化工原理课程设计说明书(换热器的设计)

合集下载

化工原理课程设计 换热器的设计

化工原理课程设计 换热器的设计

摘要换热器的应用贯彻化工生产过程的始终,换热器换热效果的好坏直接影响化工生产的质量和生产效益。

所以换热器是非常重要的化工生产设备,在化工领域中,它扮演着主力军的身份,它是实现化工生产过程中热量交换和传递不可缺少的设备,在化工设备中占大约50%以上的比重。

既然换热器在化工生产中扮演如此重要的角色,那么如何设计出换热效果好,设备健全合理,三废排放量更低,能源利用率更高,经济效益高的换热器是我们从事化工行业工作人员刻不容缓的职责。

为了完成年产 2.8万吨酒精的生产任务,设计换热器的总体思路:在正常的生产过程中,利用塔底的釜残液作为加热介质在塔底冷却器中进行第一次预热,然后用少量的水蒸汽便可在预热器中使原料液达到预期的温度进入精馏塔中。

塔顶酒精蒸汽经过全凝器,利用循环冷却水作为冷却介质使酒精蒸汽转为液体。

最后,在塔顶冷却器中再次用冷却水使其降到25。

C输送到储装罐中。

关键词:冷却器;再沸器;全凝器;对流传热系数;压降;列管式换热器;离心泵。

目录第一章换热器的设计..............................................1.1概述 .............................................................1.1.1流程方案的确定..............................................1.1.2 加热介质、冷却介质的选择 ...................................1.1.3 换热器类型的选择 ...........................................1.1.4 流体流动空间的选择 .........................................1.1.5 流体流速的确定 .............................................1.1.6换热器材质的选择............................................1.1.7换热器壁厚的确定............................................1.2.固定管板式换热器的结构...........................................1.2.1管程结构....................................................1.2.2壳程结构....................................................1.3 列管换热器的设计计算.............................................1.3.1 换热器的设计步骤 ...........................................1.3.2 计算所涉及的主要公式 ....................................... 第二章设计的工艺计算 ............................................2.1 全塔物料恒算.....................................................2.2 原料预热器的设计和计算...........................................2.2.1 确定设计方案 ...............................................2.2.2 根据定性温度确定物性参数 ...................................2.2.3换热器的选择................................................2.3塔顶全凝器的设计和计算 ...........................................2.3.1确定设计方案................................................2.3.2 根据定性温度确定物性参数 ...................................2.2.3 换热器的选择 ...............................................2.4 塔顶冷却器的设计.................................................2.4.1 确定设计方案 ...............................................2.4.2 根据定性温度确定物性参数 ...................................2.4.3 换热器的选择 ...............................................2.5 塔底冷却器的设计.................................................2.5.1 确定设计方案 ...............................................2.5.2 根据定性温度确定物性参数 ...................................2.5.3 换热器的选择 ...............................................2.6 再沸器的设计.....................................................2.6.1 确定设计方案 ...............................................2.6.2 根据定性温度确定物性参数 ...................................2.6.3再沸器的工艺计算............................................ 第三章附录 .....................................................................................................................................符号说明............................................................. 第四章设计感想..................................................................................................................... 参考文献............................................................第一章换热器的设计1.1概述工业生产过程,两种物料之间的热交换一般是通过热交换器完成的,所以换热器的设计就显的尤为重要。

列管式换热器的设计(化工原理课程设计)

列管式换热器的设计(化工原理课程设计)

目录§一.任务书 (2)1.1.化工原理课程设计的重要性1.2.课程设计的基本内容和程序1.3.列管式换热器设计内容1.4.设计任务和操作条件1.5.主要设备结构图1.6.设计进度1.7.设计成绩评分体系§二.概述与设计要求 (4)2.1.换热器概述2.2.固定管板式换热器2.3.设计要求§三.设计条件与主要物理参数 (5)3.1.初选换热器的类型3.2.确定物性参数3.3.计算热流量与平均温差3.4.管程安排(流动空间的选择)与流速确定3.5.计算总传热系数3.6.计算传热面积§四. 工艺设计计算 (9)4.1.管径和管内流速4.2.管程数和传热管数4.3.平均传热温差校正与壳程数4.4.换热管选型汇总4.5.换热管4.6.壳体内径4.7.折流板4.8.接管4.9.壁厚的确定、封头4.10.管板§五.换热器核算 (14)5.1.热量核算5.2.壁温核算5.3.流动阻力核算§六.设计结果汇总 (18)§七. 设计评述 (19)§八.工艺流程图 (19)§.九.符号说明 (21)§.十.参考资料 (22)§一.化工原理课程设计任务书1.1.化工原理课程设计的重要性化工原理课程设计是学生学完基础课程以与化工原理课程以后,进一步学习工程设计的基础知识,培养学生工程设计能力的重要教学环节,也是学生综合运用化工原理和相关选修课程的知识,联系生产实际,完成以单元操作为主的一次工程设计的实践。

通过这一环节,使学生掌握单元操作设计的基本程序和方法,熟悉查阅技术资料、国家技术标准,正确选用公式和数据,运用简洁文字和工程语言正确表述设计思想和结果;并在此过程中使学生养成尊重实际问题向实践学习,实事求是的科学态度,逐步树立正确的设计思想、经济观点和严谨、认真的工作作风,提高学生综合运用所学的知识,独立解决实际问题的能力。

化工原理换热器课程设计模板

化工原理换热器课程设计模板

目录1 化工原理课程设计任务书 (1)2 概述与设计方案简介 (2)3 确定设计方案 (6)3.1 选择换热器的类型 (6)3.2 管程安排 (10)4 确定物性数据 (10)5 估算传热面积 (13)5.1 热流量 (13)5.2 平均传热温差 (13)5.3 传热面积 (13)5.4 冷却水用量 (13)6 工艺结构尺寸 (14)6.2 管程数和传热管数 (14)6.3 传热温差校平均正及壳程数 (14)6.4 传热管排列和分程方法 (15)6.5 壳体内径 (15)6.6 折流挡板 (16)6.7 其他附件..................................................................................................(167 换热器核算 (17)7.1 热流量核算 (17)7.2 面积计算 (18)7.3 换热器内流体的流动阻力 (19)8 结构设计 (20)9 参考文献 (21)10 主要符号说明 (22)1设计任务某生产过程中,反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶组分。

已知混合气体的流量为2.8×104kg/h,压力为6.9Mpa。

循环冷却水的压力为0.4Mpa,循环水的入口温度为29℃,出口温度为39℃,试设计一台列管式换热器,完成该生产任务。

:2.设计说明书.概述与设计方案简介换热器的类型列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。

一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。

管束的壁面即为传热面。

其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。

化工原理课程设计模板-换热器

化工原理课程设计模板-换热器

化工原理课程设计模板-换热器1. 引言换热器是化工过程中常用的设备之一,其主要功能是在流体之间进行热量传递,以实现温度控制、能量回收等目的。

本文将介绍化工原理课程设计中换热器的设计过程和要点。

2. 设计目标在进行换热器设计之前,首先要确定设计的目标。

设计目标包括但不限于以下几点:•确定需要传热的流体的进口温度和出口温度;•确定传热后流体的温度变化范围;•确定换热器的热传导面积;•确定换热器的传热系数。

3. 设计步骤换热器的设计过程可以分为以下几个步骤:3.1 确定流体的性质参数在设计换热器之前,需要明确流体的性质参数,包括流体的密度、比热容以及传热系数等。

这些参数可以通过实验测定或者查阅相关文献获得。

3.2 计算流体的传热量根据热传导定律,可以计算流体的传热量。

传热量的计算公式如下:Q = m * c * ΔT其中,Q表示传热量,m表示流体的质量,c表示流体的比热容,ΔT表示流体的温度变化。

3.3 确定换热器的传热面积根据热传导定律,可以计算换热器的传热面积。

传热面积的计算公式如下:A = Q / (U * ΔTlm)其中,A表示传热面积,U表示换热器的传热系数,ΔTlm表示对数平均温差。

3.4 选择换热器的类型和结构根据设计要求和实际情况,选择合适的换热器类型和结构。

常见的换热器类型包括管壳式换热器、板式换热器等。

3.5 进行换热器的细节设计在确定了换热器的类型和结构之后,进行换热器的细节设计,包括管道的布置、流体的流动方式以及换热器的材料选择等。

3.6 进行换热器的性能评价完成换热器的设计之后,进行性能评价,验证设计结果是否满足设计目标。

性能评价主要包括换热器的传热效率、压降以及经济性等方面。

4. 实例分析下面通过一个实例来说明换热器的设计过程。

实例:管壳式换热器假设需要设计一个管壳式换热器,用于将流体A的温度从40℃降至20℃,同时将流体B的温度从70℃升至90℃。

根据设计要求,我们可以计算出流体A和流体B的传热量,然后根据对数平均温差计算出传热面积,从而确定换热器的尺寸。

化工原理 换热器设计说明

化工原理 换热器设计说明

|化工原理课程设计任务书专业班级:07过控02 学生姓名:赵凯 学号: 0703020228 一 设计题目:正戊烷冷凝器的设计二 课题条件(文献资料,仪器设备,指导力量) (一)设计任务设计一冷凝器,冷凝正戊烷蒸气; 1) 处理能力:6万吨/年。

2) 正戊烷蒸气压力:0.75kgf/cm2,其饱和温度为52C ︒,蒸发潜热为83kcal/kg 3) 冷却剂:自来软水,进口温度C 251︒=t 出口温度C 40o 2=t (二)操作条件: (1)生产方式:连续操作(2)生产时间:每年以300天计算,每天24小时(3)冷凝器操作压力为常压,管程和壳程的压力均不大于30kpa 三.设计任务1.确定设计方案,绘制工艺流程图。

2.热力学计算 2.1热力学数据的获取 2.2估算传热面积 2.3工艺尺寸的计算 2.4面积核算 2.5壁温校核 2.6压降校核3.结构设计3.1冷凝器的安装3.2管设计3.3管心距设计3.4管板设计3.5折流板设计3.6壳体设计3.7接管设计3.8封头设计3.9法兰设计3.10支座设计3.11其他4.设计计算结果汇总表5.设计结果评价6.绘制装配图7.编制设计说明书设计流程图确定物性常数,热负荷、冷却剂用量及平均温差,确定换热器类型及流体流动空间选择传热管参数,并计算管程相应参数估计冷凝给热系数估计传热总数,计算传热面积初值计算计算值与假定值相差较大计算值与假定值相差较大压降大于设计①②③④核算冷凝给热系数总传热系数核算计算管内给热系数壳侧压降和管侧压降计算,并与设计压力比较裕度系数校验考虑夏冬季的温度差异,改变冷流体进口温度折流板计算 计算值与假定值相差不大裕度过大或过小裕度合适确定换热器基本尺寸压降小于设计压力⑤⑥⑦⑧⑨ 计算换热器其余零件⑩工艺流程图热力学计算1.热力学数据的获取正戊烷液体在定性温度(52℃)下的物性数据(查化工原理附录)。

,,kJ/kg 5.347C W/m 13.0C kJ/kg 34.2,s Pa 108.1,kg/m 59643=︒⋅=︒⋅=⋅⨯==-r c p λμρ 循环水的定性温度:入口温度为C 251︒=t ,出口温度为C 40o 2=t 循环水的定性温度为()C 5.322/4025ο=+=m t两流体的温差C 50C 5.195.3252οο<=-=-m m t T ,故选固定管板式换热器 两流体在定性温度下的物性数据如下物性流体温度 ℃ 密度 kg/m3 粘度 mPa ·s 比热容 kJ/(kg ·℃) 导热系数 W/(m ·℃) 正戊烷 52 596 0.18 2.34 0.157 循环水 32.59940.7254.080.6262.估算传热面积 (1)计算热负荷1s m =6710⨯/(300⨯24)=8333.3kg/h=2.31kg/skW 3.8043600/5.3473.83331=⨯==r m Q s (2)冷却水用量2s m =t c p ∆2/Q =804.3/4.08⨯(40-25)=13.1kg/s (3)计算有效平均温度差逆流温差()()()()[]C 5.184052/2552ln 40522552,ο=-----=∆逆m t(4)选取经验传热系数K 值根据管程走循环水,壳程走正戊烷,总传热系数K 现暂取: C W/m 6502︒⋅=K (5)估算换热面积23`m 8.6618.5650103.804K A =⨯⨯=∆=,逆m p t Q 3.工艺尺寸计算(1)管径和管内流速 选用Φ25×2.5mm 较高级冷拔传热管(碳钢),取管内流速 u 1=0.8m/s 。

化工原理课程设计——换热器的设计(草稿).doc

化工原理课程设计——换热器的设计(草稿).doc

中南大学《化工原理》课程设计说明书题目:煤油冷却器的设计学院:化学化工学院班级:化工0802学号: 1505080802姓名: ******指导教师:邱运仁时间:2010年9月目录§一.任务书 (2)1.1.题目1.2.任务及操作条件1.3.列管式换热器的选择与核算§二.概述 (3)2.1.换热器概述2.2.固定管板式换热器2.3.设计背景及设计要求§三.热量设计 (5)3.1.初选换热器的类型3.2.管程安排(流动空间的选择)及流速确定3.3.确定物性数据3.4.计算总传热系数3.5.计算传热面积§四. 机械结构设计 (9)4.1.管径和管内流速4.2.管程数和传热管数4.3.平均传热温差校正及壳程数4.4.壳程内径及换热管选型汇总4.4.折流板4.6.接管4.7.壁厚的确定、封头4.8.管板4.9.换热管4.10.分程隔板4.11拉杆4.12.换热管与管板的连接4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型)4.14.膨胀节的设定讨论§五.换热器核算 (21)5.1.热量核算5.2.压力降核算§六.管束振动 (25)6.1.换热器的振动6.2.流体诱发换热器管束振动机理6.3.换热器管束振动的计算6.4.振动的防止与有效利用§七. 设计结果表汇 (28)§八.参考文献 (29)§附:化工原理课程设计之心得体会 (30)§一.化工原理课程设计任务书1.1.题目煤油冷却器的设计1.2.任务及操作条件1.2.1处理能力:10万吨/年煤油1.2.2.设备形式:列管式换热器1.2.3.操作条件(1).煤油:入口温度140℃,出口温度40℃(2).冷却介质:自来水,入口温度30℃,出口温度40℃(3).允许压强降:不大于100kPa(4).煤油定性温度下的物性数据:密度825kg/m3,黏度7.15×10-4Pa.s,比热容2.22kJ/(kg.℃),导热系数0.14W/(m.℃)(5).每年按330天计,每天24小时连续运行1.3.列管式换热器的选择与核算1.3.1.传热计算1.3.2.管、壳程流体阻力计算1.3.3.管板厚度计算1.3.4.U形膨胀节计算(浮头式换热器除外)1.3.5.管束振动1.3.6.管壳式换热器零部件结构1.4.绘制换热器装配图(见A1图纸另附)§二.概述2.1.换热器概述换热器是化工、炼油工业中普遍应用的典型的工艺设备。

化工原理课程设计-换热器

化工原理课程设计-换热器

化工原理课程设计学院:化学工程学院班级:姓名:学号:指导教师:2010年06月化工原理课程设计《换热器》设计任务书班级精化07-1 姓名一、设计题目:无相变列管式换热器的设计二、设计任务及操作条件某生产过程中,用循环冷却水冷却柴油。

1、柴油入口温度:140 ℃,出口温度:60 ℃2、柴油流量:6500 kg/h,压力:0.3 MPa3、循环冷却水压力:0.4 MPa,入口温度:29 ℃,出口温度:39 ℃已知柴油的有关物性数据:密度ρ1=994kg/m3;定压热比容c p,1=2.22kJ/(kg·℃);热导率λ1=0.14W/(m·℃);黏度μ1=7.15×10-4 Pa·s三、设计项目(说明书格式)1、封面、任务书、目录。

2、设计方案简介:对确定的换热器类型进行简要论述。

3、换热器的工艺计算:1)确定物性数据2)估算传热面积3)工艺结构尺寸4)换热器核算:包括传热面积核算和换热器压降核算4、换热器的机械设计5、绘制列管式换热器结构图(CAD)。

6、对本设计进行评述。

7、参考文献成绩评定指导教师2010年6月8 日目录1 设计方案简介 01.1 选择换热器类型 01.2 冷热流体流动通道的选择 02 换热器的设计计算 (1)2.1 确定物性数据 (1)2.2 估算传热面积 (1)2.2.1 热流量 (1)2.2.2 平均传热温差 (1)2.2.3 冷却水用量 (2)2.2.4 总传热系数 (2)2.2.5 计算传热面积 (2)2.3 工艺结构尺寸 (2)2.4 换热器核算 (4)2.4.1 热量核算 (4)2.4.2 换热器内流体的流动阻力 (6)3 换热器机械设计 (9)3.1 壳体壁厚 (9)3.2 管板尺寸 (9)3.3 接管尺寸 (11)3.4 换热器封头选择 (11)3.5 膨胀节选择 (12)3.6 其他部件 (12)4 评述 (14)4.1 可靠性评价 (14)4.2 个人感想 (14)5 参考文献......................... 错误!未定义书签。

化工原理课程设计——换热器的设计

化工原理课程设计——换热器的设计

化工原理课程设计——换热器的设计1000字
该课程设计的目标是设计一个换热器,用于从一种热流体中传递热量到另一种热流体。

设计过程中需要考虑到热传递的效率和换热器的成本。

设计要求:
1.设定两种热流体的流量和进出口温度。

2.根据流量和温差计算出所需的传热量。

3.选择一种合适的换热器类型并计算出尺寸和效率。

4.根据选择的换热器类型确定换热管的材料,并计算出所需的管道长度。

5.确定换热器外壳材料和绝缘材料,并计算出所需的壁厚度。

在设计过程中,需要进行以下计算:
1.计算热传递量:
热传递量 = 流量 x 热容 x 温差
流量:两种热流体的流量
热容:热流体的比热容
温差:两种热流体的进出口温度差
2.选择换热器类型:
常见的换热器类型包括:管式热交换器、板式热交换器和壳管式热交换器。

在选择时需要考虑到传热效率、材料成本以及维护难度等因素。

3.计算换热管尺寸:
换热管的长度和直径需要根据流量和传热效率来计算,同时需要考虑到管壁的热传递系数和管壁的厚度。

4.确定换热器外壳材料和绝缘材料:
外壳的材料需要考虑到其耐腐蚀性和强度,同时需要计算出所需的壁厚度。

绝缘材料需要选用热传导系数较小的材料,以提高传热效率。

5.总体设计方案:
根据上述计算和选择,得到符合要求的换热器总体设计方案,并进行设计图纸和工艺流程图的绘制。

结论:
在设计过程中,需要考虑到换热器的热传递效率、成本、材料选用和维护难度等因素,从而得出符合要求的总体设计方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中南大学 化工原理课程设计

2010年01月22日 题 目 设计说明书 指导老师 夏柳荫 学生姓名 徐 春 波 学 院 化学化工学院 学生学号 1503070127 专业班级 制药0701班 化工原理课程设计 煤油冷却器的设计

2 目录

一、 设计题目及原始数据(任务书)………………………………3 二、 设计要求………………………………………………………..3 三、 列环式换热器形式及特点的简述……………………………..3 四、 论述列管式换热器形式的选择及流体流动空间的选择……..8 五、 换热过程中的有关计算(热负荷、壳层数、总传热系数、传热面积、压强降等等)…………………………………………..10 ① 物性数据的确定………………………………………………14 ② 总传热系数的计算……………………………………………14 ③ 传热面积的计算………………………………………………16 ④ 工艺结构尺寸的计算…………………………………………16 ⑤ 换热器的核算…………………………………………………18 六、 设计结果概要表(主要设备尺寸、衡算结果等等)…………22 七、 主体设备计算及其说明…………………………………………22 八、 主体设备装置图的绘制…………………………………………33 九、 课程设计的收获及感想…………………………………………33 十、 附表及设计过程中主要符号说明……………………………..37 十一、 参考文献…………………………………………………..40 化工原理课程设计 煤油冷却器的设计

3 一、设计题目及原始数据(任务书) 1、生产能力:17×104吨/年煤油 2、设备形式:列管式换热器 3、设计条件: 煤油:入口温度140oC,出口温度40 oC 冷却介质:自来水,入口温度30oC,出口温度40 oC 允许压强降:不大于105Pa 每年按330天计,每天24小时连续运行 二、设计要求 1、选择适宜的列管式换热器并进行核算 2、要进行工艺计算 3、要进行主体设备的设计(主要设备尺寸、横算结果等) 4、编写设计任务书 5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。一剖面图,两个局部放大图。设备技术要求、主要参数、接管表、部件明细表、标题栏。)

三、列环式换热器形式及特点的简述 换热器概述 换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。 在换热器中,至少有两种温度不同的流体,一种流体温度较化工原理课程设计 煤油冷却器的设计 4 高,放出热量;另一种流体则温度较低,吸收热量。在工程实践中有时也会存在两种以上的流体参加换热,但它的基本原理与前一种情形并无本质上的区别。 在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。换热器按照换热介质不同可分为水-水换热器和汽-水患热器;按照工作原理不同可分为间壁式、直接接触式、蓄热式和热管式换热器。 1.表面式换热器 又称间壁式换热器。是指通过传热表面间接加热的换热器。由于表面式换热器冷热流体传热时被固体壁面所隔开,热流体和冷流体通过壁面进行热量传递,所以与直接接触式换热器相比,换热效率较低,常用在两种流体不容渗混的场合。主要有管式、容积式、板式、螺旋板式等形式。 2.管式换热器 是指由圆筒形壳体和装配在壳体内的带有管板的管束所组成的管式换热器。结构简单、造价低、流通截面较宽、易于清洗水垢;但传热系数低、占地面积大。管壳式换热器有固定管板式汽-水换热器、带膨胀节管壳式汽-水换热器、浮头式汽-水换热器、u彩管壳式汽-水换热器、波节型管壳式汽-水换热器、分段式水-水换热器等儿种类型。 化工原理课程设计 煤油冷却器的设计 5 3.套管式换热器 是指由管子制成管套管等构件组成的管式换热器。 4.板式换热器 是指不同温度的流体交错在多层紧密排列的薄壁金属板间流动换热的表面式换热器。主要由传热板片、固定盖板、活动盖板、定位螺栓及压紧螺栓组成,板片之间用垫片进行密封。由于板片表面的特殊结构,能使流体在低流速下发生强烈湍动,从而强化了传热过程。板式换热器结构紧凑,拆洗方便,传热系数高,适应性大,节省材料,但板片间流通截面狭窄,易形成水垢和沉积物,造成堵塞,密封垫片耐热性差时易渗漏。此种换热器常用于供暖系统。板式换热器计算时应考虑换热便面污垢的影响,传热系数计算时应考虑污垢修正系数。 其中列管式换热器的应用已经有很悠久的历史。现在,它作为一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热设备中,列管式换热器仍处于主导地位。同时,管板式换热器已成为高效、近臭的换热设备,大龄的应用于工业中。列管式换热器的资料较为完善,已有系列化标准。 列管式换热器有三种类型,分别为固定管板式换热器、浮头式换热器、U形管式换热器和填料函式换热器。 1.固定管板式:固定管板式换热器主要有外壳、管板、管束、封头压盖等部件组成。固定管板式换热器的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体化工原理课程设计 煤油冷却器的设计 6 上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一起,管束内根据换热管的长度设置了若干块折流板。这种换热器管程可以用隔板分成任何程数。 固定管板式换热器结构简单,制造成本低,管程清洗方便,管程可以分成多程,壳程也可以分成双程,规格范围广,故在工程上广泛应用。壳程清洗困难,对于较脏或有腐蚀性的介质不宜采用。当膨胀之差较大时,可在壳体上设置膨胀节,以减少因管、壳程温差而产生的热应力。

图1 固定管板式换热器 固定管板式换热器的特点是:旁路渗流较小;造价低;无内漏。在相同的壳体直径内,排管较多,比较紧凑;壳侧层清洗困难,加上膨胀节的方法不能照到管子的相对移动。比较适合温差不大或温差大而壳层压力不高的场合。 固定管板式换热器的缺点是,壳体和管壁的温差较大,易产生温差力,壳程无法清洗,管子腐蚀后连同壳体报废,设备寿命较低,不适用于壳程易结垢场合。 2.浮头式换热器:其两端管板只有一端与壳体完全固定,另一端课相对于壳体作某些移动,该端称之为浮头。此种换热器的管束不受化工原理课程设计 煤油冷却器的设计 7 壳体的约束,壳体与管束之间不会因为膨胀量的不同而产生热应力。而且在清洗和检修时,仅将管束从壳体中抽出即可。 特点:该种换热器结构复杂、笨重,造价比固定管板式要高出约 20%,材料的消耗量较大,浮头的端盖在操作中无法检查,所以安装时要特别注意其密封,以免发生内漏,且管束和壳体间隙较大,设计

图2. 浮头式换热器 时避免短路。该种换热器比较适合管壳壁间温差较大,或易于腐蚀和易于结垢的场合。 3.U型管式换热器 仅有一个管板,管子两端均固定于同一管板上。 这类换热器的特点是:管束可以自由伸缩,不会因为管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速 较高,传热性能好;承压能力强;管束课从壳体内抽出,便于检修和清洗,造价便宜。但是管内清洗不变,管束中间分布的管子难以更换,管板中心部分布管不紧凑,管子数目不能太多。仅适用于管壳壁温相差较大,或壳程截止易于结垢而管程介质不易结垢,高温高压腐蚀性强的情形。 化工原理课程设计 煤油冷却器的设计 8 图3.U型管式换热器 4.填料函式换热器 此类换热器的管板也仅有一端与壳体固定,另一端采用填料函密封。 特点为它的管束也可以自由膨胀,所以管壳间不会产生热应力,且管程与壳程都能清洗。造价较低、加工制造简便,材料消耗较少。填料密封处于泄露,故壳程压力不能过高,也不宜用于易挥发、易燃、易爆、有毒的场合。 四、论述列管式换热器形式的选择及流体流动空间的选择 ①换热器形式的选择 本次任务中两流体的温度变化:煤油热流体进口温度为140℃, 出口温度为40℃;冷却介质水的进口温度为30℃,出口温度为40℃。 该换热器用自来水作冷却介质,受环境影响,进口温度会降低,由此可知该换热器的管壁温度和壳体壁温之差较大,有上一步骤中对换热器形式及特点的陈述,课选用固定管板式换热器。 ②流体流动空间的选择 在管壳式换热器的计算中,首先要决定何种流体走管程,何种流 体走壳程,这需遵循一些一般原则。 化工原理课程设计 煤油冷却器的设计 9 ㈠宜于通入管内空间的流体 不清洁的流体:因为在管内空间得到较高的流速并不困难,而流速高,悬浮物不易沉积,且管内空间便于清洗; 体积小的流体:管内空间的流动截面往往要比管外空间的截面要小,流体易于获得理想的流速,而且也便于做成多程流动。 有压力的流体:管子承压能力强,而且还简化了壳体密封要求。 与外界温差大的流体:可以减少热量的逸散。 ㈡宜于通入管间的流体 当两流体温度相差较大时,α值大的流体走管间,这样可以减少管壁与壳壁间的温度差,因而也减少了管束与壳体间的相对伸长,故温差应力可以降低。 若两流体给热性能相差较大时,α值霄的流体走管间,此时可以用翅片管来平衡传热面两侧的给热条件,使之相互接近。 黏度大的流体,管间的截面和方向都在不断变化,在低雷诺数下,管外给热系数比管内的大。 泄漏后危险大的流体,可以减少泄露机会,以保安全。 根据所查得的资料,不洁净或易于结垢的物料应流经易于清洗的 一侧,对于直管一般走管内;温度较高的物料宜走管内一减少热损失,但要求被冷却的流体走壳程、黏度大的走壳程,且循环水易于结垢,所以使水走管程,煤油走壳程。 ③流体流速的选取:换热器常用流速的范围如下表 表一 换热器常用流速的范围

相关文档
最新文档