STM (扫描隧道显微镜)
STM扫描隧道显微镜

STM的原理
隧道电流I是电子波函数重叠的量度,与针尖和 样品之间距离S以及平均功函数Φ有关:
1
I Vb exp A 2 S
Vb 是加在针尖和样品之间的偏置电压ห้องสมุดไป่ตู้平均功函数 A 为常数,在真空条件下约等于1。
STM的原理
图是STM的基本原理图, 其主要构成有:顶部直径 约为50—100nm的极细金属 针尖(通常是金属钨制的针 尖),用于三维扫描的三个 相互垂直的压电陶瓷(Px, Py,Pz),以及用于扫描和 电流反馈的控制器 (Controller)等。
STM的原理
扫描隧道显微镜的基本 原理是将原子线度的极细 探针和被研究物质的表面 作为两个电极,当样品与 针尖的距离非常接近 (通常 小于1nm) 时,在外加电场 的作用下,电子会穿过两 个电极之间的势垒流向另 一电极。
谢谢观看
(a)
(b)
STM的工作环境
• 超高真空和室温条件
• 在超高真空的条件下,STM可以用来观 察所有半导体和金属样品表面的原子图。 在超高真空腔内,可以用多种方法将样 品表面清洁干净,如常用于金属表面清 洁处理的离子枪轰击和常用于半导体表 面清洁处理的直接电流预热处理等。在 超高真空中,清洁处理后的样品可以保 持长时间干净,不被氧化。对样品表面 原子结构进行重构后,就可以用STM观 察样品表面的原子结构图像。
Φ为物质表面的平均功函数
S是针尖和样品之间距离
I是隧道电流
2.STM的工作模式
• 恒流模式 • x,y方向起着扫描作用,而
Z方向具有一套反馈系统, 初始的隧道电流为一恒定 值,当样品表面凸起时, 针尖就会后退,以保持隧 道电流的值不变;当样品 表面凹进时,反馈系统将 使针尖向前移动,计算机 记录了针尖上下移动的轨 迹,合成起来,就可给出 样品表面的三维行貌。
扫描隧道显微镜STM

单原子、单分子操纵在化学上一个极具诱惑力的潜在应用是可能实现 “选键化学”──对分子内的化学键进行选择性的加工。虽然这是一个 极具挑战性的目标,但现在已有一些激动人心的演示性的结果。在康奈 尔大学Lee和Ho的实验中,STM被用来控制单个的CO分子与Ag(110)表 面的单个Fe原子在13K的温度下成键,形成FeCO和Fe(CO)2分子。同 时,他们还通过利用STM研究C-O键的伸缩振动特性等方法来确认和研 究产物分子。他们发现CO以一定的倾角与Fe-Ag(110)系统成键(即CO分 子倾斜地立在Fe原子上),这被看成是Fe原子局域电子性质的体现。
5
2.STM的原理
图是STM的基本原理 图,其主要构成有:顶部 直径约为50—100nm的极 细金属针尖(通常是金属钨 制的针尖),用于三维扫描 的三个相互垂直的压电陶 瓷(Px,Py,Pz),以及用 于扫描和电流反馈的控制 器(Controller)等。
6
2.STM的原理
扫描隧道显微镜的基本 原理是将原子线度的极细 探针和被研究物质的表面 作为两个电极,当样品与 针尖的距离非常接近 (通常 小于1nm) 时,在外加电场 的作用下,电子会穿过两 个电极之间的势垒流向另 一电极。
16
溶液中固/液界面的原子和分子化学反应示意图
4.STM的工作环境
溶液条件
17
图是有机分子苯在Rh(111)—3x3(铑)表面 上的单层吸附结果。实验时,在0.01M(摩 尔)的HF(氢氟酸)溶液里含有0.25mM (毫 摩尔)浓度的有机分子苯。
图是另一种有机分子卟啉在I-Au(111)(碘-金) 表面上的单层吸附结果。实验时,在0.1M 的HClO4(高氯酸)溶液里含有0.57uM(微摩 尔)浓度的有机分子卟啉。
扫描隧道显微镜STM和原子力显微镜AFM

智能化与自动化
提高STM和AFM的智能化和自动化 水平,简化操作过程,提高测量效率。
STM和AFM在各领域的应用前景
表面科学
STM和AFM将继续在表面科学 领域发挥重要作用,研究表面
重构、吸附、反应等过程。
纳米技术
STM和AFM在纳米技术领域的 应用将更加广泛,涉及纳米材 料、纳米器件的制备与表征。
隧道电流。
电流控制
STM通过控制探针和样品之间的电 压和电流,使隧道电流保持恒定, 从而实现对样品表面形貌的扫描。
高分辨率
由于隧道电流对探针和样品之间的 距离非常敏感,STM能够实现原子 级分辨率的表面形貌成像。
AFM技术原理
原子力检测
反馈系统
AFM通过检测探针和样品之间的微小 原子力变化来获取样品表面的形貌信 息。
05 STM和AFM的未来发展 与展望
STM和AFM的技术创新与改进
更高的分辨率
随着技术的不断进步,STM和AFM 有望实现更高的空间分辨率,从而揭 示更细微的表面结构和特性。
实时原位测量
未来STM和AFM将进一步实现实时 原位测量,以便在动态过程中观察表 面结构和性质的变化。
多模式测量能力
开发具有多模式测量能力的STM和 AFM,能够同时获取多种物理信息, 从而更全面地了解表面性质。
扫描隧道显微镜STM和原子力显 微镜AFM
目录
• 引言 • STM和AFM的技术原理 • STM和AFM的优缺点比较 • STM和AFM的实际应用案例 • STM和AFM的未来发展与展望
01 引言
STM和AFM的定义与工作原理
要点一
扫描隧道显微镜STM(Scanning Tunneli…
利用量子力学中的隧道效应,通过测量针尖与样品之间的 微弱电流来获取样品表面形貌的显微镜。
扫描隧道显微镜(STM)

图9-4
返回
图9-5
返回
二、原子力显微镜的微悬臂及其变形的检测 方法
(一)微悬臂(力传感器) (二)微悬臂变形的检测方法
返回
(一)微悬臂(力传感器)
原子力显微镜所研究的力其数值很小。要实现力的高灵敏度测量,首 先要求力的感知件——微悬臂对微小力的变化具有足够高的灵敏度。
(1)弹性系数k值应在10 -2~10 2 N/m范围。极低的弹性系数 可满足极其灵敏地检测出零点几个nN
品表面之间的作用力,一般针尖曲率半径为30 nm
下一页 返回
(二)微悬臂变形的检测方法
原子力显微镜的图像是通过扫描时测量微悬臂受力后弯曲形变的程度 获得的,并利用Hooke定律来确定操作时的样品与针尖的作用力。
1 2 3 4
上一页 返回
三、原子力显微镜的成像模式
(一)接触成像模式 (二)非接触成像模式 (三)轻敲成像模式
返回
一、扫描隧道显微镜的基本原理
与光学显微镜和电子显微镜不同,STM不采用任何光学或电子透镜 成像,而是当尖锐金属探针在样品表面扫描时,利用针尖〖CD*2〗 样品间纳米间隙的量子隧道效应引起隧道电流与间隙大小呈指数关系, 获得原子级样品表面形貌特征图像,其基本原理如图9-1所示。
顶部有一直径约50~100 nm的极细金属探针(通常是金属钨制作 的针尖),功能是在其与样品互相作用时,可根据样品性质的不同 (如表面原子的几何结构和电子结构)产生变化的隧道电流。在扫描 隧道显微镜工作时,针尖与样品表面距离一般约为0.3~1.0 nm, 此时针尖和样品之间的电子云互相重叠。当在它们之间施加一偏压时, 电子就因量子隧道效应由针尖(或样品)转移到样品(或针尖);金 属探针安置在三个相互垂直的压电陶瓷〖WTBX〗(P x、P y、 P z)架上,当在压电陶瓷器件上施加一定电压时,由于压电陶瓷 器件产生变形,便可驱动针尖在样品表面实现三维扫描;控制器是用 STM
扫描隧道显微镜

样品
隧道电流 i A
探针
U
d
B
样品
隧道电流 i A
探针
U
d
B
i Ue A d A — 常量
— 样品表面平均势
垒高度(~ eV)
。 d ~ 1nm( 10A )
d 变 i 变,反映表面情况
d 变 ~ 0.1nm i 变几十倍,非常灵 敏。竖直分辨本领可达约10 2 nm
横向分辨本领与探针、样品材料及 绝缘物有关,在真空中可达 0. 2 nm。
技术关键:
1. 消震:多级弹簧,底部铜盘涡流阻尼。 2. 探针尖加工:电化学腐蚀,强电场去污,
针尖只有1~2个原子! 3. 驱动和到位:利用压电效应的逆效应 —
电致伸缩,一步步扫描,扫描一步 0.04nm,扫描1(m)2 约0.7s。
4. 反馈:保持 i 不变 d 不变(不撞坏针尖)
显示器
1991年2月IBM的 “原子书法”小组又 创造出“分子绘画” 艺术 — “CO 小人”
图中每个白团是单个 CO分子竖在铂片表面 上的图象,上端为氧 原子 CO分子的间距: 0.5 nm “分子人”身 高:5 nm堪称世界上 最小的“小人图”
48个Fe原子形成“量子围栏”,围 栏中的电子形成驻波。 Fe原子间距: 0.95 nm,圆圈平均半径:7.13 nm
压电 控制
加电压 反馈传感器
隧道 电流
参考信号
扫描隧道显微镜示意图
中国科学院化学研究所研制的CST图象
用原子操纵写出的“100”和“中国”
1991年恩格勒等用STM在镍单晶表面逐个移动 氙原子,拼成了字母IBM,每个字母长5纳米
扫描隧道显微镜(STM)
(Scanning Tunneling Microscopy)
STM扫描隧道显微镜

STM扫描隧道显微镜几十年来,人类研制成功了许多用于表面结构分析的现代仪器.例如光学显微镜、电子显微镜、离子显微镜、电子探针、衍射仪、能谱仪等等。
这些物理技术在表面科学研究领域都起着重要的作用;但它们的物理原理不同,作用范围、精度、环境条件等都不尽相同。
也就是说,每一种技术对表面微观结构观察与分析都有它自己的特长与意义,但每一种技术都必然受着自身原理的条件限制,只能在一定的领域内开展工作。
例如光学显微镜受其分辩率的影响无法分辩出表面的原子;高分辩率的透射电子显微镜(TEM)主要用于薄层样品的体相和界面研究。
X射线的光电子能谱等只能提供空间平均电子的电子结构信息;有的技术只能获得间接结果,还需要用试差模型来拟合等等。
虽然人们早就知道物质是由分子和原子组成的,但这大多是通过实验间接验证的。
1982年,国际商业机器公司苏黎世实验室的Binning和Rohrer博士研制成世界上第一台扫描隧道显微镜(STM)。
它的出现,使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关物理、化学性质。
而且在其测量过程中不会对样品形成任何损伤。
其惊人的原子分辩能力已被广泛地应用于材料科学、微电子科学、纳米加工技术等领域。
[实验原理]扫描隧道显微镜(STM)的工作原理是基于量子力学中的隧道效应。
见图1:图1当一粒子的动能E低于前方势垒的高度V0时,根据经典力学理论,粒子不可能穿过此势垒,即透射系数等于零。
但按照量子力学原理,粒子越过势垒区而出现在另一边的几率不为零,这个现象称为隧道效应。
实验中,将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm)见图2:在外加电场作用下,电子会穿过两个电极之间的势垒流向另一电极。
隧道电流I是电子波函数重叠的量度。
与针尖和样品之间距离S 和平均功函数Φ有关: )21exp(S A b V I Φ−∝(1) b V 是加在针尖和样品之间的偏置电压,平均功函数),21(21Φ+Φ⋅≈Φ1Φ和2Φ分别为针尖和样品表面的功函数。
扫描隧道电子显微镜

三维扫描控制器
减震系统
电子学控制系统
离线数据分析软件
主要特点
• 扫描隧道显微镜具有以下特点∶ • 1、高分辨率 扫描隧道显微镜具有原子级的空间分辨率,其横向空间分辨率为 l Å , 纵向分辨率达0.1 Å. 可以观察单个原子层的局部表面结构,而不是体相或整个表面 的平均性质,因而可直接观察到表面缺陷、表面重构、表面吸附体的形态和位置以 及由吸附体引起的表面重构等。 • 2、扫描隧道显微镜可直接探测样品的表面结构,绘出立体三维结构图像。并且可 用于具有周期性或不具备周期性的表面结构的研究,这种可实时观察的性能可用于 表面扩散等动态过程的研究。 • 3、扫描隧道显微镜可在真空、常压、空气、甚至溶液中探测物质的结构,它的优 点是三态(固态、液态和气态)物质均可进行观察,而普通电镜只能观察制作好的 固体标本,由于没有高能电子束, 对表面没有破坏作用(如辐射,热损伤等),所以 能对生理状态下生物大分子和活细胞膜表面的结构进行研究,样品不会受到损伤而 保持完好。 • 4、扫描隧道显微镜的扫描速度快,获取数据的时间短,成像也快,有可能开展生 命过程的动力学研究。 • 5、不需任何透镜, 体积小,有人称之为“口袋显微镜”(pocket microscope)。 • 6、配合扫描隧道谱(STS)可以得到有关表面电子结构的信息,例如表面不同层次 的态密度、表面电子阱、电荷密度波、表面势垒的变化和能隙结构等。
恒高度模式
• 在对样品进行扫描过程中保持针尖的绝 对高度不变;于是针尖与样品表面的局 域距离将发生变化,隧道电流 I 的大小也 随着发生变化;通过计算机记录隧道电 流的变化,并转换成图像信号显示出 来,,即得到了扫描隧道电子显微镜显微 图。这种工作方式仅适用于样品表面较 平坦、且组成成分单一。
什么是扫描隧道显微镜

什么是扫描隧道显微镜
扫描隧道显微镜(Scanning Tunneling Microscope,缩写为STM)是一种扫描探针显微术工具,它可以让科学家观察和定位单个原子,具有比同类原子力显微镜更高的分辨率。
STM在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。
扫描隧道显微镜利用量子力学中的隧道效应,当扫描针尖在样品表面上方沿z轴来回扫描时,由于针尖和样品之间的距离非常近,使得针尖和样品之间产生隧道效应,从而获得表面形貌的微细结构信息。
扫描隧道显微镜具有原子级(埃级)的空间分辨率和优于500飞秒的时间分辨率,成为国内首套自主研制的太赫兹扫描隧道显微镜系统。
STM在原子级扫描、材料表面探伤及修补、引导微观化学反应、控制原子排列等领域广泛应用。
如需了解更多有关扫描隧道显微镜的信息,可以查阅相关的专业文献,或者咨询相关领域的专家学者。