第16章 谓词演算中的归结
归结推理方法(三)

归结推理⽅法(三)归结推理⽅法(三)引⼊新课:数理逻辑为知识的推理奠定了基础;基于⼀阶谓词逻辑的推理⽅法,是⼀种机械化的可在计算机上加以实现的推理⽅法。
⼀、命题逻辑命题逻辑和谓词逻辑是两种逻辑;对知识的形式化表⽰,特别是定理的⾃动证明发挥了重要作⽤。
谓词逻辑是在命题逻辑的基础上发展起来的。
命题逻辑可看作是谓词逻辑的⼀种特殊形式。
(⼀)命题定义1能够分辨真假的语句称作命题定义2⼀个语句如果不能再进⼀步分解成更简单的语句,并且⼜是⼀个命题,则称此命题为原⼦命题。
说明:(1)原⼦命题是命题中最基本的单位,⽤P,Q,R,…..⼤写拉丁字母表⽰。
⽽命题的真与假分别⽤“T”与“F”表⽰。
命题代表⼈们进⾏思维时的⼀种判断,或者是真。
或者是假,只有这两种情况。
若命题的意义为真,则记为T。
若命题的意义为假,则记为F。
(2)⼀般情况下,只有陈述句才可能是命题,因为只有陈述句才能分辨真假。
如“太阳从西边升起”、“雪是⽩⾊的”等等都是陈述句,⽽其他的⼀些句⼦如疑问句、祈使句、感叹句等均不能分辨其真假。
象这样的没有真假意义的句⼦就不是命题。
(3)并不是所有的陈述句都是命题;例如,“这个句⼦是假的”。
显然⽆法判断该语句的真假,这个语句不是命题。
(4)在有些情况下,要判断⼀个陈述句的真假,是需要⼀定条件的,即该陈述句在⼀种条件下,其逻辑值为真,但在另⼀种条件下,其逻辑值为假。
⽐如,“1+1=10”。
(5)⽤⼤写字母表⽰的命题既可以是⼀个特定的命题,也可以是⼀个抽象命题。
前者称为命题常量,后者称为命题变量。
对于命题变量,只有把确定的命题代⼊后,它才可能有明确的逻辑值(T或F)。
(⼆)命题公式连接词:在⽇常⽣活中,可以通过连接词将⼀些简单的陈述句组成较为复杂的语句,称为复合句。
较复杂的定义。
~:称为“⾮”或“否定”。
其作⽤是否定位于它后⾯的命题。
当命题P为真时,~P为假;当P 为假时,~P为真。
∨:称为“析取”。
它表⽰被它连接的两个命题具有“或”关系。
人工智能导论课件:第四章 谓词逻辑与归结原理

谓词逻辑
是一种形式语言,具有严密的理论体系 是一种常用的知识表示方法, 例:
City(北京) City(上海) Age(张三,23) (X)(Y)(Z)(father(X, Y)father(Y,
Z)gf(X, Z)
6
归结原理
归结原理是一种定理证明方法,1965年由 J.A.Robinson提出,从理论上解决了定理证明 问题。当时被认为是人工智能领域的重大突破。
例如:令E为p(x,y,f(a))
={b/x,f(x)/y},则 E= ?
E=p(b,f(x),f(a)) 此例显示了同时置换的含义. 可以看到E是
在E上的作用,也就是将E中的(i=1, ,n)同时换成相 应的ti所得到的公式.
34
ห้องสมุดไป่ตู้
置换乘法
定义 令 ={s1/y1,,sm/ym}, ={t1/x1,,tn/xn},则与的复合是
32
置换
定义: 置换是形如{t1/x1,,tn/xn}的有限集,其中xi是 互不相同的变量,ti是不等于xi的项,且xi与ti互不循环 出现. 如果ti都是不含变量的项(基项),称该置换为基置换. 若={ },则称为空置换(表示不做置换),记为.
例如:1) {a/x,g(y)/y,f(g(b))/z}是一个置换? (是, 但不是基置换).
F1F2…Fn~W为永假,可以通过证明F所 对应的子句集S=S0∪{~W}是不可满足的。
22
命题: P|=F P{F}是不可满足的。 证明: ① 若P {~F}是不可满足的,则 P|= F ② 若P|=F 则 P {~F}是不可 满足的。(反证法)
23
归结原理
基本思想 将待证明的逻辑公式的结论(F),通过 等值公式转换成附加前提,再证明该逻 辑公式是不可满足的。
第三章 谓词逻辑与归结原理

以正向推理所得结果作为假设进 行反向推理
退出
是 还需要正向推理吗?
否
2014-4-9
18
华北电力大学
概述-推理的控制策略
搜索策略
推理时,要反复用到知识库中的规则,而知识库中 的规则又很多,这样就存在着如何在知识库中寻找 可用规则的问题 为有效控制规则的选取,可以采用各种搜索策略 常用搜索策略:
归结推理方法在人工智能推理方法中有着很重 要的历史地位,是机器定理证明的主要方法
2014-4-9
25
华北电力大学
归结法的特点
归结法是一阶逻辑中,至今为止的最有效的半可 判定的算法。也是最适合计算机进行推理的逻辑 演算方法 半可判定 一阶逻辑中任意恒真公式,使用归结原理,总 可以在有限步内给以判定(证明其为永真式) 当不知道该公式是否为恒真时,使用归结原理 不能得到任何结论
(5) 上下文限制
上下文限制就是把产生式规则按它们所描述的上下文分组,在某种 上下文条件下,只能从与其相对应的那组规则中选择可应用的规则
2014-4-9
22
华北电力大学
概述-推理的控制策略
推理的控制策略
3.冲突解决策略
(6) 按匹配度排序
在不精确匹配中,为了确定两个知识模式是否可以进行匹配,需要 计算这两个模式的相似程度,当其相似度达到某个预先规定的值时,就 认为它们是可匹配的。若有几条规则均可匹配成功,则可根据它们的匹 配度来决定哪一个产生式规则可优先被应用
如专家系统、智能机器人、模式识别、自然语言理解等
推理
按照某种策略从已有事实和知识推出结论的过程。 推理是由程序实现的,
称为推理机
医疗诊断专家系统
• 知识库中存储经验及医学常识 • 数据库中存放病人的症状、化验结果等初始事实 • 利用知识库中的知识及一定的控制策略,为病人诊治疾病、开出医疗处方就 是推理过程
数学逻辑中的命题演算和谓词演算

数学逻辑是数学的基础,它研究命题的推理和证明方法,是数学推理的基础工具。
其中,命题演算和谓词演算是数学逻辑的两个重要分支,它们在数学推理中具有不可替代的作用。
命题演算是逻辑学的基础,它研究命题之间的逻辑关系。
在命题演算中,一个命题是一个陈述句,它要么是真,要么是假。
命题的逻辑连接词有与、或、非三种,分别表示命题的合取、析取和否定。
通过逻辑连接词的运用,可以构造复合命题,从而进行复合命题的推理。
作为命题演算的一种进一步推广,谓词演算引入了变量和量词的概念。
谓词演算研究命题中涉及变量的合取和存在量化,以及含有变量的复合命题的推理。
在谓词演算中,变量可以赋予不同的值,从而使得命题可以为真或为假。
谓词演算的基本元素有谓词、变量和量词。
谓词是关于一个或多个变量的陈述,变量是命题中的未确定的对象,而量词则用于指定变量的范围。
命题演算和谓词演算在数学证明中具有不可替代的作用。
命题演算可以帮助我们分析命题之间的逻辑关系,通过构造复合命题和应用推理规则,可以推导出新的命题。
这为数学推理提供了重要的工具。
谓词演算则更加灵活,通过引入变量和量词的概念,可以处理涉及未知量的问题。
谓词演算可以将复杂的数学问题转化为简单的命题演算问题,从而简化了求解的过程。
在数学推理中,命题演算和谓词演算常常相互配合使用。
命题演算提供了一种简洁的推理方法,适用于处理已知条件推导出结论的问题;而谓词演算则适用于处理引入未知量的问题,通过引入变量和量词可以统一处理不同的情况,使得求解更加简化。
总之,数学逻辑中的命题演算和谓词演算是数学推理的重要工具。
命题演算研究命题之间的逻辑关系,可以帮助我们进行命题的推理和证明;谓词演算引入变量和量词的概念,可以处理涉及未知量的问题,将复杂的数学问题转化为简单的命题演算问题。
它们在数学推理中相互配合,为我们提供了强大的工具,帮助我们解决各种数学问题。
因此,学习和掌握命题演算和谓词演算对于提高数学推理能力具有重要意义。
d3-谓词逻辑归结基本方法

例3.1(永真性判断)给定一阶语言 , 其中 是两个常元,是 元谓词符号, 是不同的变元. 假设 是以下公式:考察公式 :即它的前束范式是:它的 Skolem 范式 是:根据以下语义推出关系:可知:若将 看成是命题变元 , 对于子句集合它具有一个反驳, 这表明它能够语义推出一个恒假式, 所以, 能够语义推出一个恒假式, 因而 是永假的.所以 是永假的.所以 是永真的.□定义3.1(文字,相反文字,子句,子句集合,空子句,基文字,基子句,子句代换,子句集合代换 )对于谓词逻辑, 可以定义类似于命题逻辑的一些概念:z原子公式或者原子公式的非称为文字.谓词逻辑归结法,,,,.L={c1,c2,P,Q}c1,c2P,Q1x,y,zA(^xP(x)Z^xQ(x))> ^x(P(x)Z Q(x))\A\((^xP(x)Z^xQ(x))> ^x(P(x)Z Q(x))),(^xP(x)Z^xQ(x))[]x(\P(x)[\Q(x)).^x^y]z((P(x)Z Q(y))[\P(z)[\Q(z)).C]z((P(c1)Z Q(c2))[\P(z)[\Q(z)).C(P(c1)Z Q(c2))[\P(c1)[\Q(c1)C(P(c1)Z Q(c2))[\P(c2)[\Q(c2)C X P(c1)Z Q(c2)C X\P(c1)C X\Q(c2)P(c1),Q(c2)p,q{p Z q,\p,\q},CC\AA X Xz 若 是原子公式,则 是 的 相反文字,是 的相反文字. z 文字的有限集合称为子句.z 不出现变元的文字称为基文字. z 不出现变元的子句称为基子句. z 空的子句称为空子句.z 子句的有限集合称为子句集合.z称 为一个代换. 若 是文字, 则 表示z若子句 是 , 则 表示□事实3.1(子句集合与 Skolem 范式)子句 也写为 表示的闭包. 子句集合表示以下合取范式的闭包:因而表示一个 Skolem 范式.□例3.2(基本概念)z 与 是相反文字, 但是 与 不是相反文字.z假设代换 , 则 等于 .z基子句 表示 .z子句 表示语句L \L L L \L 5:{x 1/t 1,l ,x m /t m }L 5(L)L x 1,l ,xm t 1,l ,t m.C {L 1,l ,L n }5(C){5(L 1),l ,5(L n )}.{L 1,l ,L n }L 1ZlZ L n L 1ZlZ L n {{L 1,1,l ,L 1,n 1},{L 2,1,l ,L 2,n 2},l ,{L m,1,l ,L m,n m}}(L 1,1ZlZ L 1,n 1)[(L 2,1ZlZ L 2,n 2)[l[(L m,1ZlZ L m,nm).P(c 1)\P(c 1)P(c 1)\P(z)5={z/c 1}5(\P(z))\P(c 1){P(c)}P(c){P(x),Q(y)}]x ]y(P(x)Z Q(y)).z子句集合 表示 Skolem 范式□定义3.2(可满足)给定一阶语言 , 假设 是子句,是字句集合. z的一个解释 满足 , 是指 满足 所表示的语句.记为z若以下条件成立:则称 是 和 的逻辑推论. 记为 .z若存在 的解释满足 , 则称 是可满足的; 否则称 是不可满足的.z解释 满足 是指 满足 所表示的 Skolem 范式.z若存在 的解释满足 , 则称 是可满足的; 否则称 是不可满足的.□例3.3(可满足)给定一阶语言 , 假设 是 元谓词符号,是常元, 是变元. z子句 是可满足的.z□定义3.3(归结子句)给定一阶语言 , 假设 是 的两个子句. 形如的子句称为 与 的归结子句. 其中 是两个代换,而 与 是两个相反的文字.若三个子句 具有上述关系, 则记为 .□例3.4(归结子句)对任意的赋值 , 当 及 时, 有 . {P(x)Z Q(y),P(c)Z\Q(z)}]x ]y ]z ((P(x)Z Q(y))[(P(c)Z\Q(z))).L C,C 1,C 2,C 3S L I C I C I X C I I X C 1I X C 2I X C 3C 3C 1C 2C 1,C 2X C 3L C C C I S I S L S S S L P,Q 1c x,y P(c)Z Q(x)P(c)Z Q(x),\Q(y)P(c).L C 1,C 2L (51(C 1)-{L 1})P (52(C 2)-{L 2})C 1C 251,52L 1J 51(C 1),L 2J 52(C 2),L 1L 2C 1,C 2,C 3C 1,C 2U res C 3X给定一阶语言 , 其中 是常元,是变元, 是 元函数符号, 是 元谓词符号. 有以下归结推出关系:z .z .z .z .z. z假设{ 是 . {是 . 则:□定义3.4(反驳)子句集合 的一个反驳是指子句的有限序列 , 它满足以下条件:z 是 .z对于每个 :{或者 ,{或者存在 使得 . □例3.5(反驳)给定一阶语言 , 其中 是常元,是变元, 是 元谓词符号. 子句集合有一个反驳 , 其中:L ={c,f,g,P,Q}c x,y f,g 11P(c),\P(x)U res P(c)Z Q(x),\Q(y)U res P(c)P(x)Z Q(x),\Q(y)U res P(x)P(x)Z Q(x),\Q(y)U res P(f (x))P(x)Z Q(x),\Q(y)res P(f 2(x))A P(x)Z P(f(y))Z R(g(y))B \P(y)Z\R(y)A,B res P(f(y))Z R(g(y))Z\R(y),A,B res R(g(y))Z\R(f(y)).S {C i |15i 5n}C n `i C i J S j,k<i (15j,k< n )C j ,C k U res C i L ={c 1,c 2,P,Q}c 1,c 2x P,Q 1{P(c 1)Z Q(c 2),\P(x),\Q(x)}{C 1,C 2,C 3,C 4,C 5}C 1:P(c 1)Z Q(c 2)C 2:\P(x)C 3:\Q(x)C 4:Q(c 2)C 1,C 2U res C 4C 5:`C 3,C 4U res C 5`U U U□定理3.1(归结推出与语义推出)给定一阶语言 , 假设 是 的两个子句.证明:从 可知存在代换 及两个相反的文字 与 , 使得 , , 而假设子句 分别表示公式 . 则可知 . 因为 , 所以即:□定理3.2(归结方法的可靠性)给定一阶语言 , 假设 是 的子句集合. 若 有一个反驳, 则 是不可满足的. 证明根据归结一步可以传递可满性, 若 是可满足的, 则它的反驳序列中每个子句都是可满足的, 但最後一个空子句是不可满足的. 所以 是不可满足的.□定理3.3(归结方法的完全性)给定一阶语言 , 假设 是 的子句集合. 若 是不可满足的, 则 有一个反驳.□例3.6(简单证明)给定一阶语言 , 其中 是常元,是变元, 是 元谓词符号. 语句的 Skolem 范式是:所对应的子句集合是:若 则 .L C 1,C 2L C 1,C 2U res C 3C 1,C 2X C 3C 1,C 2U res C 351,52L 1L 2L 1J 51(C 1)L 2J 52(C 2)C 3=(51(C 1)-{L 1})P (52(C 2)-{L 2}).C i 9i 9i X 5i (C i )(i=1,2)(51(C 1)-{L 1})P (52(C 2)-{L 2})C 391,92C 3,91,9293.C 1,C 2X C 3.L S L S S S S L S L S S L ={c 1,c 2,P,Q}c 1,c 2x P,Q 1\((^xP(x)Z^xQ(x))> ^x(P(x)Z Q(x))),]z((P(c 1)Z Q(c 2))[\P(z)[\Q(z)).=X X它有一个反驳:因而是永假的, 即是永真的. 子句集合对应的基实例集合是若将 分别看成是命题变元 , 则上述基实例集合对应于命题逻辑语句集合:它有一个反驳:对应于谓词逻辑的反驳:可以直接转换为最初子句集合的反驳:□例3.7(多种证明)给定一阶语言 , 假设 是 元谓词符号, 是 元谓词符号,是三个不同的变元, 是两个不同的常元. 定义以下公式: {P(c 1)Z Q(c 2),\P(z),\Q(z)},< P (c 1)Z Q(c 2),\P(z),\Q(z),Q(c 2),`> .\((^xP(x)Z^xQ(x))> ^x(P(x)Z Q(x)))(^xP(x)Z^xQ(x))> ^x(P(x)Z Q(x)){P(c 1)Z Q(c 2),\P(z),\Q(z)},{P(c 1)Z Q(c 2),\P(c 1),\P(c 2),\Q(c 1),\Q(c 2),},P(c 1),P(c 2),Q(c 1),Q(c 2)p 1,p 2,q 1,q 2{p 1Z q 2,\p 1,\p 2,\q 1,\q 2},<p 1Z q 2,\p 1,\q 2,q 2,`> .<P (c 1)Z Q(c 2),\P(c 1),\Q(c 2),Q(c 2),`> .< P (c 1)Z Q(c 2),\P(z),\Q(z),Q(c 2),`> .L ={c 1,c 2,P,Q,R,S}P,Q,R 1S 2x,y,z c 1,c 2A :^x(P(x)[]y(R(y)> S (x,y))),B :]x(P(x)>]y(Q(y)> \S(x,y))),C :]x(R(x)>\Q(x)).则 .□证明(解释赋值方法).若 是一个解释. 假设 , 以下证明:z从 , 可知存在 , 使得 , 且对任意的 , 都有当 时z因为 且 , 所以因而 . z所以 .证毕.□证明(归结方法).的转化为:的转化为:的转化为:前提与结论的反面可以转化为以下子句:有以下的归结推出:对任意的 , 当 时 .若 则 , , , ,., , ,,A,B X C I I X A [B a J D I R I (a )=1Q I (a )=0I X A b J D I P I (b )=1a J D I R I (a )=1S I (b ,a )=1.I X B I X P I (b )Q I (a )=1S I (b ,a )=0.Q I (a )=0I X C A ^x(P(x)[]y(R(y)>S (x,y))),^x ]y(P(x)[(R(y)>S (x,y)))^x ]y(P(x)[(\R(y)Z S(x,y)))]y(P(c 1)[(\R(y)Z S(c 1,y)))]x(P(c 1)[(\R(x)Z S(c 1,x))){P(c 1),\R(x)Z S(c 1,x)}B ]x(P(x)> ]y(Q(y)> \S(x,y))),]x ]y(P(x)>(Q(y)> \S(x,y))),]x ]y(\P(x)Z\Q(y)Z\S(x,y)),]]x(\P(y)Z\Q(z)Z\S(y,z)),{\P(y)Z\Q(z)Z\S(y,z)}.\C \]x(R(x)> \Q(x)).^x \(R(x)> \Q(x))^x(R(x)[Q(x))R()[Q(c 2){R(c 2),Q(c 2)}C 1:P(c 1)C 2:\R(x)Z S(c 1,x),C 3:\P(y)Z\Q(z)Z\S(y,z),C 4:R(c 2)C 5:Q(c 2)y c 2所以证毕.□例3.8(语义推出)给定一阶语言 , 为 元谓词符号, 为 元谓词符号, 为元谓词符号,是三个不同的常元.是四个不同的变元.是以下公式:则 .证明的转化为:的转化为:的转化为:的转化为:可得以下子句:有以下的归结关系:,,..,.,.,,.C1,C3Ures\Q(z)Z\S(c1,z),C2,C4UresS(c1,c2),\Q(z)Z\S(c1,z),S(c1,c2)Ures\Q(c2),C5,\Q(c2)Ures`.A,B X C.L={a,b,c,P,Q,R,S}P,S1R2Q 3a,b,c x,y,z,w A,B,C,D ]x]y((Q(x,x,y)[\P(y))> S(x)),^x^y(R(y,x)[\P(x))^x]yQ(x,x,y)^xS(x)A,B,C X DA]x]y((Q(x,x,y)[\P(y))> S(x)),]x]y(\Q(x,x,y)Z P(y)Z S(x)),\Q(x,x,y)Z P(y)Z S(x)B^x^y(R(y,x)[\P(x)){R(b,a),\P(a)}C^x]yQ(x,x,y)Q(c,c,z)\D\^xS(x)]x\S(x)\S(w)\Q(x,x,y)Z P(y)Z S(x)R(b,a),\P(a)Q(c,c,z)\S(w)证毕.□例3.9(不可推出)给定一阶语言 , 为 元谓词符号,是两个不同的常元. 是三个不同的变元. 则证明可以化为:可能的归结推出只有:因而上述子句集合没有反驳. 即□例3.10(符号化与证明)某些学生喜欢每门课程, 没有学生喜欢文学. 因此, 没有课程是文学. 假设学生与课程的集合为论域, 定义以下谓词:则有以下的符号化:z“某些学生喜欢每门课程”的符号化为 :\Q(x,x,y)Z P(y)Z S(x),Q(c,c,z)U res P(y)Z S(c),P(y)Z S(c),\P(a)U res S(c),S(c),\S(w)U res `.L ={c 1,c 2,P,Q}P,Q 1c 1,c 2x,y,z ^xP(x),^xQ(x)X^x(P(x)[Q(x))./^xP(x)[^xQ(x)[\^x(P(x)[Q(x))^xP(x)[^xQ(x)[]x(\P(x)Z\Q(x))^x ^y(P(x)[Q(y))[]x(\P(x)Z\Q(x))^x ^y ]z(P(x)[Q(y)[(\P(z)Z\Q(z)){P(c 1),Q(c 2),\P(z)Z\Q(z)}P(c 1),\P(z)Z\Q(z)U res \Q(c 1),Q(c 2),\P(z)Z\Q(z)U res \P(c 2).^xP(x),^xQ(x)X^x(P(x)[Q(x))./P(x)x D(x)x S(x)x L(x,y)x yA ^x(P(x)[]y(D(y)>L (x,y))).z“没有学生喜欢文学”的符号化为 :z“没有课程是文学”的符号化为 :需要证明假设 是两个不同的常元,是三个不同的变元.的转化为:的转化为:的转化为:有以下归结推出关系:因而□作业全部B\^xy(P(x)[S(y)[L(x,y)).C\^x(D(x)[S(x)).A,B X C.c1,c2x,y,zA^x(P(x)[]y(D(y)> L(x,y))).P(c1),\D(y)Z L(c1,y).P(c1),\D()Z L(c1,z).B\^xy(P(x)[S(y)[L(x,y)).\P(x)Z\S(y)Z\L(x,y).\C\\^x(D(x)[S(x)).^x(D(x)[S(x)).D(c2),S(c2).P(c1),\P(x)Z\S(y)Z\L(x,y)Ures\S(y)Z\L(c1,y),S(c2),\S(y)Z\L(c1,y)Ures\L(c1,c2),\D(z)Z L(c1,z),\L(c1,c2)Ures\D(c2),D(c2),\D(c2)Ures`.A,B X C.z。
概率论-第七讲 谓词演算的推理规则

(8) ¬∀xP( x ) → ∃xQ( x )
CP规则
11
二、谓词演算中的推理规则
例3:推理“每个学术会的成员都是专家。有些成员是青年 人,所以有的成员是青年专家。” 证: 设 F(x):x是学术会成员; G(x):x是专家; H(x):x是青年。 前提:∀x(F( x ) → G ( x )),∃x ( F( x ) ∧ H ( x )) 结论:∃x ( F( x ) ∧ G ( x ) ∧ H ( x )) (1) ∃x(F(x) ∧ H( x ) ) P ( 7 ) H ( c) T, (2), I 2
考察以下谓词公式: ∀ yP( y ) ∨ Q ( x) ∨ R ( z ) ∃ yP( x, y ) ∨ Q( x, y ) ∀ yP( y ) ∧ Q( x, y ) 为了强调这些谓词公式对自由变元x的依赖关系, 可以分别记为B(x) , C(x) , D(x)。 记法中省略了 其它自由变元。
定义:如果公式 A ( x )中, x 不出现在量词 ∀ y 或 ∃ y 的辖域之内,则称 A ( x ) 对 y 是自由的。
4
二、谓词演算中的推理规则
推理规则:E1~E24恒等式、I1~I9永真蕴含式、Q1~Q19谓词永 真式、P规则、T规则、CP规则及下面四个规则: US,UG,ES,EG。 1.全称指定规则 (Universal Specification)简记为US ∀ xA( x ) 条件:A(x)对于y必须是自由的。 ∴ A( y ) 意义:全称量词可以删除。 例: ∀x∃yB( x , y) 写成 ∃yB( y, y) × 如 B(x,y):x<y ; x∈R; y∈R
(2) ∃x¬P( x )
T,), Q 4 (1
(3) ¬P(a ) T, (2), ES (4) ∀x(P(x) ∨ Q(x)) P
第三章 谓词逻辑与归结原理分析

2018/10/29
21
华北电力大学
概述-推理的控制策略
推理的控制策略 3.冲突解决策略 (2) 规则排序
规则编排的顺序就表示了启用的优先级
(3) 数据排序
数据排序就是把规则条件部分的所有条件排序,按优先级次序编排, 发生冲突时,首先使用在条件部分包含较高优先级数据的规则
(4) 就近排序
把最近使用的规则放在最优先的位置。如果某一规则经常使用,则 倾向于更多地使用这条规则
–完全归纳推理是必然性推理 • 不完全归纳推理 –只考察了相应事物的部分对象,就得出了结论 –不完全推理得出的结论不具有必然性,属于非必然性推理
2018/10/29
9
华北电力大学
概述-演绎推理、归纳推理和默认推理
归纳推理之类比法
在两个或两类事物在许多属性上都相同的基础上,推出 它们在其它属性上也相同,这就是类比法归纳推理 类比法归纳可形式化地表示为:
A1ΛA2ΛA3→B是重言式等价于A1ΛA2ΛA3Λ~B是矛 盾式,也就是永假式 反证法:证明A1ΛA2ΛA3Λ~B 是矛盾式(永假式)
2018/10/29
28
华北电力大学
归结法和其它推理方法的比较
语义网络、框架表示、产生式规则等知识表示 方法的推理都是以逻辑推理方法为前提的
也就是说如果有了规则和已知条件,就能够依据一 定的规则和公理顺藤摸瓜找到结果 归结方法是在一个规则指导下,进行自动推导。多 用于计算机自动推理、自动推导证明
2018/10/29
20
华北电力大学
概述-推理的控制策略
推理的控制策略
冲突解决策略 (1) 专一性排序 如果某一规则的条件部分规定的情况比另一规则的条件部分 所规定的情况更专门,则这条规则具有较高的优先级 例,有如下规则: 规则1:IF A AND B AND C THEN E; 规则2:IF A AND B AND C AND D THEN F; 数据库中A、B、C、D均为真,这时规则1和规则2都与数据库 相匹配,但因为规则2的条件部分包括了更多的限制,所以具有较 高的优先级 本策略是优先使用针对性较强的产生式规则
第3.3节 谓词逻辑的归结原理共63页

复杂的谓词公式可以分而治之,化整为零。
2008-2009学年第1学期
3.3节 谓词逻辑的归结原理
10
4. 置换与合一
置换
{t1/x1, t2/x2, …, tn/xn}称为对谓词公式的一个置换,表示 将谓词公式中的xi替换为ti。
辖域扩展
x y z w ( P ( a , x , y ) Q ( w , b ) R ( z ))
辖域扩展
4)求 skolem 标准型
x y z w ( P ( a , x , y ) Q ( w , b ) R ( z ))
x z w ( P ( a , x , f ( x )) Q ( w , b ) R ( z ))
2008-2009学年第1学期
3.3节 谓词逻辑的归结原理
4
归结原理的基本思想
证明(用谓词公式表达的)定理
就是要证明“前提→结论”是永真式; 即对任一种解释,谓词公式都为真; 直接对每个解释,求证谓词公式为真,然后归纳,这是
很麻烦的,甚至是不可能的; 要证明“前提→结论”是永真式,等同于证明; 若“前提∧~结论”真的是永假式,则寻找合适算法,
就可在有限步内判定。归结方法就是这样的算法。
2008-2009学年第1学期
3.3节 谓词逻辑的归结原理
5
Skolem标准型
前束范式
公式中的所有量词都在最左边,且每个量词的辖域都 延伸到公式末端。
形如:Q1x1Q2x2…QnxnM(x1, x2, …, xn)
例:
w x y z ( P ( w ) Q ( x , y , z ) R ( x , y , z , u ))
Miller给Robinson一篇60年的关于谓词演算证明过程的 论文,当时没有计算机程序实现,让他在IBM704上实现 该演算。