【最新】苏科版七年级数学上册《4.3 用方程解决问题》同步测试(三)

合集下载

2022-2023学年苏科版七年级数学上册《4-3用一元一次方程解决问题》同步练习题(附答案)

2022-2023学年苏科版七年级数学上册《4-3用一元一次方程解决问题》同步练习题(附答案)

2022-2023学年苏科版七年级数学上册《4.3用一元一次方程解决问题》同步练习题(附答案)一.选择题1.为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为()A.14B.15C.16D.172.我国古代数学著作《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人家的户数为()A.25B.75C.81D.903.“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是()A.依题意3×120=x﹣120B.依题意20x+3×120=(20+1)x+120C.该象的重量是5040斤D.每块条形石的重量是260斤4.近年来,网购的蓬勃发展方便了人们的生活.某快递分派站现有包裹若干件需快递员派送,若每个快递员派送10件,还剩6件;若每个快递员派送12件,还差6件,那么该分派站现有包裹()A.60件B.66件C.68件D.72件5.已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店()A.不盈不亏B.盈利20元C.盈利10元D.亏损20元二.填空题6.某商品的进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件元.7.小韦同学周末的红色之旅,坐爸爸的车去百色起义纪念馆,从家里行驶7千米后,进入高速公路,在高速公路上保持匀速行驶,小韦记录高速公路上行驶的时间(t)和路程(s)数据如表,按照这个速度行驶了2小时进入高速路出口匝道,再行驶5千米到达纪念馆,则小韦家到纪念馆的路程是千米.t(小时)0.20.60.8s(千米)2060808.在长为2,宽为x(1<x<2)的矩形纸片上,从它的一侧,剪去一个以矩形纸片宽为边长的正方形(第一次操作);从剩下的矩形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x的值为.9.如图,棋盘旁有甲、乙两个围棋盒.(1)甲盒中都是黑子,共10个.乙盒中都是白子,共8个.嘉嘉从甲盒拿出a个黑子放入乙盒,使乙盒棋子总数是甲盒所剩棋子数的2倍,则a=;(2)设甲盒中都是黑子,共m(m>2)个,乙盒中都是白子,共2m个.嘉嘉从甲盒拿出a(1<a<m)个黑子放入乙盒中,此时乙盒棋子总数比甲盒所剩棋子数多个;接下来,嘉嘉又从乙盒拿回a个棋子放到甲盒,其中含有x(0<x<a)个白子,此时乙盒中有y个黑子,则的值为.10.如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”.如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为.11.元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是.12.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为.13.扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马天追上慢马.三.解答题14.某公司专业生产某种产品,6月初(当月月历如图)接到一份求购5000件该产品的订单,要求本月底完成,7月1日按期交货.日一二三四五六123456789101112131415161718192021222324252627282930经盘点目前公司已有该产品库存2855件,补充原材料后,从本月7日开始生产剩余数量的该产品,已知该公司除周六、周日正常休息外,每天的生产量相同.但因受高温天气影响,从本月10日开始,每天的生产量比原来减少了25件,截止到17日生产结束,库存总量达3830件.如果按照10日开始的生产速度继续生产该产品,能否按期完成订单?请说明理由.如果不能,请你给该公司生产部门提出一个合理的建议,以确保能按期交货.15.中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.16.受第24届北京冬季奥林匹克运动会的影响,小勇爱上了雪上运动.一天,小勇在滑雪场训练滑雪,第一次他从滑雪道A端以平均(x+2)米/秒的速度滑到B端,用了24秒;第二次从滑雪道A端以平均(x+3)米/秒的速度滑到B端,用了20秒.(1)求x的值;(2)设小勇从滑雪道A端滑到B端的平均速度为v米/秒,所用时间为t秒,请用含t的代数式表示v(不要求写出t的取值范围).17.为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?18.一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.19.小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.20.今年“直播带货”受到消费者的追捧和信赖,许多商家和店铺也纷纷开设自己的直播间进行销售.已知某店铺利用“直播带货”销售甲、乙两种商品.该店铺第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的一半还多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)2230售价(元/件)2940(1)该店铺购进甲、乙两种商品各多少件?(2)该店铺第二次购进甲、乙两种商品的进价与第一次相同,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次购进的两种商品都销售完所获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?参考答案一.选择题1.解:设小红答对的个数为x个,由题意得5x﹣(20﹣x)=70,解得x=15,故选:B.2.解:设城中有x户人家,依题意得:x+x=100,解得:x=75,∴城中有75户人家.故选:B.3.解:由题意得出等量关系为:20块等重的条形石的重量+3个搬运工的体重和=21块等重的条形石的重量+1个搬运工的体重,∵已知搬运工体重均为120斤,设每块条形石的重量是x斤,∴20x+3×120=(20+1)x+120,∴A选项不正确,B选项正确;由题意:大象的体重为20×240+360=5160斤,∴C选项不正确;由题意可知:一块条形石的重量=2个搬运工的体重,∴每块条形石的重量是240斤,∴D选项不正确;综上,正确的选项为:B.故选:B.4.解:设该分派站有x个快递员,依题意得:10x+6=12x﹣6,解得:x=6,∴10x+6=10×6+6=66,即该分派站现有包裹66件.故选:B.5.解:设盈利的运动衫的进价为x元,亏损的运动衫的进价为y元,依题意得:160﹣x=60%x,160﹣y=﹣20%y,解得:x=100,y=200,∴(160﹣100)+(160﹣200)=60﹣40=20(元),∴在这次买卖中这家商店盈利20元.故选:B.二.填空题6.解:设该商品的标价为每件x元,由题意得:80%x﹣10=2,解得:x=15.答:该商品的标价为每件15元.故答案为:15.7.解:设小韦家到纪念馆的路程是x千米,依题意有:=2,解得x=212.故小韦家到纪念馆的路程是212千米.故答案为:212.8.解:第一次操作后的两边长分别是x和(2﹣x),第二次操作后的两边长分别是(2x﹣2)和(2﹣x).当2x﹣2>2﹣x时,有2x﹣2=2(2﹣x),解得x=1.5,当2x﹣2<2﹣x时,有2(2x﹣2)=2﹣x,解得x=1.2.故答案为:1.2或者1.5.9.解:(1)依题意有:a+8=2(10﹣a),解得a=4.故答案为:4;(2)依题意有:2m+a﹣(m﹣a)=(m+2a)个,y=a﹣(a﹣x)=a﹣a+x=x,==1.故答案为:(m+2a),1.10.解:设正方形b的边长为x,则正方形a的边长为2x,正方形c的边长为3x,正方形d 的边长为5x,依题意得:(3x+5x+5x)×2=26,解得:x=1,∴5x=5×1=5,即正方形d的边长为5.故答案为:5.11.解:设良马x天追上劣马,根据题意得:240x=150(x+12),解得x=20,答:良马20天追上劣马;故答案为:20.12.解:依题意得:﹣1﹣6+1=0+a﹣4,解得:a=﹣2.故答案为:﹣2.13.解:设快马行x天追上慢马,则此时慢马行了(x+12)日,依题意,得:240x=150(x+12),解得:x=20,∴快马20天追上慢马,故答案为:20.三.解答题14.解:设从本月10日开始每天的生产量为x件,则3(x+25)+6x=3830﹣2855,解得x=100,如果按照10日开始的生产速度继续生产该产品,截止月底生产的天数为9天,这9天可生产900件,∵900+3830=4730<5000,∴不能按期完成订单,由(5000﹣3830)÷9=130,∴为确保能按期交货,从20日开始每天的生产量至少达到130件.15.解:设高铁的平均速度为xkm/h,则普通列车的平均速度为(x﹣200)km/h,由题意得:x+40=3.5(x﹣200),解得:x=296,答:高铁的平均速度为296km/h.16.解:(1)由题意得:24(x+2)=20(x+3),解得:x=3,答:x的值为3;(2)从滑雪道A端滑到B端的路程为:24×(3+2)=120(米),∵小勇从滑雪道A端滑到B端的平均速度为v米/秒,所用时间为t秒,∴v=.17.解:(1)设乙工程队每天能完成x平方米的绿化改造面积,则甲工程队每天能完成(x+200)平方米的绿化改造面积,依题意得:x+200+x=800,解得:x=300,∴x+200=300+200=500.答:甲工程队每天能完成500平方米的绿化改造面积,乙工程队每天能完成300平方米的绿化改造面积.(2)选择方案①所需施工费用为600×=14400(元);选择方案②所需施工费用为400×=16000(元);选择方案③所需施工费用为(600+400)×=15000(元).∵14400<15000<16000,∴选择方案①的施工费用最少.18.解:设这种服装每件的标价是x元,根据题意得,10×0.8x=11(x﹣30),解得x=110,答:这种服装每件的标价为110元.19.解:(1)250﹣75÷15×10=250﹣50=200(毫升).故输液10分钟时瓶中的药液余量是200毫升;(2)设小华从输液开始到结束所需的时间为t分钟,依题意有(t﹣20)=160,解得t=60.故小华从输液开始到结束所需的时间为60分钟.20.解:(1)设该店铺购进甲种商品x件,则购进乙种商品(0.5x+15)件,由题意可得:22x+30(0.5x+15)=6000,解得x=150,∴0.5x+15=90,答:该店铺购进甲种商品150件,则购进乙种商品90件;(2)设第二次乙商品是按原价打a折销售,由题意可得:(29﹣22)×150+(40×﹣30)×(90×3)=(29﹣22)×150+(40﹣30)×90+180,解得a=8.5,答:第二次乙商品是按原价打8.5折销售.。

苏科版七年级上册数学《4.3用一元一次方程解决问题(配套问题)》练习题(无答案)

苏科版七年级上册数学《4.3用一元一次方程解决问题(配套问题)》练习题(无答案)

初中数学试卷4.3 用一元一次方程解决问题(3)学习目标:会列一元一次方程解决配套问题,体会用方程的思想解决实际问题。

把现实生活的实际问题抽象成一元一次方程模型。

学习重点:寻找配套问题中的相等关系。

学习难点:建立配套问题的数学模型。

一、例题评析:例1.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?解决问题的关键:1. 如果设x名工人生产螺钉,则_______名工人生产螺母;2. 为了使每天的产品刚好配套,应使生产的螺母恰好是螺钉数量的________.3. 用含x的式子表示出生产的螺钉的数量4. 用含x的式子表示出生产的螺母的数量例2.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套.现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?例3:某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套?例4:一块正方形铁皮,在4个角上截去4个一样的小正方形,折成底面边长是50cm 的无盖长方体盒子,其容积是45000cm3,求原来正方形铁皮的边长。

练习巩固:1.一套仪器由一个A部件和三个B部件构成。

用1立方米钢材可做40个A部件或240个B部件。

现要用6立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B 部件,恰好配成这种仪器多少套?2.制作一张桌子要用一个桌面和四条桌腿,1立方米木材可制作20个桌面或400条桌腿,现有12立方米木材,应怎样计划用料才能制作尽可能多的桌子?3.某车间每天能生产甲种零件75个,或者乙种零件100个。

甲、乙两种零件分别取3个、2个才能配成一套,要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?4.某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽螺栓和螺帽刚好配套?5.某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?6.某车间有工人16名,每人每天可加工甲零件5个或乙零件4个,已知每加工一个甲零件可获利16元,美加工一个乙零件可获利24元,若此车间一共获利1440元。

苏科版七年级数学上册4.3《用方程解决问题3》课件

苏科版七年级数学上册4.3《用方程解决问题3》课件

7.当堂反馈,能力提升
1.用火车运送一批货物,如果每节车厢装34 吨,还有18吨装不下;如果每节多装4吨,那么 还可以多装26吨,问共有几节火车车厢?
2.某工厂原计划在规定的时间内加工一批零件, 如果每小时加工10个零件,就可以超额完成3个; 如果每小时加工11个零件,就可以提前一个小 时完成,问这批零件有多少个?按原计划需多长 时间完成?
注意:剪开正方体棱的过程中,正方体的6个面中 每个面至少有一条棱与其他面相连 .
秀一秀
将一个正方体沿棱剪开,并展开成一个平面图形, 你能得到哪些图形?
你能展开成下面的图形吗?试试看.
思考:
1.同一种正方体纸盒沿不同顺序先后剪开棱展 开的平面图形是否相同?
2.要将一个正方体纸盒的表面展开成一个平面 图形,要剪开多少条棱?
用 方程 解决问题
用一元一次方程解应用题的步骤有哪些?
(1)审题:分析题意,找出题中的数量及关系; (2)设元:选择一个适当的未知数用字母表; (3)列方程:根据相等关系列出方程; (4)解方程:求出未知数的值; (5)检验:检查求得的值是否正确和符合 实际情 形,并写出答案(含单位名称)。
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月13日星期三2022/4/132022/4/132022/4/13 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/132022/4/132022/4/134/13/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/132022/4/13April 13, 2022 书籍是屹立在时间的汪洋大海中的灯塔。

苏教版七年级数学上册第四章用方程解决问题(3)同步测试题

苏教版七年级数学上册第四章用方程解决问题(3)同步测试题

第8课时 用方程解决问题(3)【基础巩固】1.甲、乙两人在一条环形跑道上练习赛跑,甲每分钟跑260m ,乙每分钟跑240m ,两人同时同地背向而行,经x min 第一次相遇,则环形跑道的长为_______m.2.从甲地到乙地,某人步行比乘公交车多用3.6 h ,已知步行速度为8 km/h ,公交车的速度为40 km/h ,设甲、乙两地相距x km ,则列方程为_______. 3.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后甲、乙两人合作x 天完成这项工程,则可列方程是 ( )A .41404050x +=+B .41404050x +=⨯ C .414050x+=D .41404050x x++=4.某工厂计划每天烧煤5t ,实际每天少烧2t ,m t 煤多烧了20天,则可列方程是 ( )A .252m m-= B .2053m m-= C .2057m m-=D .2035m m-=5.甲、乙两人同时从相距27 km 的A 、B 两地相向而行,3h 相遇,如果甲比乙每小时多走1km ,求甲、乙两人的速度.6.王华上学要经过张咪家,他们两家相距2 km,王华骑车上学比张咪步行上学少用10 min若王华骑车的速度是15 km/h,张咪步行的速度是6 km/h,则他们上学各需多长时间?7.甲、乙两人在环形跑道上练习跑步,已知环形跑道一圈长400m,乙每秒钟跑6m,甲的速度是乙速度的43.(1)如果甲、乙两人在跑道上相距8m处同时反向出发,那么经过多少秒两人首次相遇?(2)如果甲在乙的前面8m处同时同向出发,那么经过多少秒两人首次相遇?8.汽车以72 km/h的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4s后听到回响,问汽车按喇叭时离山谷多远?(声音的传播速度为340 m/s)9.在一段双轨铁道上,两列火车同方向行驶,甲火车在乙火车的前面,甲火车的车速为25 m/s,乙火车的车速为30 m/s,甲火车全长为240 m,乙火车全长为200m.两火车从首尾相接到完全错开要多长时间?10.—条山路,从山下到山顶,走了1h还差1km,从山顶到山下,用50 min 可以走完.已知下山速度是上山速度的1.5倍,问上山速度和下山速度各是多少,单程山路有多少千米?11.一件工作,甲单独做20 h完成,乙单独做12 h完成.现在先由甲单独做4h,剩下的部分由甲、乙合做.剩下的部分需要几小时完成?【拓展提优】12.甲、乙两人同时从A地出发去B地,甲速度保持不变,乙先用甲速度的2倍行了全程的一半,又用甲速度的一半走完全程,则最后结果是( ) A.甲、乙同时到达B.地B.甲先到B地C.乙先到B地D.无法确定13.某项工程由甲、乙两队完成,甲队单独完成需24天,乙队单独完成需16天,先由甲队做5天,然后两队合做,问再做几天完成工程的58?14.A、B两地的路程为360 km,甲车从A地出发开往B地,速度为72 km/h,甲车出发25 min后,乙车从B地出发开往A地,速度为93 km/h.(1)再过多长时间两车相遇?(2)两车相遇后,各自仍按原速度原方向继续行驶,再过多长时间以后两车相距99 km?15.一水池有一个进水管,5h可以注满空池,池底有一个出水管,10 h可以放完满池的水.如果两水管同时打开,那么经过几小时可把空水池注满?16.甲、乙两车从A、B两地相向而行,已知甲车速度为60 km/h,乙车速度是100 km/h,甲车比乙车早出发15min,相遇时,甲比乙少走65 km求A、B 两地的距离.17.轮船在两个码头之间航行,顺流航行需6h,逆流航行需8h,水流速度为3 km/h,求轮船在静水中航行的速度及两码头之间的距离?18.一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60 km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2 h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一元一次方程解决的问题,并写出解答过程.19.已知A港在B港上游,小船于凌晨3:00从A港出发开往B港,到达后立即返回,来回穿梭于A、B两港之间,若小船在静水中的速度为16 km/h,水流的速度为4 km/h,在当晚23:00时,有人看见小船在距离A港80 km处行驶,求A、B两港之间的距离.参考答案【基础巩固】1. 500x 2. 3.6840x x-= 3.D 4.D 5.甲5 km/h ,乙4 km/h 6.王华20 min ,张咪30 min 7.(1)28 s (2)196 s 8.720m 9.88 s 10.上山4 km/h ,下山6km/h ,山路5 km 11.6 h 【拓展提优】12.B 13.4天 14. (1)2h (2)35h 15.10h 16.335 km 17.速度21 km/h ,距离144 km 18.略19.A 、B 两港之间的距离为120 km 或200 km 或100 km.考点综合专题:一元二次方程与其他知识的综合◆类型一 一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( )A .5B .7C .5或7D .102.(广安中考)一个等腰三角形的两条边长分别是方程x 2-7x +10=0的根,则该等腰三角形的周长是( )A .12B .9C .13D .12或93.(罗田县期中)菱形ABCD 的一条对角线长为6,边AB 的长是方程x 2-7x +12=0的一个根,则菱形ABCD 的周长为( )A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x +k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m +1)x+m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是.12.(甘孜州中考)若函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,则k的取值范围是..◆类型三一元二次方程与二次根式的综合13.(达州中考)方程(m-2)x2-3-mx+14=0有两个实数根,则m的取值范围为( )A .m >52B .m ≤52且m ≠2C .m ≥3D .m ≤3且m ≠214.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是 .考点综合专题:一元二次方程与其他知识的综合1.B 2.A 3.A 4.B 5.86.16 解析:设矩形的长和宽分别为x 、y ,根据题意得x +y =8,所以矩形的周长为2(x +y)=16.7.解:∵一元二次方程x 2+(2k -1)x +k 2+3=0有两个不相等的实数根,∴Δ>0,∴(2k -1)2-4(k 2+3)>0,即-4k -11>0,∴k<-114,令其两根分别为x 1,x 2,则有x 1+x 2=1-2k ,x 1·x 2=k 2+3,∵此方程的两个根分别是一直角三角形的两条直角边,且此直角三角形的斜边长为5,∴x 21+x 22=52,∴(x 1+x 2)2-2x 1·x 2=25,∴(1-2k)2-2(k 2+3)=25,∴k 2-2k -15=0,∴k 1=5,k 2=-3,∵k<-114,∴k =-3, ∴把k =-3代入原方程得到x 2-7x +12=0,解得x 1=3,x 2=4,∴直角三角形的两直角边分别为3和4.8.B9.D 解析:∵一元二次方程x2-2x-m=0无实数根,∴Δ<0,∴Δ=4-4×1×(-m)=4+4m<0,∴m<-1,∴m+1<1-1,即m+1<0,m-1<-1-1,即m-1<-2,∴一次函数y=(m+1)x+m-1的图象不经过第一象限.故选D.10.B 11.-2 12.k>-12且k≠013.B 14.k≥1。

4苏科版2020学年七年级上册数学《4.3用一元一次方程解决问题》同步测试含答案.3.6

4苏科版2020学年七年级上册数学《4.3用一元一次方程解决问题》同步测试含答案.3.6

第6课时打折销售问题知识点1 存款利息问题1.王海的爸爸想用一笔钱买年利率为2.48%的5年期国库券,他想5年后本息和为11240元,如果设应买这种国库券x元,那么可以列出方程( ) A.x·(1+2.48%×5)=11240B.5x·(1+2.48%)=11240C.x·(1+2.48%)5=11240D.x·2.48%×5=112402.王大伯3年前把手头一笔钱作为3年定期存款存入银行,年利率为5%,到期后得到本息共23000元,则当年王大伯存入银行多少钱?知识点2 商品利润问题3.一件商品的进价为80元,按标价的七折售出仍可获利5%.若标价为x 元,则可列方程为( )A.80(1+5%)=0.7xB.80×0.7(1+5%)=xC.(1+5%)x=0.7xD.80×5%=0.7x4.2017·深圳二模一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为360元,则每件服装的进价是( )A.168元B.300元C.60元D.400元5.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为( )A.26元B.27元C.28元D.29元6.小华买了一件上衣和一条裤子,共用去306元.其中上衣按标价打七折,裤子按标价打八折,上衣的标价是300元,则裤子的标价是( ) A.160元B.150元C.120元D.100元7.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价为________元.8.某电器商城五一促销,将某品牌彩电按进价提高40%,然后在广告上写“五一大酬宾,八折出售”,结果每台彩电仍获利270元,那么每台彩电进价是多少元?9.小王去新华书店买书,书店规定花20元办优惠卡后购书可按原价的8.5折付款.小王办卡后购买了一些书,购书优惠后的价格加上办卡费用比这些书的原价还少了10元钱,小王购买这些书的原价是多少?10.某个体户同时卖出两件商品,每件售价都是1350元,按成本计算,一件盈利25%,另一件亏本25%,那么这次买卖中该个体是( ) A.不赔不赚B.赚了90元C.赚了180元D.赔了180元11.某超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.某人两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,那么应付款( )A.288元B.332元C.288元或316元D.332元或363元12.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?13.购买某书有以下优惠:每本原价5元,购买20本以下的,可以打9折;购买20本和20本以上的可以打7折.现有人两次共购买30本书,花费111元,两次各购买多少本书?14.小王逛超市看到如下两个超市的促销信息:图4-3-8(1)当一次性购物标价总额是300元时,甲、乙两家超市实付款分别是多少?(2)当标价总额是多少时,甲、乙两家超市实付款一样?(3)小王两次到乙超市购物分别付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?详解详析1.A2.解:设当年王大伯存入银行x元,年利率为5%,存入3年,所以3年的利息为3×5%x元,3年到期后的本息共为23000元.根据题意,得x+3×5%x=23000,解得x=20000.答:当年王大伯存入银行20000元.3.A [解析] 根据题意建立等量关系:进价×(1+5%)=商品标价×0.7,依此列方程即可.4.B [解析] 设每件服装的进价为x元,由题意得(1+50%)x×80%=360,解得x=300.故每件服装的进价是300元.故选B.5.C [解析] 设这种电子产品的标价为x元.由题意得0.9x-21=21×20%,解得x=28,所以这种电子产品的标价为28元.故选C.6.C [解析] 设裤子的标价是x元.根据题意可列方程300×0.7+0.8x=306,解得x=120,即裤子的标价是120元.故选C.7.2750 [解析] 设这种空调的标价为x元,根据题意可得0.8x-20002000=10%,解得x=2750.即标价为2750元.8.解:设每台彩电进价是x元.依题意,得0.8×(1+40%)x-x=270,解得x=2250.故每台彩电进价是2250元.9.[解析] 办卡费用加上打折后的书款应该等于书的原价减去节省下来的10元,由此数量关系可列方程进行解答.解:设书的原价为x元.由题意,得20+0.85x=x-10,解得x=200.答:小王购买这些书的原价是200元.10.D11.C [解析] (1)若第二次购物超过100元,但不超过300元,设此时所购物品价值为x元,则90%x=252,解得x=280,两次所购物品价值为80+280=360(元)>300元,所以享受8折优惠,因此应付360×80%=288(元).(2)若第二次购物超过300元,设此时所购物品价值为y元,则80%y=252,解得y=315,两次所购物品价值为80+315=395(元),因此应付395×80%=316(元).故选C.12解:设每件衬衫降价x元.依题意有120×400+(120-x)×100=80×500×(1+45%),解得x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.13.解:①若两次购书都没有超过20本,由题意得5×30×0.9=135(元),不符合题意,故舍去.②若两次购书,有一次购书超过20本.设其中一次购书x本,另一次购书(30-x)本.由题意得5x×0.9+5(30-x)×0.7=111,解得x=6,30-x=24.综上所述,其中一次购书6本,另一次购书24本.14.解:(1)当一次性购物标价总额是300元时,甲超市实付款为300×0.88=264(元),乙超市实付款为300×0.9=270(元).(2)设当标价总额是x元时,甲、乙两家超市实付款一样.当一次性购物标价总额是500元时,甲超市实付款为500×0.88=440(元),乙超市实付款为500×0.9=450(元),∵440<450,∴x>500.根据题意,得0.88x=500×0.9+0.8(x-500),解得x=625.答:当标价总额是625元时,甲、乙两家超市实付款一样.(3)小王两次到乙超市购物分别付款198元和466元,第一次购物付款198元,购物标价可能是198元,也可能是198÷0.9=220(元),第二次购物付款466元,购物标价是(466-450)÷0.8+500=520(元),两次购物标价之和是198+520=718(元),或220+520=740(元).若他只去一次该超市购买同样多的商品,实付款为500×0.9+0.8×(718-500)=624.4(元),或500×0.9+0.8×(740-500)=642(元),可以节省198+466-624.4=39.6(元),或198+466-642=22(元).答:若他只去一次该超市购买同样多的商品,可以节省39.6元或22元.复习课六(6.1-6.4)例1 如图,已知平面上有四个点A,B,C,D.请按下列要求作图:(1)连结AB,作射线AD,作直线BC与射线AD交于点E;(2)根据(1)所作图形,说出共有几条直线?几条线段?几条射线?用图中的字母表示经过点C的线段、射线和直线.反思:画线段、射线、直线时应体现线段有两个端点,射线有一个端点而直线没有端点.数线段和直线时,主要看端点个数,根据相应结论可以算出.但数射线除了要看端点,还应注意方向,注意不要遗漏.例2 (1)如图,从学校A到书店B最近的路线是①号路线,其道理应是_____________________________________________________________________ ___;(2)已知A,B是数轴上的两点,AB=2,点B表示-1,则点A表示________;(3)在同一平面内不同的两点最多可以确定一条直线,不同的三点最多可以确定三条直线.若在同一平面内不同的n个点最多可以确定15条直线,则n的值为________.反思:解决有关数轴上的点和线段长度这类问题时,可以先画出图形,然后借助直观图形,弄清线段长度与两端点所表示的数之间的关系,一般有以下规律:设数轴上A ,B 两点表示的数分别为x 1,x 2,那么AB =|x 1-x 2|(或AB =|x 2-x 1|),注意加绝对值符号;在同一平面内有n 个点,且任意三点都不在同一条直线上,则一共可画n (n -1)2条直线(n ≥3且为整数). 例3 如图,点A 、B 、C 在数轴上,点O 为原点.线段AB 的长为12,BO =12AB ,CA =13AB.(1)求线段BC 的长;(2)求数轴上点C 表示的数;(3)若点D 在数轴上,且使DA =23AB ,求点D 表示的数. 反思:解题时要看清题意,当题目中的条件不能确切判断是哪一种位置关系时,要灵活运用分类讨论的数学思想,对所有可能的位置关系进行考虑.1.下列几何图形中为圆柱体的是( )2.下列语句准确规范的是( )A.直线a、b相交于一点mB.延长直线ABC.反向延长射线AO(O是端点)D.延长线段AB到C,使BC=AB3.下列说法中,正确的有( )①经过两点有且只有一条直线②连结两点的线段叫做两点间的距离③两点之间,线段最短A.0个B.1个C.2个D.3个4.如果线段AB=6,点C在直线AB上,BC=4,D是AC的中点,那么A、D两点间的距离是( )A.只有5 B.只有2.5 C.5或2.5 D.5或15.如图,点M,N都在线段AB上,且点M分AB为2∶3两部分,点N 分AB为3∶4两部分,若MN=2cm,则AB的长为( )第5题图A.60cm B.70cm C.75cm D.80cm6.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释这一现象的原因____________.第6题图7.(1)已知线段AB,在线段BA的延长线上取一点C,使AC=3AB,则AC与BC的长度之比为____________.(2)已知A,B,C,D是同一条直线上从左到右的四个点,且AB∶BC∶CD =1∶2∶3,若BD=15cm,则AC=____________cm,____________是线段AD的中点.(3)已知a>b,线段AB=a,在线段AB上截取AC=b,M是线段BC的中点,则线段CM用a,b来表示是____________.8.已知线段AB,延长AB到C,使BC=14AB,D为AC的中点,若BD=6cm,求AB的长.第8题图9.已知数轴上有A,B,C三点,它们所表示的数分别是2,-4,x.(1)求线段AB的长度;(2)若AC=5,求x的值.10.如图,已知A,B,C在同一直线上,M,N分别是AC,BC的中点.(1)若AB=20,BC=8,求MN的长;(2)若AB=a,BC=7,求MN的长;(3)若AB=a,BC=b,求MN的长;(4)从(1)(2)(3)的结果中能得到什么结论?第10题图11.如图,A,B,C是数轴上的三点,O是原点,BO=3,AB=2BO,5AO =3CO.(1)写出数轴上点A,C表示的数;(2)点P,Q分别从A,C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒6个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,点N在线段CQ上,且CN=23CQ.设运动的时间为t(t>0)秒.①数轴上点M、N表示的数分别是________(用含t的式子表示);②t为何值时,M、N两点到原点O的距离相等?第11题图参考答案复习课六(6.1—6.4)【例题选讲】例1 (1)画图略 (2)1条直线,7条线段,9条射线,经过点C 的线段有:线段CE ,CB ,BE ;经过点C 的射线有:射线CE ,CB ,EC ,BC ;经过点C的直线有:直线BE.例2 (1)两点之间线段最短;(2)由于线段AB 的长度是一个正数,而数轴上的点所表示的是一个数(它既可以是正数、负数,也可以是0),故在解题时需考虑把“数”与“形”结合起来,画出数轴.如图,设点A 表示的数为x.∵AB =2,∴|x -(-1)|=2,即x +1=2或x +1=-2,∴x =1或x =-3;(3)易知平面内不同的n 个点最多可以确定n (n -1)2条直线,从而可知n (n -1)2=15,则n(n -1)=30.由n 为正整数,可知两个相邻的正整数的积为30,由6×5=30,可知n =6.例3 (1)∵AB =12,CA =13AB ,∴CA =4,∴BC =AB -CA =8. (2)∵AB =12,BO =12AB ,CA =13AB ,∴BO =AO =6,CA =4.∴CO =AO-CA =2.∴数轴上点C 表示的数为-2. (3)∵AB =12,DA =23AB ,∴DA =8.∴DO =DA +AO =8+6=14或DO =DA -AO =8-6=2,∴数轴上点D 表示的数为-14或2.【课后练习】1.C 2.D 3.C 4.D 5.B 6.两点之间线段最短7.(1)3∶4 (2)9 点C (3)12(a -b) 8.16cm 9.(1)AB =2-(-4)=6;(2)2-x =5,x =-3或x -2=5,x =7. 10.(1)10 (2)12a (3)12a (4)MN =12AB 11.(1)点A 、C 表示的数分别是-9,15;(2)①点M 、N 表示的数分别是t-9,15-4t ;②当点M 在原点左侧,点N 在原点右侧时,由题意可知9-t =15-4t.解这个方程,得t =2.当点M 、N 都在原点左侧时,由题意可知t -9=15-4t.解这个方程,得t =245.根据题意可知,点M 、N 不能同时在原点右侧.所以当t =2秒或t =245秒时,M 、N 两点到原点O 的距离相等. 第10课时 做个加法表1.算一算。

4.3 《用一元一次方程解决问题》 课件 苏科版 (3)

4.3 《用一元一次方程解决问题》 课件 苏科版 (3)

练习巩固
练习3 某工人在一定时间内加工一批零件, 如果每天加工44个就比规定任务少加工20个, 如果每天加工50个则可超额10个,求规定的 零件个数和计划加工的天数。组卷网
练习4 某工厂加工一批零件,并要在限定时 间内完成,如果每小时做10个,则在限定时 间内可多做3个;如果每小时做11个,则可提 前1小时完成‥‥‥
练习巩固
练习1 某汽车队运送一批货物,每辆汽车装4t还 剩8t未装,每辆汽车装4.5t就恰好装完。该汽车 队运送货物的汽车共有多少辆?学科网 zxxk 练习2 某木器加工厂有45名职工,加工一批方 桌,每张方桌由一张桌面和4条桌腿组成。每个 职工每小时可单独做2张桌面或单独做10条桌腿, 问应分配多少人做桌面,多少人做桌腿才能使 每天制作的桌面与桌腿正好配套? 如果该厂每天加工8小时,可生成多少套?
情境引入
问题1 某小组计划做一批“中那么比计划少了15个。小组成员 共多少名?他们计划做多少个“中国结”?
学科网 zxxk
探究新知
问题2 某车间有100名工人,每人每小时可加 工螺栓18个或螺母24个,一个螺栓配两个螺 母,应如何分配加工螺栓,螺母的人数,才 能使加工的螺栓与螺母刚好配套?
练习巩固
练习5 用绳子量井深,把绳子3折来量,井 外余4尺;把绳子4折来量,井外余1尺。求井 深及绳长。
练习6 某车间有共有22名工人,每人每天可 以加工甲部件5个或乙部件4个,已知3个甲部 件和2个乙部件配套,问怎样分配工人,才能 是生产的甲部件和乙部件配套?

2021-2022学年苏科版七年级数学上册《4-3用一元一次方程解决问题》同步达标训练(附答案)

2021-2022学年苏科版七年级数学上册《4-3用一元一次方程解决问题》同步达标训练(附答案)

2021-2022学年苏科版七年级数学上册《4.3用一元一次方程解决问题》同步达标训练(附答案)1.李华和赵亮从相距20千米的A、B两地同时出发相向而行,李华每小时走3千米,2小时后两人相遇,设赵亮的速度为x千米每小时,列方程得()A.2x+3=20B.2×3+x=20C.2(3+x)=20D.2(x﹣3)=20 2.《九章算术》是中国传统数学的重要著作,其中有一道题,原文是:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”意思是:走路快的人走100步时,走路慢的人只能走60步;若走路慢的人先走100步,则走路快的人要走多少步才能追上对方?运用所学的知识可求得走路快的人追上走路慢的人需要走的步数是()A.250步B.200步C.150步D.100步3.2020年12月30日,连云港市图书馆新馆正式开馆.小明同学从家步行去图书馆,他以5km/h的速度行进24min后,爸爸骑自行车以15km/h的速度按原路追赶小明.设爸爸出发xh后与小明会合,那么所列方程正确的是()A.5(x+)=15x B.5(x+24)=15xC.5x=15(x+24)D.5x=15(x+)4.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之?意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为()A.240x=150x+12×150B.240x=150x﹣12×150C.240(x﹣12)=150x+150D.240x+150x=12×155.小亮原计划骑车以10千米/时的速度从A地去B地,在规定时间就能到达B地,但他因事比原计划晚出发15分钟,只好以15千米/时的速度前进,结果比规定时间早到6分钟,若设A,B两地间的距离为x千米,则根据题意列出的方程正确的为()A.+15+6B.C.D.6.《九章算术》中有一问题,“今有善行者一百步,不善行者六十步.今不善行者先行一百步,善行者追之.问:几何步及之?”其意思是:有一个善于走路的人和一个不善于走路的人.善于走路的人走100的同时,不善于走路的人只能走60步.现在不善于走路的人先走100步,善于走路的人追他,需要走多少步才能追上他?根据题意,可以求得答案为()A.250步B.200步C.160步D.320步7.某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒.如果队伍长150米,那么火车长()A.150 米B.215米C.265 米D.310米8.甲、乙两人在长为25米泳池内始终以匀速游泳,两人同时从起点出发,触壁后原路返回,如此往返;甲的速度是1米/秒,乙的速度是0.6米/秒,那么第十次迎面相遇时他们离起点()A.7.5米B.10米C.12米D.12.5米9.甲、乙两地相距180km,一列慢车以40km/h的速度从甲地匀速驶往乙地,慢车出发30分钟后,一列快车以60km/h的速度也从甲地匀速驶往乙地,两车相继到达终点乙地,在此过程中,两车恰好相距10km的次数是()A.1B.2C.3D.410.如图,甲、乙两人沿着边长为90m的正方形,按A→B→C→D→A的方向行走,甲从点A出发,以50m/min的速度行走;同时,乙从点B出发,以65m/min的速度行走.当乙第一次追上甲时,在正方形的()A.BC边上B.CD边上C.点C处D.点D处11.汽车以15米/秒的速度在一条笔直的公路上匀速行驶,开向寂静的山谷,司机按一下喇叭,2秒后听到回响,问按喇叭时汽车离山谷多远?已知空气中声音传播速度为340米/秒,设按喇叭时,汽车离山谷x米,根据题意列方程为.12.一辆汽车从A城出发驶向B城,如果以每小时50千米的速度行驶恰好准时到达,如果以每小时40千米的速度行驶,会比规定时间晚15分钟到达.设A、B两城的距离为x 千米,根据题意,可列出方程是.13.小华和小明周末到北京三山五园绿道骑行,他们按设计好的同一条线路同时出发,小华每小时骑行18km,小明每小时骑行12km,完成全部骑行时间小明比小华多半小时,设他们这次骑行路线长为xkm,依题意可列方程.14.2020年义乌客运站行车时刻表如下,假设客车运行全程保持匀速行驶,则当快车出发小时后,两车相距25km.义乌﹣上海出发时间到站时间里程(km)普通车7:0011:00300快车7:3010:3030015.一辆客车、一辆货车、一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上客车;再过了分钟货车追上客车.16.小雅和小智约好周末一起登缙云山,两人同时从山脚出发,沿同一路线上山.小雅以每分钟45米的速度匀速上山,途中不休息;小智以每分钟120米的速度骑自行车匀速上山,每骑车5分钟休息1分钟.10分钟后小智自行车出现故障,立即以每分钟50米的速度推着自行车到山脚出发点维修.15分钟后小智修好了自行车,立即以出发时的速度骑车追赶小雅,仍然骑车5分钟休息1分钟,最后小雅还是比小智早到山顶45秒,则山脚到山顶的距离为米.17.扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马天追上慢马.18.小明爸爸带着小明和小明弟弟去离家66千米的外婆家,小明爸爸有一辆摩托车,只坐一人时速度为50千米/小时,坐两人时速度为40千米/小时(交通法规定:摩托车最多只能坐两人).小明和小明弟弟如果步行速度均为10千米/小时,为尽快达到外婆家,出发时,小明步行,小明爸爸将小明弟弟载了一段路程后让其步行前往外婆家,并立即返回接步行的小明,再到外婆家,结果与小明弟弟同时到达外婆家,则小明从家到外婆家步行的时间为.19.甲乙两车站间的路程为360km,一列慢车从甲站开出,每小时行驶48km,一列快车从乙站开出,每小时行驶72km.(Ⅰ)两车同时开出,相向而行,多少小时相遇?(Ⅱ)快车先开出25分钟,两车相向而行,慢车行驶多少小时两车相遇?20.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)21.甲乙两站的距离为360千米,一列快车从乙站开出,每小时行驶72千米;一列慢车从甲站开出,每小时行驶48千米,请问:(1)两车同时开出,相向而行,经过多少小时后两车相距40千米?(2)快车先开出25分钟,两车相向而行,慢车行驶多长时间两车相遇?22.列方程解应用题:已知A,B两地相距60千米,甲骑自行车,乙骑摩托车都沿一条笔直的公路由A地匀速行驶到B地,乙每小时比甲多行30千米,甲比乙早出发3小时,乙出发1小时后刚好追上甲.(1)求甲的速度;(2)问乙出发之后,到达B地之前,何时甲乙两人相距6千米;(3)若丙骑自行车与甲同时出发,沿着这条笔直的公路由B地匀速行驶到A地,经过小时与乙相遇,求此时甲、丙两人之间距离.23.小明、小杰两人在400米的环形赛道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.(1)若小明、小杰两人同时同地反向出发,那么出发几分钟后,小明,小杰第一次相遇?(2)若小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.①出发几分钟后,小明、小杰第一次相遇?②出发几分钟后,小明、小杰的路程第一次相距20米?参考答案1.解:设赵亮的速度为x千米每小时,则2(3+x)=20.故选:C.2.解:设走路快的人要走x步才能追上对方,依题意,得:=,解得:x=250.故选:A.3.解:设爸爸出发xh后与小明会合,则此时小明出发了(x+)h,依题意得:5(x+)=15x.故选:A.4.解:设快马x天可以追上慢马,据题题意:240x=150x+12×150,故选:A.5.解:设A、B两地间距离为x千米,由题意得:.故选:B.6.解:设走路快的人追上走路慢的人所用时间为t,根据题意得(100﹣60)t=100,40t=100,t=2.5,则100t=100×2.5=250(步).答:善于走路的人追他,需要走250步才能追上他.故选:A.7.解:12秒=小时,150米=0.15千米,设火车长x千米,根据题意得:×(4.5+120)=x+0.15,解得:x=0.265,0.265千米=265米.答:火车长265米.故选:C.8.解:设甲、乙两人都游了x秒后,第十次迎面相遇,依题意有(1+0.6)x=25×2×10,解得x=312.5,312.5×1=312.5(米),312.5÷(25×2)=312.5÷50=6…12.5(米).答:第十次迎面相遇时他们离起点12.5米.故选:D.9.解:∵10÷40=(h),∴快车未出发,慢车出发小时时,两车相距10km;设快车出发x小时时,两车相距10km.快车未超过慢车时,40(x+)﹣10=60x,解得:x=;快车超过慢车10km时,40(x+)+10=60x,解得:x=;快车到达乙地后,40(x+)=180﹣10,解得:x=.∴两车恰好相距10km的次数是4.故选:D.10.解:设乙行走tmin后第一次追上甲,根据题意得:甲的行走路程为50tm,乙的行走路程65tm,当乙第一次追上甲时,270+50t=65t,解得t=18,此时乙所在位置为:65×18=1170(m),1170÷(90×4)=3……90(m),∴当乙第一次追上甲时,在正方形的点C处.故选:C.11.解:设按喇叭时,汽车离山谷x米,根据题意列方程为2x﹣2×15=340×2.故答案为:2x﹣2×15=340×2.12.解:设A、B两城的距离为x千米,由题意得:=﹣.故答案为:=﹣.13.解:设他们这次骑行线路长为xkm,依题意,可列方程为+=,故答案为:+=.14.解:设当快车出发x小时后,两车相距25km.①慢车在前,快车在后,(x+)﹣x=25,解得x=0.5.②快车在前,慢车在后,依题意得:x﹣(x+)=25,解得x=2.5.或(x+)=300﹣25,解得x=.综上所述,当快车出发0.5或2.5或小时后,两车相距25km.故答案是:0.5或2.5或.15.解:设货车,客车,小轿车速度为x、y,z,间距为s,则:10(z﹣x)=s,15(z﹣y)=2s,则z﹣x=,z﹣y=所以,x﹣y=﹣,得:=30,30﹣15=15.故答案为:15.16.解:小智前10分钟走了(5+4)×120=1080米,下山修车用了1080÷50=21.6分钟.设小智再次登顶用了t分,t不一定是6的倍数,则小雅走了45(10+21.6+15+t﹣)米,即(2063.25+45t)米.设t中有m个5分钟,除t中的6m分钟外还余x分钟(x<5).则小智再次登顶有m个休息,∴t=5m+m+x=6m+x,∵小智登顶的距离为5m×120+120x,∴5m×120+120x=2063.25+45t,即5m×120+120x=2063.25+45(6m+x),整理得,330m+75x=2063.25,∵m为整数,x<5,∴m=6,x=1.11,则山脚到山顶的距离为5×6×120+120×1.11=3733.2米.故答案为:3733.2.17.解:设快马行x天追上慢马,则此时慢马行了(x+12)日,依题意,得:240x=150(x+12),解得:x=20,∴快马20天追上慢马,故答案为:20.18.解:设小明家为点A,小明上车的地点为点B,弟弟下车的地点为点C,外婆家为点D,如图所示.∵小明与弟弟步行速度、乘车速度都是相同的,且同时到达,∴两人步行路程相同,即AB=CD.设小明步行路程为x千米,则AB=CD=x,BC=66﹣2x.∵爸爸由C到B是一人乘坐摩托车,∴爸爸一共用的时间为()小时,小明一共用的时间为()小时.∵爸爸所用的时间=小明所用的时间,∴,解得:x=18,∴小明从家到外婆家步行的时间为18÷10=1.8(小时).故答案为:1.8小时.19.解:(1)设x小时相遇,根据题意得48x+72x=360,解得:x=3.答:3小时相遇;(2)慢车行驶y小时两车相遇,根据题意得:48y+72(y+)=360,解得:y=2.75.答:慢车行驶2.75小时两车相遇.20.解:设AB两地距离为x千米,则CB两地距离为(x﹣2)千米.根据题意,得+=3解得x=.答:AB两地距离为千米.21.解:(1)设经过x小时后两车相距40千米,依题意得:当相遇前相距40千米时:72x+48x=360﹣40,解得:x=;当相遇后相距40千米时:72x+48x=360+40,解得:x=.答:经过或小时后两车相距40千米.(2)设慢车行驶y小时两车相遇,依题意得:,解得:.答:慢车行驶小时两车相遇.22.解:(1)设甲速度为x千米/小时,则乙速度为(x+30)千米/小时由题意可列方程:4x=x+30解得:x=10所以,甲速度为10千米/时;(2)由(1)可知,甲速度为10千米/小时,乙速度为10+30=40千米/小时,设乙出发后t小时甲乙相距6千米,则甲出发(t+3)小时,相遇前:甲比乙多行驶6千米,可列方程10(t+3)﹣40t=6,解得:t=0.8,相遇后:乙比甲多行驶6千米,可列方程40t﹣10(t+3)=6,解得t=1.2,综上所述,乙出发0.8小时或1.2小时,甲乙相距6千米;(3)设丙的速度为a千米/小时,丙与甲同时出发,所以丙行驶小时,乙行驶了﹣3=(小时).根据题意可列方程a+×40=60,解得:a=10,所以丙的速度为10千米/小时,经过小时,丙行驶×10=36(千米),甲行驶×10=36(千米),所以两人相距36+36﹣60=12(千米).23.解:(1)设出发x分钟后,小明、小杰第一次相遇,依题意,得:300x+220x=400,解得:x=.答:出发分钟后,小明、小杰第一次相遇.(2)①设出发y分钟后,小明、小杰第一次相遇,依题意,得:300y﹣220y=100,解得:y=.答:出发分钟后,小明、小杰第一次相遇.②设出发z分钟后,小明、小杰的路程第一次相距20米,依题意,得:300z﹣220z+20=100,解得:z=1.答:出发1分钟后,小明、小杰的路程第一次相距20米.。

苏科版七年级上册数学4.3 用方程解决问题(4课时)练习

苏科版七年级上册数学4.3 用方程解决问题(4课时)练习

4.3 用方程解决问题(4)(同步训练)
1.敌我两军相距25千米,敌军以每分钟20千米的速度逃跑,我军同时以每分钟24千米的速度追击,并在相距1千米处发生战斗,问战斗是在开始追击后几分钟发生的?
2.轮船在两个码头之间航行,顺流航行需6h,逆流航行需8h,水流速度为3km/h,求轮船在静水中航行的速度及两码头之间的距离?
3.飞机在两城市之间飞行,顺风需4h,逆风返回需5h,飞机在静风中速度为360km/h,求风速及两城市间的距离?
4.甲乙两人在10km环行公路上跑步,甲每分钟跑230m,乙每分钟跑170m。

(1)若两人同时同地同向出发,多长时间两人首次相遇?
(2)若两人同时同地反向出发,多长时间两人首次相遇?
(3)若甲先跑10min,乙再从同地同向出发,还需多长时间两人首次相遇?
(4)若甲先跑10min,乙再从同地反向出发,还需多长时间两人首次相遇?
- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新苏科版七年级数学上册《4.3 用方程解决问题》同步测试(三)
【基础过关】
一、选择题
1、甲能在12天内完成某项工作,乙的工作效率比甲高20%,那么乙完成这项工作的天数为( )
A、6 B、8 C、10 D、11
2、一件工作,甲队独做10天可以完成,乙队独做15天可以完成,若两队合作,( )天可以完

A、25 B、12.5 C、6 D、无法确定
3、某项工作,甲单独做要a天完成,乙单独做需b天完成,现在甲单独做2天后,剩下工作由乙单
独做,则乙单完成剩下的工作所需天数是( )
A、b2a B、)a21(b C、a2b D、2a
二、填空题
1、若一个三位数,十位数字是x,个位数字是十位数字的3倍,百位数字比十位数字的2 倍少1,
则这个三位数可表示为______________.
2、一个两位数,个位上的数字是十位上的数字的3倍,它们的和为12,那么这个两位数为________.
3、某项工程由甲独做需m天,由乙独做需n天,两人合作4天后,剩下的工程是 .
4、做一批零件,如果每天做8个,将比每天做6个提前1天完成,这批零件共有_____个.
三、列方程解应用题
1、要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲
每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件.

2、一件工作,甲单独做20小时完成,乙单独做12小时完成,现在由甲做4小时,剩下的部分由甲、
乙合作,剩下的部分需要几小时完成?
3、一个两位数,个位数字是十位数字的4倍,把个位数字与十位数字对调,得到的两位数比原来大
54,求原数.

【知能升级】
1、两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时.一天晚上停电,明
明同时点燃了这两支蜡烛看书,若干分钟后来电了,明明将两芝蜡烛同时熄灭,发现粗蜡烛的长
是细蜡烛的2倍,问:停电多少分钟?

2、小明中考时的准考证号码是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的
千位数字为1;(2)把千位上的数字1向右移动,使其成为个位数字,那么所得的新数比原数的5
倍少49.请你根据以上特征推出小明的准考证号码.
答 案
【基础过关】
一、选择题
1、C 2、C 3、B
二、填空题

1、100(2x-1)+10x+3x 2、39 3、nm1141 4、24
三、列方程接应用题
1、甲每小时加工16个零件,乙每小时加工14个零件.
2、剩下的部分需要6小时完成.3、原数为28.
【知能升级】
1、停电40分钟.
2、小名的准考证号码为1990.

相关文档
最新文档