2020年湘教版八年级数学上册 一元一次不等式(组) 单元测试卷二 学生版

合集下载

湘教版八年级上册第四章一元一次不等式(组)单元测试卷

湘教版八年级上册第四章一元一次不等式(组)单元测试卷

湘教版八年级上册第四章一元一次不等式(组)单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知点P(2a+4,3a-6)在第四象限,那么a的取值范围是()A.-2<a<3 B.a<-2 C.a>3 D.-2<a<22.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3 3.以下说法中正确的是()A.若a>|b|,则a2>b2B.若a>b,则1a<1bC.若a>b,则ac2>bc2D.若a>b,c>d,则a﹣c>b﹣d 4.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>-5的负整数解集有有限个C.不等式-2x<8的解集是x<-4 D.-40是不等式2x<-8的一个解5.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7D.4<m≤76.一元一次不等式组5231xx+>⎧⎨-≥⎩的解集在数轴上表示正确的是()A.B.C.D.7.如果关于x的不等式组2030x ax b-≥⎧⎨-≤⎩的整数解仅有2x=、3x=,那么适合这个不等式组的整数a、b组成的有序数对(,)a b共有()A.3个B.4个C.5个D.6个8.不等式(2a-1)x<2(2a-1)的解集是x>2,则a的取值范围是()A.a<0 B.a<12C.a<12-D.a>12-9.如果不等式(a-1)x>a-1的解集是x<1,那么a的取值范围是() A.a≤1B.a≥1C.a<1 D.a<010.若关于x 的不等式mx -n >0的解集是x <15,则关于x 的不等式(m +n)x >n -m 的解集是( )A .x <-23B .x >-23C .x <23D .x >23二、填空题11.若关于x 的一元一次不等式组202x m x m-⎧⎨+⎩><无解,则m 的取值范围为_____.12.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是_____. 13.已知关于x 的不等式3x-5k>-7的解集是x>1,则k 的值为________.14.不等式(﹣2m +1)x >﹣2m +1的解集为x <1,则m 的取值范围是_____________.15.若x 为实数,则[]x 表示不大于x 的最大整数,例如[1.6]1=,[]3π=,[ 2.82]3-=-等. []1x +是大于x 的最小整数,对任意的实数x 都满足不等式[][]1x x x ≤<+. ①,利用这个不等式①,求出满足[]21x x =-的所有解,其所有解为__________.三、解答题16.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)17.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?18.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案1.D【解析】【分析】根据点P在第四象限,可知横坐标是正数,纵坐标是负数,从而可得关于a的不等式组,解不等式组即可求得a的取值范围.【详解】由题意得:240 360aa+>⎧⎨-<⎩,解得:-2<a<2,故选D.【点睛】本题考查了象限内点的符号特点,解一元一次不等式组,熟知各象限内点的符号特点是解题的关键.2.A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键. 3.A【解析】分析:根据实数的特点,可确定a、|b|、a2、b2均为非负数,然后根据不等式的基本性质或特例解答即可.详解:A、若a>|b|,则a2>b2,正确;B、若a>b,当a=1,b=﹣2时,则1a>1b,错误;C、若a>b,当c2=0时,则ac2=bc2,错误;D、若a>b,c>d,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a﹣c=b﹣d,错误;故选:A.点睛:此题主要考查了不等式的性质,利用数的特点,结合不等式的性质进行判断即可,关键是注意不等式性质应用时乘以或除以的是否为负数或0.4.C【解析】【分析】对于A、B选项,可分别写出满足题意的不等式的解,从而判断A、B的正误;对于C、D,首先分别求出不等式的解集,再与给出的解集或解进行比较,从而判断C、D 的正误.【详解】A. 由x<5,可知该不等式的整数解有4,3,2,1,-1,-2,-3,-4等,有无数个,所以A 选项正确,不符合题意;B. 不等式x>−5的负整数解集有−4,−3,−2,−1.故正确,不符合题意;C. 不等式−2x<8的解集是x>−4,故错误.D. 不等式2x<−8的解集是x<−4包括−40,故正确,不符合题意;故选:C.【点睛】本题是一道关于不等式的题目,需结合不等式的解集的知识求解;5.A【解析】【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【详解】解不等式3x﹣m+1>0,得:x>1 3m-,∵不等式有最小整数解2,∴1≤13m-<2,解得:4≤m<7,故选A.【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.6.C【解析】【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再进行比较可得到答案.【详解】解:第一个不等式的解集为:x >﹣3;第二个不等式的解集为:x ≤2;所以不等式组的解集为:﹣3<x ≤2.在数轴上表示不等式组的解集为:.故选:C .【点睛】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.D【解析】【分析】求出不等式组的解集,根据已知求出1<2a ≤2、3≤3b <4,求出2<a≤4、9≤b <12,即可得出答案.【详解】 解不等式2x−a≥0,得:x≥2a , 解不等式3x−b≤0,得:x≤3b , ∵不等式组的整数解仅有x =2、x =3,则1<2a ≤2、3≤3b <4, 解得:2<a≤4、9≤b <12,则a =3时,b =9、10、11;当a =4时,b =9、10、11;所以适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有6个,故选:D .【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a 、b 的值.8.B【解析】【分析】仔细观察,(2a-1)x <2(2a-1),要想求得解集,需把(2a-1)这个整体看作x 的系数,然后运用不等式的性质求出,给出的解集是x >2,不等号的方向已改变,说明运用的是不等式的性质3,运用性质3的前提是两边都乘以(•或除以)同一个负数,从而求出a 的范围.【详解】∵不等式(2a-1)x <2(2a-1)的解集是x >2,∴不等式的方向改变了,∴2a-1<0,∴a <12, 故选B .【点睛】本题考查了利用不等式的性质解含有字母系数的不等式,解题的关键是根据原不等式和给出的解集的情况确定字母系数的取值范围,为此需熟练掌握不等式的基本性质,也是正确解一元一次不等式的基础.9.C【解析】由含有a 的不等式(a-1)x >a-1的解集为:x <1,根据不等式的基本性质3,可知a-1<0,解得a <1.故选:C.10.A【解析】∵关于x 的不等式0mx n ->的解集为15x <,∴15n m =,且00m n <<,, ∴5m n =,∴关于x 的不等式:()m n x n m +>-可化为:64nx n >-,∵0n <, ∴23x <-. 故选A.11.m≥﹣2【解析】分析: 根据解一元一次不等式组的方法和题意可以求得m 的取值范围.详解: x−2m >0 ①x +2<m ②由不等式①,得x >2m ,由不等式②,得x <m−2,∵关于x 的一元一次不等式组x−2m >0x +2<m无解,∴2m≥m−2,解得,x≥−2,故答案为:m≥−2.点睛: 本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法. 12.a≥2【解析】【分析】先把a 当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可. 【详解】5310x a x -≥-⎧⎨-<⎩①②, 由①得:x≤2,由②得:x >a ,∵不等式组无解,∴a≥2,故答案为:a≥2.【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.13.2【解析】试题分析:不等式可变形为:3x>5k-7,x>573k-,∵关于x的不等式3x-5k>-7的解集是x>1,∴573k-=1,解得:k=2.故答案为:2.点睛:本题考查了不等式的解集,利用不等式的解集得出关于k的方程是解题关键.14.12 m>【解析】解:∵不等式(﹣2m+1)x>﹣2m+1的解集为x<1,∴﹣2m+1<0,解得:m>12.故答案为:m>12.15.12或1.【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决. 详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.16.(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解析】分析:(1)乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货a 本,总利润w 元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.详解:(1)设乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元.由题意得:14001600101.4x x-=, 解得:20x =.经检验,20x =是原方程的解.所以,甲种图书售价为每本1.42028⨯=元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货a 本,总利润w 元,则()()()28203201421200w a a =--+--- 4800a =+.又∵()2014120020000a a +⨯-≤, 解得:16003a ≤. ∵w 随a 的增大而增大,∴当a 最大时w 最大,∴当533a =本时w 最大,此时,乙种图书进货本数为1200533667-=(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.点睛:本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.17.(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为x 元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m 元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x 元,则:1600600032x x ⨯=+ 解得:8x =经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则: ()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.18.(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.【解析】【分析】(1)可设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y 棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】(1)设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x+10)元,依题意有,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.。

湘教版2020八年级数学上册第四章一元一次不等式(组)自主学习基础过关测试卷A卷(附答案详解)

湘教版2020八年级数学上册第四章一元一次不等式(组)自主学习基础过关测试卷A卷(附答案详解)
3.高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指( )
A.每100克内含钙150毫克B.每100克内含钙高于150毫克
C.每100克内含钙不低于150毫克D.每100克内含钙不超过150毫克
4.若数 使关于x的不等式组 有且只有四个整数解,且使关于y的方程 的解为非负数,则符合条件的所有整数 的和为( )
17.已知关于x的不等式组 的整数解共有6个,则a的取值范围是________.
18.根据不等式的基本性质,若将“ >2”变形为“b<2a”,则a的取值范围为____________.
19.已知3x+4≤2(3+x),则|x+1|的最小值为________.
20.若关于x的一元一次不等式组 无解,则a的取值范围是_______.
26.列不等式:a的相反数的绝对值与3的和是正数.
27.解不等式,并把解集在数轴上表示出来:
(1)5x-2≤3x;
(2) 4x-3>x+6;
(3) 2(x-1)+5<3x;
(4) ;
(5) .
28.解不等式组 .
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得;
(Ⅱ)解不等式②,得;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
5.B
【解析】分析:根据不等式解的定义,就是能使不等式成立的未知数的值,把x的值代入检验就可以作出判断.
详解:当x=1时,1-1=0,故不正确;
当x=2时,2-1=1>0,故正确;
当x=0时,0-1=-1<0,故不正确;
当x-2时,-2-1=-3<0,故不正确.
故选:B.
点睛:本题主要考查了不等式解的定义,是一个基础的题目,利用代入法即可求解.
13.已知不等式4x﹣a≤0的正整数解是1,2,则a的取值范围是_____.

湘教版八年级上册一元一次不等式(组)单元测试

湘教版八年级上册一元一次不等式(组)单元测试

一元一次不等式(组)单元测试姓名 一、 选择题(本题共6小题,每小题4分,共24分)1. 已知a >b ,c 为任意实数,则下列不等式中总是成立的是( )A. a+c <b+cB. a -c >b -cC. ac <bcD. ac >bc2. 不等式025x >-的解集是( )A.25x <B.25x > C.52x < D.25-x < 3. 如图, 数轴上表示的是下列哪个不等式组的解集( )A .53x x ≥-⎧⎨>-⎩B .53x x >-⎧⎨≥-⎩C .53x x <⎧⎨<-⎩D .53x x <⎧⎨>-⎩ 4. 不等式4(x -2)>2(3x + 5)的非负整数解的个数为( )A .0个B .1个C .2个D .3个5. 不等式组123x x -≤⎧⎨-<⎩的解集是( ) A .x ≥-1 B .x <5 C.-1≤x <5 D .x ≤-1或x <56. 不等式组10420-≥⎧⎨->x x 的解集在数轴上表示为( )二、填空题(本题共5小题,每小题4分,共20分) 7. 已知x 的12与5的差不小于3,用不等式表示这一关系式为 . 8. 当x 时,式子3x -5的值大于5x + 3的值.9. 当代数式2x -3x 的值大于10时,x 的取值范围是___ _____. 10. 不等式组 110320x x ⎧+>⎪⎨⎪-⎩,≥的解集是 .11.阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x 表示他的速度(单位:米/分),则x 的取值范围 .三、解答题(本题共5小题,共56分)12. (本小题满分10分)解不等式: 13. (本小题满分10分)解不等式:2-5 x ≥ 8-2x ;223125+<-+x x .A 0B 0C 0 D14. (本小题满分12分) 解不等式11237x x --≤,并把它的解集表示在数轴上.15. (本小题满分12分) 解不等式组513(1)1317.22x x x x ->+⎧⎪⎨-≤-⎪⎩,16. (本小题满分12分)小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是多少?思考题1. 若方程()()31135m x m x x ++=--的解是负数,则m 的取值范围是( )A .54m >-B .54m <-C .54m >D .54m < 2. 若关于x 的不等式⎩⎨⎧x -m <0,5-2x ≤1整数解共有2个,则m 的取值范围是( ) A .3<m <4 B .3≤m <4 C .3<m ≤4 D .3≤m ≤43. 某饮料瓶上有这样的字样:Eatable Date 18 months. 如果用x (单位:月)表示Eatable Date (保质期),那么该饮料的保质期可以用不等式表示为 .4. 若不等式3x -m ≤0的正整数解是1,2,3,则m 的取值范围是________.5. 关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是 .6. 解不等式组 302(1)33x x x +>⎧⎨-+⎩,≥ 并判断3=x 是否为该不等式组的解. 7.某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案.一元一次不等式(组)单元测试参考答案一、选择题:1.B ; 2. A ; 3.B ; 4.A ; 5.C ;6.D ;二、填空题:7.1532x -≥;8.4x <-; 9. 4x <-; 10. 32x -<≤; 11. 60<x <80. 三、解答题:12. 2x ≤-; 13. 12x >; 14. 4x ≥,数轴表示略. 15. 24x <≤. 16. 解:设小颖家每月用水量x 立方米. 则1.85(5)215x ⨯+-⨯≥.解得8x ≥.答:小颖家每月最少用水量为8立方米.思考题:1. A ;2.C ;3. x ≤18;4. 129<≤m ;5. 2k >;6.不等式组的解集为31x -<≤.x7. 解:由租用甲种汽车x 辆,则租用乙种汽车(8x -)辆.由题意得:290,100.4030(8)1020(8)x x x x +-⎧⎨+-⎩≥≥ 解得:56x ≤≤. 即共有2种租车方案: 第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.。

湘教版2020-2021八年级数学第四章一元一次不等式(组)单元综合培优测试题(附答案)

湘教版2020-2021八年级数学第四章一元一次不等式(组)单元综合培优测试题(附答案)
(1)求6月份甲种水果的售价是多少元?
(2)7月份,该商家准备销售甲、乙两种水果共5000kg.为了加大推销力度,将甲种水果的售价在6月份的基础上下调了30%,乙种水果在6月份的基础上打六折销售.要使7月份的总销售额不低于23400元,则商家至多要卖出甲种水果多少kg?
(3)在(2)的条件下,若甲种水果进价为2.7元/kg,乙种水果的进价为3.5元/kg,7月份,该商家可获利多少元?
23.对非负实数 “四舍五入”到个位的值记为 .即当 为非负整数时,若 ,则 .如 , .给出下列关于 的结论:(1) ;(2) ;(3)若 ,则实数 的取值范围是 ;(4)当 , 为非负整数时,有 ;(5) ;其中,正确的结论是__________(填写所有正确的序号).
24.如图1,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠EDF=30°,∠ABC=40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,记∠ADF为α(0°<α<180°),在旋转过程中;
6.如果关于 的不等式组 仅有四个整数解:-1,0,1,2,那么适合这个为等式组的整数 组成的有序实数对 最多共有()
A.2个B.4个C.6个D.9个
7.若关于x的不等式mx-n>0的解集是 ,则关于x的不等式 的解集是()
A. B. C. D.
8.若 均为自然数,则关于 的方程 的解 共有()个( 表示不超过实数 的最大整数)
A.1B.2C.3D.4
9.从-2,-1,0,1,2,3,5这七个数中,随机抽取一个数记为m,若数m使关于x的不等式组 无解,且使关于x的一元一次方程(m-2)x=3有整数解,那么这六个数所有满足条件的m的个数有()A.1B.2C.3D.4
10.若整数a使关于x的不等式组 至少有4个整数解,且使关于x,y的方程组 的解为正整数,那么所有满足条件的整数a的值的和是( ).

2020年湘教版数学八年级上册第4章《一元一次不等式(组)》单元测试卷(含答案)

2020年湘教版数学八年级上册第4章《一元一次不等式(组)》单元测试卷(含答案)

2020-2021学年八年级数学上册第4章《一元一次不等式(组)》单元检测一.选择题(共10小题,每小题3分,共30分)1.已知a<b,下列不等式中正确的是()A.B.12a﹣3<12b﹣3C.a+3>b+3D.﹣3a<﹣3b2.已知12(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±33.方程组的解满足不等式x﹣y<5,则a的范围是()A.a<1B.a>1C.a<2D.a>24.不等式>x的最大整数解为()A.x=﹣1B.x=0C.x=1D.x=25.不等式3(x﹣2)≤5﹣x的非负整数解有()A.1个B.2个C.3个D.4个6.“x的3倍与3的差不大于8”,列出不等式是()A.3x﹣3≤8B.3x﹣3≥8C.3x﹣3<8D.3x﹣3>87.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.8.如果关于x的不等式组有解,则a的取值范围是()A.a≤3B.a≥3C.a>3D.a<39.若干个苹果分给x个小孩,如果每人分3个,那么余7个;如果每人分5个,那么最后一人分到的苹果不足5个,则x满足的不等式组为()A.0<(3x+7)﹣5(x﹣1)≤5B.0<(3x+7)﹣5(x﹣1)<5C.0≤(3x+7)﹣5(x﹣1)<5D.0≤(3x+7)﹣5(x﹣1)≤510.P,Q,R,S四个小朋友玩跷跷板,结果如图所示,则他们的体重大小关系为()A .R <Q <P <SB .Q <R <P <SC .Q <R <S <PD .Q <P <R <S二.填空题(共8小题,每小题3分,共24分)11.若﹣2m <﹣6n ,则3m n .(填“<、>”或“=”号) 12.已知关于x 的不等式2x ﹣k ≥1的解在数轴上的表示如图,则k 的值是 .13.关于x ,y 的方程组的解x 与y 满足条件x +y ≤2,则4m +3的最大值是 .14.如果关于x 的不等式2x ﹣3≤2a +3只有4个正整数解,那么a 的取值范围是 .15.已知关于x 的不等式组的解集为3≤x <5,则b 的值为16.不等式组的解集是 .17.已知关于x 的不等式组无解,则m 的取值范围是 .18.某小学举办“慈善一日捐”演出,共有600张演出票,成人票价为60元,学生票价为20元,演出票虽未售完,但售票收入达22080元.设成人票售出x 张,则x 的取值范围是 .三.解答题(共6小题,满分46分,19题6分,20、21、22每小题7分,23题9分,24题10分)19.已知:x ,y 满足3x ﹣4y =5.(1)用含x 的代数式表示y ,结果为 ;(2)若y 满足﹣1<y ≤2,求x 的取值范围;(3)若x ,y 满足x +2y =a ,且x >2y ,求a 的取值范围.20.已知m 是不等式2(5m +3)≥m ﹣3(1﹣2m )的一个负整数解,请求出代数式m ﹣1+÷的值.21.解不等式组,并求x 的整数解.22.解不等式组:,并把解集在数轴上表示出来.23.为保护环境,我市某公交公司计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车3辆,B型公交车2辆,共需600万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?24.某班决定购买一些笔记本和文具盒做奖品.已知需要的笔记本数量是文具盒数量的3倍,购买的总费用不低于220元,但不高于250元.(1)商店内笔记本的售价4元/本,文具盒的售价为10元/个,设购买笔记本的数量为x,按照班级所定的费用,有几种购买方案?每种方案中笔记本和文具盒数量各为多少?(2)在(1)的方案中,哪一种方案的总费用最少?最少费用是多少元?(3)经过还价,老板同意4元/本的笔记本可打八折,10元/个的文具盒可打七折,用(2)中的最少费用最多还可以多买多少笔记本和文具盒?参考简答一.选择题(共10小题)1.B.2.A.3.C.4.B.5.C.6.A.7.D.8.D.9.C.10.B.二.填空题(共8小题)11. > .(填“<、>”或“=”号) 12. 3- . 13. 5 . 14. 12a < .15. 6 16. 16x . 17. 3m . 18. 252368(x x <为整数).三.解答题(共6小题) 19.已知:x ,y 满足345x y -=.(1)用含x 的代数式表示y ,结果为; (2)若y 满足12y -<,求x 的取值范围;(3)若x ,y 满足2x y a +=,且2x y >,求a 的取值范围.【解】:解:(1)y =; 故答案为:;(2)根据题意得﹣1<≤2, 解得<x ≤;(3)解方程组得∵x >2y ,∴>2×,解得a <10.20.已知m 是不等式2(5m +3)≥m ﹣3(1﹣2m )的一个负整数解,请求出代数式m ﹣1+÷的值.【解】:解:m ﹣1+÷=m ﹣1+•=m ﹣1+==,∵解不等式2(5m +3)≥m ﹣3(1﹣2m )得:m ≥﹣3,∴m =﹣1或﹣3或﹣2,∵当m =﹣1或m =﹣3时,分式无意义,∴m 只能等于﹣2,当m =﹣2时,原式==﹣4.21.解不等式组3(2)8131322x x x x --<⎧⎪⎨-<-⎪⎩,并求x 的整数解. 【解】:解:∵解不等式①得:x >﹣1,解不等式②得:x <2, ∴不等式组的解集为﹣1<x <2,∴x 的整数解为01,22.解不等式组:,并把解集在数轴上表示出来.【解】:解不等式3(2)4x x --,得:1x ,解不等式21152x x ++<,得:3x >-, 则不等式组的解集为31x -<,将不等式组的解集表示在数轴上如下:23.为保护环境,我市某公交公司计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车3辆,B 型公交车2辆,共需600万元.(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在某线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?【解】:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得:,解得.答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10)a-辆,由题意得,解得:68a,所以6a=,7,8;则(10)4a-=,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)①购买A型公交车6辆,则B型公交车4辆:100615041200⨯+⨯=万元;②购买A型公交车7辆,则B型公交车3辆:100715031150⨯+⨯=万元;③购买A型公交车8辆,则B型公交车2辆:100815021100⨯+⨯=万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.24.某班决定购买一些笔记本和文具盒做奖品.已知需要的笔记本数量是文具盒数量的3倍,购买的总费用不低于220元,但不高于250元.(1)商店内笔记本的售价4元/本,文具盒的售价为10元/个,设购买笔记本的数量为x,按照班级所定的费用,有几种购买方案?每种方案中笔记本和文具盒数量各为多少?(2)在(1)的方案中,哪一种方案的总费用最少?最少费用是多少元?(3)经过还价,老板同意4元/本的笔记本可打八折,10元/个的文具盒可打七折,用(2)中的最少费用最多还可以多买多少笔记本和文具盒?【解】:(1)依题意,得:,解得:1 303411x.x为正整数,x∴可取30,31,32,33,34.又13x也必须是整数,∴13x可取10,11.∴有两种购买方案,方案一:笔记本30本,文具盒10个;方案二:笔记本33本,文具盒11个.(2)在(1)中,方案一购买的总数量最少,∴总费用最少,最少费用为:4301010220⨯+⨯=(元).答:方案一的总费用最少,最少费用为220元.(3)设用(2)中的最少费用最多还可以多买的文具盒数量为y ,则笔记本数量为3y , 依题意,得:480%(303)1070%(10)220y y ⨯++⨯+, 解得:21383y , y 为正整数,y ∴的最大值为3,39y ∴=.答:用(2)中的最少费用最多还可以多买9本笔记本和3个文具盒.1、盛年不重来,一日难再晨。

2020年湘教版初二数学上册第4章《一元一次不等式(组)》单元测试题(含答案)

2020年湘教版初二数学上册第4章《一元一次不等式(组)》单元测试题(含答案)

2020-2021学年八年级数学上册第4章《一元一次不等式(组)》单元检测一.选择题(共10小题,每小题3分,共30分)1.已知a<b,下列不等式中正确的是()A.B.12a﹣3<12b﹣3C.a+3>b+3D.﹣3a<﹣3b2.已知12(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±33.方程组的解满足不等式x﹣y<5,则a的范围是()A.a<1B.a>1C.a<2D.a>24.不等式>x的最大整数解为()A.x=﹣1B.x=0C.x=1D.x=25.不等式3(x﹣2)≤5﹣x的非负整数解有()A.1个B.2个C.3个D.4个6.“x的3倍与3的差不大于8”,列出不等式是()A.3x﹣3≤8B.3x﹣3≥8C.3x﹣3<8D.3x﹣3>87.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.8.如果关于x的不等式组有解,则a的取值范围是()A.a≤3B.a≥3C.a>3D.a<39.若干个苹果分给x个小孩,如果每人分3个,那么余7个;如果每人分5个,那么最后一人分到的苹果不足5个,则x满足的不等式组为()A.0<(3x+7)﹣5(x﹣1)≤5B.0<(3x+7)﹣5(x﹣1)<5C.0≤(3x+7)﹣5(x﹣1)<5D.0≤(3x+7)﹣5(x﹣1)≤510.P,Q,R,S四个小朋友玩跷跷板,结果如图所示,则他们的体重大小关系为()A .R <Q <P <SB .Q <R <P <SC .Q <R <S <PD .Q <P <R <S二.填空题(共8小题,每小题3分,共24分)11.若﹣2m <﹣6n ,则3m n .(填“<、>”或“=”号) 12.已知关于x 的不等式2x ﹣k ≥1的解在数轴上的表示如图,则k 的值是 .13.关于x ,y 的方程组的解x 与y 满足条件x +y ≤2,则4m +3的最大值是 .14.如果关于x 的不等式2x ﹣3≤2a +3只有4个正整数解,那么a 的取值范围是 .15.已知关于x 的不等式组的解集为3≤x <5,则b 的值为16.不等式组的解集是 .17.已知关于x 的不等式组无解,则m 的取值范围是 .18.某小学举办“慈善一日捐”演出,共有600张演出票,成人票价为60元,学生票价为20元,演出票虽未售完,但售票收入达22080元.设成人票售出x 张,则x 的取值范围是 .三.解答题(共6小题,满分46分,19题6分,20、21、22每小题7分,23题9分,24题10分)19.已知:x ,y 满足3x ﹣4y =5.(1)用含x 的代数式表示y ,结果为 ;(2)若y 满足﹣1<y ≤2,求x 的取值范围;(3)若x ,y 满足x +2y =a ,且x >2y ,求a 的取值范围.20.已知m 是不等式2(5m +3)≥m ﹣3(1﹣2m )的一个负整数解,请求出代数式m ﹣1+÷的值.21.解不等式组,并求x 的整数解.22.解不等式组:,并把解集在数轴上表示出来.23.为保护环境,我市某公交公司计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车3辆,B型公交车2辆,共需600万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?24.某班决定购买一些笔记本和文具盒做奖品.已知需要的笔记本数量是文具盒数量的3倍,购买的总费用不低于220元,但不高于250元.(1)商店内笔记本的售价4元/本,文具盒的售价为10元/个,设购买笔记本的数量为x,按照班级所定的费用,有几种购买方案?每种方案中笔记本和文具盒数量各为多少?(2)在(1)的方案中,哪一种方案的总费用最少?最少费用是多少元?(3)经过还价,老板同意4元/本的笔记本可打八折,10元/个的文具盒可打七折,用(2)中的最少费用最多还可以多买多少笔记本和文具盒?参考简答一.选择题(共10小题)1.B.2.A.3.C.4.B.5.C.6.A.7.D.8.D.9.C.10.B.二.填空题(共8小题)11. > .(填“<、>”或“=”号) 12. 3- . 13. 5 . 14. 12a < .15. 6 16. 16x . 17. 3m . 18. 252368(x x <为整数).三.解答题(共6小题) 19.已知:x ,y 满足345x y -=.(1)用含x 的代数式表示y ,结果为; (2)若y 满足12y -<,求x 的取值范围;(3)若x ,y 满足2x y a +=,且2x y >,求a 的取值范围.【解】:解:(1)y =; 故答案为:;(2)根据题意得﹣1<≤2, 解得<x ≤;(3)解方程组得∵x >2y ,∴>2×,解得a <10.20.已知m 是不等式2(5m +3)≥m ﹣3(1﹣2m )的一个负整数解,请求出代数式m ﹣1+÷的值.【解】:解:m ﹣1+÷=m ﹣1+•=m ﹣1+==,∵解不等式2(5m +3)≥m ﹣3(1﹣2m )得:m ≥﹣3,∴m =﹣1或﹣3或﹣2,∵当m =﹣1或m =﹣3时,分式无意义,∴m 只能等于﹣2,当m =﹣2时,原式==﹣4.21.解不等式组3(2)8131322x x x x --<⎧⎪⎨-<-⎪⎩,并求x 的整数解. 【解】:解:∵解不等式①得:x >﹣1,解不等式②得:x <2, ∴不等式组的解集为﹣1<x <2,∴x 的整数解为01,22.解不等式组:,并把解集在数轴上表示出来.【解】:解不等式3(2)4x x --,得:1x ,解不等式21152x x ++<,得:3x >-, 则不等式组的解集为31x -<,将不等式组的解集表示在数轴上如下:23.为保护环境,我市某公交公司计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车3辆,B 型公交车2辆,共需600万元.(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在某线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?【解】:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得:,解得.答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10)a-辆,由题意得,解得:68a,所以6a=,7,8;则(10)4a-=,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)①购买A型公交车6辆,则B型公交车4辆:100615041200⨯+⨯=万元;②购买A型公交车7辆,则B型公交车3辆:100715031150⨯+⨯=万元;③购买A型公交车8辆,则B型公交车2辆:100815021100⨯+⨯=万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.24.某班决定购买一些笔记本和文具盒做奖品.已知需要的笔记本数量是文具盒数量的3倍,购买的总费用不低于220元,但不高于250元.(1)商店内笔记本的售价4元/本,文具盒的售价为10元/个,设购买笔记本的数量为x,按照班级所定的费用,有几种购买方案?每种方案中笔记本和文具盒数量各为多少?(2)在(1)的方案中,哪一种方案的总费用最少?最少费用是多少元?(3)经过还价,老板同意4元/本的笔记本可打八折,10元/个的文具盒可打七折,用(2)中的最少费用最多还可以多买多少笔记本和文具盒?【解】:(1)依题意,得:,解得:1 303411x.x为正整数,x∴可取30,31,32,33,34.又13x也必须是整数,∴13x可取10,11.∴有两种购买方案,方案一:笔记本30本,文具盒10个;方案二:笔记本33本,文具盒11个.(2)在(1)中,方案一购买的总数量最少,∴总费用最少,最少费用为:4301010220⨯+⨯=(元).答:方案一的总费用最少,最少费用为220元.(3)设用(2)中的最少费用最多还可以多买的文具盒数量为y,则笔记本数量为3y,依题意,得:480%(303)1070%(10)220y y⨯++⨯+,解得:21383 y,y为正整数,y∴的最大值为3,39y∴=.答:用(2)中的最少费用最多还可以多买9本笔记本和3个文具盒.1、只要朝着一个方向努力,一切都会变得得心应手。

湘教版八年级数学上第4章一元一次不等式(组)单元测试(含答案)

湘教版八年级数学上第4章一元一次不等式(组)单元测试(含答案)

初中数学湘教版八年级上册:第4章一元一次不等式(组)一、选择题(共10小题;共50分)1. 不等式的解集在数轴上表示正确的是( )A. B.C. D.2. 一个关于的一元一次不等式组的解集在数轴上的表示如图所示,则该不等式组的解集是( )A. B. C. D.3. 甲种蔬菜保鲜适宜的温度是,乙种蔬菜保鲜适宜的温度是,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A. B.C. D.4. 下列不等式中,一元一次不等式有①②③π⑤④πA. 个B. 个C. 个D. 个5. 不等式组的解集在数轴上表示如图所示,则该不等式组可能为( ).A. B. C. D.6. 若,则下列不等式成立的是( )A. B.C. D.7. 王芳同学到文具店购买中性笔和笔记本,中性笔每支元,笔记本每本元,王芳同学花了元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于元)( )A. B. C. D.8. 小明准备用元钱买笔和笔记本,已知每支笔元,每本笔记本元,他买了本笔记本后,其余的钱用来买笔,那么他最多可以买( )A. 支笔B. 支笔C. 支笔D. 支笔9. 一元一次不等式组的解集中,整数解的个数是( )A. B. C. D.10. 正五边形广场的边长为米,甲、乙两个同学做游戏,分别从、两点处同时出发,沿的方向绕广场行走,甲的速度为米分,乙的速度为米分,则两人第一次刚走到同一条边上时( )A. 甲在顶点处B. 甲在顶点处C. 甲在顶点处D. 甲在顶点处二、填空题(共10小题;共50分)11. 如果,那么与的大小关系是.(填或符号)12. 如图,数轴上表示的关于的一元一次不等式组的解集为.13. 不等式解集是.14. 不等式组的解集为.15. 若是关于的一元一次不等式,则.16. 一个工程队计划用天完成土方的工程,实际上第一天就完成了方土,因进度需要,剩下的工程所用的时间不能超过天,那么以后几天平均至少要完成的土方数是.17. 下列式子属于不等式的是.①②③④⑤⑥⑦⑧⑨18. 若不等式的解集是,则不等式的解集是.19. 如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的.已知这个铁钉被敲击次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是,若铁钉总长度为,则的取值范围是.20. 若关于的不等式组无解,则的取值范围是.三、解答题(共5小题;共65分)21. 阅读下列材料,并完成填空.你能比较和的大小吗?为了解决这个问题,先把问题一般化,比较和(,且为整数)的大小.然后从分析,,的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列(1)-(7)组两数的大小:(在横线上填上 " ""“或” ")(1);(2);(3);(4);(5);(6);(7);(2)归纳第(1)问的结果,可以猜想出和的大小关系;(3)根据以上结论,可以得出和的大小关系.22. 解不等式组①②并把它的解集在数轴上表示出来.23. 求当取何值时,代数式的值不小于?24. 若是关于的一元一次不等式,求的值.25. 试确定的范围,使不等式组(1)只有一个整数解;(2)没有整数解.答案第一部分1. D2. C3. B4. B5. A6. B7. B8. C9. C 10. D第二部分11.12. <13.14.15.16.17. ①③④⑤⑦⑧⑨18.19.20.第三部分21. (1);;;;;;(2)当或时,;当时,.(3).22. 解不等式①,得解不等式②,得所以不等式组的解集是.在数轴上表示如下:23. 由题意,得当取何值时,代数式的值不小于.24. 由题意可知,且..25. (1)①②由①得;由②得.因为原不等式组只有一个整数解,则不等式的解集为,且这个惟一的整数必为,故.(2)要使不等式组没有整数解,则.。

湘教版2020--2021学年八年级数学上册第4章《一元一次不等式(组)》应用题专项训练

湘教版2020--2021学年八年级数学上册第4章《一元一次不等式(组)》应用题专项训练

湘教版2020--2021学年八年级数学上册第4章《一元一次不等式(组)》应用题专项训练一.选择题(共8小题,每小题3分,共24分)1.妈妈将某服饰店的促销活动内容告诉爸爸后,爸爸假设某一商品的定价为x 元,并列出关系式为0.8(2100)1500x -<,则下列哪一项可能是妈妈告诉爸爸的内容( )A .买两件等值的商品可减100元,再打2折,最后不到1500元B .买两件等值的商品可打2折,再减100元,最后不到1500元C .买两件等值的商品可减100元,再打8折,最后不到1500元D .买两件等值的商品可打8折,再减100元,最后不到1500元2.x 的2倍不大于3与x 的差的一半,将其表示成不等式为( )A .12(3)2x x <-B .12(3)2x x -C .12(3)2x x >-D .12(3)2x x - 3.在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x 题,可列不等式为( )A .105(20)80x x --B .105(20x x +- )80C .105(20)80x x -->D .105(20x x +- )80>4.某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x 分钟,以下所列不等式正确的是( )A .9032480x ⨯+B .9032480x ⨯+C .9032480x ⨯+<D .9032480x ⨯+>5.某校20名同学去工厂进行暑假实践活动,每名同学每天可以加工甲种零件5个或乙种零件4个,已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元,若要使车间每天获利不低于1800元,加工乙种零件的同学至少为( )A .11B .12C .13D .146.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x 人,则可列不等式组为( )A .8(1)5128x x -<+<B .05128x x <+<C .05128(1)8x x <+--<D .85128x x <+<7.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3200元,且购买篮球的数量不少于足球数量的一半,若每个篮球80元,每个足球50元.求共有几种购买方案?设购买篮球x 个,可列不等式组( )A .2508050(50)3200x x x x -⎧⎨+-<⎩B .1(50)28050(50)3200x x x x ⎧>-⎪⎨⎪+-<⎩ C .1(50)28050(50)3200x x x x ⎧-⎪⎨⎪+-⎩ D .1(50)25080(50)3200x x x x ⎧-⎪⎨⎪+-⎩8.某商店计划用不超过2000元的资金,购进甲、乙两种单价分别为30元、60元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利5元、15元,两种商品均售完.若所获利润大于380元,则该店进货方案有( )A .3种B .4种C .5种D .6种二.填空题(共8小题,每小题3分,共24分)9.小明要从甲地到乙地,两地相距1.8千米,已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为 . 10.“2与y 的5倍的差不小于7”用不等式表示是 .11.某品牌电脑的成本为2200元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x 折销售,请依据题意列出关于x 的不等式: .12.某次数学竞赛活动,共有20道选择题,评分办法是:答对一题得5分,答错一题扣1分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对 题,成绩才能在80分以上.13.鱼缸里饲养A 、B 两种鱼,A 种鱼的生长温度C x ︒的范围是2028x ,B 种鱼的生长温度C x ︒的范围是1925x ,那么鱼缸里的温度C x ︒应该控制在 范围内.14.武汉东湖高新开发区某企业新增了一个项目,为了节约资源,保护环境,该企业决定购买A 、B 两种型号的污水处理设备共8台,具体情况如下表:经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.设购买A 种型号的污水处理设备x 台,可列不等式组 .15.某公司组织旅游活动,如果租用50座的客车m辆恰好坐满,如果租用70座客车可少租1辆,并且有一辆有剩余座位,且剩余座位不足20个,则m的值为.16.小静带着100元钱去文具店购买日记本,到文具店她发现该文具店对日记本正在开展“满100减30”的促销活动.即购买日记本的费用达到或超过100元就可以少付30元.小静通过计算发现,在该店买6个日记本的费用比买5个日记本的费用低.请你计算一个日记本的价格可以是元.(设日记本的价格为正整数,请写出所有可能的结果)三.解答题(共7小题,满分52分,其中17、19每小题6分,18、20、21、22、23每小题8分)17.期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元,已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过225元,求至多需要购买多少个甲种笔记本?18.水是人类的生命之源,为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:(1)小王家今年3月份用水20吨,要交水费元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)如果小王家5月份用水水费计划不超过67元,则小王家5月份最多可用水多少吨?19.某街道组织志愿者活动,选派志愿者到小区服务.若每一个小区安排4人,那么还剩下78人;若每个小区安排8人,那么最后一个小区不足8人,但不少于4人.求这个街道共选派了多少名志愿者?20.三水某工厂最近准备复工复产,需要面向社会招聘A,B两个工种的工人共150人.现要求B 工种的人数不少于A工种人数的2倍,且B工种的人数比A工种人数多出的数量不超过54人.请回答以下问题:(1)若设A工种工人人数为x,那么B工种工人人数为;(2)请利用不等式的知识求出招聘的所有方案;(3)若A,B两个工种的工人的月工资分别是5000和8000元,怎样招聘可使每月所付的工资总额最少,最少工资总额是多少?21.长沙市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共70件,其中乙种纪念品的数量不少于40件,考虑到资金周转,用于购买这70件纪念品的资金不能超过5750元,那么该商店共有几种进货方案?22.在今年的新冠疫情期间,政府紧急组织一批物资送往武汉.现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱.(1)求食品和矿泉水各有多少箱?(2)现计划租用A、B两种货车共10辆,一次性将所有物资送到群众手中,已知A种货车最多可装食品40箱和矿泉水10箱,B种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案?(3)在(2)条件下,A种货车每辆需付运费600元,B种货车每辆需付运费450元,政府应该选择哪种方案,才能使运费最少?最少运费是多少?23.某爱心公司捐资购买了120吨物资打算运往山区,现有甲、乙两种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车都满载,但不超载)(1)若全部物资都用甲、乙两种车型来运送,需运费9100元,问分别需甲、乙两种车型各几辆?(2)公司计划用甲、乙两种车型同时参与运送,且总运费控制在8600元以内,有几种用车方案?每种用车方案各需要多少元?湘教版2020--2021学年八年级数学上册第4章《一元一次不等式(组)》应用题专项训练一.选择题(共8小题)1.C . 2.B . 3.A . 4.A . 5.C . 6.C . 7.C . 8.A .二.填空题(共8小题)9. 21090(15)1800x x +- . 10. 257y - .11. 2800220022005%10x ⨯-⨯ . 12. 17 . 13. 2025x . 14. 1210(8)89200160(8)1380x x x x +-⎧⎨+-⎩. 15. 4 . 16. 17,18,19 . 三.解答题(共7小题)17.期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元,已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过225元,求至多需要购买多少个甲种笔记本?【解】:(1)设购买一个甲种笔记本需x 元,购买一个乙种笔记本需y 元,依题意,得:15202505x y x y +=⎧⎨-=⎩, 解得:105x y =⎧⎨=⎩. 答:购买一个甲种笔记本需10元,购买一个乙种笔记本需5元.(2)设购买m 个甲种笔记本,则购买(35)m -个乙种笔记本,依题意,得:(102)50.8(35)225m m -+⨯-, 解得:1214m , 又m 为非负整数,m ∴的最大值为21.答:至多需要购买21个甲种笔记本.18.水是人类的生命之源,为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费(155)a b+元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)如果小王家5月份用水水费计划不超过67元,则小王家5月份最多可用水多少吨?【解】:(1)15(2015)155a b a b+-=+(元),(2)依题意,得:15(2115)4815(2515)(2725)570a ba b+-=⎧⎨+-+-⨯=⎩,解得:23ab=⎧⎨=⎩,答:a的值为2,b的值为3.(3)设小王家5月份用水x吨(25)x>,依题意,得:152(2515)35(25)67x⨯+-⨯+-,解得:26.4x,答:小王家5月份最多可用水26.4吨.19.某街道组织志愿者活动,选派志愿者到小区服务.若每一个小区安排4人,那么还剩下78人;若每个小区安排8人,那么最后一个小区不足8人,但不少于4人.求这个街道共选派了多少名志愿者?【解】:设共到x个小区服务,则共有志愿者(478)x+人,依题意,得:4788(1)44788x xx x+-+⎧⎨+<⎩,解得:19.520.5x<,又x为正整数,20x∴=,478158x∴+=.答:这个街道共选派了158名志愿者.20.三水某工厂最近准备复工复产,需要面向社会招聘A,B两个工种的工人共150人.现要求B 工种的人数不少于A工种人数的2倍,且B工种的人数比A工种人数多出的数量不超过54人.请回答以下问题:(1)若设A工种工人人数为x,那么B工种工人人数为(150)x-人;(2)请利用不等式的知识求出招聘的所有方案;(3)若A,B两个工种的工人的月工资分别是5000和8000元,怎样招聘可使每月所付的工资总额最少,最少工资总额是多少?【解】:(1)A工种工人人数为x,A,B两个工种的工人共150人,B∴工种工人人数为(150)x-(人),(2)由题意可得150215054x xx x-⎧⎨-+⎩,解得:4850x,x为整数,48x∴=或49或50,∴方案一、招聘A工种工人人数为48人,B工种工人人数为102人,方案二、招聘A工种工人人数为49人,B工种工人人数为101人,方案三、招聘A工种工人人数为50人,B工种工人人数为100人;(3)方案一、工资总额50004880001021056000=⨯+⨯=元,方案二、工资总额50004980001011053000=⨯+⨯=元,方案三、工资总额50005080001001050000=⨯+⨯=元,答:招聘招聘A工种工人人数为50人,B工种工人人数为100时,工资总额最少,最少工资总额是1050000元.21.长沙市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共70件,其中乙种纪念品的数量不少于40件,考虑到资金周转,用于购买这70件纪念品的资金不能超过5750元,那么该商店共有几种进货方案?【解】:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元,依题意,得:2340035650x yx y+=⎧⎨+=⎩,解得:50100xy=⎧⎨=⎩.答:购进甲种纪念品每件需50元,购进乙种纪念品每件需100元.(2)设购进乙种纪念品m件,则购进甲种纪念品(70)m-件,依题意,得:4050(70)1005750mm m⎧⎨-+⎩,解得:4045m,又m为正整数,m∴可以为40,41,42,43,44,45,∴该商店共有6种进货方案.22.在今年的新冠疫情期间,政府紧急组织一批物资送往武汉.现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱.(1)求食品和矿泉水各有多少箱?(2)现计划租用A、B两种货车共10辆,一次性将所有物资送到群众手中,已知A种货车最多可装食品40箱和矿泉水10箱,B种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案?(3)在(2)条件下,A种货车每辆需付运费600元,B种货车每辆需付运费450元,政府应该选择哪种方案,才能使运费最少?最少运费是多少?【解】:(1)设食品有x箱,矿泉水有y箱,依题意,得:410110x yx y+=⎧⎨-=⎩,解得:260150xy=⎧⎨=⎩.答:食品有260箱,矿泉水有150箱.(2)设租用A种货车m辆,则租用B种货车(10)m-辆,依题意,得:4020(10)2601020(10)150m mm m+-⎧⎨+-⎩,解得:35m,又m为正整数,m∴可以为3,4,5,∴共有3种运输方案,方案1:租用A种货车3辆,B种货车7辆;方案2:租用A种货车4辆,B 种货车6辆;方案3:租用A种货车5辆,B种货车5辆.(3)选择方案1所需运费为600345074950⨯+⨯=(元),选择方案2所需运费为600445065100⨯+⨯=(元),选择方案3所需运费为600545055250⨯+⨯=元).495051005250<<,∴政府应该选择方案1,才能使运费最少,最少运费是4950元.23.某爱心公司捐资购买了120吨物资打算运往山区,现有甲、乙两种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车都满载,但不超载)(1)若全部物资都用甲、乙两种车型来运送,需运费9100元,问分别需甲、乙两种车型各几辆?(2)公司计划用甲、乙两种车型同时参与运送,且总运费控制在8600元以内,有几种用车方案?每种用车方案各需要多少元?【解】:(1)设需甲种车型x 辆,乙种车型y 辆,依题意有5101204007009100x y x y +=⎧⎨+=⎩①②, 解得145x y =⎧⎨=⎩. 故需甲种车型14辆,乙种车型5辆;(2)设需甲车型a 辆,乙车型b 辆,依题意有5101204007008600a b a b +=⎧⎨+⎩, 解得4a ,10b ,a ,b 是正整数,4a ∴=,10b =,需要4004700108600⨯+⨯=(元);2a =,11b =,需要4002700118500⨯+⨯=(元);故有两种运送方案:①甲车型4辆,乙车型10辆,需要8600元;②甲车型2辆,乙车型11辆,需要8500元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年湘教版八年级数学上册 一元一次不等式(组) 单元测试卷二
一、选择题(24分)
1、下列式子:(1)2x=7;(2)3x+4y ;(3)-3<2;(4)2a-3≥0;(5)x>1;
(6)a-b>1中,是不等式有( )
A.5个;
B.4个;
C.3个;
D.1个;
2、若a<b ,则下列各式正确的是( )
A. 3a>3b ;
B. -7a>-7b ;
C. a-3>b-3;
D. 错误!未找到引用源。


3、不等式组错误!未找到引用源。

的解集在数轴上表示正确的是( )
A. B. C. D.
4、下列说法错误的是( )
A.不等式x-3>2的解集是x>5;
B.不等式x<3的整数解有无数个;
C.x=0
是不等式2x<3的一个解; D.不等式x+3<3的整数解是0;
5、不等式组错误!未找到引用源。

的所有整数解的和是( )
A.2;
B.3;
C.5;
D.6;
6、关于x 的不等式组错误!未找到引用源。

的解集为x<3,那么m 的取值范围是(

A.m=3;
B.m>3;
C.m<3;
D.m ≥3;
7、不等式组错误!未找到引用源。

的最大整数解为( )
A.8;
B.6;
C.5;
D.4;
8、某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车x 辆,
则列出的不等式为( )
A.15x>20(x+6);
B. 15(x+6)>20x ;
C. 15x>20(x-6);
D. 15(x-6)>20x ;
二、填空题(24分)
9、用不等式表示:x 的错误!未找到引用源。

与x 的2倍的差是非负数: 。

10、不等式2x-4≥0的解集是 。

11、不等式组错误!未找到引用源。

的解集是 。

12、已知关于x 的方程错误!未找到引用源。

的解是正数,则m 的取值范围是 。

13、若不等式组错误!未找到引用源。

的解集为0≤x<1,则a+b= .
14、已知错误!未找到引用源。

,若y为正数,则m的取值范围是。

15、若关于x的不等式组错误!未找到引用源。

无解,则a的取值范围是。

16、有10名菜农,每人种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5
万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只
能安排人种茄子。

三、解答题(52分)
17、(10分)解下列不等式(组),并把解集在数轴上表示出来;
(1)错误!未找到引用源。

(2)错误!未找到引用源。

18、(8分)解不等式组错误!未找到引用源。

,并写出它的所有非负整数解。

19、(8分)如果关于x的方程错误!未找到引用源。

的解大于方程错误!未找到引用源。

的解,求a的取值范围。

20、(8分)x取哪些整数,能使代数式错误!未找到引用源。

的值在-1和2之间。

21、(8分)已知关于x的不等式组错误!未找到引用源。

只有3个整数解,求实数a的取值范围。

22、(10分)某电器商场销售A、B两种型号的计算器,两种计算器的进货价格分别为30元、40元,商场销售5台A型和1台B型计算器,可获得利润76元,
销售6台A型和3台B型计算器,可获得利润120元,
(1)商场销售A、B两种型号计算器的销售价格分别是多少元?
(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型计算器多少台?。

相关文档
最新文档