安徽省阜阳市2018-2019学年高二数学上册第二次调研考试题2

合集下载

安徽省阜阳市第三中学2018-2019学年高二数学上学期第二次调研考试(期中)试题 文

安徽省阜阳市第三中学2018-2019学年高二数学上学期第二次调研考试(期中)试题 文

阜阳三中2018-2019学年第一学期高二年级第二次调研考试数学(文)试卷命题人:注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分.考试时间120分钟.2.请将各题答案填在答题卡上.3.本试卷主要考试内容:人教A 版必修5全册,选修1-1第一章、第二章第一节(到2.1椭圆)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{430}A x x x =-+<, {230}B x x =->,则A B ⋂=( )A.3(3,)2--B. 3(3,)2-C. 3(1,)2 D. 3(,3)22.已知{}n a 为等差数列,且7a -24a =-1, 3a =0, 则公差d =( )A.-2B .-12C .12D .23.设,a b R ∈,则“2()0a b a -<” 是“a b <”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.如果点(,)M x y 在运动过程中,2=,那么点M 的轨迹是( )A .线段B .两条射线C .圆D .椭圆5.设x ,y 满足约束条件3310x y x y y +≤⎧⎪-≥⎨⎪≥⎩,则z x y =+的最大值为( )A .0B .1C .2D .3 6.已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a ( ) A .2 B .1 C .21 D .817. 设△ABC 的内角A , B , C 所对的边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定8.已知正实数,m n 满足111m n+=,则m n + 的最小值为 A .4 B. 3 C .2 D. 19.已知数列{}n a 的前n 项和为n S ,对任意的正整数n 满足13n n a S +=,则下列关于数列{}n a 的说法正确的是( )A .一定是等差数列B .一定是等比数列C .可能是等差数列,但不会是等比数列 D.可能是等比数列,但不会是等差数列 10.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是60cm ,则河流的宽度BC 等于( )A .1)mB .1)mC .1)mD .1)m11.已知函数211()()1x ax f x a R x ++=∈+,若对于任意的x ∈N *,()3f x ≥恒成立,则a 的取值范围是( )A . 8[,)3-+∞B .[3)-+∞C . [3,)-+∞D .7[,)3-+∞ 12.已知函数2017,2019()3(1)2020,20192018x m x f x m x x -⎧≥⎪=⎨+-<⎪⎩,数列{}n a 满足(),n a f n n N =∈*,且数列{}n a 是单调递增数列,则实数m 的取值范围是( )A . (1,2]B .(1,2)C . (2,)+∞D .(1,)+∞第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共计20分.13.设数列{}n a 的前n 项和22020n S n =+,则3a 的值为______.14.不等式122x >-的解集是______. 15.在锐角ABC ∆中,已知内角A 、B 、C 的对边分别为a 、b 、c,且3,a b ==sin A B +=则ABC ∆的面积______.16.已知函数22,0()(1)1,0x x x f x f x x ⎧+≤=⎨-+>⎩,当[0,100]x ∈时,关于x 的方程1()5f x x =-的所有解的和为______.三、解答题:共计70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)已知等差数列{}n a 的前n 项和为n S ,且满足11a =,981S =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求123201811111232018S S S S +++++++L 的值.18.(本题满分12分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且4cos().cos c a A B b B-+= (Ⅰ)求cos B 的值;(Ⅱ)若ABC ∆2a c =+,求b 的值.19.(本题满分12分)已知R m ∈,命题p :对[]0,1x ∀∈,不等式2223x m m -≥-恒成立;命题q :[]1,1x ∃∈-,使得m ax ≤成立. (Ⅰ)若p 为真命题,求m 的取值范围;(Ⅱ)当1a =时,若p q ∧假,p q ∨为真,求m 的取值范围.20.(本题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为12,,F F 设点(0,)B b ,在12BF F ∆中,1223F BF π∠=,周长为4+. (Ⅰ)求12BF F ∆的面积;(Ⅱ)若点12(,0),(,0)A a A a -,且点M 是椭圆上异于12,A A 的任意一点,直线12,MA MA 的斜率12,k k 分别记为,求12k k g 的值.21.(本题满分12分)设矩形()ABCD AB AD >的周长为24,把ABC ∆沿AC 向ADC ∆折叠,AB 折过去后交DC 于点P ,设,AB x =ADP ∆的面积记为()f x (Ⅰ)求()f x 的表达式;(Ⅱ)求()f x 的最大值及相应x 的值.22.(本题满分12分)已知在数列{}n a 中,11a =,1.3nn n a a a +=+ (Ⅰ) 证明:数列11{}2n a +是等比数列; (Ⅱ)设数列{}n b 满足(31)2nn n n nb a =-⨯⨯,其前n 项和为n T ,若不等式1(1)2n n n nT λ--<+对一切n N *∈恒成立,求实数λ的取值范围.数学(文)参考答案一、 选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共计20分.13. 5 14.5{2}2x x <<10000 三、解答题:共计70分.解答应写出文字说明、证明过程或演算步骤. 17.解:(Ⅰ)设等差数列{}n a 的公差为d ,由981S =,得5981a =, 则有59a =,所以51912514a a d --===-,故()12121n a n n =+-=-(*n N ∈). (Ⅱ)由(Ⅰ)知,()213521n S n n =++++-=L ,则()111111n S n n n n n ==-+++所以122018*********S S S ++++++L 11111122320182019⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L 112019=-20182019= 18.19.(1)设22y x =-,则22y x =-在[0,1]上单调递增,∴min 2y =-. ∵对任意1[]0,x ∈,不等式2223x m m ≥--恒成立,∴232m m -≤-, 即2320m m -+≤,解得12m ≤≤.∴m 的取值范围为[]1,2 (2)1a =时,y x =区间[]1,1-上单调递增,∴max 1y =. ∵存在,1[]1x ∈-,使得m x ≤成立,∴1m ≤. ∵p q ∧假,p q ∨为真,∴p 与q 一真一假, ①当p 真q 假时,可得121m m ≤≤>⎧⎨⎩,解得12m <≤; ②当p 假q 真时,可得211m m m <>⎧⎨≤⎩或,解得1m <. 综上可得12m <≤或1m <.∴实数m 的取值范围是(),1,]2(1-∞.20.(1)122,1,BF F a b c S ====(2) 1214k k =- 21.(1)由题意可知,矩形ABCD(AB>AD)的周长为24,AB=x,222,,,,727212(),12,12,1172(12)(12)224321086432()1086(612)ABC AB x PC a DP x a AP a ADP x x a a a x DP x xS AD DP x xxx f x x x x ∆===-=∴-+-=∴=+-=-∴=⨯⨯=⨯-⨯-=--∴=--<<设则而三角形是直角三角形,()432(2).()1086108108432=6=12108f x x x x x AD AB AD xx ABC =--≤-=-=->=∆-当且仅当时,即此时满足即取最大面积 22.解:(Ⅰ)证明:由()1*3nn n a a n N a +=∈+, 得13131n n n n a a a a ++==+,11111322n n a a +⎛⎫∴+=+ ⎪⎝⎭所以数列112n a ⎧⎫+⎨⎬⎩⎭是以3为公比,以111322a ⎛⎫+= ⎪⎝⎭为首项的等比数列,从而1113232231n n n n a a -+=⨯⇒=-; (Ⅱ)12n n nb -=()0122111111123122222n n n T n n --=⨯+⨯+⨯++-⨯+⨯L()121111112122222n n n T n n -=⨯+⨯++-⨯+⨯L , 两式相减得 012111111222222222n n n n T n n -+=++++-⨯=-L 1242n n n T -+∴=- ()12142nn λ-∴-<-若n 为偶数,则124,32n λλ-<-∴<;若n 为奇数, 则124,2,22n λλλ--<-∴-<∴>-23λ∴-<<。

阜阳市高中2018-2019学年高二上学期第二次月考试卷数学

阜阳市高中2018-2019学年高二上学期第二次月考试卷数学

阜阳市高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣12. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( ) A .1 B .2C .3D .43. 已知等差数列的公差且成等比数列,则( )A .B .C .D .4. 已知复数z 满足z •i=2﹣i ,i 为虚数单位,则z=( ) A .﹣1﹣2i B .﹣1+2iC .1﹣2iD .1+2i5. 设偶函数f (x )在[0,+∞)单调递增,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )A .(,1)B .(﹣∞,)∪(1,+∞)C .(﹣,)D .(﹣∞,﹣)∪(,+∞)6. 已知集合2{320,}A x x x x R =-+=∈,{05,}B x x x N =<<∈,则满足条件A C B ⊆⊆的集合C 的个数为A 、B 、2C 、3D 、47. 函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( ) A .f (2)<f (π)<f (5) B .f (π)<f (2)<f (5)C .f (2)<f (5)<f (π)D .f (5)<f (π)<f (2)8. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2B .3C .4D .59. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .410.如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C 对隧道底AB 的张角θ最大时采集效果最好,则采集效果最好时位置C 到AB 的距离是( )A .2mB .2m C .4 m D .6 m11.如图所示,在平行六面体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若=+x+y,则( )A .x=﹣B .x=C .x=﹣D .x=12.某几何体三视图如下图所示,则该几何体的体积是( )A .1+B .1+C .1+D .1+π二、填空题13.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.14.已知函数f (x )的定义域为[﹣1,5],部分对应值如下表,f (x )的导函数y=f ′(x )的图象如图示.下列关于f (x )的命题:①函数f (x )的极大值点为0,4; ②函数f (x )在[0,2]上是减函数;③如果当x ∈[﹣1,t]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y=f (x )﹣a 有4个零点;⑤函数y=f (x )﹣a 的零点个数可能为0、1、2、3、4个.其中正确命题的序号是 .15.设p :实数x 满足不等式x 2﹣4ax+3a 2<0(a <0),q :实数x 满足不等式x 2﹣x ﹣6≤0,已知¬p 是¬q 的必要非充分条件,则实数a 的取值范围是 .16.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .17. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <;②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.18.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .三、解答题19.已知数列{a n}共有2k(k≥2,k∈Z)项,a1=1,前n项和为S n,前n项乘积为T n,且a n+1=(a﹣1)S n+2(n=1,2,…,2k﹣1),其中a=2,数列{b n}满足b n=log2,(Ⅰ)求数列{b n}的通项公式;(Ⅱ)若|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|≤,求k的值.20.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)[)[)0,0.5,0.5,1,,4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.21.在△ABC 中,cos2A ﹣3cos (B+C )﹣1=0. (1)求角A 的大小;(2)若△ABC 的外接圆半径为1,试求该三角形面积的最大值.22.(14分)已知函数1()ln ,()ex x f x mx a x m g x -=--=,其中m ,a 均为实数.(1)求()g x 的极值; 3分(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111()()()()f x f xg x g x -<-恒成立,求a 的最小值; 5分(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围. 6分23.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线1C 的极坐标方程是2=ρ,曲线2C 的参数方程是θππθθ],2,6[,0(21sin 2,1∈>⎪⎩⎪⎨⎧+==t t y x 是参数).(Ⅰ)写出曲线1C 的直角坐标方程和曲线2C 的普通方程; (Ⅱ)求t 的取值范围,使得1C ,2C 没有公共点.24.设M 是焦距为2的椭圆E :+=1(a >b >0)上一点,A 、B 是椭圆E 的左、右顶点,直线MA 与MB 的斜率分别为k 1,k 2,且k 1k 2=﹣.(1)求椭圆E 的方程;(2)已知椭圆E :+=1(a >b >0)上点N (x 0,y 0)处切线方程为+=1,若P是直线x=2上任意一点,从P 向椭圆E 作切线,切点分别为C 、D ,求证直线CD 恒过定点,并求出该定点坐标.阜阳市高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.2.【答案】A【解析】解:设等差数列{a n}的公差为d,由a1+1,a3+2,a5+3构成等比数列,得:(a3+2)2=(a1+1)(a5+3),整理得:a32+4a3+4=a1a5+3a1+a5+3即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3.化简得:(2d+1)2=0,即d=﹣.∴q===1.故选:A.【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.3.【答案】A【解析】由已知,,成等比数列,所以,即所以,故选A答案:A4.【答案】A【解析】解:由z•i=2﹣i得,,故选A【解析】解:因为f (x )为偶函数,所以f (x )>f (2x ﹣1)可化为f (|x|)>f (|2x ﹣1|) 又f (x )在区间[0,+∞)上单调递增,所以|x|>|2x ﹣1|,即(2x ﹣1)2<x 2,解得<x <1,所以x 的取值范围是(,1), 故选:A .6. 【答案】D【解析】{|(1)(2)0,}{1,2}A x x x x =--=∈=R , {}{}|05,1,2,3,4=<<∈=N B x x x . ∵⊆⊆A C B ,∴C 可以为{}1,2,{}1,2,3,{}1,2,4,{}1,2,3,4. 7. 【答案】B【解析】解:∵函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数, ∴f (π)=f (6﹣π),f (5)=f (1), ∵f (6﹣π)<f (2)<f (1), ∴f (π)<f (2)<f (5) 故选:B【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.8. 【答案】C【解析】解:函数f (x )=+6x ﹣1,可得f ′(x )=x 2﹣8x+6,∵a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,∴a 2014,a 2016是方程x 2﹣8x+6=0的两实数根,则a 2014+a 2016=8.数列{a n }中,满足a n+2=2a n+1﹣a n , 可知{a n }为等差数列,∴a 2014+a 2016=a 2000+a 2030,即a 2000+a 2012+a 2018+a 2030=16, 从而log 2(a 2000+a 2012+a 2018+a 2030)=log 216=4. 故选:C .【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.【解析】解:分两类讨论,过程如下:①当a>1时,函数y=a x﹣1和y=log a x在[1,2]上都是增函数,∴f(x)=a x﹣1+log a x在[1,2]上递增,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,舍去;②当0<a<1时,函数y=a x﹣1和y=log a x在[1,2]上都是减函数,∴f(x)=a x﹣1+log a x在[1,2]上递减,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,符合题意;故选A.10.【答案】A【解析】解:建立如图所示的坐标系,设抛物线方程为x2=﹣2py(p>0),将点(4,﹣4)代入,可得p=2,所以抛物线方程为x2=﹣4y,设C(x,y)(y>﹣6),则由A(﹣4,﹣6),B(4,﹣6),可得k CA=,k CB=,∴tan∠BCA===,令t=y+6(t>0),则tan∠BCA==≥∴t=2时,位置C对隧道底AB的张角最大,故选:A.【点评】本题考查抛物线的方程与应用,考查基本不等式,确定抛物线的方程及tan ∠BCA ,正确运用基本不等式是关键.11.【答案】A【解析】解:根据题意,得;=+(+)=++=﹣+,又∵=+x +y,∴x=﹣,y=, 故选:A .【点评】本题考查了空间向量的应用问题,是基础题目.12.【答案】A【解析】解:由三视图知几何体的下部是正方体,上部是圆锥,且圆锥的高为4,底面半径为1; 正方体的边长为1,∴几何体的体积V=V 正方体+=13+××π×12×1=1+.故选:A .【点评】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及图中数据所对应的几何量.二、填空题13.【答案】52【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,又()22xa g x e a =-+,令xt e =,则()[]2,1,32a g t t a t =-+∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2min 2a g t g a ==,则()()max min 312g t g t a -=-=,则52a =,(2)当3a >时,()()2max 112a g t g a ==-+,()()2min 332a g t g a ==-+,则()()max min 2g t g t -=,舍。

安徽省阜阳市第三中学2019_2020学年高二数学上学期第二次调研考试试题理

安徽省阜阳市第三中学2019_2020学年高二数学上学期第二次调研考试试题理

安徽省阜阳市第三中学2019-2020学年高二数学上学期第二次调研考试试题 理一、单选题(每小题5分,共计60分)1.命题“0x ∃∈(0,+∞),20012x x +≤”的否定为( )A.x ∀∈(0,+∞),21x x +>2B.x ∀∈(0,+∞),212x x +≤C.x ∀∈(-∞,0],212x x +≤D.x ∀∈(-∞,0],21x x +>22.若复数5i1iz -=-,则z =( ) A.32i +B.32i -+C.32i --D.32i -3.若k ∈R , 则“2k >”是“方程()()2222 1k x k y ++-=表示双曲线”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.函数()1f x x=与两条平行线x e =,4x =及x 轴围成的区域面积是( ) A.2ln21-+B.2ln 21-C.ln 2-D.ln 25.若曲线()()21x f x ax e -=-在点()()22f ,处的切线过点()3,3,则函数()f x 的单调递增区间为( ) A.()0,∞+B.(),0-∞C.()2,+∞D.(),2-∞6.函数3()e 1=+x x f x 的图象大致是( )A. B.C. D.7.观察下列各式:553125=,6515625=,7578125=,…,则20195的末四位数字为( ) A .3125B .5625C .0625D .81258.已知双曲线的中心在原点且一个焦点为(7,0)F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是( ) A.22134x y -= B.22143x y -= C.22152x y -=D.22125x y -=9.若xy e -=与()0ay a x=>有两个公共点,则a 范围为( ) A.10,e ⎛⎫ ⎪⎝⎭ B.0,e ⎛ ⎪⎝⎭ C.1,e e ⎛⎫⎪⎝⎭D.1,e ⎛⎫+∞ ⎪⎝⎭10.多面体是由底面为ABCD 的长方体被截面1AEC F 所截得到的,建立下图的空间直角坐标系,已知(0,0,0)D 、(2,4,0)B 、(2,0,0)A 、(0,4,0)C 、(2,4,1)E 、1(0,4,3)C .若1AEC F 为平行四边形,则点C 到平面1AEC F 的距离为( ) A .41133B .433C .43333D .4331111.点A 、B 为椭圆()2222:10x y E a b a b+=>>长轴的端点,C 、D 为椭圆E 短轴的端点,动点M 满足2MA MB=,若MAB ∆面积的最大值为8,MCD ∆面积的最小值为1,则椭圆的离心率为( ) A.2 B.3 C.22D.312.如图,已知直线l :()(1)0y k x k =+>与抛物线2:4C y x =相交于A 、B 两点,且满足2AF BF =,则k 的值是( )A .3B .3C .223D .22二、填空题(每小题5分,共计20分)13.已知平面α的一个法向量为()11,2,2n =-u r ,平面β的一个法向量为()22,4,n k =--u u r,若αβ∥,则k 的值为__________14.设ABC ∆的三边长分别为c b a ,,,ABC ∆的面积为S ,内切圆半径为r ,则2Sr a b c=++;类比这个结论可知:四面体P ABC -的四个面的面积分别为1234,,,S S S S ,内切球的半径为R ,四面体P ABC -的体积为V ,则R =__________.15.已知椭圆2222:1(0)x y M a b a b +=>>,双曲线2222:1x y N m n-=.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 与双曲线N 的离心率之积为__________.16.若函数()22xk f x e x kx =-+在[]0,2上单调递增,则实数k 的取值范围是________. 三、解答题(17题10分,其他每题各12分,共计70分) 17.设a ∈R,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)若x ∈[-1,2],求函数f (x )的值域.18.(1)用数学归纳法证明:(3)(4)(13(223))n n n n +++++++=∈*N L ;(2)用反正法证明:已知0a >,0b >,且2a b +>,求证:1b a +和1ab+中至少有一个小于2.19.已知点(,)M x y 满足22(1)|1|x y x -+=+,设点M 的轨迹是曲线C . (1)求曲线C 的方程.(2)过点(2,0)D 且斜率为1的直线l 与曲线C 交于两点A ,B ,求AOB ∆(O 为坐标原点)的面积.20.已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥.21.如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,2PA AD ==,1AB BC ==.(1)证明:AB PD ⊥;(2)求平面PAB 与平面PCD 所成锐二面角的余弦值;(3)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.22.如图,在平面直角坐标系xOy 中,焦点在x 轴上的椭圆C:22221x y a b+=经过点2c b a ⎛⎫ ⎪⎝⎭,,且28a =,经过点()10T ,作斜率为()0k k >的直线l 交椭圆C 与A 、B 两点(A 在x 轴下方).(1)求椭圆C 的方程;(2)过点O 且平行于l 的直线交椭圆于点M 、N ,求2AT BT MN⋅的值;(3)记直线l 与y 轴的交点为P ,若25AP TB =u u u r u u r,求直线l 斜率k 的值.2019-2020学年度阜阳三中高二二调考试理科数学第I 卷(选择题)一、单选题1.命题“0x ∃∈(0,+∞),20012x x +≤”的否定为( )A.x ∀∈(0,+∞),21x x +>2B.x ∀∈(0,+∞),212x x +≤C.x ∀∈(-∞,0],212x x +≤D.x ∀∈(-∞,0],21x x +>2【答案】A 【解析】 【分析】根据特称命题的否定为全称命题,以及量词和不等号的变化,即可得到所求命题的否定. 【详解】解:由特称命题的否定为全称命题,可得命题“0x ∃∈(0,+∞),20012x x +≤”的否定为“x ∀∈(0,+∞),21x x +>2”, 故选:A . 【点睛】本题考查命题的否定,注意特称命题的否定为全称命题,以及量词和不等号的变化,考查转化能力,属于基础题. 2.若复数5i1iz -=-,则z =( ) A.32i + B.32i -+C.32i --D.32i -【答案】D 【解析】 【分析】由复数代数形式的运算法则求出z ,利用共轭复数的定义即可求出z . 【详解】因为()()5i 1i 64i 32i,32i 22z z -++===+=-.故选:D . 【点睛】本题主要考查复数代数形式的运算法则的应用以及共轭复数概念的应用.3.若k ∈R , 则“2k >”是“方程()()2222 1k x k y ++-=表示双曲线”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】 【分析】当2k >时,可验证方程满足双曲线的要求,充分性得证;根据()()220k k +-<,可求得当方程表示双曲线时k 的取值范围,得到必要性不成立,从而得到结果. 【详解】当2k >时,20k +>,20k -<则方程()()22221k x k y ++-=表示双曲线,充分条件成立;若方程()()22221k x k y ++-=表示双曲线,则()()220k k +-<,解得:2k <-或2k >∴必要条件不成立综上所述:“2k >”是“方程()()22221k x k y ++-=表示双曲线”的充分而不必要条件故选:A 【点睛】本题考查充分条件与必要条件的判断,关键是能够明确方程表示双曲线的基本要求,属于基础题.4.函数()1f x x=与两条平行线x e =,4x =及x 轴围成的区域面积是( ) A.2ln21-+ B.2ln 21-C.ln 2-D.ln 2【答案】B 【解析】【分析】根据定积分的几何意义直接求出()f x 在区间[,4]e 的定积分,即可得出答案。

2018-2019学年高二数学上学期第二次阶段性考试试题理

2018-2019学年高二数学上学期第二次阶段性考试试题理

2018-2019学年高二数学上学期第二次阶段性考试试题理高二数学(理科)试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟。

第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.在等差数列中,若,则{}n a261,1a a ==-4a =A .B .1C .0D .-0.52.等差数列中,若,则等于3456789420a a a a a a a ++++++=210a a +A .100B .120C .140D .160 3.下列命题正确的是A .存在,使得的否定是:不存在,使得.0x R ∈00x e ≤0x R ∈00xe >B .存在,使得的否定是:任意,均有.0x R ∈2010x -<0x R ∈2010x -> C .若,则的否命题是:若,则.3x =2230x x --=3x ≠2230x x --≠D .若为假命题,则命题与必一真一假p q ∨4.抛物线上的点到直线距离的最小值是2y x =-4380x y +-= A .B .C .D .4375855.设等差数列的前项和为,且,,则当取最小值时,等于{}n a111a =-46 6a a +=-A .6B .7C .8D .9 6.函数的定义域为()1ln f x x=A. B. (](),42,-∞-+∞()()4,00,1- C. D. [)(]4,00,1-[)()4,00,1-7.在中,则边上的高为ABC∆,3,4AB BC AC ===ACA .B .C .D328.若实数满足不等式组且的最大值为,则实数等于,x y 330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩x y +A .-2B .-1C .1D .2 9.不等式对任意实数恒成立,则实数的取值范围为2313x x a a+--≤-A .B .(][),14,-∞-+∞(][),25,-∞-+∞C .D .[]1,2(][),12,-∞+∞10.已知双曲线的一条渐近线平行于直线:,双曲线的一个焦点在直线上,则双曲线的方程为()222210,0x y a b a b-=>>210y x =+A. B. C. D. 221520x y -=221205x y -=2233125100x y -=2233110025x y -=11.设分别为圆和椭圆上的点,则两点间的最大距离是,P Q ()2262x y +-=22110x y +=,P Q A .B .C .D.7+12.已知,且函数的最小值为,若函数,则不等式的解集为0,2x π⎛⎫∈ ⎪⎝⎭()212sin sin 2x f x x +=()2864,041,42x bx x g x x πππ-+⎧⎪⎪⎨<≤=-<<⎪⎪⎩()1g x ≤A .B .C .D .,42ππ⎛⎫ ⎪⎝⎭2π⎫⎪⎪⎭4π⎛ ⎝第II 卷(共90分)二、填空题(每小题5分,共20分,把答案填在答题卷中横线上)13.不等式的解集是_______________.1x x ≤14.等比数列,…的第四项等于.,33,66x x x ++15.设命题,命题,若是的必要而不充分条件,则实数的取值范围是.:431p x -≤()()2:2110q x a x a a -+++≤16.过点作斜率为的直线与椭圆相交于,若是线段的中点,则椭圆的离心率为.(1,1)M 12-2222:1(0)x y C a b a b +=>>,A B AB 三、解答题(本大题6小题,共70分。

阜阳市第二中学2018-2019学年高二上学期第二次月考试卷数学

阜阳市第二中学2018-2019学年高二上学期第二次月考试卷数学

阜阳市第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7 D .5 2. 函数y=a 1﹣x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx+ny ﹣1=0(mn >0)上,则的最小值为( ) A .3 B .4C .5D .63. 已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( )①∀n ∈N *,f n (x )≤恒成立②若fn (x )为常数函数,则n=2 ③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .34. 设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2] D.(﹣,+∞)5. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是()A .3B .C .2D .6 6.若a <b <0,则下列不等式不成立是()A .>B .>C .|a|>|b|D .a 2>b 27. 为了得到函数y=cos(2x+1)的图象,只需将函数y=cos2x 的图象上所有的点( ) A .向左平移个单位长度 B .向右平移个单位长度 C .向左平移1个单位长度 D .向右平移1个单位长度8.某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为()A.4320 B.2400 C.2160 D.13209.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件的六条棱所在的直线中,异面直线共有()111]11.如图所示,在三棱锥P ABCA.2对B.3对C.4对D.6对12.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样二、填空题13.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于.14.设x∈(0,π),则f(x)=cos2x+sinx的最大值是.15.命题“若a>0,b>0,则ab>0”的逆否命题是(填“真命题”或“假命题”.)16.已知1sin cos3αα+=,(0,)απ∈,则sin cos7sin12ααπ-的值为.17.若等比数列{a n}的前n项和为S n,且,则=.18.抛物线y2=6x,过点P(4,1)引一条弦,使它恰好被P点平分,则该弦所在的直线方程为.三、解答题19.已知函数(a≠0)是奇函数,并且函数f(x)的图象经过点(1,3),(1)求实数a,b的值;(2)求函数f(x)的值域.20.已知函数f(x)=|2x﹣a|+|x﹣1|.(1)当a=3时,求不等式f(x)≥2的解集;(2)若f(x)≥5﹣x对∀x∈R恒成立,求实数a的取值范围.21.设a,b互为共轭复数,且(a+b)2﹣3abi=4﹣12i.求a,b 的值.22.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知1cos )sin 3(cos 2cos 22=-+C B B A. (I )求角C 的值;(II )若2b =,且ABC ∆的面积取值范围为,求c 的取值范围. 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.23.在平面直角坐标系xOy 中,点B 与点A (﹣1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于﹣.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M ,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.24.已知集合A={x|2≤x ≤6},集合B={x|x ≥3}.(1)求C R(A∩B);(2)若C={x|x≤a},且A C,求实数a的取值范围.阜阳市第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】试题分析:因为三个数1,1,5a a a -++等比数列,所以()()()2115,3a a a a +=-+∴=,倒数重新排列后恰好为递增的等比数列{}n a 的前三项,为111,,842,公比为,数列1n a ⎧⎫⎨⎬⎩⎭是以为首项,12为公比的等比数列,则不等式1212111n n a a a a a a +++≤+++等价为()1181122811212n n ⎛⎫-- ⎪⎝⎭≤--,整理,得722,17,n n n N +≤∴≤≤≤∈,故选C. 1考点:1、等比数列的性质;2、等比数列前项和公式.2. 【答案】B【解析】解:函数y=a 1﹣x(a >0,a ≠1)的图象恒过定点A (1,1),∵点A 在直线mx+ny ﹣1=0(mn >0)上, ∴m+n=1. 则=(m+n )=2+=4,当且仅当m=n=时取等号.故选:B .【点评】本题考查了“乘1法”与基本不等式的性质、指数函数的性质,属于基础题.3. 【答案】 D【解析】解:①∵x∈[0,],∴f n (x )=sin n x+cos n x ≤sinx+cosx=≤,因此正确;②当n=1时,f 1(x )=sinx+cosx ,不是常数函数;当n=2时,f 2(x )=sin 2x+cos 2x=1为常数函数,当n ≠2时,令sin 2x=t ∈[0,1],则f n(x)=+=g (t ),g ′(t )=﹣=,当t ∈时,g ′(t )<0,函数g (t )单调递减;当t ∈时,g ′(t )>0,函数g (t )单调递增加,因此函数f n (x )不是常数函数,因此②正确.③f4(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=1﹣==+,当x∈[0,],4x∈[0,π],因此f4(x)在[0,]上单调递减,当x∈[,],4x∈[π,2π],因此f4(x)在[,]上单调递增,因此正确.综上可得:①②③都正确.故选:D.【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.4.【答案】A【解析】解:∵f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,故函数y=h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,故有,即,解得﹣<m≤﹣2,故选A.【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.5.【答案】C【解析】解:∵椭圆的半焦距为2,离心率e=,∴c=2,a=3,∴b=∴2b=2.故选:C.【点评】本题主要考查了椭圆的简单性质.属基础题.6.【答案】A【解析】解:∵a<b<0,∴﹣a>﹣b>0,∴|a|>|b|,a2>b2,即,可知:B,C,D都正确,因此A不正确.故选:A.【点评】本题考查了不等式的基本性质,属于基础题.7.【答案】A【解析】解:∵,故将函数y=cos2x的图象上所有的点向左平移个单位长度,可得函数y=cos(2x+1)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.8.【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有•=388,第二组(1,1,2,2),利用间接法,有(﹣)•=932根据分类计数原理,可得388+932=1320种,故选D.【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题.9.【答案】D【解析】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.【点评】本题考查了象限角的三角函数符号,属于基础题.10.【答案】A【解析】解:由“|x﹣2|<1”得1<x<3,由x2+x﹣2>0得x>1或x<﹣2,即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,故选:A.11.【答案】B【解析】中,则PA与BC、PC与AB、PB与AC都是异面直线,所以共有三对,故选试题分析:三棱锥P ABCB.考点:异面直线的判定.12.【答案】A【解析】解;观察所给的四组数据,①个体没有差异且总数不多可用随机抽样法,简单随机抽样,②将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号,系统抽样,③个体有了明显了差异,所以选用分层抽样法,分层抽样,故选A.二、填空题13.【答案】.【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,∴4个点构成平行四边形的概率P==.故答案为:.【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.14.【答案】.【解析】解:∵f(x)=cos2x+sinx=1﹣sin2x+sinx=﹣+,故当sinx=时,函数f(x)取得最大值为,故答案为:.【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题.15.【答案】 真命题【解析】解:若a >0,b >0,则ab >0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题.【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.16.【解析】7sinsin sin cos cos sin 12434343πππππππ⎛⎫=+=+ ⎪⎝⎭=,sincos 73sin 12ααπ-∴==,故答案为3.考点:1、同角三角函数之间的关系;2、两角和的正弦公式.17.【答案】 .【解析】解:∵等比数列{a n }的前n 项和为S n ,且, ∴S 4=5S 2,又S 2,S 4﹣S 2,S 6﹣S 4成等比数列,∴(S 4﹣S 2)2=S 2(S 6﹣S 4), ∴(5S2﹣S2)2=S 2(S 6﹣5S 2),解得S 6=21S 2, ∴==.故答案为:.【点评】本题考查等比数列的求和公式和等比数列的性质,用S2表示S4和S6是解决问题的关键,属中档题.18.【答案】3x﹣y﹣11=0.【解析】解:设过点P(4,1)的直线与抛物线的交点为A(x1,y1),B(x2,y2),即有y12=6x1,y22=6x2,相减可得,(y1﹣y2)(y1+y2)=6(x1﹣x2),即有k AB====3,则直线方程为y﹣1=3(x﹣4),即为3x﹣y﹣11=0.将直线y=3x﹣11代入抛物线的方程,可得9x2﹣72x+121=0,判别式为722﹣4×9×121>0,故所求直线为3x﹣y﹣11=0.故答案为:3x﹣y﹣11=0.三、解答题19.【答案】【解析】解:(1)∵函数是奇函数,则f(﹣x)=﹣f(x)∴,∵a≠0,∴﹣x+b=﹣x﹣b,∴b=0(3分)又函数f(x)的图象经过点(1,3),∴f(1)=3,∴,∵b=0,∴a=2(6分)(2)由(1)知(7分)当x>0时,,当且仅当,即时取等号(10分)当x<0时,,∴当且仅当,即时取等号(13分)综上可知函数f(x)的值域为(12分)【点评】本题主要考查函数的奇偶性和单调性的应用,转化函数研究性质是问题的关键.20.【答案】【解析】解:(1)a=3时,即求解|2x﹣3|+|x﹣1|≥2,①当x≥时,不等式即2x﹣3+x﹣1≥2,解得x≥2,②当1<x<时,不等式即3﹣2x+x﹣1≥2,解得x<0.③当x≤1时,3﹣2x+1﹣x≥2,解得2x≤2,即x≤.∴综上,原不等式解集为{x|x≤或x≥2}.(2)即|2x﹣a|≥5﹣x﹣|x﹣1|恒成立令g(x)=5﹣x﹣|x﹣1|=,则由函数g(x)的图象可得它的最大值为4,故函数y=|2x﹣a|的图象应该恒在函数g(x)的图象的上方,数形结合可得≥3,∴a≥6,即a的范围是[6,+∞).【点评】本题考查了绝对值不等式问题,考查函数的最值问题,是一道中档题.21.【答案】【解析】解:因为a,b互为共轭复数,所以设a=x+yi,则b=x﹣yi,a+b=2x,ab=x2+y2,所以4x2﹣3(x2+y2)i=4﹣12i,所以,解得,所以a=1+i,b=1﹣i;或a=1﹣i,b=1+i;或a=﹣1+i,b=﹣1﹣i;或a=﹣1﹣i,b=﹣1+i.【点评】本题考查了共轭复数以及复数相等;正确设出a ,b 是解答的关键.22.【答案】 【解析】(I )∵1cos )sin 3(cos 2cos 22=-+C B B A, ∴0cos sin 3cos cos cos =-+C B C B A , ∴0cos sin 3cos cos )cos(=-++-C B C B C B ,∴0cos sin 3cos cos sin sin cos cos =-++-C B C B C B C B , ∴0cos sin 3sin sin =-C B C B ,因为sin 0B >,所以3tan =C 又∵C 是三角形的内角,∴3π=C .23.【答案】【解析】解:(Ⅰ)因为点B 与A (﹣1,1)关于原点O 对称,所以点B 得坐标为(1,﹣1). 设点P 的坐标为(x ,y )化简得x 2+3y 2=4(x ≠±1).故动点P 轨迹方程为x 2+3y 2=4(x ≠±1)(Ⅱ)解:若存在点P 使得△PAB 与△PMN 的面积相等,设点P 的坐标为(x 0,y 0)则.因为sin ∠APB=sin ∠MPN ,所以所以=即(3﹣x 0)2=|x 02﹣1|,解得因为x 02+3y 02=4,所以故存在点P 使得△PAB 与△PMN 的面积相等,此时点P 的坐标为.【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.24.【答案】【解析】解:(1)由题意:集合A={x|2≤x≤6},集合B={x|x≥3}.那么:A∩B={x|6≥x≥3}.∴C R(A∩B)={x|x<3或x>6}.(2)C={x|x≤a},∵A C,∴a≥6∴故得实数a的取值范围是[6,+∞).【点评】本题主要考查集合的基本运算,比较基础.。

安徽省阜阳市第三中学2018-2019学年高二数学下学期第二次调研考试试题(竞培中心)文

安徽省阜阳市第三中学2018-2019学年高二数学下学期第二次调研考试试题(竞培中心)文

安徽省阜阳市第三中学2018-2019学年高二数学下学期第二次调研考试试题(竞培中心)文考试时间:120分钟 满分:150分一、单选题 1.已知,,则的元素个数为( )A .1B .2C .3D .42.若幂函数的图象过点,则函数的最大值为( )A .1B .C .2D .3.已知实数、满足约束条件,则目标函数的最小值为( )A .B .C .D .4.在正方体中,E 、F 分别是AB 、的中点,则异面直线、FC 所成角的余弦值为( )A .B .C .D .5.在边长为1的等边三角形ABC 中,点P 是边AB 上一点,且BP =2PA ,则( )A .B .C .D .16.已知等差数列,,前项和为,,则( )A .0B .1C .2018D .20197.若)0,2(,41)sin(παπα-∈=+,则=-ααtan 12cos ( ) A .B .C .D .8.已知函数,若对任意的正数,满足,则的最小值为( )A .6B .8C .12D .249.函数f(X)=xxcos 2sin +的图像大致为( )A .B .C .D .10.如果满足,AB=8,AC=k 的三角形ABC 有两个,那么实数k 的取值范围是( ) A .B .C .D .11.如图F 1.F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1与C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A . 2B . 3C .32D . 6212.定义在上的函数满足,对任意,都有,非零实数,满足,则下列关系式中正确的是( ) A .B .C .D .二、填空题 13.设向量,向量与向量方向相反,且,则向量的坐标为__________.14.定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时.()(1)f x x x =-,则当10x -≤≤时,()f x =________________. 15.若圆上有且仅有三个点到直线的距离等于1,则半径(第11题图)的值为______. 16.已知正三棱锥的底面边长为3,外接球的表面积为,则正三棱锥的体积为________.三、解答题17.(本题10分)已知数列中,且(11++-n a n ).(Ⅰ)求,;并证明是等比数列; (Ⅱ)设n nn a b 2=,求数列的前项和.18.(本题12分)在中,角、、的对边分别为,,,,(1)若,求的值;(2)求的取值范围.19.(本题12分)已知四棱锥中,底面,,,,.(1)当变化时,点到平面的距离是否为定值?若是,请求出该定值;若不是,请说明理由;(2)若,求直线与平面所成角的正弦值.20.(本题12分)国家质量监督检验检疫局于2004年5月31日发布了新的车辆驾驶人员血液、呼气酒精含量阀值与检验国家标准新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克百毫升,小于80毫克百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克百毫升为醉酒驾车某高中研究性小组经过反复试验获得,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如图:该函数近似模型如下:,又已知刚好过1小时时测得酒精含量值为毫克百毫升根据上述条件,回答以下问题:试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?试计算喝一瓶啤酒后多少小时后才可以驾车?时间以整小时计算参考数据:,,,21.(本题12分)已知动圆P恒过定点,且与直线相切.(Ⅰ)求动圆P圆心的轨迹M的方程;(Ⅱ)正方形ABCD中,一条边AB在直线y=x+4上,另外两点C、D在轨迹M上,求正方形的面积.22.已知函数.(1)若,求的单调区间;(2)证明:.阜阳三中2018—2019学年第二学期竞培中心二调考试数 学 试 卷一、单选题 CBDDC ABCAB DD 二、填空题 13. 14(1)()2x x f x +=-15.3 16.或三、解答题17.(本题10分)已知数列中,且(11++-n a n ).(Ⅰ)求,;并证明是等比数列; (Ⅱ)设,求数列的前项和.【答案】(Ⅰ),证明见解析;(Ⅱ).(Ⅰ)由题意,可知:,.①当时,,②当时,.数列是以为首项,为公比的等比数列.(如果没有求首相,就该说明不为零)(Ⅱ)由(Ⅰ),可知:,...,③④③-④,可得:,分项求和也可以18.(本题12分)在中,角、、的对边分别为,,,,(1)若,求的值;(2)求的取值范围.【答案】(1) (2)【详解】(1)由则,,所以,则由且所以,则(2)由所以,故令,则,所以故而,,当时,有最大值且所以的取值范围是19.(本题12分)已知四棱锥中,底面,,,,.(1)当变化时,点到平面的距离是否为定值?若是,请求出该定值;若不是,请说明理由;(2)若,求直线与平面所成角的正弦值.【答案】(1)见解析;(2)【详解】(1)由,,知,则,由面,面得,由,,面,则面,则点到平面的距离为一个定值,.(2)设直线与平面所成的角为,由,可知,又面,面,故,,则面,则点到平面的距离为,由知点与点到平面的距离相等,则点到平面的距离为,由知,故.20.(本题12分)国家质量监督检验检疫局于2004年5月31日发布了新的车辆驾驶人员血液、呼气酒精含量阀值与检验国家标准新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克百毫升,小于80毫克百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克百毫升为醉酒驾车某高中研究性小组经过反复试验获得,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如图:该函数近似模型如下:,又已知刚好过1小时时测得酒精含量值为毫克百毫升根据上述条件,回答以下问题:试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?试计算喝一瓶啤酒后多少小时后才可以驾车?时间以整小时计算参考数据:,,,【答案】(1)喝一瓶啤酒小时血液中的酒精含量达到最大值毫克百毫升;(2)需6个小时后才可以合法驾车。

2018-2019学年安徽省阜阳市第三中学高二下学期第二次调研考试数学(理)试题

2018-2019学年安徽省阜阳市第三中学高二下学期第二次调研考试数学(理)试题

2018-2019学年安徽省阜阳市第三中学高二下学期第二次调研考试理科数学试题★祝考试顺利★注意事项:1、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

3、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

5、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

6、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

第Ⅰ卷(共60分)一、选择题(下列各题的备选答案中只有一个选项是正确的,请把正确答案填写在括号中。

每小题5分,共60分)1.有一段“三段论”推理是这样的:对于可导函数,如果,那么是函数的极值点,因为函数在处的导数值,所以,是函数的极值点以上推理中A. 大前提错误B. 小前提错误C. 推理形式错误D. 结论正确2.设,已知,,则n与p的值为A. ,B. ,C. ,D. ,3.5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为( )A.72B.48C.24D.604.用反证法证明“若则或”时,应假设A. 或B. 且C.D.5.曲线,和直线围成的图形面积是A. B. C. D.6.定义复数的一种运算等式右边为普通运算,若复数,且正实数a,b满足,则最小值为A. B. C. D.7.用数学归纳法证明:“”从“到”左端需增乘的代数式为A. B. C. D.8.观察下列算式:,,,,,,,用你所发现的规律可得的末位数字是A. 2B. 4C. 6D. 89.已知对任意恒成立,且,,则A. 1B. 2C. 3D. 410.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件“4个人去的景点不相同”,事件“小赵独自去一个景点”,则A. B. C. D.11.函数的图象大致为A. B. C. D.12.已知a为常数,函数有两个极值点,A. B.C. D.第Ⅱ卷(共90分)二、填空题(本大题共4小题,共20分)13.设随机变量的分布列为2,3,4,则等于14.若0()2f x '=,则0lim →k 00()()2f x k f x k+-=15.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有 种(用数字作答). 16. 已知函数若所有零点之和为1,则实数a 的取值范围是______.三、解答题(本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知在的展开式中二项式系数和为256.求展开式中常数项;求展开式中二项式系数最大的项.18.(本小题满分12分)在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个。

安徽阜阳第三中学2018-2019学年高二下学期第二次调研考试(理)数学及参考答案

安徽阜阳第三中学2018-2019学年高二下学期第二次调研考试(理)数学及参考答案

安徽阜阳第三中学2018-2019学年高二下学期第二次调研考试(理)考生注意:本试题分第Ⅰ卷和第Ⅱ卷,共4页。

满分150分,考试时间120分钟。

第Ⅰ卷(共60分)一、选择题(下列各题的备选答案中只有一个选项是正确的,请把正确答案填写在括号中。

每小题5分,共60分) 1. 已知集合,,则A.B.C.D.2. 已知向量,,,则A.B.C. 6D. 83. 对任意实数x ,若不等式恒成立,则实数m 的取值范围是A.B.C. D .4. 函数且的图象恒过点A ,且点A 在角的终边上,则A.B. C.D.5. 若点P 是曲线上任意一点,则点P 到直线的最小距离为A. 1B.C.D.6. 将函数的图象向右平移个单位后得到函数的图象,则具有性质A. 最大值为1,图象关于直线对称B. 在上单调递减,为奇函数C. 在上单调递增,为偶函数D. 周期为,图象关于点对称7. 已知函数,若,,,则a ,b ,c 的大小关系是A. B.C.D.8. 若数列为等比数列,且,,则132211...11++++=n n n a a a a a a T 的结果可化为 B. C. D.9. 已知函数的图象如下图所示下面四个图象中的图象大致是( )A. B.C. D.10. 已知函数,则A.2018B. 4036C. 2019D. 4038 11. 函数在上单调递增,则实数a 的取值范围为 .A. B.C.D. 12. 设函数的定义域为D ,如果对任意的,存在,使得成立,则称函数为“H 函数”,下列为“H 函数”的是 A.B.C.D.第Ⅱ卷(共90分)二、填空题(本大题共4小题,共20分) 13. 已知向量,,且,若x ,y 均为正数,则的最小值是______ .14. 设,则不等式的解集为15. 在平面四边形中,,,则的取值范围是16. 已知函数若所有零点之和为1,则实数a 的取值范围是______.三、解答题(本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分10分)已知中,点D 在线段OB 上,且,延长BA 到C ,使设,.用,表示向量,;ABCD 75A B C ∠=∠=∠=2BC =AB若向量与共线,求k的值.18.(本小题满分12分)已知,.若,解不等式;若不等式对一切实数x恒成立,求实数a的取值范围;若,解不等式.19.(本小题满分12分)已知函数.求曲线在点处的切线方程;当时,求的单调区间.20.(本小题满分12分)已知数列中,,Ⅰ求,;Ⅱ求证:是等比数列,并求的通项公式;Ⅲ数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.21.(本小题满分12分)已知,,设函数.求函数的单调增区间;设的内角A,B,C所对的边分别为a,b,c,且a,b,c成等比数列,求的取值范围.22.(本小题满分12分)已知函数为常数.求函数在的最小值;设,是函数的两个零点,且,证明:.参考答案考生注意:本试题分第Ⅰ卷和第Ⅱ卷,共4页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省阜阳三中2018-2019学年度高二年级第二次调研考试数学(文科)时间:120分钟 总分150分一、选择题:本大题共12个小题,每小题5分,共60分。

每小题给出的四个选项中只有一项是符合题目要求的.1.在“世界读书日”前夕,为了了解某学校4000名学生某天的阅读时间,从中抽取了200名学生的阅读时间进行统计分析.在这个问题中4000名学生的阅读时间的全体是( ) A .总体 B .个体 C .样本的容量 D .从总体中抽取的一个样本2.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .20 3. 已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1)4. 某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )A .9B .10C .12D .135.下列说法正确的是( ) A. 命题“R x ∈∃使得0322<++x x ”的否定是:“032,2>++∈∀x x R x ” B. “1>a ”是“)1,0(log )(≠>=a a x x f a 在),0(+∞上为增函数”的充要条件 C. “p q ∧为真命题”是“q p ∨为真命题”的必要不充分条件 D. 命题p :“2c o s si n ,≤+∈∀x x R x ”,则⌝p 是真命题 6.椭圆221x my +=的焦点在y 轴上,且长轴长是短轴长的2倍,则实数m=( ) A. 41 B. 21C. 2D. 47.若A,B 是一次试验的两个事件,则“事件A,B 对立”是“事件A,B 互斥”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 8. 已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为( )A.0.4B.0.6C.0.8D.19. 某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i=1,2,···,8)数据作了初步处理,得到下面的散点图。

根据散点图判断下面四个选项中哪一个最适宜作为年销售量y 关于年宣传费x 的回归方程类型( )A.y a bx =+B.y a =+by a x=+D.bx y a e =+ 10.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品 净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于 100克的个数是36,则样本中净重大于或等于98克并且小于 104克的产品的个数是( ).A.45B.60C. 75D.9011.在区间[]0,π上随机取一个数x ,使1sin 0,2x ⎡⎤∈⎢⎥⎣⎦的概率为( ).A.π2 B. 1π C. 32 D. 3112.如图,已知F 是椭圆()222210x y a b a b+=>>的左焦点,P 是椭圆上一点,PF ⊥x轴,OP ∥AB(O 为坐标原点),则该椭圆的离心率是( ) A .B .C .D .二、填空题:本大题共4小题,每小题5分,共20分。

把答案填在题中的横线上13.命题:若a b =则22a b =的否命题为_____.14.某市即将申报“全国卫生文明城市”,相关部门对该市的200家饭店进行卫生检查,先从这200家饭店抽取5家大致了解情况,然后对全市饭店逐一检查,为了进行第一步抽查工作,相关部门先将这200家饭店按001-200编号,并打算按随机数表法抽取5家饭店,根据下面的随机数表,要求从本数表的第5列开始顺次向后读数,则这5个号码中的第二个号码是________.随机数表:84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06第10题图分。

解答应写出文字说明,演算步骤或证明过程。

17.(本小题满分10分)已知0a >,设P :函数x y a =在R 上单调递减,Q :关于x 的不等式20ax x a -+>的解集为R 。

(1)如果“P 且Q ”为真,求a 的取值范围.(2)如果P 和Q 有且仅有一个正确,求a 的取值范围.18.(本小题满分12分)为了了解某次考试A,B 两个班的数学成绩的情况,现分别从A,B 班各抽取20位同学的数学成绩(满分100分)进行研究,得到茎叶图如下图所示(1)比较A,B 两个班的数学成绩的平均水平和差异程度(不用计算,直接回答结论) (2)现将A ,B 班的学生成绩按[)[)[)[)[]50,60,60,70,70,80,80,90,90,100分成5组,分别列出频率分布表并完成频率分布直方图 19.(本小题满分12分)随着我国经济的发展,居民的储蓄存款逐年增长,设某地区城乡居民人民币储蓄存款(年底余额)如下表: (1)求y 关于x 的回归方程ˆˆy bxa =+; (2)用所求回归方程预测该地区2018年()6x =的人民币储蓄存款.附:方程ˆˆy bxa =+中,()()11221222222121....ˆˆˆ,....ni inni nnii x y nx y x y x y x y nxyb a y bx x x x nxx nx==-+++-===-+++--∑∑20.(本小题满分12分)已知椭圆C 方程:12222=+by a x (0>>b a ),其长轴长为4,00(,)M x y 是椭圆C 上一点,()12(,0),,0F c F c -是椭圆的左右焦点.(1)若M 位于椭圆短轴的顶点时,12MF F ∆为正三角形,求椭圆C 的方程. (2)证明:2022cMF x =-; 21.(本小题满分12分)已知关于x 的一元二次函数()241f x ax bx =-+(1)若,a b 分别表示将一枚质地均匀的骰子先后抛掷两次时第一次、第二次朝上的面的点 数,求满足函数()y f x =在区间[)1,+∞上是增函数的概率;(2)设点(),a b 是区域8000x y x y +-≤⎧⎪>⎨⎪>⎩内的随机点,求函数()y f x =在区间[)1,+∞上是增函数的概率;22.(本小题满分12分)如图,椭圆2222:1(0)x y E a b a b +=>>经过点(0,1)A -,且离心率为2.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同两点,P Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.2018-2019学年度阜阳三中高二年级上学期第二次调研考试数学(文科)参考答案一、选择题: ACBDB AABBD DA二、填空题: 13. 若a b ≠则22a b ≠ 14. 068 15. 0 16.53三、解答题: 17.(本小题满分10分)1:01,:2P a Q a <<>由题意知: (1) 当“P 且Q ”为真时,即P 为真,Q 为真,所以112a << (2) 当P 和Q 有且仅有一个正确时,即P 真Q 假或P 假Q 真,所以1012a a <≤≥或18.(本小题满分12分)(1)A 班的数学平均成绩要高于B 班的数学平均成绩,但B 班的数学成绩差异度要小。

(2)A 、B 班数学成绩的频率分布表和频率分布直方图如下:5152215ˆ5i ii ii xy x ybxx ==-==-∑∑36120535 1.25559-⨯⨯=-⨯,366ˆˆ3 3.655a y bx=-=-⨯= 故所求回归方程为 1.2 3.6y x =+(2)将6x =代入回归方程可预测该地区2018年的人民币储蓄存款为10.8(千亿元)20.(本小题满分12分) (1)因为长轴长为4,所以2a =,M 位于椭圆短轴的顶点时,12MF F ∆为正三角形,所以2a c =,即1c =,所以椭圆C 的方程为22143x y += (2)证明:因为长轴长为4,所以a=2∵ 00(,)M x y 是椭圆C 上一点∴2200214x y b +=, ∴2222004b y b x =- ∴2MF ====, ∵0222xc -≤≤<且∴ 2022cMF x =-(1)函数()241f x ax bx =-+在区间[)1,+∞上为增函数,当且仅当0a >且21ba≤,即2b a ≤基本事件有36个,所求事件包含基本事件:()2,1,()3,1,()4,1,()5,1,()6,1,()4,2,()5,2,()6,2,()6,3.共9个 ,所以所求事件发生的概率为91364=(2)由(1)知当且仅当0a >且2b a ≤时,函数()241f x ax bx =-+在区间[)1,+∞上为增函数,依据题意可知实验的全部结果所构成的区域为:8000a b a b +-≤⎧⎪>⎨⎪>⎩,该区域的面积为188322⨯⨯=,所求事件构成的区域为8002a b a b b a +-≤⎧⎪>⎪⎨>⎪⎪≤⎩,该区域的面积为18328233⨯⨯= 由几何概型知:所求事件发的概率为3213323P ==22.(本小题满分12分) (1)由题意知1c b a ==,由222a b c =+,解得a =, 所以椭圆的方程为2212x y +=; (2)设()()1122,P xy Qxy ,120x x ≠由题设知,直线PQ 的方程为(1)1(2)y k x k =-+≠, 联立方程组()221211x y y k x ⎧+=⎪⎨⎪=-+⎩化简得22(12)4(1)2(2)0k x k k x k k +--+-=,则1212224(1)2(2),1212k k k k x x x x k k--+==++,并且0∆> 因为直线AP 与AQ 的斜率之和121212111122AP AQ y y kx k kx kk k x x x x +++-+-+=+=+ 化简得12122(2)AP AQ x x k k k k x x ++=+-=()()()()4122221222k k k k k k k k -+-=--=-。

相关文档
最新文档