12,+∞,且当x =0时,f (0)=-a <0. 又直线y =-x 恰好通过原点,所以函数y =f (x )的图象应位于区域Ⅳ内, 于是可得f (x )<-x ,即(2x +1)ln(2x +1)-a (2x +1)2-x <-x . ∵2x +1>0,∴a >x +2x +1.令h (x )=x +2x +1,∴h ′(x )=2-x +x +2.令h ′(x )=0,得x =e -12.∵x >-12,∴x ∈⎝ ⎛⎭⎪⎫-12,e -12时,h ′(x )>0,h (x )单调递增;x ∈⎝ ⎛⎭⎪⎫e -12,+∞时,h ′(x )<0,h (x )单调递减.∴h max (x )=h ⎝⎛⎭⎪⎫e -12=1e. ∴a 的取值范围是⎝ ⎛⎭⎪⎫1e ,+∞. (3)由(2)知,函数h (x )=x +2x +1在x ∈⎝⎛⎭⎪⎫e -12,+∞时单调递减, 函数p (x )=ln x x在x ∈(e ,+∞)时单调递减. ∴x +x +1<ln xx,∴x ln(x +1)<(x +1)ln x . ∴ln(x +1)x<ln x(x +1),即(x +1)x <x(x +1).∴令x =3,4,…,2011,则43<34,54<45,…,2 0122 011<2 0112 012,又32×43<23×34,所以32×43×54…×2 0122 011<23×34×45…×2 0112 012.5.(2012·通州期末)求证:对于任意的正整数n ,(2+3)n必可表示成 s +s -1的形式,其中s ∈N *.证明:由二项式定理可知, (2+3)n=C 0n 2n(3)0+C 1n 2n -1(3)1+C 2n 2n -2(3)2+…+C n n 20(3)n,设(2+3)n =x +3y =x 2+3y 2, 而若有(2+3)n =a +b ,a ,b ∈N *, 则(2-3)n =a -b ,a ,b ∈N *,∵(a +b )·(a -b )=(2+3)n ·(2-3)n=1, ∴令a =s ,s ∈N *,则必有b =s -1.∴(2+3)n 必可表示成s +s -1的形式,其中s ∈N *.6.若(x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n ,其中n ∈N *. (1)求a 0及S n =a 1+a 2+a 3+…+a n ;(2)试比较S n 与(n -2)2n+2n 2的大小,并说明理由. 解:(1)取x =1,则a 0=2n ; 取x =2,则a 0+a 1+…+a n =3n, ∴S n =a 1+a 2+a 3+…+a n =3n-2n .(2)要比较S n与(n-2)2n+2n2的大小,即比较3n与(n-1)2n+2n2的大小,当n=1时,3n>(n-1)2n+2n2;当n=2,3时,3n<(n-1)2n+2n2;当n=4,5时,3n>(n-1)2n+2n2,猜想:当n≥4时,3n>(n-1)2n+2n2.下面用数学归纳法证明:①由上述过程可知,n=4时结论成立,②假设当n=k,(k≥4)时结论成立,即3k>(k-1)2k+2k2,两边同乘以3得3k+1>3[(k-1)2k+2k2]=k2k+1+2(k+1)2+[(k-3)2k+4k2-4k-2],而(k-3)2k+4k2-4k-2=(k-3)2k+4(k2-k-2)+6=(k-3)2k+4(k-2)(k+1)+6>0,所以3k+1>()k+-12k+1+2(k+1)2,即n=k+1时结论也成立.由①②知当n≥4时,3n>(n-1)2n+2n2成立.综上所述,当n=1时,S n>(n-2)2n+2n2;当n=2,3时,S n<(n-2)2n+2n2;当n≥4时,S n>(n-2)2n+2n2.7.设二项展开式C n=(3+1)2n-1(n∈N*)的整数部分为A n,小数部分为B n.试用二项式定理推导A n和B n.解:因为C n=(3+1)2n-1=C02n-1(3)2n-1+C12n-1(3)2n-2+…+C2n-22n-13+C2n-12n-1,①而(3-1)2n-1=C02n-1(3)2n-1-C12n-1(3)2n-2+…+C2n-22n-13-C2n-12n-1,②①—②得:(3+1)2n-1-(3-1)2n-1=2(C12n-1·(3)2n-2+C32n-1(3)2n-4+…+C2n-12n-1)∈N*. 而0<(3-1)2n-1<1,所以A n=(3+1)2n-1-(3-1)2n-1,B n=(3-1)2n-1. 8.(2012·苏北四市一模)已知a n=(1+2)n(n∈N*).(1)若a n=a+b2(a,b∈Z),求证:a是奇数;(2)求证:对于任意n∈N*,都存在正整数k,使得a n=k-1+k.证明:(1)由二项式定理,得a n=C0n+C1n2+C2n(2)2+C3n(2)3+…+C n n(2)n,所以a=C0n+C2n(2)2+C4n(2)4+…=1+2C2n+22C4n+…,因为2C2n+22C4n+…为偶数,所以a是奇数.(2)由(1)设a n=(1+2)n=a+b2(a,b∈Z),则(1-2)n=a-b2,所以a2-2b2=(a+b2)(a-b2)=(1+2)n(1-2)n=(1-2)n.当n为偶数时,a2=2b2+1,存在k=a2,使得a n=a+b2=a2+2b2=k+k-1,当n为奇数时,a2=2b2-1,存在k=2b2,使得a n=a+b2=a2+2b2=k-1+k,综上,对于任意n∈N*,都存在正整数k,使得a n=k-1+k.。
2013年高考数学二轮复习专题检测(江苏专用)第一部分专题19附加题23题

1.(2012·苏北四市三模)在三棱锥S —ABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 恰是BC 的中点,侧棱SA 和底面成45°角.(1) 若D 为侧棱SA 上一点,当SDDA 为何值时,BD ⊥AC ; (2) 求二面角S —AC —B 的余弦值大小.解:以O 点为原点,OC 为x 轴,OA 为y 轴,OS 为z 轴建立空间直角坐标系.因为△ABC 是边长为23的正三角形,又SA 与底面所成角为45°,所以∠SAO =45°.所以SO =AO =3.所以O (0,0,0),C (3,0,0),A (0,3,0),S (0,0,3),B (-3,0,0). (1)设AD =a ,则D ⎝⎛⎭⎫0,3-22a ,22a ,所以BD = ⎝⎛⎭⎫3,3-22a ,22a ,AC =(3,-3,0).若BD ⊥AC ,则BD ·AC =3-3⎝⎛⎭⎫3-22a =0,解得a =22,而AS =32,所以SD = 2. 所以SD DA =222=12.(2)因为AS =(0,-3,3),BC =(23,0,0). 设平面ACS 的法向量为n 1=(x ,y ,z ),则⎩⎨⎧n 1·AC =(x ,y ,z )·(3,-3,0)=3x -3y =0,n 1·AS =(x ,y ,z )·(0,-3,3)=-3y +3z =0,令z =1,则x =3,y =1,所以n 1=(3,1,1). 而平面ABC 的法向量为n 2=(0,0,1), 所以cos 〈n 1,n 2〉=3×0+1×0+1×112+12+(3)2·1=15,显然所求二面角的平面角为锐角, 故所求二面角的余弦值的大小为55. 2.(2012·镇江5月)在正方体ABCD -A 1B 1C 1D 1中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO .(1)若λ=1,求异面直线DE 与CD 1所成角的余弦值;(2)若平面CDE ⊥平面CD 1O ,求λ的值.解:(1)不妨设正方体的棱长为1,以DA ,DC ,1DD 为单位正交基底建立如图所示的空间直角坐标系D -xyz .则A (1,0,0),O ⎝⎛⎭⎫12,12,0,C (0,1,0),D 1(0,0,1),E ⎝⎛⎭⎫14,14,12, 于是DE =⎝⎛⎭⎫14,14,12,1CD =(0,-1,1). 由cos 〈DE ,1CD 〉=DE ·1CD |DE |·|1CD |=36.所以异面直线AE 与CD 1所成角的余弦值为36. (2)设平面CD 1O 的向量为m =(x 1,y 1,z 1),由m ·CO =0,m ·1CD =0, 得⎩⎪⎨⎪⎧12x 1-12y 1=0,-y 1+z 1=0,取x 1=1,得y 1=z 1=1, 即m =(1,1,1).由D 1E =λEO ,则E ⎝⎛⎭⎫λ2(1+λ),λ2(1+λ),11+λ,DE =⎝⎛⎭⎫λ2(1+λ),λ2(1+λ),11+λ.又设平面CDE 的法向量为n =(x 2,y 2,z 2),由n ·CD =0,n ·DE =0.得⎩⎪⎨⎪⎧y 2=0,λx 22(1+λ)+λy 22(1+λ)+z 21+λ=0,取x 2=2,得z 2=-λ,即n =(-2,0,λ). 因为平面CDE ⊥平面CD 1O ,所以m ·n =0,得λ=2.3.(2012·南通密卷)如图,已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,AA 1=AB =AC =1,AB ⊥AC ,M 是CC 1的中点,N 是BC 的中点,点P 在直线A 1B 1上,且满足1A P =λ11A B .(1)当λ取何值时,直线PN 与平面ABC 所成的角θ最大?(2)若平面PMN 与平面ABC 所成的二面角为45°,试确定点P 的位置. 解:(1)以AB ,AC ,AA1分别为x ,y ,z 轴,建立空间直角坐标系A —xyz ,则N ⎝⎛⎭⎫12,12,0,P (λ,0,1),则PN =⎝⎛⎭⎫12-λ,12,-1, 平面ABC 的一个法向量为n =(0,0,1),则sin θ=|cos 〈PN ,n 〉|=|PN ·n ||PN ||n |=1⎝⎛⎭⎫λ-122+54.于是问题转化为二次函数求最值,而θ∈⎣⎡⎦⎤0,π2,当θ最大时,sin θ最大,所以当λ=12时,sin θ最大,θ也最大. (2)已知给出了平面PMN 与平面ABC 所成的二面角为45°,即可得到平面ABC 的一个法向量为n =1AA =(0,0,1),设平面PMN 的一个法向量为m =(x ,y ,z ),MP =⎝⎛⎭⎫λ,-1,12. 由⎩⎨⎧m ·NP =0,m ·MP =0,得⎩⎨⎧⎝⎛⎭⎫λ-12x -12y +z =0,λx -y +12z =0,解得⎩⎨⎧y =2λ+13x ,z =2(1-λ)3x .令x =3,得m =(3,2λ+1,2(1-λ)),于是由 |cos 〈m ,n 〉|=|m ·n ||m ||n|=|2(1-λ)|9+(2λ+1)2+4(1-λ)2=22,解得λ=-12, 故点P 在B 1A 1的延长线上,且|A 1P |=12.4.(2012·泰州期末)对称轴为坐标轴,顶点在坐标原点的抛物线C 经过两点A (a,2a ),B (4a,4a )(其中a 为正常数).(1)求抛物线C 的方程;(2)设动点T (m,0)(m >a ),直线AT ,BT 与抛物线C 的另一个交点分别为A 1,B 1,当m 变化时,记所有直线A 1B 1组成的集合为M ,求证:集合M 中的任意两条直线都相交且交点都不在坐标轴上.解:(1)当抛物线焦点在x 轴上时, 设抛物线方程y 2=2px ,∵⎩⎪⎨⎪⎧4a 2=2pa ,16a 2=8pa ,∴p =2a . ∴y 2=4ax .当抛物线焦点在y 轴上时,设抛物线方程x 2=2py ,∵⎩⎪⎨⎪⎧16a 2=8pa ,a 2=4pa ,方程无解,∴抛物线不存在. 综上抛物线C 的方程为y 2=4ax .(2)设A 1(as 2,2as ),B 1(at 2,2at ),T (m,0)(m >a ). ∵k TA =kTA 1,∴2a a -m =2as as 2-m ,∴as 2+(m -a )s -m =0.∵(as +m )(s -1)=0,∴s =-m a ,∴A 1⎝⎛⎭⎫m 2a ,-2m . ∵k TB =kTB 1,∴4a 4a -m =2atat 2-m.∵2at 2+(m -4a )t -2m =0,∴(2at +m )(t -2)=0.∴t =-m 2a.∴B 1⎝⎛⎭⎫m 24a ,-m . ∴直线A 1B 1的方程为y +2m =-2m +m m 2a -m 24a ⎝⎛⎭⎫x -m 2a . ∵直线的斜率为-4a3m在(a ,+∞)单调, ∴集合M 中的直线必定相交.∵直线的横截距为-m 22a 在(a ,+∞)单调,纵截距为-2m3在(a ,+∞)单调,∴任意两条直线都相交且交点都不在坐标轴上.5.(2012·常州)已知斜率为k (k ≠0)的直线l 过抛物线C :y 2=4x 的焦点F 且交抛物线于A ,B 两点.设线段AB 的中点为M .(1)求点M 的轨迹方程;(2)若-2<k <-1时,点M 到直线l ′:3x +4y -m =0(m 为常数,m <13)的距离总不小于15,求m 的取值范围. 解:(1)焦点F (1,0),直线AB 方程为y =k (x -1), 因为k ≠0,所以x =yk +1.由⎩⎪⎨⎪⎧x =y k +1,y 2=4x得y 2-4k y -4=0. 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),显然Δ>0恒成立,则y 0=y 1+y 22=2k . 又x 0=y 0k +1,消去k ,得y 20=2(x 0-1),所以点M 的轨迹方程为y 2=2(x -1). (2)由(1)知,点M ⎝⎛⎭⎫2k2+1,2k . 因为m <13,所以d =15⎪⎪⎪⎪6k 2+8k-m +3=15⎝⎛⎭⎫6k 2+8k -m +3. 由题意,得15⎝⎛⎭⎫6k 2+8k -m +3≥15,m ≤6k 2+8k +2对-2<k <-1恒成立. 因为-2<k <-1时,6k 2+8k +2的最小值是-23,所以m ≤-23.6.(2012·南通密卷)在平面直角坐标系xOy 中,已知焦点为F 的抛物线x 2=4y 上有两个动点A ,B ,且满足AF =λFB , 过A ,B 两点分别作抛物线的切线,设两切线的交点为M .(1)求:OA ·OB 的值; (2)证明:FM ·AB 为定值. 解:(1)设A ⎝⎛⎭⎫x 1,x 214,B ⎝⎛⎭⎫x 2,x 224, ∵焦点F (0,1),∴AF =⎝⎛⎭⎫-x 1,1-x 214,FB =⎝⎛⎭⎫x 2,x 224-1. ∵AF =λFB ,∴⎩⎪⎨⎪⎧-x 1=λx 2,1-x 214=λ⎝⎛⎭⎫x 224-1,消λ,得x 1⎝⎛⎭⎫x 224-1+x 2⎝⎛⎭⎫1-x 214=0. 化简整理得(x 1-x 2)⎝⎛⎭⎫x 1x 24+1=0. ∵x 1≠x 2,∴x 1x 2=-4.∴y 1y 2=x 214·x 224=1.∴OA ·OB =x 1x 2+y 1y 2=-3. (2)证明:抛物线方程为y =14x 2,∴y ′=12x .∴过抛物线A ,B 两点的切线方程分别为 y =12x 1(x -x 1)+x 214和y =12x 2(x -x 2)+x 224, 即y =12x 1x -x 214和y =12x 2x -x 224.联立解出两切线交点M 的坐标为⎝⎛⎭⎫x 1+x 22,-1.∴FM ·AB =⎝⎛⎭⎫x 1+x 22,-2·⎝⎛⎭⎫x 2-x 1,x 22-x 214 =x 22-x 212-x 22-x 212=0(定值).7.(2012·淮阴联考)在平面直角坐标系xOy 中,已知点A (-1,1),P 是动点,且三角形POA 的三边所在直线的斜率满足k OP +k OA =k PA .(1)求点P 的轨迹C 的方程;(2)若Q 是轨迹C 上异于点P 的一个点,且PQ =λOA ,直线OP 与QA交于点M ,问:是否存在点P 使得△PQA 和△PAM 的面积满足S △PQA =2S △PAM ?若存在,求出点P 的坐标;若不存在,说明理由.解:(1)设点P (x ,y )为所求轨迹上的任意一点,则由k OP +k OA =k PA得,y x +1-1=y -1x +1,整理得轨迹C 的方程为y =x 2(x ≠0且x ≠-1).(2)设P (x 1,x 21),Q (x 2,x 22),由PQ =λOA 可知直线PQ ∥OA ,则k PQ =k OA ,故x 22-x 21x 2-x 1=1-0-1-0,即x 2=-x 1-1. 直线OP 方程为y =x 1x .①直线QA 的斜率为(-x 1-1)2-1-x 1-1+1=-x 1-2,∴直线QA 方程为y -1=(-x 1-2)(x +1), 即y =-(x 1+2)x -x 1-1.②联立①②,得x =-12,∴点M 的横坐标为定值-12.由S △PQA =2S △PAM ,得到QA =2AM ,因为PQ ∥OA , 所以OP =2OM ,由PO =2OM ,得x 1=1,∴P 的坐标为(1,1). ∴存在点P 满足S △PQA =2S △PAM ,P 的坐标为(1,1).8.(2012·徐州一模)如图,过抛物线C :y 2=4x 上一点P (1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A (x 1,y 1),B (x 2,y 2).(1)求y 1+y 2的值;(2)若y 1≥0,y 2≥0,求△PAB 面积的最大值. 解:(1)因为A (x 1,y 1),B (x 2,y 2)在抛物线C : y 2=4x 上,所以A ⎝⎛⎭⎫y 214,y 1,B ⎝⎛⎭⎫y 224,y 2,k PA =y 1+2y 214-1=4(y 1+2)y 21-4=4y 1-2, 同理k PB =4y 2-2,依题有k PA =-k PB , 所以4y 1-2=-4y 2-2,即y 1+y 2=4. (2)由(1)知k AB =y 2-y 1y 224-y 214=1,设AB 的方程为 y -y 1=x -y 214,即x -y +y 1-y 214=0,P 到AB 的距离为d =⎪⎪⎪⎪3+y 1-y 2142,AB =2⎪⎪⎪⎪y 214-y 224=2|y 1-y 2|=22|2-y 1|,所以S △PAB =12×⎪⎪⎪⎪3+y 1-y 2142×22|2-y 1|=14|y 21-4y 1-12||y 1-2| =14|(y 1-2)2-16||y 1-2|, 令y 1-2=t ,由y 1+y 2=4,y 1≥0,y 2≥0,可知-2≤t ≤2.S △PAB =14|t 3-16t |,因为S △PAB =14|t 3-16t |为偶函数,只考虑0≤t ≤2的情况,记f (t )=|t 3-16t |=16t -t 3,f ′(t )=16-3t 2>0,故f (t )在[0,2]是单调增函数,故f (t )的最大值为f (2)=24,故S △PAB 的最大值为6.高☆考!试:题$库。
2013届江苏省高三数学二轮专题训练解答题(20)

江苏省2013届高三数学二轮专题训练:解答题(20)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤。
1. (本题满分14分)在平面直角坐标系xOy 中,已知点,sin ,cos ),0,56()(ααP A 其中20πα<<.(1)若,65cos =α求证:;PQ PA ⊥ (2)42sin(πα+的值.2. (本题满分14分)设集合{}32|≤≤-=x x A ,函数)34(log)(26+++=k x kx x f (1)当1-=k 时, 求函数)(x f 的值域.(2)若 B 为函数)(x f 的定义域,当A B ⊆时,求实数k 的取值范围.3. (本题满分14分)已知函数2()2cos cos f x x x x =+.(1)求函数()f x 在区间[,]63ππ-上的值域;(2)在△ABC 中,若()2f C =,2sin cos()cos()B A C A C =--+,求tan A 的值.BP4. (本题满分14分)已知函数()23x x f x a b =⋅+⋅,其中常数,a b 满足0a b ⋅≠(1)若0a b ⋅>,判断函数()f x 的单调性;(2)若b a 3-=,求(1)()f x f x +>时的x 的取值范围.5. (本题满分16分)如图△ABC 为正三角形,边长为2,以点A 为圆心,1为半径作圆,PQ 为圆A 的任意一条直径.⑴若12CDDB =,求||AD ; ⑵求CP BQ ⋅的最小值.⑶判断CQ BP ⋅+CP BQ ⋅的值是否会随点P 的变化而变化,请说明理由.6. (本题满分18分)已知函数||()2x m f x -=和函数()||28g x x x m m =-+-. (1)若2m =,写出函数)(x f 的对称轴方程、并求函数()g x 的单调区间;(2)若对任意1(,4]x ∈-∞,均存在2[4,)x ∈+∞,使得12()()f x g x =成立,求实数m 的取值范围.1. 解:(1)(方法一)由题设知).sin ,cos (),sin ,cos 56(a a PO a a PA --=--=所以2sin ()cos )(cos 56()a a a POPA -+--=⋅ .1cos 56sin cos cos 5622+-=++-=a a a a ……………………6分因为,65cos =a 所以.0=⋅PO PA 故.PO PA ⊥……………………7分(方法二)因为,65cos =a ,20π<<a 所以611sin =a ,故.611,65()P 因此).611,65(),611,3011(--=-=PO PA 因为.0)611()65(30112=-+-⨯=⋅PO PA所以.PO PA ⊥(2)因为,PO PA ⊥所以,22PO PA =即.sin cos sin )56cos 2222a a a a +=+-(解得.53cos =a ……………………9分因为,20π<<a 所以.54sin =a因此.2571cos 22cos ,2524cos sin 22sin 2-=-===a a a a a ……………………12分从而.50217)257(222524222cos 222sin 2242sin(=-⨯+⨯=+=+a a a )π……………14分2. 解:(1) 当1-=k 时, 66)2(3422≤+--=+++x k x kx ……………2分 ∴26log)(6=≤x f ……………4分∴函数)(x f 的值域为]2,(-∞……………5分(2)设g (x)=kx 2+4x+k+3,则B={x|g(x)>0}.①当k=0时,B=(-,+∞)⊈A,不合题意,故舍去. ……………7分②当k>0时,注意到g(x)的图象开口向上,显然B ⊈A,故舍去. ……………9分 ③当k<0时,由A B ⊆知解得-4<k ≤-.综上知k ∈(-4,-]. ……………14分3. 解:(1)f (x )=1+cos2x +3sin2x =2sin(2x +π6)+1. ………………………………3分因为-π6≤x ≤π3,所以-π6≤2x +π6≤5π6.……………………………………………5分所以-12≤sin(2x +π6)≤1.所以-1≤2sin(2x +π6)≤2所以f (x )∈[0,3].即函数f (x )在[-π6,π3]上的值域为[0,3].………………………7分(2)由f (C )=3得,2sin(2C +π6)+1=2,所以sin(2C +π6)=12.在△ABC 中,因为0<C <π,所以π6<2C +π6<13π6.所以2C +π6=5π6.所以C =π3,所以A +B =2π3. ………………………………………9分 因为2sin B =cos(A -C )-cos(A +C ).所以2sin B =2sin A sin C . …………………11分因为B =2π3-A , C =π3.所以2sin(2π3-A )=3sin A . 即3cos A +sin A =3sin A .即(3-1)sin A =3cos A .所以tan A =sin A cos A =33-1=3+32.………………14分4. 解:⑴ 当0,0a b >>时,任意1212,,x x R x x ∈<,则121212()()(22)(33)x x x x f x f x a b -=-+-∵121222,0(22)0x x x x a a <>⇒-<,121233,0(33)0x x x x b b <>⇒-<,∴12()()0f x f x -<,函数()f x 在R 上是增函数……………6分 当0,0a b <<时,同理函数()f x 在R 上是减函数。
2013年高考数学二轮复习学案:专题12空间平行与垂直(江苏专用)

专题12空间平行与垂直回顾2009~2012年的考题,主要考查线面平行和面面垂直,几何体为常见的锥体和柱体,其中2009年考查了位置关系基本定理判定的小题,2010年考查了点到平面的距离,2011年考查了线面平行与面面垂直,2012年考查了一道体积小题和线面平行与面面垂直的证明;其他基本考查证明位置关系(如:平行、垂直)的大题,难度不大.柱、锥、台、球及其简单组合体和平面及其基本性质虽然没有单独考查,但作为立体几何最基本的要素是融入在解答题中考查的.对于立体几何表面积和体积考查要求不高.预测在2013年的高考题中:(1)填空题依然主要是会出现考查判断位置关系基本定理真假的问题,以及表面积和体积的求解的问题.(2)在解答题中,主要是空间几何体的位置关系的证明,可能是双证,也可能是一证一 算.1.(2012·江苏高考)如图,在长方体ABCD -A1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 的体积为________ cm 3.解析:连结AC 交BD 于点O ,则四棱锥A -BB 1D 1D 的体积为13S BB 1D 1D ·AO =6.答案:62.(2012·南师大信息卷)在棱长为1的正方体ABCD -A1B 1C 1D 1中,若点P 是棱上一点,则满足|P A |+|PC 1|=2的点P 的个数为________.解析:点P 在以A ,C 1为焦点的椭圆上, 若P 在AB 上,设AP =x ,有P A +PC 1=x +(1-x )2+(2)2=2, 解得x =12.故AB 上有一点P (AB 的中点)满足条件.同理在AD ,AA 1,C 1B 1,C 1D 1,C 1C 上各有一点满足条件.[来源:] 又若点P 在BB 1上,则P A +PC 1=1+BP 2+1+B 1P 2>2.故BB 1上不存在满足条件的点P ,同理DD 1,BC ,A 1D 1,DC ,A 1B 1上不存在满足条件的点P .答案:63.在矩形ABCD中,AB=2,BC=3,以BC边所在直线为轴旋转一周,则形成的几何体的侧面积为________.解析:将矩形ABCD以BC边所在直线为轴旋转一周后得到的几何体为是以2为底面半径,以3为高的圆柱体,故它的侧面积为2π×2×3=12π.答案:12π4.(2012·南京三模)已知α,β是两个不同的平面,下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α.④存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α.其中是平面α∥平面β的充分条件的为________.(填上所有符合要求的序号)解析:②③中的α与β可以相交.答案:①④5.(2012·江苏最后一卷)给出下列四个命题:①如果平面α与平面β相交,那么平面α内所有的直线都与平面β相交;②如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β;③如果平面α⊥平面β,那么平面α内与它们的交线不垂直的直线与平面β也不垂直;④如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β.真命题的序号是________.(写出所有真命题的序号)解析:①中α内存在与β平行的直线;②中α内只有垂直于交线的直线才垂直于β;③、④正确.答案:③④[典例1]如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到平面PBC的距离.[解](1)证明:因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC.[来源:学+科+网Z+X+X+K]由∠BCD=90°,得CD⊥BC.又PD∩DC=D,PD,DC⊂平面PCD,所以BC⊥平面PCD.因为PC⊂平面PCD,故PC⊥BC.(2)法一:分别取AB,PC的中点E,F,连结DE,DF,易证DE∥CB,DE∥平面PBC,点D,E到平面PBC的距离相等.又点A到平面PBC的距离等于E 到平面P BC的距离的2倍.由(1)知,BC ⊥平面PCD ,所以平面PBC ⊥平面PCD 于PC .因为PD =DC ,PF =FC ,所以DF ⊥PC .所以DF ⊥平面PBC 于F .易知DF =22,故点A 到平面PBC 的距离等于 2. 法二:体积法:连结AC ,设点A 到平面PBC 的距离为h .因为AB ∥DC ,∠BCD =90°,所以∠ABC =90°. 从而AB =2,BC =1,得△ABC 的面积S △ABC =1.由PD ⊥平面ABCD 及PD =1,得三棱锥P -AB C 的体积V =13S △ABC ·PD=13. 因为PD ⊥平面ABCD ,DC ⊂平面ABCD , 所以PD ⊥DC .又PD =DC =1,所以PC =PD 2+DC 2= 2. 由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC =22. 由V A -PBC =V P -ABC ,13S △PBC ·h =V =13,得h =2,故点A 到平面PBC 的距离等于 2.本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.[演练1]如图,四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 为直角梯形且AB ∥CD ,∠BAD =90°,P A =AD =DC =2,AB =4.(1)求证:BC ⊥PC ; (2)四面体A -PBC 的体积.解:(1)证明:作CE ⊥AB 于点E ,则AE =EB =CE =2,BC =22,则AC =22,故∠ACB =90°,即AC ⊥CB .又P A ⊥平面ABCD ,故P A ⊥BC ,所以BC ⊥平面P AC .又PC ⊂面P AC , 因此BC ⊥PC .(2)因为P A ⊥平面ABC ,所以V A -PBC =V P -ABC =13S △ABC ·P A=13×12AC ·BC ·P A =13×12×22×22×2=83. 故四面体A -PBC 的体积为83.[典例2](2012·泰州模拟)已知四面体ABCD 中,AB =AC ,BD =CD ,平面ABC ⊥平面BCD ,E,F分别为棱BC和AD的中点.(1)求证:AE⊥平面BCD;(2)求证:AD⊥BC;(3)若△ABC内的点G满足FG∥平面BCD,设点G构成集合T,试描述点集T的位置.(不必说明理由)[解](1)证明:∵在△ABC中,AB=AC,E为BC的中点,∴AE⊥BC.又∵平面ABC⊥平面BCD,AE⊂平面ABC,平面ABC∩平面BCD=BC,∴AE⊥平面BCD.(2)证明:连结DE,∵BD=CD,E为BC的中点,∴BC⊥DE.由(1)知AE⊥BC,又AE∩DE=E,AE,DE⊂平面AED,∴BC⊥平面AED.又AD⊂平面AED,∴BC⊥AD.(3)取AB,AC的中点M,N,所有的点G构成的集合T即为△ABC的中位线MN.本题的第(3)问考查线面平行,没有直接给出点G的位置,而是需要探究点的位置.根据面面平行的性质得到线面平行,并且利用面面的交线确定点G的位置.[演练2]如图ABCD为直角梯形,∠BCD=∠CDA=90°,AD=2BC=2CD,P为平面ABCD外一点,且PB⊥BD.(1)求证:P A⊥BD;(2)若PC与CD不垂直,求证:P A≠PD.解:(1)证明:∵ABCD为直角梯形,∠BCD=∠CDA=90°,AD=2BC=2CD,∴AD=2AB=2BD.∴AB⊥BD.∵PB⊥BD,AB∩PB=B,AB,PB⊂平面P AB,∴BD⊥平面P AB.∵P A⊂面P AB,∴P A⊥BD.(2)证明:假设P A=PD,取AD中点N,连结PN,BN,则PN⊥AD,BN⊥AD,∴AD⊥平面PNB,得PB⊥AD,又PB⊥BD,得PB⊥平面ABCD,∴PB⊥CD,又∵BC⊥CD,且PB∩BC=B,∴CD⊥平面PBC,∴CD⊥PC,与已知条件PC与CD不垂直矛盾,∴假设不成立,∴P A≠PD.[典例3](2011·江苏高考)请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E 、F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x (cm).(1)若广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.[来源:][解] 设包装盒的高为h (cm),底面边长为a (cm). 由已知得a =2x ,h =60-2x 2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ). 由V ′=0得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12.即包装盒的高与底面边长的比值为12.本题主要考查空间几何体中的最值问题,综合考查数学建模能力及应用导数解决实际问题的能力. [演练3]某加工厂有一块三角形的铁板余料(如图),经测量得知:AC =3,AB =33,BC =6.工人师傅计划利用它加工成一个无盖直三棱柱型水箱,设计方案为:将图中的阴影部分切去,再把它沿虚线折起.请计算容器的高为多少时,容器的容积最大?最大容积是多少?解:设容器的高为x ,∵AC =3,AB =33,BC =6,∴BC 2=AC 2+AB 2, 得∠A =π2,∠C =π3,∠CED =π3,∠FEG =π3,∴CD =DE ·tan ∠CED =3x .∴GE =3-x -3x =3-(3+1)x .∴GF =3GE =3[3-(3+1)x ].[来源:学科网][来源:学*科*网] 又GE >0,∴0<x <33+1. 设容器的容积为V , 则V =12x ·3·[3-(3+1)x ]2∴V ′=32[3-(3+1)x ]2-3x [3-(3+1)x ]·(3+1) =332[3-(3+1)x ][1-(3+1)x ]. 令V ′=0,又0<x <33+1,∴x =13+1=3-12.当0<x <3-12时,V ′>0,3-12<x <33+1时,V ′<0. ∴当x =3-12时,V max =3- 3. [专题技法归纳]1.证明线面平行或垂直关系时,要认真体会“转化”这一数学思想方法,既要领会平行、垂直内部间的转化,也要注意平行与垂直之间的转化.2.空间几何体的表面积和体积的研究策略研究空间几何体的结构→计算相关边长→代入公式计算. 3.空间几何体的结构的研究策略运用转化的思想,将空间几何体的问题转化为平面问题,如几何体的外接球或内切球问题,转化为多边形的外接圆或内切圆的问题.4.组合体体积的求解组合体的体积求解无论是分割还是补形,关键是有利于求出几何体的高,即找到线面垂直.1.已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题:[来源:学.科.网]①若α∥β,则l ⊥m ;②若α⊥β,则l ∥m ;③若l ∥m ,则α⊥β;④若l ⊥m ,则α∥β. 其中正确命题的序号是________.解析:②中l 与m 可能异面;④中α与β也可能相交. 答案:①③2.已知P A ,PB ,PC 两两互相垂直,且△P AB ,△PBC ,△P AC 的面积分别为1.5 cm 2,2 cm 2,6 cm 2,则过P ,A ,B ,C 四点的外接球的表面积为________ cm 2.(注S 球=4πr 2,其中r 为球半径)解析:由题意得⎩⎪⎨⎪⎧12P A ·PB =1.5,12PB ·PC =2,12PC ·P A =6,解得⎩⎪⎨⎪⎧P A =3,PB =1,PC =4.因为P A ,PB ,PC 两两互相垂直,所以可构造长方体.长方体的体对角线长为26,即为外接球的直径,所以外接球的表面积为26π.答案:26π3.(2012·苏州二模)设m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若α∥β,m ⊂β,n ⊂α,则m ∥n ; ②若α∥β,m ⊥β,n ∥α,则m ⊥n ; ③若α⊥β,m ⊥α,n ∥β,则m ∥n ; ④若α⊥β,m ⊥α,n ⊥β,则m ⊥n .上面命题中,所有真命题的序号为________. 解析:①③中的直线m 与n 可以是异面直线. 答案:②④4.多面体上,位于同一条棱两端的顶点称为相邻的顶点,正方体的一个顶点A 在平面α内,其余顶点在α的同侧,正方体上与顶点A 相邻的三个顶点到α的距离分别为1,2和4,P 是正方体的其余四个顶点中的一个,则P 到平面α的距离可能是:①3;②4;③5;④6;⑤7以上结论正确的为________.(写出所有正确结论的编号)解析:如图,B ,D ,A 1到平面α的距离分别为1,2,4,则D ,A 1的中点到平面α的距离为3,所以D 1到平面α的距离为6;B ,A 1的中点到平面α的距离为52,所以B 1到平面α的距离为5;则D ,B 的中点到平面α的距离为32,所以C 到平面α的距离为3;C ,A 1的中点到平面α的距离为72,所以C 1到平面α的距离为7;而P 为C ,C 1,B 1,D 1中的一点,所以所有可能的结果为3,5,6,7.答案:①③④⑤5.已知α,β是两个不同的平面,m ,n 是平面α及平面β之外的两条不同直线,给出四个论断:①m ∥n ,②α∥β,③m ⊥α,④n ⊥β,以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________.解析:同垂直于一个平面的两条直线互相平行,同垂直于两个平行平面的两条直线也互相平行,故②③④⇒①.(同理①③④⇒②).答案:②③④⇒①(或①③④⇒②)6.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,四面体ACB 1D 1的体积为________.解析:用正方体体积减去4个相同的三棱锥体积(或求棱长为2的正四面体的体积). 答案:137.(2012·南京二模)一块边长为10 cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点P 为顶点,加工成一个如图所示的正四棱锥容器,当x =6 cm 时,该容器的容积为________ cm 3.解析:正四棱锥的高h =52-32=4, V =13×62×4=48(cm 3).答案:488.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析:当四点共面时为矩形;当四点不共面时,若有三点在正方体的某一面内,则可形成③⑤中的几何形体,若任意三点都不在正方体的某一面内,则形成④中的几何形体.答案:①③④⑤9.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为________.解析:如图,正三棱柱ABC -A 1B 1C 1中,△ABC 为正三角形,边长为2,△DEF 为等腰直角三角形,DF 为斜边,设DF 长为x ,则DE =EF =22x ,作DG ⊥BB 1,HG ⊥CC 1,EI ⊥CC 1,[来源:学科网]则EG =DE 2-DG 2=x 22-4,FI =EF 2-EI 2=x 22-4,FH =FI +HI =FI +EG =2x 22-4,在Rt △DHF 中,DF 2=DH 2+FH 2,即x 2=4+⎝⎛⎭⎫2x 22-42,解得x =2 3.即该三角形的斜边长为2 3.答案:2 310.(2012·南通一模)在棱长为4的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、D 1C 1上的动点,点G 为正方形B 1BCC 1的中心.则空间四边形AEFG 在该正方体各个面上的正投影所构成的图形中,面积的最大值为________.解析:如图1,当E 与A 1重合,F 与B 1重合时,四边形AEFG 在前、后面的正投影的面积最大值为12;如图2,当E 与A 1重合,四边形AEFG 在左、右面的正投影的面积最大值为8; 如图3,当F 与D 重合时,四边形AEFG 在上、下面的正投影的面积最大值为8; 综上得,面积最大值为12.答案:1211.(2012·南京二模)如图,四边形ABCD 是矩形,平面ABCD ⊥平面BCE ,BE ⊥EC . (1)求证:平面AEC ⊥平面ABE ;(2)点F 在BE 上,若DE ∥平面ACF ,求BFBE 的值.解:(1)证明:因为ABCD 为矩形,所以AB ⊥BC .因为平面ABCD ⊥平面BCE , 平面ABCD ∩平面BCE =BC , AB ⊂平面ABCD , 所以AB ⊥平面BCE .因为CE ⊂平面BCE ,所以CE ⊥AB .因为CE ⊥BE ,AB ⊂平面ABE ,BE ⊂平面ABE ,AB ∩BE =B , 所以CE ⊥平面ABE .因为CE ⊂平面AEC ,所以平面AEC ⊥平面ABE . (2)连结BD 交AC 于点O ,连结OF .因为DE ∥平面ACF ,DE ⊂平面BDE ,平面ACF ∩平面BDE =OF , 所以DE ∥OF .又因为矩形ABCD 中,O 为BD 中点, 所以F 为BE 中点,即BF BE =12.12.(2013·无锡一中)如图,四棱锥E -ABCD 中,EA =EB ,AB ∥CD ,AB ⊥BC ,AB =2CD .(1)求证:AB ⊥ED ;(2)线段EA 上是否存在点F ,使DF ∥平面BCE ?若存在,求出EF EA 的值;若不存在,说明理由.[来源:学#科#网]解:(1)证明:取AB 中点O ,连结EO ,DO .[来源:学|科|网] 因为EA =EB ,所以EO ⊥AB .因为AB ∥CD ,AB =2CD , 所以BO ∥CD ,BO =CD .又因为AB ⊥BC ,所以四边形OBCD 为矩形, 所以AB ⊥DO . 因为EO ∩DO =O ,所以AB ⊥平面EOD .又因为EDC 平面EOD , 所以AB ⊥ED .(2)存在点F 满足EF EA =12,即F 为EA 中点时,有DF ∥平面BCE .证明如下:取EB 中点G ,连结CG ,FG . 因为F 为EA 中点,所以FG ∥AB ,FG =12AB .因为AB ∥CD ,CD =12AB ,所以FG ∥CD ,FG =CD .所以四边形CDFG 是平行四边形,所以DF ∥CG .因为DF ⊄平面BCE ,CG ⊂平面BCE ,[来源:学科网ZXXK] 所以DF ∥平面BCE .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题17附加题21题 回顾2009~2012年的高考考题,附加题选做四选二中分别考查几何证明选讲、极坐标与参数方程、矩阵与变换、不等式选讲这四个内容,要求考生从中选择两个来完成,每题10分,难度不是很大,但是要求考生对所学知识点熟练掌握.
[典例1](2012·江苏高考)如图,AB是圆O的直径,D,E为圆上位于AB
异侧的两点,连结BD并延长至点C,使BD=DC,连结AC,AE,DE.求证:∠E=∠C.
[解] 证明:如图,连结AD. ∵AB是圆O的直径, ∴∠ADB=90°. ∴AD⊥BD. 又∵BD=DC, ∴AD是线段BC的中垂线. ∴AB=AC. ∴∠B=∠C. 又∵D,E为圆上位于AB异侧的两点, ∴∠B=∠E. ∴∠E=∠C.
(1)本题利用中间量代换的方法证明∠E=∠C,一方面考虑到∠B和∠E是同弧所对圆周角相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到∠B=∠C. (2)本题还可连结OD,利用三角形中位线来证明∠B=∠C. [演练1] (2012·泰州期末)已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB,FC. (1)求证:FB=FC; (2)若AB是△ABC外接圆的直径,∠EAC=120°,BC=33,求AD的长. 解:(1)证明:∵AD平分∠EAC,∴∠EAD=∠DAC. ∵四边形AFBC内接于圆,∴∠DAC=∠FBC. ∵∠EAD=∠FAB=∠FCB, ∴∠FBC=∠FCB,∴FB=FC. (2)∵AB是圆的直径,∴∠ACD=90°.
∵∠EAC=120°,∴∠DAC=12∠EAC=60°,∠D=30°. 在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3. 又在Rt△ACD中,∠D=30°,AC=3,∴AD=6. [典例2]
(2012·江苏高考)已知矩阵A的逆矩阵A-1=-14 34 12 -12,求矩阵A的特征值. [解] ∵A-1A=E,∴A=(A-1)-1. ∵A-1=-14 34 12 -12,∴A=(A-1)-1=2 32 1. ∴矩阵A的特征多项式为 f(λ)=λ-2 -3-2 λ-1=λ2-3λ-4.
令f(λ)=0,解得矩阵A的特征值λ1=-1,λ2=4.
由矩阵A的逆矩阵,根据定义可求出矩阵A,从而可求出矩阵A的特征值. [演练2]
(2012·泰州期末)已知矩阵A= 2 -1-4 3,B= 4 -1-3 1,求满足AX=B的二阶矩阵X.
解:由题意得A-1=32 12 2 1, ∵AX=B, ∴X=A-1B=32 12 2 1 4 -1-3 1=92 -1 5 -1. [典例3] (2012·江苏高考)在极坐标中,已知圆C经过点P2,π4,圆心为直线ρsinθ-π3=-32与极轴的交点,求圆C的极坐标方程 [解] ∵圆C圆心为直线ρsinθ-π3=-32与极轴的交点,∴在ρsinθ-π3=-32中令θ=0,得ρ=1. ∴圆C的圆心坐标为(1,0).
∵圆C经过点P2,π4,
∴圆C的半径为PC=22+12-2×1×2cos π4=1. ∴圆C经过极点, ∴圆C的极坐标方程为ρ=2cos θ.
求圆的方程的关键是求出圆心坐标和圆的半径. [演练3]
(2012·南通二模)在极坐标系中,圆C1的方程为ρ=42cosθ-π4,以极点为坐标原点,极轴为x
轴的正半轴建立平面直角坐标系,圆C2的参数方程 x=-1+acos θ,y=-1+asin θ(θ为参数),若圆C1与圆C2相切,求实数a的值. 解:C1:(x-2)2+(y-2)2=8, 圆心C1(2,2),半径r1=22. C2:(x+1)2+(y+1)2=a2,
圆心C2(-1,-1),半径r2=|a|. ∴圆心距C1C2=32. 两圆外切时,C1C2=r1+r2=22+|a|=32,a=±2; 两圆内切时,C1C2=|r1-r2|=|22-|a||=32, a=±52.
综上,a=±2或a=±52. [典例4]
(2012·江苏高考)已知实数x,y满足:|x+y|<13,|2x-y|<16,求证:|y|<518. [证明] ∵3|y|=|3y|=|2(x+y)-(2x-y)|≤2|x+y|+|2x-y|, 由题设知|x+y|<13,|2x-y|<16, ∴3|y|<13+16=56.∴|y|<518. 解决本题的关键是用(x+y)和(2x-y)表示y. [演练4]
(2012·南通二模)已知x,y,z均为正数.求证:xyz+yzx+zxy≥1x+1y+1z. 证明:因为x,y,z都为正数, 所以xyz+yzx=1zxy+yx≥2z.
同理,可得yzx+zxy≥2x,zxy+xyz≥2y. 将上述三个不等式两边分别相加,并除以2, 得xyz+yzx+zxy≥1x+1y+1z. [专题技法归纳] (1)几何证明选讲主要考查直线与圆的相切关系,弦切角定理是沟通角的桥梁,解决与圆有关的线段问题常利用相交弦定理、割线定理、切割线定理、切线长定理,并结合三角形相似等知识; (2)矩阵与变换主要考查变换、矩阵的特征值与特征向量、逆矩阵、二阶矩阵的乘法; (3)极坐标与参数方程主要考查参数方程与普通方程的互化及应用参数方程求最值、范围等问题; (4)解绝对值不等式的关键是去掉绝对值符号化为不含绝对值的不等式,其过程体现了分类讨论思想的应用.
1.(2012·苏北四市三模)如图,圆O的直径AB=4,C为圆周上一点,BC=2,过C作圆O的切线l,过A作l的垂线AD分别与直线l,圆O交于点D,E,求线段AE的长.
解:在Rt△ABC中,因为AB=4,BC=2,所以∠ABC=60°, 因为l为过C的切线,所以∠DCA=∠CBA, 所以∠DCA=∠ABC=60°. 又因为AD⊥DC,所以∠DAC=30°. 在△AOE中,因为∠EAO=∠DAC+∠CAB=60°,且OE=OA,
所以AE=AO=12AB=2. 2.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,求证:∠PDE=∠POC. 证明:因AE=AC,AB为直径, 故∠OAC=∠OAE. 所以∠POC=∠OAC+∠OCA =∠OAE+∠OAC=∠EAC. 又∠EAC=∠PDE,所以∠PDE=∠POC.
3.(2012·扬州期末)求矩阵M=-1 4 2 6的特征值和特征向量. 解:f(λ)=(λ+1)(λ-6)-8=λ2-5λ-14=(λ-7)(λ+2), 由f(λ)=0,可得λ1=7,λ2=-2.
由 +x-4y=0,-2x+-y=0
可得属于λ1=7的一个特征向量为12. 由 -2+x-4y=0,-2x+-2-y=0 可得属于λ1=-2的一个特征向量为 4-1. 4.(2012·南通二模)已知M=1 22 1,β=17,计算M5β. 解:矩阵M的特征多项式为f(λ)=λ-1 -2-2 λ-1=λ2-2λ-3. 令f(λ)=0,解得λ1=3,λ2=-1,从而求得它们对应的一个特征向量分别为 α1=11,α2= 1-1. 令β=mα1+nα2,所以求得m=4,n=-3. M5β=M5(4α1-3α2)=4(M5α1)-3(M5α2)
=4(λ51α1)-3(λ52α2)
=4·3511-3(-1)5 1-1=975969.
5.已知矩阵A=1 12 1,向量β=12.求向量α,使得A2α=β. 解:∵A=1 12 1,∴A2=1 12 11 12 1=3 24 3. 设α=xy,则A2α=β⇔3 24 3xy=12 ⇔3x+2y4x+3y=
1
2. ∴ 3x+2y=1,4x+3y=2,∴ x=-1,y=2,∴α=-1 2. 6.已知P(x,y)是椭圆x24+y2=1上的点,求M=x+2y的取值范围. 解:∵x24+y2=1的参数方程 x=2cos θ,y=sin θ(θ为参数) ∴设P(2cos θ,sin θ). ∴M=x+2y=2cos θ+2sin θ=22sinθ+π4. ∴M=x+2y的取值范围是[-22,22 ]. 7.(2012·泰州期末)已知曲线C的极坐标方程为ρ=6sin θ,以极点为原点,极轴为x轴的非负半
轴建立平面直角坐标系,直线l的参数方程为 x=12t,y=32t+1(t为参数),求直线l被曲线C截得的线段长度. 解:将曲线C的极坐标方程化为直角坐标方程为 x2+y2-6y=0,即x2+(y-3)2=9,
它表示以(0,3)为圆心,3为半径的圆. 直线方程l的普通方程为y=3x+1,
圆C的圆心到直线l的距离d=|3-1|3+1=1, 故直线l被曲线C截得的线段长度为232-12=42.
8.在直角坐标系xOy中,直线l的参数方程为 x=12t,y=22+32t(t为参数),若以直角坐标系xOy的O点为极点,Ox为极轴,且长度单位相同,建立极坐标系,得曲线C的极坐标方程为ρ=2cosθ-π4. (1)求直线l的倾斜角; (2)若直线l与曲线C交于A,B两点,求AB.
解:(1)设直线l的倾斜角为θ,则 cos θ=12,sin θ=32且θ∈[0,π), ∴θ=π3,即直线l的倾斜角为π3.