光学设计讲义
光学设计讲义

A -f
C
C Ab B
l
标尺像
十字丝
标尺
-l D
光学测距原理图
《光学设计-应用光学课程设计》
D l δ
由图中相似三角形关系,有:
于是:
所以有:
b -l- (-f ) -l- f - b -f f b -l - f f b
f 式中:k 称为乘常数,c = + f称为加常数。 为仪器转 b
d0 111.25 111.48 111.71 111.94
L=170 f2 -46.99 -57.57 -71.11 -89.20
f3 12.88 11.80 10.90 10.12
lF(l2) 58.75 58.56 58.28 58.06
l2 26.11 29.02 32.03 35.17
112.17 112.40
d0 117.80 118.04 118.26 118.52 118.76 119.01
-114.47 -152.36 L=180 f2
-49.75 -60.94 -75.31 -94.46 -121.24 -161.26
9.44 8.85
在满足基本设计要求的前提下,尽量做到结构简单、紧凑, 具有良好的工艺性,成本低。
《光学设计-应用光学课程设计》
§2-1 内调焦望远系统参数的确定
一、望远镜的缩短系数Q
内调焦望远系统显著的优点是能缩短筒长,即物镜的筒长比 其组合焦距要短。 为满足体积小、重量轻, 便于携带的要求, 应使望远镜的筒长 尽可能短,但筒长并不是越短越好。 为便于研究筒长与焦距的关系,定义缩短系数Q:
由于d = L-l2, 即:l2=L-d, 又:l2= l1-d, 代入调焦镜物像公式:
光学设计课件

{
横向及纵向尺寸
各组光瞳之间的衔接
三 成象质量
光学系统的外形尺寸计算
由物镜和目镜组成的望远系统
结构和光束限制
望远镜光路图:
反射棱镜成像特性:在光路中相当于平行平板 轴向位移 △L’= d ( 1 - 1/n)
{
棱镜
简单棱镜 复合棱镜
屋脊棱镜
棱镜展开:沿反射面的次序依次展开
等效空气层的厚度
4D / n
h1 = ?棱镜 厚4h,半口 径8.5,假 设高8.5, 厚度d= 8.5х4=34 等效空气 平板厚d = d/n
系统等效光路图
Ⅰ Ⅱ
Ⅰ
Ⅱ
系统结构图
ቤተ መጻሕፍቲ ባይዱ
有两个渐晕
{
棱镜最后一面:挡上边25% 光束
目镜 :挡下边25%的光束
望远物镜选型:P410课本
物镜D/f1’=1/4, D=30 , f1’=120
双胶合物镜
双分离物镜
三片型物镜
摄远物镜
{
物镜可选双胶合 f’ = 120
D/f’ = 1/4 目镜型式 г = -tgω’ / tgω= -f1 ’ /f2 ’ 2ω’ Lz’ f2 ’
冉斯登目镜 2ω:30˚-40 ˚相对镜目距 Lz’ =1/4 凯涅尔目镜 2ω:40˚-50 ˚相对镜目距 Lz’
象差的现象、产生原因、如何消除各种象差
1. 明确象差概念
2. 掌握初级象差理论
象差分类
球差δL’ 彗差KT,KS 象散x’ts 场曲x’t x’s 畸变δyz’ 位置色差△lFC’ 倍率色差δyFC’
典型光学系统 1 显微镜,望远镜, 照相机,投影仪 成像原理 2 外形尺寸计算:轴向尺寸、垂轴 尺寸、通光口径、物高象高、光阑
工程光学设计 第2章 第二讲

B
垂轴色差 yF C yZF yZC
垂轴色差
A
C
D
y Z C
F yZF yZD
B
垂轴色差
yF C yZF yZC
❖ 3 二级光谱
d(sini sin m ) m
第二章 像差理论
2.3 薄透镜的初级像差理 论
2.3 薄透镜的初级像差理论
一. 薄透镜的初级像差普遍公式
球差和数 S hni(i u)(i i)
四 畸变
无畸变
正畸变
负畸变
负畸变
(a) 光阑位于透镜之前产生负畸变
正畸变
(a) 光阑位于透镜之后产生正畸变
❖ 线畸
yz yz y
q yz 100 %
y
五 色差
1 轴向色差
O1 O2
1 23
兰(F) 绿(D) 红(C)
l
′
F
AF′
AC′
-△l
′
FC
l
′
C
2 垂轴色差
A
F
D
C yZ C yZD yZF
四 反射光学系统和平面光学系统的像 差理论
❖ 1 平面反射镜像差
- i′ -i
-u
u′
2 加工或装配误差产生像差
仪器的主光轴
五 球面反射镜的像差
像点
球心
u=0
-i
- i′ - u′
h
r
光阑在反射镜球心
l
lp
球心
阑
光阑在反射镜顶点
l 球心 ip
lp 阑
六 棱镜或平面平行板的像差
光阑
- i1
正透镜
A
A0′ A′
负透镜
光学设计ZEMAX_实验讲义

定义式为:
(1.5)
式中 为系统像方折射率,θ为高斯边缘像方光线孔径角。在计算θ过程中,认为系统无像差,按照理想系统的边缘光线追迹方法。在Aper Value中输入F数,注意前面的Image Space F/#区别。
(6)Object Cone Angle(物方锥角)
ZEMAX中有6种不同的编辑器(Editors):即镜头数据编辑器(Lens Data Editor),评价函数编辑器(Merit Function Editor)、多重组态编辑器(Multi-configuration Editor)、公差数据编辑器(Tolerance Data Editor)、用于补充光学面的附加数据编辑器(Extra Data Editor)、以及非序列元件编辑器(Non-sequential Components Editor)。
相对孔径的定义在Aperture中设置。最常用的选项解释如下:
A.Aperture
Aperture Type用于定义相对孔径,即轴上物点的光束大小。定义的种类有:
(1)Entrance Pupil Diameter(入瞳直径)
当物体位于无限远时,可以用它来定义相对孔径,此时的Aper Value中输入具体的入瞳直径数值,选择Lens Units为Millimeter(毫米)。
表1.1例题的初始结构参数
1.4.3
1.General输入相对孔径
General功能可以由“System”→“General…”选择,还可以通过桌面上“Gen”快捷键来打开,General对话框如图1.2所示。
图1.2 General对话框
由图1.2可以看出,General对话框中具有Environment,Polarization,Misc.,Non-Sequential,Aperture,Title/Notes,Glass Catalogs,Ray Aiming等项。
光学设计ppt课件

光学设计方法
光学设计方法随使用工具的更新而改变面貌。使用电子计算机之前的方法统称 为“手工”设汁法。那时主要通过追迹光线,计算像差和逐次修改结构参数使之 接近使用要求的方法来做设计。 电子计算机的使用,使得对光学系统(特别是复杂 系统)的分析计 算更加完善了,进而使光学自动设计逐步发展起来。
任何光学系统都不可能把所有各种像差都校正到理想。所以,设计时我们应 该根据像差理论对系统提出尽量合理的像差要求。即使是利用电子计算机做自动 设计,这一点也是很重要的。 用优化技术来自动平衡光学系统的像差时,如果要 求提得太多,且提出了矛盾的要求(例如同时提出正弦条件和赫谢耳条件),就可能 产生“病态”方程,使自动平衡不能顺利进行。
3
参考书目
R.Kinslake, Lens design Fundamental, 1978. R.Kinslake, optical system design,1983, Academic Press.
这位百岁老人去年刚去世,他是A.E.Conrady的学生,从上世纪三十年代 被请到美国,美国的光学工业大致是他的学生们发展起来的。 iKin , Lens design, 1991,Marchl Dekker. 非常实用的各种光学系统 设计,有新版。 R.E. Fischer, Optical system design, 2000,McGraw Hill. 此人从上世纪八十年代一直到现在,都在SPIE Photonics West 之类的会 上讲Short Courses——”光学设计”,本书属于这种教材。 斯留萨列夫, 谈光学中一些可能的和不可能的问题,1966,科学出版社。 本书可启发人们去认真思考问题。 张以谟,应用光学,机械工业出版社,中国高校教科书 王之江,光学设计理论基础,1985,科学出版社。本教材的公式取自此 书。
光学设计性实验讲义

普通物理实验光学设计性实验讲义物理学专业用目录光学设计性实验绪论实验一光具组基点的测定。
实验二反射全息。
实验三偏振光分析。
实验四测量空气折射率。
实验五玻璃折射率的测定。
光学设计性实验绪论一、实验教学目的及任务1、实验教学目的光学设计性实验课程是高等院校物理专业最基本的实训研究课,它对于培养学生的动手实践能力,启发学生思维,培养良好的科学素质,及严谨求实的科学作风、创新精神,提高进行科学实验工作的综合能力,包括实际动手能力、分析判断能力、独立思考能力、革新创造能力、归纳总结能力等起着极其重要的作用。
设计性物理实验的教学目的,是在学生具有一定实验能力的基础上,通过独立分析问题、解决问题,使学生把知识转化为能力,为作毕业设计,写科研成果报告和学术论文,作初步训练。
这对激发学生的创造性和深入研究的探索精神,培养科学实验能力,提高综合素质有重要作用。
2、课程的主要任务设计性实验,就是应用物理思想研究合理的实验程序和方法,研究如何合理控制各因素在实验中的条件和参量,以得出最好的测量结果。
设计性实验还研究在各种条件下存在最佳方案的可能性,并研究如何得出最佳方案。
学生做设计性实验是一种创造性劳动,他们必须利用所学的专业知识和实验技能,根据实验任务自己搜集资料,设计实验方案、选配仪器,调节测量完成实验,分析结果,写出报告,整个过程具有一定的探索性。
二、本实验课的基本理论与实验技术知识本实验课的基本理论是光学理论。
实验技术知识包括方案设计、光路设计、仪器选择、步骤安排、参量选取、故障分析、数据处理和结果评论等。
三、实验内容及具体要求1、选择实验项目,了解实验课题,明确工作任务,熟悉仪器。
2、查阅有关资料,画出必要的原理图,推导出有关的理论公式。
通过分析与比较,选择出能够满足实验要求的最佳实验方案。
3、通过对测量仪器和误差传递公式的研究,对实验方法进行分析,确定出最合适的测量方法和测量条件,确定出数据处理方法。
4、写出一份合格的实验设计方案,对实验方法进行分析。
光学设计培训

1
光学基本知识
2
导光板光学设计原理
3
Lighttools功能与背光源设计
光学基本知识
▪ 光是什么?
光的实质是电磁波,光是一种具有波粒二象性 的物质。可见光的波长范围是390-760nm,白 光是复色光。
光学基本知识
▪ 光学的几个概念
1、光的直线传播定律 在各向同性介质中,光是沿 直线传播的。
导光板光学设计原理
▪ 如何破坏光的全反射现象呢? 根据全反射定律,有两种方式破坏全反射现象: 1.改变法线的方向;
2.改变从光密介质射入光疏介质的状态;
导光板光学设计原理
▪ 导光板光学设计原理 导光板光学的设计原理即:通过合理设计能够破 坏光的全反射现象的微结构,使光能够从导光板 的出光面均匀的发射出来。
▪ 在模拟完成后,结果通过接收面的照度图表现出来。这个
就是根据我们设置的各项参数、网点分布,理想状态下我 们能够得到的结果。
▪ 从这个结果我们能够知道每个mesh上得到的光照度值的
大小。
Lighttools背光源设计
四、利用BPO进行网点优化
▪ 优化的三个要素
误差函數Merit Function (Error Function): 系统的误差函数是单一的数值,该值为0时标示以达成目标
导光板光学设计原理
▪ 光在导光板中会发生什么现象? ▪ 当光从光源进入到导光板入光端面时,光发生反
射反射和折射现象。
假设光源的发光角度为180°,即入射角为0°-90°,根据折射定律,折 射角的范围为0°-42°。
导光板光学设计原理
▪ 光在导光板中会发生什么现象? ▪ 当光进入导光板后,传播至导光板的上下表面时,
二、设置各部件的参数、光学属性
(完整版)光学设计zemax

➢ Sort by Surface 将现有各项Operands 以 Surface number 排序(递增)
➢ Sort by Type 将现有各项Operands 以其类型排序 (递增)
➢ Save 将现有的Tolerance Data 存入一个文件
差) ➢TSTX,TSTY(光学零件表面允许倾斜偏心公
差)
2014.9
光学系统设计
公差操作数(续)
➢TIRR(球差的一半与象散的一半表示的表 面不规则度,单位是光圈单位)
➢TIND(d光折射率允许偏差) ➢TABB(阿贝常数允许偏差)
2014.9
光学系统设计
➢上述设定完成之后,即可进行公差分析 ➢Tools---Tolerancing
2014.9
光学系统设计
➢每个镜片加工公司都有自己的样板库,如 “changchun.tpd”是长春理工某附属工厂 (可见光镜片)、“beijing.tpd”是北京蓝斯 泰克光电(红外镜片)的样板库等。
➢将这些tpd文件拷入“C:\ZEMAX\Testplat”目 录即可进行相应的比对
2014.9
2014.9
光学系统设计
2014.9
光学系统设计
➢Fast Tolerance Mode:
• 此项仅对近轴后焦偏差视为补偿器 (Compensator) 时有效。即在 Tolerances Data Editor 中存在一行有关后焦的补 偿器设定。在Default Tolerance 中选中 Use Focus Comp 就可以生成此补偿器的设定。 此模式比一般模式(没有选中此项)的运算模 式快50 倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一:单镜头设计(Singlet)实验目的:1、学习如何启用Zemax2、学习如何输入波长(wavelength)、镜头数据(lens data)3、学习如何察看系统性能(optical performance),如ray fan,OPD,点列图(spot diagrams),MTF等。
4、学习如何定义thickness solve以及变量(variables)5、学习如何进行优化设计(optimization)实验仪器:微机、zemax光学设计软件实验步骤:1、设计一个孔径为F/4的单镜头,物在光轴上,其焦距(focal length)为100mm,波长为可见光,用BK7玻璃为材料。
2、首先运行ZEMAX,将出现ZEMAX的主页,然后点击lens data editor(LDE)。
什么是LDE呢?它是你要的工作场所,在LDE的扩展页上,可以输入选用的玻璃,镜片的radius,thickness,大小,位置等。
3、然后输入波长,在主菜单的system下,点击wavelengths,弹出波长数据对话框wavelength data,键入你要的波长,在第一行输入0.486,它是以microns为单位,此为氢原子的F-line光谱。
在第二、三行键入0.587及0.656,然后在primary wavelength上点在0.587的位置,primary wavelength主要是用来计算光学系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。
4、确定透镜的孔径大小。
既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形成的effective focal length F跟paraxial entrance pupil的直径的比值。
所以现在我们需要的aperture 就是100/4=25(mm)。
于是从system menu上选general data,aperture type里选择entrance pupil,在apervalue上键入25,然后点击ok。
5、回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。
OBJ就是发光物,即光源,STO即孔径光阑aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。
而IMA就是imagine plane,即成像平面。
回到我们的singlet,我们需要4个面(surface),于是点击IMA栏,选取insert,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。
6、输入镜片的材质为BK7。
在STO行中的glass栏上,直接键入BK7即可。
7、孔径的大小为25mm,则第一镜面合理的thickness为4,在STO行中的thickness栏上直接键入4。
Zemax的默认单位是mm8、确定第1及第2镜面的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为负值。
再令第2面镜的thickness为100。
9、现在数据已大致输入完毕。
如何检验你的设计是否达到要求呢?选analysis中的fans,然后选择其中的Ray Aberration,将会出现如图1-1所示的TRANSVERSE RAY FAN PLOT。
图1-1其中ray aberration是以chief ray为参考点计算的。
纵轴为EY的,即是在Y方向的aberration,称为tangential或者YZ plane。
同理X方向的aberration称为XZ plane或sagittal。
ray fan在原点处的倾斜说明存在离焦defocus10、Zemax主要的目的,就是帮我们矫正defocus,用solves就可以解决这些问题。
solves是一些函数,它的输入变量为curvatures,thickness,glasses,semi-diameters,conics,以及相关的parameters 等。
parameters是用来描述或补足输入变量solves的型式。
如curvature的型式有chief ray angle,pick up,Marginal ray normal,chief ray normal,Aplanatic,Element power,concentric with surface 等。
而描述chief ray angle solves的parameter即为angle,而补足pick up solves的parameters为surface,scale factor两项,所以parameters本身不是solves,要调整的变量才是solves的对象。
在surface 2栏中的thickness项上点两下,出现solve对话框,把solve type从fixed变成Marginal Ray height,然后OK。
这项调整会把在透镜边缘的光在光轴上的height为0,即paraxial focus。
此时surface 2的厚度自动调整为96mm。
再次update ray fan,将出现图1-2,defocus不见了。
11、但这是最佳化设计吗?再次调整surface 1的radius项从fixed变成variable,依次把surface 2的radius从fixed变成variable,及surface 2中thickness的Marginal Ray height也变成variable。
12、我们再来定义一个Merit function,什么是Merit function呢?Merit function就是把你理想的光学要求规格定为一个标准(如此例中focal length为100mm),然后Zemax会连续调整你输入solves 中的各种variable, 把计算得的值与你订的标准相减就是Merit function值,所以Merit function值愈小愈好,挑出最小值时即完成variable设定,理想的Merit function值为0。
如何设Merit function,Zemax 已经default 一个内建的merit function,它的功能是把RMS wavefront error 减至最低,所以先在editors中选Merit function,进入其中的Tools,再按Default Merit Function 键,再按ok,即我们选用default Merit function ,这还不够,我们还要规定给meritfunction 一个焦距focal length 为100的限制,因为若不给此限制则Zemax会发现focal length为infinit时,wavefront aberration的效果会最好,当然就违反我们的设计要求。
所以在Merit function editor行中往后插入一行,即显示出第2行,代表surface 2,在此行中的type项上键入EFFL(effective focal length),并回车,同行中的target项键入100,并回车,weight项中定为1,并回车。
跳出Merit function editor,在Tools中选optimization项,按Automatic键,完毕后跳出来,此时你已完成设计最佳化。
重新检验ray fan,将出现图1-3,这时maximum aberration已降至200 microns。
图1-2图1-313、其它检验optical performance还可以用Spot Diagrams及OPD等。
从Analysis中选spot diagram中的standard,则该spot大约为400 microns上下左右交错,与Airy diffraction disk比较而言,后者大约为6 microns交错。
而OPD为optical path difference(跟chief ray作比较),从Analysis中选泽Fans,然后选泽Optical Path,将出现图1-4,其中的aberration大约为20 waves,大都focus,spherical,spherochromatism 及axial color。
Zemax 提供一个确定first order chromatic abberation 的工具,即the chromatic focal shift plot,这是把各种光波的focal length跟用primary wavelength 计算出first order的focal length之间的差异对输出光波的wavelength 作图,图中可指出各光波在paraxial focus上的variation。
从Analysis 中Miscellaneous项的Chromatic Focal Shift即可得出图1-5。
图1-4图1-5实验二:双胶合镜头(doublet)实验目的:1、学习如何画出layouts和field curvature plots2、学习如何定义edge thickness solves, field angles等实验仪器:微机、zemax光学设计软件实验原理:一个双胶合镜头doublet是由两片玻璃组成,通常粘在一起,所以他们有相同的曲率curvature。
利用不同玻璃的色散性质dispersion,色差the chromatic aberration可以矫正到first order,所以剩下的chromatic aberration主要的贡献为second order,于是我们可以期待在看chromatic focal shift plot图时,应该呈现出抛物线parabolic curve的曲线而非一条直线,此乃second order effect的结果(当然其中variation的scale跟first order比起来必然小很多,应该下降一个order)。
实验步骤:1、选用BK7和SF1两种镜片,wavelength和aperture如同实验一所设,既然是doublet,你只要在实验一的LDE上再加入一面镜片即可。
所以调出实验一的LDE,在STO后再插入一个镜片,表示为2,或者你也可以在STO前在插入一面镜片标示为1,然后在该镜片上的surface type上用鼠标按一下,然后选择Make Surface Stop,则此第一面镜就变成STO的位置。