(完整版)微生物学第六章微生物的代谢
第六章 微生物代谢调控育种(4-29)

9、条件突变株的选育
10、营养缺陷型 ●生物素缺陷型 ●油酸缺陷型 ●甘油缺陷型
细胞膜渗透性
11、温度敏感菌株
34
8.3.1、组成型突变株的选育
1、限量诱导物恒化培养 2、循环培养 3、弱诱导型底物 4、诱导抑制剂 5、鉴别性培养基
35
组成酶变异株的筛选 许多水解酶是诱导酶,只有在含有底物或底 物类似物的培养环境中,微生物才会合成这些 酶类,所以,诱导酶的生产不仅需要诱导物, 而且受到诱导物的种类、数量以及分解产物的 影响。 具体的筛选方法有恒化器法、循环培养法和 诱导抑制物法。
第8章 推理育种
8.1 微生物代谢
一、代谢产物的分类
1、初级代谢产物
分解代谢体系的酶及产物
素材性生物合成体系的酶及底物
结构性生物合成体系的酶及产物
2、次级代谢产物 根据其作用,可将其分为 抗生素、激素、 生物碱、毒素及维生素色素等类型。
2
8.1.1、次级代谢产物与次级代谢调节
1.初级代谢和次级代谢
初级代谢:与生物生存有关的,涉及能量产生和能量消 耗的代谢类型。 生存必需;始终生产;不同种,相同;环境敏感性小; 酶专一。 次级代谢:某些生物为避免某种代谢物积累造成不利作 用而产生的一类有利生存的代谢。 根据其作用,可将其分为抗生素、激素、生物碱、毒素 及维生素色素等类型。 并非必需,但有一定价值;某一时产;不同种,不同; 受环境敏影响大;酶专一性不强。
成酶的阶段,两类菌株的生长就不同步,组成酶变异株所占的
比例将逐渐增大。
3、组成型突变株筛选
诱导型依赖诱导物。组成型不依赖诱导物。
突变发生在调节基因或操纵基因,解除对 诱导物的依赖,可获组成型突变株。 筛选方法:设计条件使组成型优势生长, 或通过菌落分辨。
第六章 微生物的代谢

+
3NAD+ + FAD+
+
3H2O
+
CoA
+ ATP +
FADH2 + 3NADH2
经过EMP和TCA循环,1分子葡萄糖被彻底氧化成水 和CO2,并可产生高达38分子的ATP。其总反应式如下:
C6H12O6
+
6O2
+
38ADP
+
38Pi
6CO2
+
6H2O
+
38ATP
在微生物的物质代谢中,TCA循环在分解代谢和合成 代谢中都占有枢纽地位,具有重要的生物学意义: (1)可产生多种有机酸,这些有机酸是合成细胞物质的
的营养物合成细胞自身大分子物质的过程。在同化作用过
程中产生能量(ATP)和还原力。
(2)分解代谢(Catabolism,异化作用):指将细胞自 身的物质分解的过程。异化作用是耗能的过程。 微生物的代谢活动包括能量代谢和物质代谢。
第一节 能量代谢
微生物与其它生物一样,在生命活动过程中需要消 耗大量的能量,这些能量有的来自于物质代谢过程中产生 的化学能,有的来源于微生物细胞吸收的光能。无论何种 二、能量代谢的方式
4、三羧酸循环(Tricarboxylic acid cycle,TCA)
又称为柠檬酸环。丙酮酸首先在丙酮酸脱氢酶的催化
下氧化脱羧并与辅酶A结合,形成乙酰辅酶A,同时产生1 进入TCA循环。TCA循环总反应式如下:
CH3COOCoA + ADP + Pi 2CO2
分子NADH2。然后,乙酰辅酶A与草酰乙酸缩合成柠檬酸,
C6H12O6+ADP+H3PO4 2CH3CH2OH+2CO2+ATP
微生物学 第六章 微生物的代谢

6-磷酸-果糖
磷酸己糖酮解酶
4-磷酸-赤藓糖 +-核糖
戊糖酮解酶
乙酸
3--磷酸甘油醛+ 乙酰磷酸
乳酸 乙酸
1 G 乳酸 + 1.5乙酸 + 2.5 ATP
三、发酵(fermentantion) 1、定义
广义:利用微生物生产有用代谢一种生产方式。 狭义:厌氧条件下,以自身内部某些中间代谢 产物作为最终氢(电子)受体的产能过程 特点: 1)通过底物水平磷酸化产ATP; 2)葡萄糖氧化不彻底,大部分能量存在于 发酵产物中; 3)产能率低; 4)产多种发酵产物。
乙醛脱氢酶
乙醇脱氢酶
乙酸 乙醇
草酰乙酸
丙酸
志贺氏菌无此酶,故发酵G 不产气。
b 丁二醇发酵(2,3--丁二醇发酵) —— 肠杆菌、沙雷氏菌、欧文氏菌等 丙酮酸
V.P.试验的原理:
乙酰乳酸
红色物质
(乙酰乳酸脱氢酶)
3-羟基丁酮
(OH-、O2)
精氨酸胍基
乙二酰
丁二醇
中性
其中两个重要的鉴定反应:
1 、V.P.实验 2、甲基红(M.R)反应
(完整word版)周德庆编《微生物学教程》课后习题参考答案

周德庆编《微生物学教程》课后习题参考答案绪论1。
什么是微生物?它包括哪些类群?答:微生物是一切肉眼看不见或看不清的微小生物的总称。
包括:①原核类的细菌、放线菌、蓝细菌、支原体、立克次氏体和衣原体;②真核类的真菌、原生动物、和显微藻类;③属于非细胞类的病毒和亚病毒。
2。
人类迟至19 世纪才真正认识微生物,其中主要克服了哪些重大障碍?答:①显微镜的发明,②灭菌技术的运用,③纯种分离技术,④培养技术.3.简述微生物生物学发展史上的5 个时期的特点和代表人物.答:史前期(约8000 年前—1676),各国劳动人民,①未见细菌等微生物的个体;②凭实践经验利用微生物是有益活进行酿酒、发面、制酱、娘醋、沤肥、轮作、治病等)初创期(1676-1861 年),列文虎克,①自制单式显微镜,观察到细菌等微生物的个体;②出于个人爱好对一些微生物进行形态描述;奠基期(1861—1897年),巴斯德,①微生物学开始建立;②创立了一整套独特的微生物学基本研究方法;③开始运用“实践--理论——实践”的思想方法开展研究;④建立了许多应用性分支学科;⑤进入寻找人类动物病原菌的黄金时期;发展期(1897—1953年),e。
buchner,①对无细胞酵母菌“酒化酶"进行生化研究;②发现微生物的代谢统一性;③普通微生物学开始形成;④开展广泛寻找微生物的有益代谢产物;⑤青霉素的发现推动了微生物工业化培养技术的猛进;成熟期(1953—至今)j.watson 和f.crick,①广泛运用分子生物学理论好现代研究方法,深刻揭示微生物的各种生命活动规律;②以基因工程为主导,把传统的工业发酵提高到发酵工程新水平;③大量理论性、交叉性、应用性和实验性分支学科飞速发展;④微生物学的基础理论和独特实验技术推动了生命科学个领域飞速发展;⑤微生物基因组的研究促进了生物信息学时代的到来。
4。
试述微生物与当代人类实践的重要关系。
5.微生物对生命科学基础理论的研究有和重大贡献?为什么能发挥这种作用?答:微生物由于其“五大共性"加上培养条件简便,因此是生命科学工作者在研究基础理论问题时最乐于选用的研究对象。
第六章微生物的新陈代谢

阳性
2020/4/21
阴性
甲 基 红 试 验
对照
大肠杆菌:+ 产气杆菌:—
2020/4/21
枸 橼 酸 利 用 试 验
大肠杆菌:— 产气杆菌:+
吲 哚 试 阳性 验
大肠杆菌:+ 产气杆菌:—
2020/4/21
2020/4/21
H2S 试验
尿
素
对照
阳性
阴性
酶
试
验
2020/4/21
1.发酵
发酵是一种在厌氧条件下发生的、不具有以氧或 无机物为电子受体的通过电子传递链传递电子的 生物氧化过程。该发酵被称为生理学发酵,与工业 上所称发酵完全不同。
供微生物发酵的有机物质主要是葡萄糖和其它单糖
工业上所说的发酵是指微生物在有氧或无氧条件下 通过分解与合成代谢将某些原料物质转化为特定微 生物产品的过程。如酵母菌、苏云金杆菌菌体生产, 抗生素发酵、乙醇发酵及柠檬酸发酵等。
第六章 微生物的新陈代谢
第一节微生物的能量代谢 第二节微生物对有机物的分解 第三节 分解代谢和合成代谢的联系 第四节 微生物独特合成代谢途径举例 第五节 微生物的代谢调节与发酵生产
2020/4/21
第一节 微生物的能量代谢
产能和耗能
2020/4/21
一、化能异养微生物的能量代谢
• 按照有无电子传递链,可将其分为底物 水平磷酸化和电子传递磷酸化两种类型 。 1.底物水平磷酸化 2.电子传递磷酸化
2020/4/21
2、HMP途径:
2020/4/21
反应过程:
2020/4/21
3、ED途径:
2020/4/21
微生物学第二版参考答案

微生物学第二版参考答案微生物学第二版参考答案微生物学是研究微生物的科学,涉及到生物学、医学、环境科学等多个学科领域。
对于学习微生物学的学生来说,掌握正确的参考答案是提高学习效果的关键。
本文将为大家提供微生物学第二版参考答案,帮助大家更好地理解和掌握微生物学的知识。
第一章:微生物的概述1. 微生物的定义:微生物是一类不能用肉眼观察到的生物,包括细菌、真菌、病毒和原生动物等。
2. 微生物的分类:微生物可以根据其细胞结构、生活方式和遗传物质等特征进行分类。
3. 微生物的重要性:微生物在生态系统中起着重要的角色,如参与物质循环、维持生态平衡等。
第二章:微生物的结构和功能1. 细菌的结构:细菌包括细胞壁、细胞膜、细胞质、核糖体和核酸等结构。
2. 细菌的功能:细菌具有多样的功能,如合成蛋白质、分解有机物、产生抗生素等。
3. 真菌的结构:真菌包括菌丝、孢子、菌核和菌盖等结构。
4. 真菌的功能:真菌可以分解有机物、产生酶、参与土壤生态系统等。
第三章:微生物的生长和繁殖1. 微生物的生长:微生物的生长包括营养摄取、代谢、生长分裂等过程。
2. 微生物的繁殖:微生物可以通过二分裂、芽生、孢子形成等方式进行繁殖。
3. 微生物的生长曲线:微生物的生长曲线包括潜伏期、指数期、平台期和死亡期等阶段。
第四章:微生物的遗传与变异1. 微生物的遗传物质:微生物的遗传物质包括DNA和RNA,其中DNA是主要的遗传物质。
2. 微生物的遗传变异:微生物可以通过基因突变、基因重组等方式发生遗传变异。
3. 微生物的遗传传递:微生物的遗传信息可以通过垂直传递和水平传递进行传递。
第五章:微生物的代谢与生态1. 微生物的代谢类型:微生物的代谢包括光合作用、呼吸作用、发酵作用等多种类型。
2. 微生物的生态功能:微生物在生态系统中参与物质循环、能量转化等功能。
3. 微生物的微生态系统:微生物可以形成微生态系统,如肠道微生态系统、土壤微生态系统等。
第六章:微生物与人类1. 微生物与人类的关系:微生物与人类有着密切的关系,如参与人体免疫、引起疾病等。
微生物学补充习题(周德庆)

微生物学补充习题第一章绪论复习题与扩展思考题1.微生物有哪些主要类群?有哪些特点?2.试述我国古代对微生物的认识和利用。
3.试述列文虎克、巴斯德和科赫在微生物学发展史上的杰出贡献。
4.试述微生物学在生命科学中的重要地位。
5.你认为现代微生物学的发展有哪些趋势?6.你认为微生物学的哪些方面可以继续研究以对生命科学作出贡献?7.试就微生物在工业、农业、医药、食品等方面的应用作一简要介绍。
第二章原核微生物复习题和扩展思考题1.试解释下列名词:肽聚糖,磷壁酸,溶酶菌,抗酸染色,间体,羧酶体,核区,质粒,附器,异形胞。
2.试比较以下各对名词:原核微生物与真核微生物、胞壁质与拟胞壁质、脂多糖与脂多糖层、原生质体与球形体、鞭毛丝与轴丝、聚?β?羟丁酸颗粒与多聚磷酸颗粒、荚膜与粘液层、芽孢与孢子。
3.试从化学组成和构造论述细菌细胞的结构与功能。
4.根据革兰氏阳性细菌与革兰氏阴性细菌细胞壁通透性来说明革兰氏染色的机制。
5.试述几种细菌细胞壁缺损型的名称及其应用价值。
6.放线菌与霉菌均呈菌丝壮生长,单为何认为放线菌更接近于细菌而不接近于霉菌?7.什么是芽孢?芽孢的形成及其调节方式?试述芽孢的抗逆性机制。
8.蓝细菌有哪些不同于细菌的结构与成分?它们的功能是什么?9.立克次氏体有哪些与专性活细胞内寄生有关的特性?它们有什么特殊的生活方式?10.衣原体与立克次氏体都为专性活细胞内寄生,两者有何差别?11.支原体有何特点?哪些特点是由于缺乏细胞壁而引起的?12.螺旋体和螺菌有何不同?13.细菌细胞中的哪些物质有抗原作用?这些物质存在于哪些结构中?14.试从细胞的形态结构分析细菌与放线菌的菌落特征。
15.试就作用靶物质、作用机制、作用结果和作用对象等方面比较溶霉菌与青霉素对细菌细胞壁的作用。
第三章真核微生物复习题与扩展题1.试解释下列名词:真菌,酵母菌,霉菌,真核生物,原核生物,真酵母,假酵母,酵母菌的芽殖,裂殖和芽裂殖。
2.试述酵母细胞的主要结构特征。
第6章-微生物的代谢

新陈代谢 = 分解代谢 + 合成代谢 分解代谢:指复杂的有机物分子通过分解代谢酶系 的催化,产生简单分子、腺苷三磷酸(ATP)形式 的能量和还原力的作用。
合成代谢:指在合成代谢酶系的催化下,由简单小 分子、ATP形式的能量和还原力一起合成复杂的大 分子的过程。
合成代谢按产物在机体中作用不同分: 初级代谢: 提供能量、前体、结构物质等生命活动所 必须的代谢物的代谢类型;产物:氨基酸、核苷酸等。 次级代谢: 在一定生长阶段出现非生命活动所必需的代 谢类型;产物:抗生素、色素、激素、生物碱等。
•反应步骤简单,产能效率低.
• 此途径可与EMP途径、HMP途径和TCA循环相连接, 可互相协调以满足微生物对能量、还原力和不同中间 代谢物的需要。好氧时与TCA循环相连,厌氧时进行 乙醇发酵.
相关的发酵生产:细菌酒精发酵
葡萄糖三条降解途径在不同微生物中的分布
菌名 酿酒酵母 产朊假丝酵母 灰色链霉菌 产黄青霉 大肠杆菌 铜绿假单胞菌 嗜糖假单胞菌 枯草杆菌 氧化葡萄糖杆菌 真养产碱菌 运动发酵单胞菌 藤黄八叠球菌
氧被消耗而造成局部的厌氧环境
硝酸盐还原细菌进行厌氧呼吸
土壤中植物能利用的氮 (硝酸盐NO3-)还原成 氮气而消失,从而降低 了土壤的肥力。
松土,排除过多的水分, 保证土壤中有良好的通 气条件。
反硝化作用在氮素循环中的重要作用
硝酸盐是一种容易溶解于水的物质, 通常通过水从土壤流入水域中。如果 没有反硝化作用,硝酸盐将在水中积 累,会导致水质变坏与地球上氮素循 环的中断。
2、 HMP途径 (戊糖磷酸途径)
(Hexose Monophophate Pathway)
葡萄糖经转化成6磷酸葡萄糖酸后, 在6-磷酸葡萄糖酸 脱氢酶的催化下, 裂解成5-磷酸戊糖 和CO2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四授课单元一、教学目的使学生了解呼吸与发酵作用,重点讲解微生物代谢的特殊性,联系在食品和发酵生产上的应用,注意体现微生物不同发酵类型及代谢的特点。
二、教学内容(第六章微生物的新陈代谢第一节微生物的产能代谢)1. 代谢概论简单介绍新陈代谢的概念,同化作用和异化作用。
2. 微生物的产能代谢:重点介绍化能异养微生物生物氧化的三种产能方式,即发酵、有氧呼吸和无氧呼吸,3. 介绍乙醇发酵(酵母菌的乙醇发酵途径和运动发酵单胞菌的乙醇发酵途径)、乳酸发酵(同型乳酸发酵和异型乳酸发酵)、甘油发酵、丙酮丁醇发酵、混合酸发酵及丁二醇发酵;三、教学重点、难点及处理方法重点:化能异养微生物生物氧化的三种产能方式,即发酵、有氧呼吸和无氧呼吸,介绍乙醇发酵(酵母菌的乙醇发酵途径和运动发酵单胞菌的乙醇发酵途径)、乳酸发酵(同型乳酸发酵和异型乳酸发酵)、甘油发酵、丙酮丁醇发酵、混合酸发酵及丁二醇发酵;由于学生在生物化学课程中已经学过各种代谢途径,因此在微生物学中不再作为重点讲解。
本章内容主要使学生了解呼吸与发酵作用,重点讲解微生物代谢的特殊性,联系在食品和发酵生产上的应用,注意体现微生物不同发酵类型及代谢的特点。
难点: 化能异养微生物生物氧化的三种产能方式,即发酵、有氧呼吸和无氧呼吸的区别。
尤其是发酵的概念, 学生只是在现实生活中知道这个名词, 但是不清楚其确切的生物学含义, 指在能量代谢或生物氧化中,在无氧条件下,底物(有机物)氧化释放的氢(或电子)不经呼吸链传递,而直接交给某种未完全氧化的中间产物的一类低效产能过程。
实质: 底物水平磷酸化产生ATP. 另外, 联系食品和发酵生产上应用的发酵类型及代谢特点更有助于学生理解发酵的概念实质及发酵的特点.有氧呼吸与无氧呼吸的概念, 并介绍无氧呼吸中硝酸根(反硝化作用)、硫酸根作为最终电子受体的呼吸特点,介绍不同呼吸类型的微生物。
介绍化能自养微生物的生物氧化特点,光能自养微生物的光合磷酸化途径(循环光合磷酸化、非循环光合磷酸化和嗜盐菌紫膜的光合作用)。
四、板书设计第六章微生物的新陈代谢第一节代谢概论能量代谢的中心任务,是生物体如何把外界环境中的多种形式的最初能源转换成对一切生命活动都能使用的通用能源------ATP。
这就是产能代谢。
有机物化能异养微生物最初能源还原态无机物化能自养微生物通用能源ATP日光: 光能营养微生物第二节糖的代谢一.生物氧化(biological生物氧化就是发生在活细胞内的一切产能性氧化反应的总称生物氧化的三种形式:与氧结合、脱氢或脱电子生物氧化的功能:产能(A TP)、产还原力[H]和产小分子中间代谢物二、化能异养微生物的生物氧化根据氧化还原反应中最终电子受体或氢受体的不同,可把生物氧化分为3种类型:发酵没有外源电子受体参与,通常以分解代谢产生的中间产物如丙酮酸作为电子受体。
化能异养微生物的产能方式有氧呼吸:呼吸无氧呼吸:1. 发酵(fermentation)广义的“发酵”,指利用微生物生产有用代谢产物的一种生产方式。
狭义的“发酵”,指在能量代谢或生物氧化中,在无氧条件下,底物(有机物)氧化释放的氢(或电子)不经呼吸链传递,而直接交给某种未完全氧化的中间产物的一类低效产能过程。
实质: 底物水平磷酸化产生A TP特点:底物氧化不彻底,产能水平低;积累各种中间代谢产物不可缺少的途径。
(1)乙醇发酵多种微生物(如酵母菌,根霉,曲霉,某些细菌)能通过称为乙醇发酵的过程,将糖转变成乙醇和CO21)酵母菌进行的乙醇发酵2)细菌进行的酒精发酵(运动发酵单胞菌)ED途径3)甘油发酵(酵母菌)4)丙酮、丁醇发酵5)乳酸发酵由于菌体内酶系不同,乳酸菌的代谢途径分三种类型:•同型乳酸发酵途径:产物只有乳酸(德氏乳杆菌,植物乳杆菌)•异型乳酸发酵途径:产物除了乳酸,还有乙醇(或乙酸)等产物•双歧途径:双歧杆菌6)混合酸发酵(大肠杆菌)甲基红反应(M.R)阳性7)丁二醇发酵丁二醇发酵的中间产物3-羟基丁酮是V.P试验的物质基础8)氨基酸的发酵产能——Stickland反应2. 呼吸作用与发酵作用的根本区别:电子载体不是将电子直接传递给底物降解的中间产物,而是交给电子传递系统,逐步释放出能量后再交给最终电子受体呼吸作用的实质:•最终电子受体是外源物质(氧气或氧化型化合物);•产能方式是氧化磷酸化;A. 电子传递链:由一系列按氧化还原电位由低到高顺序排列起来的氢(电子)传递体组成。
两个功能:1)传递氢或电子;2)储存氢或电子传递过程释放的能量,用于合成ATP;B. 氧化磷酸化:指呼吸链在传递氢(电子)过程中释放的能量与ADP磷酸化偶联产生ATP的过程。
化学渗透假说(生化中学过, 此处复习)3. 呼吸作用(1) 有氧呼吸由于葡萄糖在有氧呼吸中产生的能量要高于发酵中产生的能量,即微生物在有氧呼吸过程中,利用较少的糖而能获得厌氧条件下相同量的ATP。
酿酒酵母等既可利用发酵产能,又可利用呼吸产能的兼性厌氧微生物,在有氧条件下终止厌氧发酵而转向有氧呼吸,这种呼吸抑制发酵(或氧抑制糖酵解)的现象称为巴斯德效应(Pasteur effect)。
由此降低了葡萄糖的消耗,并抑制了乙醇的产生。
1)定义呼吸链末端的电子受体是O2的一种生物氧化2)微生物:大多数细菌,几乎所有的放线菌和真菌3)特点:–好氧和兼性厌氧微生物在有氧条件下进行的产能代谢;–通过电子传递链传递电子,通过氧化磷酸化产能;–底物(氧化基质)是有机物,最终电子受体是O2 ;–底物氧化彻底,产能效率高。
(2)无氧呼吸1)定义:呼吸链末端的氢或电子受体是外源无机氧化物(少数为有机氧化物)的生物氧化。
•无机物:NO3-、NO2-、SO42-、S2O32-、S、CO2•有机物:延胡索酸(fumarate),罕见2)类型根据末端氢(电子)受体的不同,无氧呼吸分为多种类型:•硝酸盐呼吸•硫酸盐呼吸•硫呼吸•铁呼吸•碳酸盐呼吸•延胡索酸呼吸等反硝化作用:指NO3-被还原成NO2-,再逐步还原成NO、N2O和N2的过程,能进行硝酸盐呼吸的细菌被称为硝酸盐还原细菌(又称反硝化细菌),主要生活在土壤和水环境中,如地衣芽孢杆菌、铜绿假单胞菌、依氏螺菌、脱氮副球菌、脱氮硫杆菌和生丝微菌属中的一些成员等。
大肠杆菌也是一种反硝化细菌,但它只能将NO3-还原成NO2- 。
三.自养微生物的生物氧化( 自学)1. 化能自养型从对无机物的生物氧化过程中获得生长所需要能量的微生物一般都是化能自养型微生物。
(1)氨的氧化亚硝化细菌(亚硝化假单胞菌属,硝化螺菌属):硝化细菌(硝化杆菌属,硝化球菌属)(2)硫的氧化(3)铁的氧化(4)氢的氧化2.光能自养微生物(1)环式光合磷酸化(2)非环式光合磷酸化(3)嗜盐菌紫膜的光合作用思考题:1.“M”是一种硝酸盐还原菌(反硝化细菌),在无氧、有NO3-的环境中生长,试回答:(1)何为碳源物质?(2)何为能源物质?(3)以何种方式产生ATP?(4)NO3-的生理功能是什么?2.试述不同条件下各营养类型微生物产ATP和NAD (P)H 的方式。
第十五授课单元一、教学目的1.理解微生物调节代谢流的两种主要方式及其特点2.掌握反馈抑制的类型及特点3.理解酶合成调节的两种方式4.了解乳糖操纵子的结构及其调节方式5.理解代谢调控在发酵工业中的一些应用二、教学内容二、糖的合成代谢第三节氨基酸和蛋白质代谢一、蛋白质的分解二、氨基酸的分解三、氨基酸的合成第四节脂类代谢第五节微生物代谢调控与发酵生产一、酶活力的调节二、酶合成的调节三、代谢调控在发酵工业中应用三、教学重点、难点及处理重点:1.微生物调节代谢流的两种主要方式:微生物细胞的代谢调节方式很多,其中酶的调节是代谢最本质的调节。
在酶的调节中又以调节代谢流的方式最为重要,它包括两个方面,一是“粗调”,即调节酶分子的合成或降解以改变酶分子的含量,二是“细调”,即通过激活或抑制以改变细胞内已有酶分子的催化活力,两者往往密切配合和协调,以达到最佳的调节效果。
酶活性的调节:非常迅速的调节机制酶化学水平上发生变构调节(分子构象改变)修饰调节(分子结构改变)包括酶的激活酶的抑制酶量的调节:比较慢的调节机制遗传水平上发生(原核生物的基因调控主要发生在转录水平)包括酶合成的诱导酶合成的阻遏机制2. 反馈抑制的类型每个代谢途径都至少有一个定步酶,催化代谢途径中的限速反应,一般是代谢途径中第一步反应的催化酶。
代谢途径的终产物常抑制第一步反应的可调控酶的活性,此调控称为反馈抑制。
反馈抑制这种调节方式可以分为直线式代谢途径中的反馈抑制和分支代谢途径中的反馈抑制两大类。
2.1 直线式代谢途径中的反馈抑制这是一种最简单的反馈抑制类型。
例如E.coli在合成异亮氨酸时。
因合成产物过多可抑制途径中的第一个酶——苏氨酸脱氨酶的活性,从而使α-酮丁酸及其后一系列中间代谢物都无法合成,最终导致异亮氨酸合成的停止。
2.2.分支代谢途径的反馈抑制:(1)同功酶调节分支途径中的第一个酶有几种同工酶,每一种代谢终产物只对一种同工酶具有反馈抑制作用,只有当几种终产物同时过量时,才能完全阻止反应的进行。
例:大肠杆菌天冬氨酸族氨基酸的合成(有3个天冬氨酸激酶催化途径的第一个反应,分别受赖氨酸、苏氨酸及甲硫氨酸的调节)(2)协同反馈抑制,或称“多价反馈抑制”只有当几个末端产物同时过量,才对途径中的第一个酶具有抑制作用。
例:谷氨酸棒杆菌、黄色短杆菌、多粘芽孢杆菌合成赖氨酸、苏氨酸及甲硫氨酸途径中,关键酶天冬氨酸激酶不是同工酶,而是单一的。
该酶在赖氨酸、苏氨酸、甲硫氨酸或异亮氨酸等任何一种单独存在时,不受抑制,只是赖氨酸和苏氨酸同时过量时才对天冬氨酸激酶发生协同反馈抑制。
(3)合作反馈抑制,又称“增效反馈抑制”当任何一个末端产物单独过剩时,只部分反馈抑制第一个酶的活性,而当二个末端产物同时过剩时,对第一个酶产生强烈抑制,其抑制程度大于各自单独抑制效果之和。
(4)累积反馈抑制在分支代谢途径中,任何一种末端产物过量时都对共同途径的第一个酶起部分的抑制作用,且各末端产物的抑制作用互不干扰。
当末端产物同时过量时,它们的抑制作用是累积的。
例:大肠杆菌的谷氨酰胺合成酶受8个最终产物的积累反馈抑制。
(5)顺序反馈抑制例:枯草芽孢杆菌合成芳香族氨基酸的代谢途径3. 酶合成的调节酶合成的调节是一种通过调节酶的合成量进而调节代谢速率的调节机制,这是一种基因水平上的代谢调节。
由代谢终产物抑制酶合成的负反馈作用称为反馈阻遏(repression)。
反之,代谢终产物促进酶生物合成的现象,称为诱导作用(induction)。
与上述调节酶活性的反馈抑制等相比,调节酶的合成(即产酶量)而实现代谢调节的方式是一类较间接而缓慢的调节方式。