【参考文档】考研数学证明题的知识点总结-推荐word版 (2页)

合集下载

考研数学必考的定理证明整理

考研数学必考的定理证明整理

考研数学必考的定理证明整理在考研数学中,有一些定理是非常重要且必考的,掌握了这些定理的证明方法,可以在考试中帮助我们更好地理解和解答数学问题。

下面整理了一些考研数学中必考的定理证明,希望对大家复习有所帮助。

1.逆序数定理:逆序数是指在一个排列中,如果一个数之前有比它大的数,则称这个数是逆序的。

逆序数定理指出,对于任意的排列,其逆序数的奇偶性与该排列的逆序数的个数是相同的。

即如果逆序数的个数是偶数,则排列的逆序数是偶数;如果逆序数的个数是奇数,则排列的逆序数是奇数。

证明思路:利用归纳法进行证明,首先证明初始情况成立,然后假设逆序数的定理对于所有小于n的情况成立,再证明对于n的情况也成立。

2.幂级数:幂级数在数学中是一个重要的概念,特别是在微积分和函数论中应用广泛。

幂级数的收敛半径和收敛域是幂级数的重要性质。

幂级数的收敛半径可以通过柯西-阿达玛公式求得,而收敛域的边界上收敛性需要通过级数的边界性分析得到。

证明思路:根据幂级数的定义,首先确定幂级数的通项项、幂级数求和函数的定义域和收敛半径。

然后通过柯西-阿达玛公式计算幂级数的收敛半径。

最后通过比较判断幂级数的收敛性。

3.极值定理:极值定理也是考研中的一个重要定理,它指出一个连续函数在闭区间上必有最大值和最小值。

极值定理有两个重要的推论,即费马定理和魏尔斯特拉斯定理。

费马定理指出,如果函数在一点处取得极值,则该点处的导数为0。

魏尔斯特拉斯定理指出,一个函数在闭区间上连续,则它在该区间上必有最大值和最小值。

证明思路:根据连续函数的定义和闭区间的定义,利用极值定理的条件和结论,通过反证法进行证明。

首先假设函数在闭区间上没有取得最大值或最小值,然后通过构造序列和利用辅助函数等方法逐步推导出矛盾,从而证明极值定理成立。

以上是一些考研数学中必考的定理证明,这些定理在数学理论和应用中都有着重要的地位,掌握了它们的证明方法可以提高我们对数学知识的理解和应用能力。

在备考过程中,除了熟悉定理的证明过程,还要注意练习相关的例题和应用题,加强对定理的理解和掌握,提高解题的能力。

考研数学证明题的知识点总结

考研数学证明题的知识点总结

考研数学证明题的知识点总结
考研数学证明题的知识点总结
考试难题一般出现在高等数学,对高等数学一定要抓住重难点进行复习。

高等数学题目中比较困难的是证明题,在整个高等数学,容易出证明题的地方如下:
一、数列极限的证明
数列极限的证明是数一、二的`重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。

二、微分中值定理的相关证明
微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:
1.零点定理和介质定理;
2.微分中值定理;
包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。

3.微分中值定理
积分中值定理的作用是为了去掉积分符号。

在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。

三、方程根的问题
包括方程根唯一和方程根的个数的讨论。

四、不等式的证明
五、定积分等式和不等式的证明
主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。

六、积分与路径无关的五个等价条件
这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。

【精品文档】考研数学证明题有哪些解答技巧-推荐word版 (5页)

【精品文档】考研数学证明题有哪些解答技巧-推荐word版 (5页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==考研数学证明题有哪些解答技巧考研数学的考试时间越来越近,在复习证明题的时候,我们需要掌握好解答的技巧。

小编为大家精心准备了考研数学证明题解答方法,欢迎大家前来阅读。

考研数学证明题解答技巧总结一、结合几何意义记住基本原理重要的定理主要包括零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。

知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。

如201X年数学一真题第16题(1)是证明极限的存在性并求极限。

只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。

因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。

这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。

只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。

像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

二、借助几何意义寻求证明思路一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。

如201X年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。

这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。

再如201X年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。

考研数学:必考的定理证明整理

考研数学:必考的定理证明整理

考研数学的定理证明是一直考生普遍感觉不太有把握的内容,而2016 年考研数学真题释放出一个明确信号——考生需重视教材中重要定理的证明。

下面跨考教育为考生梳理一下教材中那些要求会证的重要定理。

一、求导公式的证明2015 年真题考了一个证明题:证明两个函数乘积的导数公式。

几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。

实际上,从授课的角度,这种在2015 年前从未考过的基本公式的证明,一般只会在基础阶段讲到。

如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。

这里给2017 考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。

当然,该公式的证明并不难。

先考虑f(x)*g(x) 在点x0 处的导数。

函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。

该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!) 。

利用数学上常用的拼凑之法,加一项,减一项。

这个“无中生有”的项要和前后都有联系,便于提公因子。

之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。

再由x0 的任意性,便得到了f(x)*g(x) 在任意点的导数公式。

类似可考虑f(x)+g(x) ,f(x)-g(x) ,f(x)/g(x) 的导数公式的证明。

二、微分中值定理的证明这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。

除泰勒中值定理外,其它定理要求会证。

费马引理的条件有两个:1.f(xO)存在2. f(xO)为f(x)的极值,结论为f(xO)=O。

考虑函数在一点的导数,用什么方法?自然想到导数定义。

我们可以按照导数定义写出f(xO)的极限形式。

往下如何推理?关键要看第二个条件怎么用。

“f(x0为f(x)的极值”翻译成数学语言即f(x)-f(x0)<0( 或>0) ,对x0 的某去心邻域成立。

考研数学重要定理性质及公式证明总结

考研数学重要定理性质及公式证明总结

考研数学重要定理、性质及公式证明总结1. 证明一元函数可微、可导及连续的关系 :(1) 函数y = f ( x )在点x 0处可微的充分必要条件是函数y = f ( x )在点x 0处可导,且当函数y = f (x )在点x 0处可微时,有dy = f '( x 0 ) ∆x = f '( x 0 ) d x ; (2) 如果函数y = f ( x )在点x 0处可导,则函数函数y = f ( x )在点x 0处必连续,反之不一定.证明:(1)参看同济教材七版上册111页; (2)参看同济教材七版上册82页.2. 证明费马定理 :设函数f ( x )在x = x 0处可导且取极值,则f '( x 0 ) =0. 证明:参看同济教材七版上册125页.3. 证明罗尔定理 :设f ( x )在[a , b ]上连续,在(a , b )内可导,且f (a ) = 证明:参看同济教材七版上册126页.4. 证明柯西中值定理 :f (b ),则至少存在一点ξ ∈(a ,b ), 使得f '(ξ ) =0. 设f ( x )、g ( x )在[a , b ]上连续, (a , b )内可导, 且g '( x ) ≠ 0,则∃ξ ∈(a , b ),使得f (b ) - f (a ) = f '(ξ ).证明:参看同济教材七版上册130页.5. 证明洛必达法则:设f ( x ), g ( x )在点x 0的某去心邻域内可导,且g '( x ) ≠ 0, 又满足:f '( x )f ( x )g (b ) - g (a )f '( x )g '(ξ )(1)lim f ( x ) = lim g ( x ) = 0(, 2)极限lim 存在或为∞;则lim = lim .x →x 0 x → x 0 x →x 0 g '( x ) x →x 0 g ( x ) x → x 0 g '( x ) 证明:参看同济教材七版上册133页.6. 证明函数单调性的充分判别法 :设f ( x )在[a , b ]上连续, 在(a , b )内可导,且f '( x ) > 0 (< 0), 则f ( x )在[a , b ]上单调增加(单调减少). 证明:参看同济教材七版上册144页.7. 证明曲线凹凸性的充分判别法 :设f ( x )在[a , b ]上连续, 在(a , b )内二阶可导,且f ''( x ) > 0 (< 0), 则f ( x )在[a , b ]上的图形是凹的(凸的). 证明:参看同济教材七版上册148页.8. 证明极值点的充分条件 :设f (x )在x = x 0处二阶可导, f '( x 0 ) = 0, 若f '( x 0 ) > (0 证明:参看同济教材七版上册155页.< 0),则x = x 0是极小(大)值点.a∆ → a 9. 证明拐点的必要条件及充分条件 :(1)设f ( x )在x = x 0处二阶可导,且点( x 0 , f ( x 0 ))是曲线f (x )的拐点,则f ''( x 0 ) = 0; (2)设f (x )在x = x 0处三阶可导, f ''( x 0 ) = 0, 若f ''( x 0 ) ≠ 0, 则点(x 0 , f ( x 0 ))是曲线f (x )的拐点. 证明:(1)设f ''( x 0 )∃ ⇒ f ( x )在x = x 0的某邻域可导,因( x 0 , f ( x 0 ))是曲线的拐点 ⇒ f ( x )在x = x 0的两侧凹凸性相反⇒ f '( x )在x = x 0的两侧单调性相反,又f '( x )在x = x 0连续 ⇒ x = x 0是f '( x )的极值点,对f '( x )使用费马定理, 得f ''( x 0 ) = 0.(2)f ''( x ) = lim f '( x ) - f '( x 0 ) = lim f '( x ) > 0或< 0 ⇒ f '( x )在x = x 两侧异号 0x → x 0 x - x x →x 0 x - x0 0 0⇒ ( x 0 , f ( x 0 ))是曲线f (x )的拐点.10. 证明积分中值定理 :设f ( x )在[a , b ]上连续,则至少存在一点ξ ∈(a , b ), 使得⎰b f ( x )dx =f (ξ )(b - a ). 证明:参看同济教材七版上册242页例6.11. 证明变限积分函数的连续性 :设f ( x )在[a , b ]上可积,则对∀x 0 ∈[a , b ], 有F ( x ) = xf (t )dt 在[a ,b ]上连续.证明:因f ( x )在[a , b ]上可积, 故f ( x )在[a , b ]上有界,则可设 f ( x ) ≤ M (x ∈[a , b ]).x +∆xx +∆x 又∀x , x + ∆x ∈[a , b ], 有 ∆F = F ( x + ∆x ) - F ( x ) = ⎰xf (t ) d t - ⎰x f (t )dt = ⎰xf (t )dtx +∆x x +∆x≤ ⎰xf (t ) d t ≤ ⎰xMdt = M ∆x ,因此,当x , x + ∆x ∈[a ,b ]时,lim ∆F = 0,即F ( x )在[a , b ]上连续.x 012. 证明牛顿 — 莱布尼茨公式:设F ( x )是连续函数f ( x )在区间[a , b ]上的一个原函数,则⎰bf ( x )dx = F (b ) - F (a ). 证明:参看同济教材七版上册240页.13. 证明二元函数可微的必要条件 :设z = f ( x , y )在点( x , y )处可微,则z = f ( x , y )在点( x , y )处可导,且z = f ( x , y )在点( x , y )处的 全微分dz = ∂z dx + ∂zdy .∂x ∂y证明: 参看同济教材七版下册73页.14. 证明二元函数可微的充分条件 :设z = f (x , y )的两个偏导数∂z , ∂z在点( x , y )处都连续,则z = f ( x , y )在点( x , y )处可微. ∂x ∂y证明: 参看同济教材七版下册74页.⎰x⎰L Pdx + Qdy = ⎪ ∑ ∞15. 证明比值判别法(数一数三):⎧⎪⎪ρ < 1 ⇒ ∑ n =1u n 收敛 ∞ u n +1 ⎪ ∞设∑u n 为正项级数, 设ρ = lim ,则⎨ ρ > 1 ⇒ ∑u n 发散n =1 n →∞ u n⎪⎪ρ = 1 ⇒ ∞ n =1u n 可能收敛也可能发散 ⎩证明: 参看同济教材七版下册262页.16.证明阿贝尔定理(数一数三):∞n =1 如果级数∑ a x n 当x = x ( x ≠ 0)时收敛,那么满足 x < x 的一切x 都使该幂级数绝对收敛;nn =0 ∞反之,如果级数∑ a x n 当x = x 时发散,那么满足 x > x 的一切x 都使该幂级数发散.nn =0证明: 参看同济教材七版下册274页.17. 证明格林公式(数一):设区域D 由分段光滑的闭曲线L 围成,函数P ( x , y )及Q ( x , y )在D 上具有一阶连续偏导数,则 ⎛ ∂Q - ∂P ⎫⎰⎰ ∂x ∂y ⎪dxdy . D ⎝ ⎭证明: 参看同济教材七版下册205页.18. 证明曲线积分与路径无关问题(数一):我们已知:设P ( x , y ), Q ( x , y )在区域D 上连续,则曲线积分⎰LPdx + Qdy 在D 内与路径无关⇔ 对区域D 内∀ 分段光滑闭曲线C , 有⎰CPdx + Qdy = 0.证明: 设区域D 是一个单连通区域,函数P ( x , y ), Q ( x , y )在D 上具有一阶连续偏导数,则曲线积分⎰ Pdx + Qdy 在D 内与路径无关 ⇔ ∂Q = ∂P(( x , y )∈ D ).L证明: 参看同济教材七版下册209页.∂x ∂y 证明: 设区域D 是一个单连通区域,函数P ( x , y ), Q ( x , y )在D 上具有一阶连续偏导数,则Pdx + Qdy 在D 内是某一函数u ( x , y )的全微分⇔ ∂Q = ∂P(( x , y )∈ D ).∂x ∂y (这里的u ( x , y )也称为Pdx + Q dy 的一个原函数) 证明: 参看同济教材七版下册211页.。

考研数学高数定理证明的知识点

考研数学高数定理证明的知识点

考研数学高数定理证明的知识点数学高等数学(高数)是考研数学中的一个重要部分,其中涉及了许多重要的定理及其证明。

以下是一些常见的高数定理及其证明的知识点:1.邻域性原理:如果一个函数在一些点的一些邻域内恒大于(或小于)另一个函数,而两个函数在该点处相等,则这两个函数在该邻域内恒大于(或小于)。

证明:假设函数f(x)和g(x)在点x0处连续且f(x)>g(x),且f(x0)=g(x0)。

因为f(x)和g(x)在x0处连续,所以存在一个邻域N(x0)使得f(x)>g(x)在该邻域内成立。

因此,f(x)>g(x)在N(x0)内恒成立。

2.极限的一致性:如果两个函数在一个有限闭区间内的一致性极限或一致性趋于无穷大的极限都存在,则它们的差的(绝对值的)极限是0。

证明:假设函数f(x)和g(x)在闭区间[a,b]内一致趋于函数h(x)和0,即对任意的ε>0,存在N,当n>N时,有,f(x)-h(x),<ε以及,g(x)-0,<ε成立。

由于,h(x),≤,f(x)-h(x),+,g(x)-0,所以当n>N时,有,h(x),≤2ε成立。

因此,极限,h(x),=0。

3.导数的基本性质:导数具有线性性、乘积法则、商法则和链式法则等基本性质。

证明:以线性性为例,假设函数f(x)和g(x)在点x0处可导。

根据导数的定义,有lim_(x→x0) (f(x)-f(x0))/(x-x0)=lim_(x→x0) (g(x)-g(x0))/(x-x0)=f'(x0)和g'(x0)。

我们可以得到lim_(x→x0) (f(x)+g(x)-[f(x0)+g(x0)])/(x-x0)=lim_(x→x0)[(f(x)-f(x0))/(x-x0)+(g(x)-g(x0))/(x-x0)]=f'(x0)+g'(x0)。

因此,函数f(x)+g(x)在点x0处可导,且(f+g)'(x0)=f'(x0)+g'(x0)。

考研数学总结知识点

考研数学总结知识点

考研数学总结知识点一、数学分析1. 极限与连续(1)定义极限和连续是数学分析中非常重要的概念。

极限指的是当自变量趋于某个值时,函数的取值接近于一个确定的值;连续则指的是函数在定义域内没有断点,函数图形没有间断。

(2)性质极限与连续有一系列重要的性质,比如极限的唯一性、极限运算的性质、连续函数的性质等,对于数学分析的求解非常有帮助。

(3)应用极限与连续的概念在微积分、微分方程等数学分析的领域中有着广泛的应用,比如求解函数的极限值、证明函数的连续性等。

2. 导数与微分(1)定义导数是函数的变化率,也可以理解为函数图形在某一点的切线斜率。

微分则是函数在某一点的局部线性逼近。

(2)性质导数与微分有一系列重要的性质,比如导数的求导法则、微分的性质和运算法则等。

(3)应用导数与微分的概念在微积分领域中有广泛应用,比如求解函数的极值、函数的凹凸性、函数的泰勒展开等。

3. 积分与定积分(1)定义积分表示函数在一定区间上的累积效应,定积分则是积分的一种特殊形式,表示函数在一个区间上的面积。

(2)性质积分与定积分有一系列重要的性质,比如定积分的性质、变量代换法则、分部积分法则等。

积分和定积分的概念在微积分领域中有广泛应用,比如求解曲线下的面积、求解定积分、计算定积分等。

4. 级数和幂级数(1)定义级数是指把无穷多项相加得到的和,幂级数则是一种特殊形式的级数,其中每一项都是一个幂函数。

(2)性质级数和幂级数有一系列重要的性质,比如级数收敛和发散的判别法则、幂级数的收敛半径等。

(3)应用级数和幂级数的概念在数学分析中有广泛的应用,比如求解函数的幂级数展开、证明级数的收敛性等。

5. 函数空间(1)定义函数空间是指一组满足一定条件的函数的集合,其中函数之间可以定义一些特殊的运算。

(2)性质函数空间中常见的性质包括线性空间的性质、内积空间的性质和赋范空间的性质等。

(3)应用函数空间的概念在泛函分析中有着广泛的应用,比如证明函数序列的收敛性、求解特定函数空间上的最优逼近问题等。

考研数学:必考的定理证明整理(2)

考研数学:必考的定理证明整理(2)

2017考研数学:必考的定理证明整理(2)考研数学的定理证明是一直考生普遍感觉不太有把握的内容,而2016年考研数学真题释放出一个明确信号考生需重视教材中重要定理的证明。

下面为考生梳理一下教材中那些要求会证的重要定理。

三、微积分基本定理的证明该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。

变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。

注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。

花开两朵,各表一枝。

我们先考虑变上限积分函数在开区间上任意点x处的导数。

一点的导数仍用导数定义考虑。

至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。

单侧导数类似考虑。

牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。

它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。

这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。

而多数考生能熟练运用该公式计算定积分。

不过,提起该公式的证明,熟悉的考生并不多。

该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。

该公式的证明要用到变限积分求导定理。

若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。

注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。

根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【参考文档】考研数学证明题的知识点总结-推荐word版
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
考研数学证明题的知识点总结
考试难题一般出现在高等数学,对高等数学一定要抓住重难点进行复习。

高等数学题目中比较困难的是证明题,在整个高等数学,容易出证明题的地方如下:
一、数列极限的证明
数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。

二、微分中值定理的相关证明
微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:
1.零点定理和介质定理;
2.微分中值定理;
包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。

3.微分中值定理
积分中值定理的作用是为了去掉积分符号。

在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。

三、方程根的问题
包括方程根唯一和方程根的个数的讨论。

四、不等式的证明
五、定积分等式和不等式的证明。

相关文档
最新文档