2020-2021郑州市第七中学八年级数学上期中一模试卷带答案
2020-2021初二数学上期中试卷(及答案)

2020-2021初二数学上期中试卷(及答案)一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是( )A .9B .8C .7D .6 2.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°3.如图,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( )A .高B .角平分线C .中线D .不能确定 4.计算()2x y xy x xy--÷的结果为( ) A .1yB .2x yC .2x y -D .xy - 5.如图,在ABC ∆中,90A ∠=o ,30C ∠=o ,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC 的长为( )A .2B .4C .6D .8 6.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°7.一个正多边形的每个外角都等于36°,那么它是( )A .正六边形B .正八边形C .正十边形D .正十二边形8.若23m =,25n =,则322m n -等于 ( )A .2725B .910C .2D .25279.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x 套运动服,根据题意可列方程为A .()16040018x 120%x++= B .()16040016018x 120%x -++= C .16040016018x 20%x-+= D .()40040016018x 120%x -++= 10.下列各式中,从左到右的变形是因式分解的是( ) A .()()2224a a a +-=- B .()ab ac d a b c d ++=++C .()2293x x -=-D .22()a b ab ab a b -=- 11.式子:222123,,234x y x xy 的最简公分母是( ) A .24x 2y 2xy B .24 x 2y 2 C .12 x 2y 2 D .6 x 2y 212.如图,△ABC 中,∠B =60°,AB =AC ,BC =3,则△ABC 的周长为( )A .9B .8C .6D .12二、填空题13.从n 边形的一个顶点出发有四条对角线,则这个n 边形的内角和为______度.14.已知等腰三角形的两边长分别为3和5,则它的周长是____________15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.16.已知m ﹣n=2,mn=﹣1,则(1+2m )(1﹣2n )的值为__.17.当x =_________时,分式33x x -+的值为零. 18.若分式15x -有意义,则实数x 的取值范围是_______.19.如图,在△ABC 中,∠A=50°,∠ABC=70°,BD 平分∠ABC ,则∠BDC 的度数是_____.20.已知x m =6,x n =3,则x 2m ﹣n 的值为_____.三、解答题21.仔细阅读下面例题,解答问题:例题:已知二次三项式2x 4x m -+有一个因式是()x 3+,求另一个因式以及m 的值. 解:设另一个因式为()x n +,得()()2x 4x m x 3x n -+=++则()22x 4x m x n 3x 3n -+=+++ {n 34m 3n +=-∴=.解得:n 7=-,m 21=- ∴另一个因式为()x 7-,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式22x 3x k +-有一个因式是()2x 5-,求另一个因式以及k 的值.22.如图,在等边△ABC 中,点D ,E 分别在边AC ,AB 上,且AD=BE ,BD ,CE 交于点P ,CF ⊥BD ,垂足为点F .(1)求证:BD=CE ;(2)若PF=3,求CP 的长.23.已知 a m =2,a n =4,a k =32(a≠0).(1)求a 3m+2n ﹣k 的值;(2)求k ﹣3m ﹣n 的值.24.如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OC=OD;(3)OE是线段CD的垂直平分线.25.如图,P和Q为△ABC边AB与AC上两点,在BC边上求作一点M,使△PQM的周长最小.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.2.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.3.C解析:C【解析】试题分析:三角形ABD 和三角形ACD 共用一条高,再根据S △ABD =S △ADC ,列出面积公式,可得出BD=CD .解:设BC 边上的高为h ,∵S △ABD =S △ADC ,∴,故BD=CD ,即AD 是中线.故选C .考点:三角形的面积;三角形的角平分线、中线和高.4.C解析:C【解析】【分析】根据分式的减法和除法可以解答本题【详解】()()()22===xy xy x xy xyx y x x y xy x x y x y x y--÷-⋅--⋅---故答案为C【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.5.C解析:C【解析】【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度【详解】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.【点睛】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.6.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.7.C解析:C【解析】试题分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.360÷36=10. 故选C .考点:多边形内角与外角.8.A解析:A【解析】分析:先把23m ﹣2n 化为(2m )3÷(2n )2,再求解.详解:∵2m =3,2n =5,∴23m ﹣2n =(2m )3÷(2n )2=27÷25=2725. 故选A .点睛:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m ﹣2n 化为(2m )3÷(2n )2. 9.B解析:B【解析】试题分析:由设原计划每天加工x 套运动服,得采用新技术前用的时间可表示为:160x天,采用新技术后所用的时间可表示为:()400160120%x -+天。
2020-2021初二数学上期中模拟试卷(含答案)(3)

2020-2021初二数学上期中模拟试卷(含答案)(3)一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣2.下列关于x 的方程中,是分式方程的是( ).A .132x =B .12x =C .2354x x++= D .3x -2y =13.如图是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于( )A .90°B .120°C .150°D .180°4.如图2,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,BE ,CF 交于D ,则以下结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上.正确的是()A .①B .②C .①②D .①②③ 5.如图,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( )A .高B .角平分线C .中线D .不能确定6.要使分式13a +有意义,则a 的取值应满足( )A .3a =-B .3a ≠-C .3a >-D .3a ≠7.计算()2x y xy x xy --÷的结果为( ) A .1yB .2x yC .2x y -D .xy - 8.如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为( )A .40ºB .50ºC .60ºD .70º9.化简2111x x x+--的结果是( ) A .x+1B .11x +C .x ﹣1D .1x x - 10.计算b a a b b a +--的结果是 A .a-b B .b-a C .1 D .-111.下列图形中,周长不是32 m 的图形是( )A .B .C .D .12.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .14二、填空题13.分式212xy 和214x y的最简公分母是_______. 14.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.16.已知:x 2-8x-3=0,则(x-1)(x-3)(x-5)(x-7)的值是_______。
2020-2021八年级数学上期中模拟试卷附答案

【详解】
∵△ABC为等边三角形,
∴AB=AC,
∵∠1=∠2,BE=CD,
∴△ABE≌△ACD,
∴AE=AD,∠BAE=∠CAD=60°,
∴△ADE是等边三角形,
故选B.
【点睛】
本题考查了全等三角形的判定与性质,等边三角形的性质与判定,熟练掌握相关知识是解题的关键.
A.m< B.m< 且m≠
C.m>﹣ D.m>﹣ 且m≠﹣
3.如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是( )
A.△ABC≌△CDEB.CE=ACC.AB⊥CDD.E为BC的中点
4.已知x2+mx+25是完全平方式,则m的值为( )
A.10B.±10C.20D.±20
22.在等腰△ABC中,AB=AC=8,∠BAC=100°,AD是∠BAC的平分线,交BC于D,点E是AB的中点,连接DE.
(1)求∠B的度数;
(2)求线段DE的长.
23.解方程:(1)
(2)
24.说明代数式 的值,与 的值无关.
25.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”
10.若2n+2n+2n+2n=2,则n=( )
A.﹣1B.﹣2C.0D.
11.若实数x,y,z满足 ,则下列式子一定成立的是()
A.x+y+z=0B.x+y-2z=0C.y+z-2x=0D.z+x-2y=0
2020-2021初二数学上期中一模试题(附答案)

A. B.
C. D.
4.从甲地到乙地有两条路:一条是全长750km的普通公路,另一条是全长600km高速公路.某客车从甲地出发去乙地,若走高速公路,则平均速度是走普通公路的平均速度的2倍,所需时间比走普通公路所需时间少5小时.设客车在普通公路上行驶的平均速度是x km/h,则下列等式正确的是()
解析:41
【解析】
【分析】
作 ,垂足为M,可得出 ,由此推出 ,从而得出 .
【详解】
解:作 ,垂足为M,
∵ 是 的角平分线, ,
∴ ,
∴ ,
∴ .
故答案为:41.
【点睛】
本题考查的知识点是与角平分线有关的计算,根据角平分线的性质得出 是解此题的关键.
【详解】
解:如图:
∵a∥b,
∴∠4=∠1=50°,
∵∠4=∠2+∠3,∠3=10°,
∴∠2=50° 10°=40°;
故选:B.
【点睛】
本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.
7.A
解析:A
【解析】
分析:先把23m﹣2n化为(2m)3÷(2n)2,再求解.
【详解】
由题意得: = ,
∵ ,∴ ,
∴原式= =1+2=3.
故选:A.
【点睛】
本题主要考查了整式的化简求值,整体代入是解题关键.
9.B解析:BFra bibliotek【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.
2020-2021八年级数学上期中试卷(附答案)

是( )
A.△AA1P 是等腰三角形 B.MN 垂直平分 AA1,CC1 C.△ABC 与△A1B1C1 面积相等 D.直线 AB、A1B 的交点不一定在 MN 上
二、填空题
13.如图是两块完全一样的含 30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块 三角尺重叠在一起,设较长直角边的中点为 M,绕中点 M 转动上面的三角尺 ABC,使其 直角顶点 C 恰好落在三角尺 A′B′C′的斜边 A′B′上.当∠A=30°,AC=10 时,两直角顶点 C,C′间的距离是_____.
7.A
解析:A 【解析】 【分析】 原计划每天绿化 x 米,则实际每天绿化(ห้องสมุดไป่ตู้+10)米,根据结果提前 2 天完成即可列出方程. 【详解】 原计划每天绿化 x 米,则实际每天绿化(x+10)米,由题意得,
4000 4000 2 , x x 10
故选 A. 【点睛】 本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
且 AE=CF,若∠BAE=25°,则∠ACF=__________度.
20.关于 x 的分式方程 2x a 1的解为负数,则 a 的取值范围是_________. x 1
三、解答题
21.如图,已知△ABC 中,AB=AC=12 厘米,BC=9 厘米,AD=BD=6 厘米. (1)如果点 P 在线段 BC 上以 3 厘米秒的速度由 B 点向 C 点运动,同时点 Q 在线段 CA 上由 C 点向 A 点运动. ①若点 Q 的运动速度与点 P 的运动速度相等,1 秒钟时,△BPD 与△CQP 是否全等,请说 明理由; ②若点 Q 的运动速度与点 P 的运动速度不相等,点 P 运动到 BC 的中点时,如果 △BPD≌△CPQ,此时点 Q 的运动速度为多少. (2)若点 Q 以(1)②中的运动速度从点 C 出发,点 P 以原来的运动速度从点 B 同时出发,都 逆时针沿△ABC 三边运动,求经过多长时间点 P 与点 Q 第一次在△ABC 的哪条边上相 遇?
2020-2021初二数学上期中一模试卷含答案(2)

2020-2021初二数学上期中一模试卷含答案(2)一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A.7710⨯﹣B.80.710⨯﹣C.8710⨯﹣D.9710⨯﹣2.李老师开车去20km远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km,则正好到达,如果设原来的行驶速度为xkm/h,那么可列分式方程为A.20201010x x-=+B.20201010x x-=+C.20201106x x-=+D.20201106x x-=+3.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°4.如图2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③5.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是()A.①②③B.①③④C.①②④D.①②③④6.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .147.若分式11x x -+的值为零,则x 的值是( ) A .1 B .1- C .1± D .28.如图,在△ABC 中,过点A 作射线AD ∥BC ,点D 不与点A 重合,且AD ≠BC ,连结BD 交AC 于点O ,连结CD ,设△ABO 、△ADO 、△CDO 和△BCO 的面积分别为和,则下列说法不正确的是( )A .B .C .D .9.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠ 10.等腰三角形的一个外角是100°,则它的顶角的度数为( )A .80°B .80°或50°C .20°D .80°或20° 11.下列图形中,周长不是32 m 的图形是( )A .B .C .D .12.把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)二、填空题13.关于x 的分式方程22kx 3x 1x 1x 1+=--+会产生增根,则k =_____.14.七边形的内角和为_____度,外角和为_____度.15.当x =_________时,分式33x x -+的值为零. 16.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .17.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.18.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.19.若22(5)0a b -+-=,则点P (a ,b )关于x 轴对称的点的坐标为____.20.因式分解:m 3n ﹣9mn =______. 三、解答题21.如图,点A ,F ,C ,D 在同一直线上,点B 与点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC ,求证:BC =EF .22.先化简,再求值:222444211x x x x x x x ⎛⎫-++++-÷ ⎪--⎝⎭,其中x 满足2430x x -+=. 23.先化简.再求值已知20a a -=,求222141•2211a a a a a a --÷+-+-的值. 24.已知a b c ,,是ABC △的三边的长,且满足()222220a b c b a c ++-+=,试判断此三角形的形状.25.解分式方程(1)2101x x -=+. (2)2216124x x x --=+-【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由科学记数法知90.000000007710-=⨯;【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.2.C解析:C【解析】设原来的行驶速度为xkm/h ,根据“原计划所用的时间-实际所用的时间=16小时”,即可得方程20201106x x -=+,故选C. 点睛:本题考查了分式方程的应用,根据题意正确找出等量关系是解题的关键.3.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC =12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.4.D解析:D【解析】【分析】从已知条件进行分析,首先可得△ABE≌△ACF得到角相等,边相等,运用这些结论,进而得到更多的结论,最好运用排除法对各个选项进行验证从而确定最终答案.【详解】∵BE⊥AC于E,CF⊥AB于F∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(①正确)∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(②正确)∴DF=DE,连接AD∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD=∠EAD,即点D在∠BAC的平分线上(③正确).故答案选D.考点:角平分线的性质;全等三角形的判定及性质.5.D解析:D【解析】【分析】根据SAS证△ABD≌△EBC,可得∠BCE=∠BDA,结合∠BCD=∠BDC可得①②正确;根据角的和差以及三角形外角的性质可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正确;过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用线段和差即可得到④正确.【详解】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,BD BCABD CBD BE BA⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,BE BE EF EG=⎧⎨=⎩,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,AE CE EF EG=⎧⎨=⎩,∴Rt△CEG≌Rt△AEF(HL),∴AF=CG,∴BA+BC=BF+FA+BG−CG=BF+BG=2BF,④正确.故选D.【点睛】本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.6.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.7.A解析:A【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.8.D解析:D【解析】根据同底等高判断△ABD和△ACD的面积相等,即可得到,即,同理可得△ABC和△BCD的面积相等,即.【详解】∵△ABD和△ACD同底等高,,,即△ABC和△DBC同底等高,∴∴故A,B,C正确,D错误.故选:D.【点睛】考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.9.A解析:A【解析】【分析】根据折叠的性质可得∠A′=∠A,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【详解】如图所示:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2,∵∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.故选A.【点睛】考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A转化到同一个三角形中是解题的关键.解析:D【解析】【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.11.B解析:B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.12.C解析:C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).故选C.考点:提公因式法与公式法的综合运用.二、填空题13.﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出k的值【详解】方程两边都乘(x+1)(x﹣1)得2(x+1)+kx=3(x﹣解析:﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出k的值.【详解】方程两边都乘(x+1)(x﹣1),得2(x+1)+kx=3(x﹣1),即(k﹣1)x=﹣5,∵最简公分母为(x+1)(x﹣1),∴原方程增根为x=±1,∴把x=1代入整式方程,得k=﹣4.把x=﹣1代入整式方程,得k=6.综上可知k=﹣4或6.故答案为﹣4或6.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.360【解析】【分析】n边形的内角和是(n﹣2)•180°把多边形的边数代入公式就得到多边形的内角和任何多边形的外角和是360度【详解】(7﹣2)•180=900度外角和为360度【点睛】已知多边形解析:360【解析】【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.任何多边形的外角和是360度.【详解】(7﹣2)•180=900度,外角和为360度.【点睛】已知多边形的内角和求边数,可以转化为方程的问题来解决.外角和是一个定植,不随着边数的变化而变化.15.3【解析】【分析】分式的值为零时:分子等于零但是分母不等于零【详解】依题意得:x-3=0且x+3≠0解得x=3故答案是:3【点睛】本题考查了分式的值为零的条件分式值为零的条件是分子等于零且分母不等于解析:3【解析】【分析】分式的值为零时:分子等于零,但是分母不等于零.【详解】依题意得:x-3=0且x+3≠0,解得x=3.故答案是:3.【点睛】本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.16.22【解析】【分析】底边可能是4也可能是9分类讨论去掉不合条件的然后可求周长【详解】试题解析:①当腰是4cm底边是9cm时:不满足三角形的三边关系因此舍去②当底边是4cm腰长是9cm时能构成三角形则解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.17.3【解析】在123处分别涂黑都可得一个轴对称图形故涂法有3种故答案为3解析:3【解析】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为3.18.70【解析】【分析】先利用HL证明△ABE≌△CBF可证∠BCF=∠BAE=25°即可求出∠ACF=45°+25°=70°【详解】∵∠ABC=90°AB=AC∴∠CBF=180°-∠ABC=90°∠解析:70【解析】【分析】先利用HL 证明△ABE ≌△CBF ,可证∠BCF=∠BAE=25°,即可求出∠ACF=45°+25°=70°.【详解】∵∠ABC=90°,AB=AC ,∴∠CBF=180°-∠ABC=90°,∠ACB=45°,在Rt △ABE 和Rt △CBF 中,AB CB AE CF =⎧⎨=⎩, ∴Rt △ABE ≌Rt △CBF(HL),∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为70.【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.19.(2-5)【解析】由题意得a-2=0b-5=0解得a=2b=5所以点P 的坐标为(25)所以点P (ab )关于x 轴对称的点的坐标为(2-5)故答案是:(2-5)解析:(2,-5)【解析】由题意得,a-2=0,b-5=0,解得a=2,b=5,所以,点P 的坐标为(2,5),所以,点P (a ,b )关于x 轴对称的点的坐标为(2,-5).故答案是:(2,-5).20.mn (m+3)(m ﹣3)【解析】分析:原式提取mn 后利用平方差公式分解即可详解:原式=mn (m2-9)=mn (m+3)(m-3)故答案为mn (m+3)(m-3)点睛:此题考查了提公因式法与公式法的综解析:mn (m+3)(m ﹣3)【解析】分析:原式提取mn 后,利用平方差公式分解即可.详解:原式=mn (m 2-9)=mn (m+3)(m-3).故答案为mn (m+3)(m-3).点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.证明见解析.【解析】【分析】证出AC =DF ,由SAS 推出△ABC ≌△DEF ,由全等三角形的性质推出即可.【详解】证明:∵AF =DC ,∴AF +CF =DC +CF ,即AC =DF ,在△ABC 和△DEF 中,AB DF A D AC DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴BC =EF .【点睛】本题考查了全等三角形的判定与性质,根据题意找出全等三角形的条件是解决此题的关键.22.12x +;15【解析】【分析】 先算括号里面的,再算除法,最后求出a 的值代入进行计算即可.【详解】 原式()22224321112x x x x x x x x ⎛⎫-+-+--=+⋅ ⎪--+⎝⎭ ()2211122x x x x x +-=⋅=-++.解方程2430x x -+=得3x =或1x =(舍去). 代入化简后的式子得原式1125x ==+. 【点睛】此题考查分式的化简求值,掌握运算法则是解题关键23.-2【解析】【分析】根据分式乘法法则化简在代入a 的值计算.【详解】 原式=()()2222141••a 1a 1?•a 1a 1221211a a a a a a a a a a a +----+-=+-+-++--()()=(a-2)(a+1), ∵20a a -=,∴a(a-1)=0,∵a -1≠0,∴a≠1,由此得a=0,代入算式:(a-2)(a+1)=(0-2)(0+1)=-2.故答案为-2.【点睛】本题主要考察的是分式乘法法则等知识,熟练掌握是本题的解题关键.24.△ABC 为等边三角形【解析】试题分析:将原式展开后可得2222220a b ab b c bc +-++-= ,再结合完全平方式的特点分组得到2222(2)(2)0.a b ab c b bc +-++-=接下来根据完全平方公式可得22()()0,a b c b -+-=结合非负数的性质即可使问题得解试题解析:将22222()0a b c b a c ++-+= 变形,可得 2222(2)(2)0.a b ab c b bc +-++-=由完全平方公式可得22()()0,a b c b -+-=由非负数的性质,得0,0,a b c b -=-=即,a b c b ==所以.a b c ==25.(1)x=-2;(2)无解【解析】【分析】【详解】(1)去分母得:2(1)0x x +-=,解此整式方程得:2x =-,检验:当2x =-时,(1)0x x +≠,∴原方程的解为:2x =-.(2)去分母得:22(2)164x x --=-,解此整式方程得:2x =-,检验:当2x =-时,(2)(2)0x x +-=,∴2x =-是原方程的增根,∴原方程无解.【点睛】解分式方程时需注意两点:(1)解分式方程的基本思路是“去分母,化分式方程为整式方程”;(2)求得对应的整式方程的解后,需检验,再作结论.。
2020-2021八年级数学上期中试卷附答案

2020-2021八年级数学上期中试卷附答案一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ). A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣2.李老师开车去20km 远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km ,则正好到达,如果设原来的行驶速度为xkm/h ,那么可列分式方程为 A .20201010x x -=+ B .20201010x x -=+ C .20201106x x -=+ D .20201106x x -=+ 3.如图,在△ABC 中,过点A 作射线AD ∥BC ,点D 不与点A 重合,且AD≠BC ,连结BD 交AC 于点O ,连结CD ,设△ABO 、△ADO 、△CDO 和△BCO 的面积分别为和,则下列说法不正确的是( )A .B .C .D .4.关于x 的分式方程2x a1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1> B .a 1< C .a 1<且a 2≠- D .a 1>且a 2≠ 5.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A .1B .2C .8D .116.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形. A .6B .5C .8D .77.已知x+y=5,xy=6,则x 2+y 2的值是( ) A .1 B .13 C .17 D .258.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A.2a+b B.4a+b C.a+2b D.a+3b 9.若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 410.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 11.如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为()A.9 B.8 C.6 D.1212.如图,△ABC与△A1B1C1关于直线MN对称,P为MN上任一点,下列结论中错误的是( )A.△AA1P是等腰三角形B.MN垂直平分AA1,CC1C.△ABC与△A1B1C1面积相等D.直线AB、A1B的交点不一定在MN上二、填空题13.关于x 的方程211x ax +=-的解是正数,则a 的取值范围是_________. 14.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.15.若4a 4﹣ka 2b+25b 2是一个完全平方式,则k=_____. 16.在代数式11,,52x xx +中,分式有_________________个. 17.若分式62m -的值是正整数,则m 可取的整数有_____. 18.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 19.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.20.因式分解:x 2y ﹣y 3=_____.三、解答题21.先化简,再求值:222284()24a a a a a a+-+÷--,其中a 满足方程2410a a ++=. 22.某建设工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成. (1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由. 23.已知等腰三角形一腰上的中线将三角形的周长分为9cm 和15cm 两部分,求这个等腰三角形的底边长和腰长. 24.解方程:22111x x x -=--. 25.先化简,再求值:222444211x x x x x x x ⎛⎫-++++-÷ ⎪--⎝⎭,其中x 满足2430x x -+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由科学记数法知90.000000007710-=⨯; 【详解】解:90.000000007710-=⨯; 故选:D . 【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.2.C解析:C 【解析】设原来的行驶速度为xkm/h ,根据“原计划所用的时间-实际所用的时间=16小时”,即可得方程20201106x x -=+,故选C. 点睛:本题考查了分式方程的应用,根据题意正确找出等量关系是解题的关键.3.D解析:D 【解析】 【分析】根据同底等高判断△ABD 和△ACD 的面积相等,即可得到,即,同理可得△ABC 和△BCD 的面积相等,即.【详解】∵△ABD 和△ACD 同底等高,, ,即△ABC 和△DBC 同底等高,∴∴故A,B,C 正确,D 错误.【点睛】考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.4.D解析:D 【解析】 【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a 的不等式,求出不等式的解集即可确定出a 的范围. 【详解】分式方程去分母得:x 12x a +=+,即x 1a =-, 因为分式方程解为负数,所以1a 0-<,且1a 1-≠-, 解得:a 1>且a 2≠, 故选D . 【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为0.5.C解析:C 【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断. 【详解】设第三边长为x ,则有 7-3<x<7+3, 即4<x<10,观察只有C 选项符合, 故选C.【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边之间的关系是解题的关键.6.B解析:B 【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形. 故选B .【点睛】本题考查的知识点为:从n 边形的一个顶点出发,可把n 边形分成(n-2)个三角形.7.B解析:B 【解析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【详解】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.8.A解析:A【解析】【分析】4张边长为a的正方形卡片的面积为4a2,4张边长分别为a、b的矩形卡片的面积为4ab,1张边长为b的正方形卡片面积为b2,9张卡片拼成一个正方形的总面积=4a2+4ab+b2=(2a+b)2,所以该正方形的边长为:2a+b.【详解】设拼成后大正方形的边长为x,∴4a2+4ab+b2=x2,∴(2a+b)2=x2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.9.A解析:A【解析】【分析】利用乘法的意义得到4•2n=2,则2•2n=1,根据同底数幂的乘法得到21+n=1,然后根据零指数幂的意义得到1+n=0,从而解关于n的方程即可.【详解】∵2n+2n+2n+2n=2,∴4×2n=2,∴2×2n=1,∴21+n=1,∴1+n=0,∴n=﹣1,故选A.【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n(m,n是正整数).10.C解析:C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.11.A解析:A【解析】【分析】根据∠B=60°,AB=AC,即可判定△ABC为等边三角形,由BC=3,即可求出△ABC的周长.【详解】在△ABC中,∵∠B=60°,AB=AC,∴∠B=∠C=60°,∴∠A=180°﹣60°﹣60°=60°,∴△ABC为等边三角形,∵BC=3,∴△ABC的周长为:3BC=9,故选A.【点睛】本题考查了等边三角形的判定与性质,属于基础题,关键是根据已知条件判定三角形为等边三角形.12.D解析:D【解析】【分析】根据轴对称的性质即可解答.【详解】∵△ABC与△A1B1C1关于直线MN对称,P为MN上任意一点,∴△A A1P是等腰三角形,MN垂直平分AA1、CC1,△ABC与△A1B1C1面积相等,∴选项A、B、C选项正确;∵直线AB,A1B1关于直线MN对称,因此交点一定在MN上.∴选项D错误.故选D.【点睛】本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.二、填空题13.a>-1【解析】分析:先去分母得2x+a=x-1可解得x=-a-1由于关于x 的方程=1的解是正数则x >0并且x-1≠0即-a-1>0且-a-1≠1解得a <-1且a≠-2详解:去分母得2x+a=x-1解析:a>-1 【解析】分析:先去分母得2x+a=x-1,可解得x=-a-1,由于关于x 的方程21x ax +-=1的解是正数,则x >0并且x-1≠0,即-a-1>0且-a-1≠1,解得a <-1且a≠-2. 详解:去分母得2x+a=x-1, 解得x=-a-1,∵关于x 的方程21x ax +-=1的解是正数, ∴x >0且x≠1,∴-a-1>0且-a-1≠1,解得a <-1且a≠-2, ∴a 的取值范围是a <-1且a≠-2. 故答案为a <-1且a≠-2.点睛:本题考查了分式方程的解:先把分式方程化为整式方程,解整式方程,若整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;若整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.14.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多解析:66 【解析】 【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数. 【详解】解:∵五边形ABCDE 为正五边形, ∴108EAB ∠=度,∵AP 是EAB ∠的角平分线, ∴54PAB ∠=度, ∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒. 故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.15.±20【解析】∵4a4-ka2b+25b2是一个完全平方式∴4a4-ka2b+25b2=(2a2±5b)2=4a4±20a2b+25b2∴k=±20故答案为:±20解析:±20【解析】∵4a4-ka2b+25b2是一个完全平方式,∴4a4-ka2b+25b2=(2a2±5b)2=4a4±20a2b+25b2,∴k=±20,故答案为:±20.16.1【解析】【分析】判断分式的依据是看分母中是否含有字母如果含有字母则是分式如果不含有字母则不是分式【详解】解:是整式是分式是整式即分式个数为1故答案为:1【点睛】本题主要考查分式的定义注意数字不是字解析:1【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:15x+是整式,1x是分式,2x是整式,即分式个数为1,故答案为:1【点睛】本题主要考查分式的定义,注意数字不是字母,判断分母的关键是分母中有字母. 17.3458【解析】【分析】根据此分式的值是正整数可知m-2是6的约数而6的约数是1236然后分别列出四个方程解之即可得出答案【详解】解:∵分式的值是正整数∴m-2=1或2或3或6∴m=3或4或5或8故解析:3,4,5,8【解析】【分析】根据此分式的值是正整数可知m-2是6的约数,而6的约数是1,2,3,6,然后分别列出四个方程,解之即可得出答案.【详解】解:∵分式62m-的值是正整数,∴m-2=1或2或3或6,∴m=3或4或5或8.故答案为3,4,5,8.【点睛】本题考查了分式的有关知识.理解m-2是6的约数是解题的关键.18.12【解析】试题解析:根据题意得(n-2)•180-360=1260解得:n=11那么这个多边形是十一边形考点:多边形内角与外角解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.19.3【解析】在123处分别涂黑都可得一个轴对称图形故涂法有3种故答案为3解析:3【解析】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为3.20.y(x+y)(x-y)【解析】【分析】(1)原式提取y再利用平方差公式分解即可【详解】原式=y(x2-y2)=y(x+y)(x-y)故答案为y(x+y)(x-y)【点睛】此题考查了提公因式法与公式法解析:y(x+y)(x-y)【解析】【分析】(1)原式提取y,再利用平方差公式分解即可.【详解】原式=y(x2-y2)=y(x+y)(x-y),故答案为y(x+y)(x-y).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.211 443a a =++.【解析】试题分析:把原式括号里的第二项提取﹣1,然后把原式的各项分子分母都分解因式,找出括号里两项分母的最简公分母,利用分式的基本性质对括号里两项进行通分,然后利用同分母分式的减法运算法则:分母不变,只把分子相减,计算出结果,然后利用分式的除法法则:除以一个数等于乘以这个数的倒数,变形为乘法运算,约分后即可把原式化为最简分式,把a 满足的方程变形后,代入原式化简后的式子中即可求出值.试题解析:原式=28[](2)(2)(2)(2)(2)a a a a a a a a +-⨯--++- =2(2)8(2)(2)(2)(2)a a a a a a a a +-⨯-++- =2(2)(2)(2)(2)(2)a a a a a a a -⨯-++- =2211(2)44a a a =+++ ∵2410a a ++=,∴241a a +=-, ∴原式=11143=-+. 考点:分式的化简求值.22.(1)甲、乙两队单独完成这项工程各需要30天和60天(2)工程预算的施工费用不够用,需追加预算1万元【解析】【分析】(1)求的是工效,时间较明显,一定是根据工作总量来列等量关系,等量关系为:甲6天的工作总量+甲乙合作16天的工作总量=1;(2)应先算出甲乙合作所需天数,再算所需费用,和19万进行比较.【详解】解:(1)设甲队单独完成这项目需要x 天,则乙队单独完成这项工程需要2x 天, 根据题意,得611161x x 2x ⎛⎫++= ⎪⎝⎭, 解得x =30经检验,x =30是原方程的根,则2x =2×30=60 答:甲、乙两队单独完成这项工程各需要30天和60天.(2)设甲、乙两队合作完成这项工程需要y 天, 则有11y 13060⎛⎫+= ⎪⎝⎭, 解得y =20需要施工费用:20×(0.67+0.33)=20(万元)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.23.底边长为4cm ,腰长为10cm.【解析】【分析】根据题意画出图形,设△ABC 的腰长为xcm ,则AD =DC =12xcm ,然后根据AB+AD=9和AB+AD=15两种情况分别求出底边和腰长,最后根据三角形的三边关系进行判定是否能够构成三角形,从而得出答案.【详解】如图,△ABC 是等腰三角形,AB =AC ,BD 是AC 边上的中线.设△ABC 的腰长为xcm ,则AD =DC =12xcm. 分下面两种情况解:①AB +AD =x +12x =9, ∴x =6. ∵三角形的周长为9+15=24(cm), ∴三边长分别为6cm ,6cm ,12cm. 6+6=12, 不符合三角形的三边关系,舍去;②AB +AD =x +12x =15, ∴x =10. ∵三角形的周长为24cm , ∴三边长分别为10cm ,10cm ,4cm ,符合三边关系.综上所述,这个等腰三角形的底边长为4cm ,腰长为10cm.【点睛】本题主要考查的是等腰三角形的性质以及分类讨论思想的应用,属于中等难度的题型.学会分类讨论是解决这个问题的关键.24.原方程无解.【解析】试题分析:观察可得最简公分母是21x -,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:方程两边都乘以21x -,得:()2121x x x +-=-, 去括号得2221x x x +-=-,移项合并得1x =.检验:当1x =时,210x -=,所以原方程无解.25.12x +;15【解析】【分析】 先算括号里面的,再算除法,最后求出a 的值代入进行计算即可.【详解】 原式()22224321112x x x x x x x x ⎛⎫-+-+--=+⋅ ⎪--+⎝⎭ ()2211122x x x x x +-=⋅=-++.解方程2430x x -+=得3x =或1x =(舍去). 代入化简后的式子得原式1125x ==+. 【点睛】此题考查分式的化简求值,掌握运算法则是解题关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
详解:①-22=-4,故本小题错误;
②a3+a3=2a3,故本小题错误;
③4m-4=
4 m4
,故本小题错误;
④(xy2)3=x3y6,故本小题正确;
综上所述,做对的个数是 1.
故选 A.
点睛:本题考查了有理数的乘方,合并同类项法则,负整数指数次幂的运算,积的乘方的
性质,是基础题,熟记各性质是解题的关键.
5.D
解析:D 【解析】 【分析】 根据 SAS 证△ABD≌△EBC,可得∠BCE=∠BDA,结合∠BCD=∠BDC 可得①②正确; 根据角的和差以及三角形外角的性质可得∠DCE=∠DAE,即 AE=EC,由 AD=EC,即 可得③正确;过 E 作 EG⊥BC 于 G 点,证明 Rt△BEG≌Rt△BEF 和 Rt△CEG≌Rt△AEF,得 到 BG=BF 和 AF=CG,利用线段和差即可得到④正确. 【详解】 解:①∵BD 为△ABC 的角平分线, ∴∠ABD=∠CBD,
据题意可列方程为
A.
160 x
1
400
20%
1 20% x
=18
C. 160 400 160=18 x 20%x
D.
400 x
400 160
1 20% x
=18
10.下列各式中,从左到右的变形是因式分解的是( )
A. a 2a 2 a2 4
B. ab ac d ab c d
A.(x+1)(x+2)=18
B.x2﹣3x+16=0
C.(x﹣1)(x﹣2)
=18
D.x2+3x+16=0
二、填空题
13.如图,在△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交 BC 于点 D,DE⊥AB 于点
E,若△BDE 的周长为 6,则 AC=_________________.
D、等式右边是几个因式积的形式,故是分解因式,故本选项正确; 故选 D. 【点睛】 本题考查了因式分解的意义,解题的关键是掌握把一个多项式化为几个整式的积的形式,这种 变形叫做把这个多项式因式分解,也叫做分解因式.
11.B
解析:B 【解析】 【分析】 根据三角形的角平分线、中线、高的定义及性质判断 A; 根据三角形的内角和定理判断 B; 根据三角形的高的定义及性质判断 C; 根据三角形外角的性质判断 D. 【详解】 A、三角形的角平分线、中线与锐角三角形的三条高均在三角形内部,而直角三角形有两 条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高 在三角形内部,故本选项错误; B、如果三角形中每一个内角都小于 60°,那么三个角的和小于 180°,与三角形的内角和定 理相矛盾,故本选项正确; C、直角三角形有三条高,故本选项错误; D、三角形的一个外角大于和它不相邻的任何一个内角,故本选项错误; 故选 B. 【点睛】 本题考查了三角形的角平分线、中线、高的定义及性质,三角形的内角和定理,三角形外 角的性质,熟记定理与性质是解题的关键.
400 160
天,采用新技术后所用的时间可表示为: 1 20% x 天。根据关键描述语:“共用了 18
天完成任务”得等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18。从而,
列方程
160 x
400 160
1 20% x
=18
。故选
B。
10.D
解析:D 【解析】 【分析】 根据因式分解的意义对四个选项进行逐一分析即可. 【详解】 解:A、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误; B、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误; C、等式右边应该是(x+3)(x-3),故不符合题意,故本选项错误.
xkm/h,那么可列分式方程为
A. 20 20 10 x x 10
B. 20 20 10 x 10 x
C. 20 20 1 x x 10 6
D. 20 20 1 x 10 x 6
5.已知:如图,BD 为△ABC 的角平分线,且 BD=BC,E 为 BD 延长线上的一点,
BE=BA,过 E 作 EF⊥AB,F 为垂足.下列结论:①△ABD≌△EBC;
∴Rt△CEG≌Rt△AEF(HL), ∴AF=CG, ∴BA+BC=BF+FA+BG−CG=BF+BG=2BF,④正确. 故选 D. 【点睛】 本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,本题中熟练求 证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.
6.B
(1)如图 1,求 C 点坐标; (2)如图 2,若 P 点从 A 点出发沿 x 轴向左平移,连接 BP,作等腰直角△BPQ,连接 CQ,当点 P 在线段 OA 上,求证:PA=CQ; (3)在(2)的条件下若 C、P,Q 三点共线,求此时∠APB 的度数及 P 点坐标.
25.如图,在△ABC 中,AB=AC,D,E 分别是 AB,AC 的中点,且 CD=BE,△ADC 与△AEB 全等吗?请 说明理由.
三、解答题
21.如图,在等边△ABC 中,点 D,E 分别在边 AC,AB 上,且 AD=BE,BD,CE 交于点 P,CF⊥BD,垂足为点 F. (1)求证:BD=CE; (2)若 PF=3,求 CP 的长.
22.某工厂现在平均每天比原计划多生产 50 台机器,现在生产 600 台机器所需要时间与原 计划生产 450 台机器所需时间相同. (1)现在平均每天生产多少台机器; (2)生产 3000 台机器,现在比原计划提前几天完成. 23.先化简,再求值:4(x﹣1)2﹣(2x+3)(2x﹣3),其中 x=﹣1. 24.如图,已知 A(3,0),B(0,﹣1),连接 AB,过 B 点作 AB 的垂线段 BC,使 BA =BC,连接 AC.
14.如图△ABC 中,AB=AC,∠A=36°,BD 平分∠ABC 交 AC 于 D,则图中的等腰三角 形有_____个
15.如图,在正方形方格中,阴影部分是涂黑 7 个小正方形所形成的图案,再将方格内空 白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.
16.若实数 , 满足
BD=BC ∴在△ABD 和△EBC 中, ABD=CBD ,
BE=BA
∴△ABD≌△EBC(SAS),①正确; ②∵BD 为△ABC 的角平分线,BD=BC,BE=BA, ∴∠BCD=∠BDC=∠BAE=∠BEA, ∵△ABD≌△EBC, ∴∠BCE=∠BDA, ∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确; ③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD= ∠BEA, ∴∠DCE=∠DAE, ∴△ACE 为等腰三角形, ∴AE=EC, ∵△ABD≌△EBC, ∴AD=EC, ∴AD=AE=EC.③正确;
a 2b , a b 的分母中均不含有字母,因此它们是整式,而不是分式;
2
a b 的分子不是整式,因此不是分式. b
2 , a 1 , x 1 x 2 的分母中含有字母,因此是分式.
xa
x2
故选 B.
【点睛】
本题考查了分式的定义:如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A 叫做分 B
④过 E 作 EG⊥BC 于 G 点,
∵E 是∠ABC 的角平分线 BD 上的点,且 EF⊥AB, ∴EF=EG(角平分线上的点到角的两边的距离相等),
BE BE ∵在 Rt△BEG 和 Rt△BEF 中, EF EG ,
∴Rt△BEG≌Rt△BEF(HL), ∴BG=BF,
AE CE ∵在 Rt△CEG 和 Rt△AFE 中, EF EG ,
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】 【分析】 根据三角形的三边关系,求出第三边的范围,再范围内取值使得三角形为等腰三角形,再 计算周长即可得到答案; 【详解】 解:∵等腰三角形的两条边长分别为 2 和 4,
假设第三边长为 x , 则有: 4 2 x 4 2 , 即: 2 x 6,
3 x3 y6 。他做对的个数是(
)
A.1
B.2
C.3
D.4
8.计算 b a 的结果是 ab ba
A.a-b
B.b-a
C.1
D.-1
9.某服装加工厂计划加工 400 套运动服,在加工完 160 套后,采用了新技术,工作效率
比原计划提高了 20%,结果共有了 18 天完成全部任务.设原计划每天加工 x 套运动服,根
1 若等腰三角形一个底角为 80 ,顶角为180 80 80 20 ;
2 等腰三角形的顶角为 80 .
因此这个等腰三角形的顶角的度数为 20 或 80 .
故选 D. 【点睛】
本题考查等腰三角形的性质及三角形的内角和定理 . 解答此类题目的关键是要注意分类讨
论,不要漏解.
3.B
解析:B 【解析】 【分析】 判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字 母则不是分式. 【详解】
②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是( )
A.①②③ 6.分式
B.①③④ 可变形为( )
C.①②④
D.①②③④
A.
B.
C.
D.
7.下面是一名学生所做的 4 道练习题:① 22 4 ;② a3 a3 a6 ;
③ 4m4 1
4m4
;④
xy 2
解析:B 【解析】 【分析】 根据分式的基本性质进行变形即可. 【详解】
=. 故选 B. 【点睛】 此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.
7.A