自动洗车机电气控制系统设计
基于PLC的自动洗车控制系统设计

基于PLC的自动洗车控制系统设计自动洗车是一种利用机械设备、水流和清洁剂自动完成汽车清洗的技术。
它可以提高洗车的效率和质量,并且减少洗车过程中的人为操作和人工干预。
为了实现自动洗车的技术要求,可以采用基于可编程逻辑控制器(PLC)的自动洗车控制系统设计。
首先,需要设计一个系统框架,包括可编程逻辑控制器(PLC)、传感器、执行器和人机界面。
PLC是整个系统的核心控制单元,用于处理输入信号并产生相应的输出信号,以控制传感器和执行器的工作。
传感器用于检测汽车的位置、尺寸和洗车过程中的水流和清洁剂的状态,以提供实时的反馈信号给PLC。
执行器用于控制水流和清洁剂的分配,并进行汽车的清洗和烘干。
人机界面用于操作和监控整个洗车系统的工作状态。
然后,需要编程PLC的控制算法。
PLC的编程语言一般采用逻辑图或者类似于C语言的结构化文本语言。
在洗车过程中,PLC需要根据传感器的反馈信号来判断汽车的位置和尺寸,并根据不同的情况来选择相应的清洗策略。
例如,在清洗高车身的SUV时,可能需要调整水流的角度和强度,以确保清洗效果达到要求。
接下来,需要选择合适的传感器和执行器。
传感器可以采用光电传感器、压力传感器和液位传感器等。
光电传感器可以用于检测汽车的位置和尺寸,以确定水流和清洁剂的喷射位置和强度。
压力传感器可以用于检测水流和清洁剂的压力,以确保水流和清洁剂的喷射效果符合要求。
液位传感器可以用于检测清洁剂的剩余量,以及汽车是否已经完成清洗过程。
执行器可以采用电动阀门、水泵和风机等。
电动阀门可以用于控制水流和清洁剂的开关,水泵可以用于提供水流和清洁剂,风机可以用于汽车的烘干。
最后,需要设计人机界面的图形化界面和操作方式。
人机界面可以采用触摸屏或者按钮控制器等。
在洗车过程中,人机界面可以显示洗车的状态、进行操作指示和参数设置。
例如,可以选择不同的洗车模式(如普通清洗、除尘清洗和抛光清洗),设置清洗时间和清洗剂的使用量等。
此外,人机界面还可以显示系统的故障信息和维护提示,以及记录洗车的历史数据供参考。
基于PLC的自动洗车控制系统

基于PLC的自动洗车控制系统本文档旨在介绍编写基于PLC的自动洗车控制系统的背景和目的。
现代社会的快节奏、高效率对汽车洗车行业提出了更高的要求。
为了满足市场需求,传统洗车方式无法满足效率和质量的要求,因此引入自动洗车控制系统成为一个必要的选择。
自动洗车控制系统利用PLC(可编程逻辑控制器)作为控制核心,通过传感器、执行器和电气元件等设备,实现自动调控洗车工艺的全过程。
它不仅提高了洗车效率,还确保洗车质量稳定和可靠性。
该系统的目的是实现以下几个方面的优化:提高洗车效率:通过自动化控制,减少人工操作,加快洗车速度,提高洗车效率。
保证洗车质量:利用自动化控制手段,确保每次洗车质量一致、稳定,避免人为操作中的差异和不确定性。
简化操作流程:通过系统的自动化和智能化,简化洗车操作流程,提高用户体验和操作便捷性。
减少人力成本:自动洗车控制系统的引入可以减少对人力资源的需求,降低运营成本。
通过建立基于PLC的自动洗车控制系统,我们可以实现洗车行业生产方式的转型与升级,提供更高效、更优质的洗车服务。
本文档将详细介绍该系统的设计和实现,包括硬件布局、软件编程和系统测试等方面。
同时,我们还将分析该系统在实际应用中可能面临的挑战和解决方案。
希望本文档对编写该自动洗车控制系统的项目有所帮助,提供清晰明确的指导和参考。
该自动洗车控制系统基于可编程逻辑控制器(PLC)的架构设计,实现了自动化洗车过程的控制和监测功能。
该系统包含以下基本架构和功能模块:输入模块:传感器模块:用于检测车辆的位置、大小和清洗需求等信息。
常见的传感器包括光电传感器、超声波传感器等。
按钮模块:用于手动输入控制指令,如启动洗车、停止洗车等。
控制模块:PLC主控模块:负责接收输入模块传来的信息,并根据预设的逻辑进行判断和控制洗车过程。
系统控制算法:基于PLC软件编程实现的算法,包括洗车程序的控制逻辑和运行时的判定条件。
输出模块:执行器模块:根据PLC主控模块的指令,控制水流、刷子运动和喷洒装置等设备进行洗车操作。
全自动洗车机毕业设计(4)

第4章 电气控制系统电路设计4.1 电动机的选择电动机的选择包括电动机的种类、功率、电压、形式和转速等。
从种类选择上来讲,电子驱动系统主要有直流驱动控制系统和交流驱动控制系统。
直流驱动控制系统以直流电动机为动力,交流驱动控制系统以交流电动机为动力。
由于直流电动机具有良好的调速性能,一般用于控制精度和要求比较高的设备。
常用的交流电动机有异步电动机和同步电动机两类。
异步交流电动机与直流电动机相比较,具有结构简单、价格便宜、运行可靠、坚固耐用、维修方便等特点。
所以选择异步交流电动机。
本系统共需要7台电动机。
其中包括裙刷旋转电动机2台,侧刷旋转电动机4台,水泵电动机1台。
根据水泵的流量和扬程的需要,在选择水泵时,选为Y 系列三相异步电动机。
主水泵电机功率为3KW,而根据工况的要求,本系统其余电机也均选用交流异步电动机。
汽车清洗机中的电动机的功率的选用,一是取决于各机构完成加工工艺中消耗的有效功率;二是取决于传动系统中消耗在摩擦上的功率;三是取决于克服各种机构惯性而消耗的功率,一般情况下无法精确计算,但通过参考其他汽车清洗机的情况,采用类比方法,本系统确定选用的电动机型号为Y3-200L2-6E,额定电压为380V。
侧刷电机为0.55KW,裙刷电机为0.37KW的交流异步电动机。
额定功率相同的电动机,转速高、体积小、造价低,但如果输出转速要求较低,则减速机构越复杂,成本也会上升。
综合考虑通道式电脑洗车机的实际情况,选定电动机的额定转速为1500r/min。
4.2主电路的设计公交车清洗设备需要控制7台电动机的运行,每台电动机只需要控制启动、停止即可。
现以其中一台电动机为例,电动机启动、停止控制电路如图4-1所示。
图4-1 主电路控制图公交车清洗设备供电电源为三相380V交流电。
主电路电源开关根据清洗设备在最大功耗状态下的峰值电流,选择低压断路器QA9,完成过载、短路及欠电压保护功能。
电动机MA1由接触器QA11控制启动和停止。
自助洗车机控制设计

目录第1章PLC的介绍 (1)1.1 PLC概况 (1)1.2 PLC的基本结构 (2)1.3 PLC的工作原理 (2)第2章自助洗车机控制系统设计 (4)2.1系统组成 (4)2.2I/O接线图 (5)2.3主电路接线图 (5)2.4输入/输出分配表 (6)2.5顺序功能图 (7)2.6程序设计 (10)第3章系统调试分析 (16)3.1 硬件调试 (16)3.2 软件调试 (16)3.3 整机调试 (16)第4章结论与体会 (17)参考文献 (18)附录 (19)第1章PLC的介绍1.1 PLC概况可编程控制器简称PC,个人计算机也简称PC。
为了避免混淆,人们将最初用于逻辑控制的可编程控制器叫做PLC。
国际电工委员会在1987年颁布的PLC标准草案中对P LC做了如下定义:“PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。
它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、定时、计数和算术运算等操作的指令,并能通过数字式和模拟式的输入和输出,控制各种类型的机械或生产过程。
PLC及其有关的外围设备都应按照易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。
”可编程控制器是“数字运算操作的电子装置”,其中带有“可以编制程序的存储器”,可以进行“逻辑运算、顺序运算、定时、计数和算术运算”工作,可以认为可编程控制器具有计算机的基本特征。
事实上可编程控制无论从内部构造、功能及功能原理上看都不折不扣的是计算机。
可编程控制器是“为工业环境下应用”而设计的计算机。
工业环境和一般办公环境有很大的区别,PLC具有特殊的构造,使它能在高粉尘、高噪音、强电磁干扰和温度变化剧烈的环境下正常工作。
为了能控制“机械或生产程”,它又要能“易于与工业控制系统形成一个整体”这些都是个人计算机不可能做到的。
因此可编程控制器不是普通的计算机,它是一种工业现场使用的计算机。
可编程控制器能控制“各种类型”的工业设备及生产过程。
汽车自动清洗机PLC控制课程设计示例(欧姆龙PLC)

汽车自动清洗机PLC电气控制系统课程设计示例
一. 系统简介
自动洗车设备的清洗机构导轨拖动汽车缓慢移动,同时进行洗刷,两到三分钟即可完成一边对汽车的自动清洗。
二. 控制要求
1.按下启动按钮后,清洗机开始工作,导轨开始移动,同时开启喷淋器阀门。
2.车辆探测器发出信号,启动刷子电动机。
3.清洗过程连续进行,当汽车驶出清洗机时,行程开关发出停机信号。
三. IO点分布及PLC选型
1.PLC型号: 欧姆龙PLC CP1H-XA40-DR-A
2.IO点分布
四. 电路图设计
五. 梯形图程序编制
程序说明
车辆探测器在测到汽车头开始,启动刷子电动机,直到车身全部进入清洗机后I0.01 OFF,才会停止刷子电动机,清洗机也同时停止工。
PLC控制系统课程设计_-_自助洗车机

目录第1章概述 (1)1.1课题背景 ......................... 错误!未定义书签。
1.2自助洗车机的优点.................. 错误!未定义书签。
1.3课题内容 (2)第2章自助洗车机流程分析 (2)2.1 自助洗车机设计任务 (2)2.2 自助洗车机设计控制要求 (2)第3章控制系统总体设计方案 (5)3.1 系统的硬件部分组成 (5)3.2 控制方法分析 (6)3.3 I/O分配 (6)3.4程序设计思路 (6)第4章控制程序流程图设计 (7)第5章系统调试及结果分析 (8)5.1系统调试及解决的问题 (8)5.2结果分析 (9)课程设计心得 (10)参考文献 (12)附录 (13)自助洗车机流程分析12电气12陈帅摘要随着中国经济的飞速发展,汽车越来越多的进入了家庭,全自动洗车机现在越来越受到广大车主的青睐。
自动洗车机在洗车的过程中只有中性水和活性剂与车身接触,无任何有形的东西,加之采用的洗涤液是特制的专业洗涤液,使无接触洗车技术拥有令人满意的洗涤效果。
可编程控制器(PLC)集合了计算机技术、自动控制技术及通讯技术而发展起来的一种新型的工业控制装置,它具有可靠性高、编程简单、维护方便等优点,已在工业控制领域得到广泛应用。
它的投资小。
单纯洗车比人工洗车机速度快。
且效率高,无接触。
本课题将跟据PLC 实现自动洗车机控制系统的设计与编程。
关键字:自助洗车机PLC 控制系统梯形图硬件及软件一、概述1.1课题背景根据欧美国家统计,在一个完全成熟的国际化汽车市场中,汽车的销售利润在整个汽车业的利润仅占20%,零部件供应的利润占20%,而50%~60%的利润是从汽车服务业中产生的。
美国汽车服务业的营业额已经超过汽车整车的销售额,其中,单单一个汽车美容业年产值就已超过3500亿美元。
我国汽车工业高速发展,中国汽车需求年均增长24.5%,远远过世界年均4%的增长速度。
基于PLC控制的自动洗车系统设计

基于PLC控制的自动洗车系统设计
摘要
本文介绍了一种基于PLC控制的自动洗车系统,这种系统具有良好的安全性能和功能完备性。
本文总结了洗车系统的结构、控制原理和工艺流程。
具体来说,自动洗车系统由供水泵、洗车机、汽车检测器、取水泵、除雪机以及运输水泵组成,通过PLC对系统进行控制,实现洗车机的洗车和汽车检测器的检测功能,同时,实现了除雪机的清理功能。
实验结果表明,基于PLC控制的自动洗车系统可以实现安全可靠的洗车功能,为传统洗车系统提供了一种新的解决方案。
关键词:PLC;自动洗车;洗车机;汽车检测;除雪机
1引言
随着社会经济的发展和城市环境的改善,越来越多的汽车被引入到城市道路上,同时也带来了洗车等安全和环境保护问题。
鉴于此,自动洗车机技术应运而生。
目前,在现有的自动洗车机系统中,大多数采用传统的洗车机和汽车检测器的方法来实现自动洗车,但由于洗车机和汽车检测器的技术水平和精确性存在限制,这种方法的安全性和可靠性尚不能满足社会的要求。
因此,基于PLC控制的自动洗车系统应运而生,它具有良好的安全性能和功能完备性。
自动洗车机电气控制系统设计

自动洗车机电气控制系统设计自动洗车机是一种以机械方式对车辆进行清洗的设备,它可以一次性完成车辆清洗的全部工作,包括喷水、洗刷、烘干等工序。
而电气控制系统是自动洗车机的核心部分,它能够对整个设备进行自动控制和监测,确保设备的正常运行和安全性能。
本文将从自动洗车机电气控制系统的设计、构成以及功能等方面进行详细介绍。
1.控制策略的选择:根据自动洗车机的工作原理和要求,确定相应的控制策略。
常见的控制策略包括PLC控制和单片机控制等。
PLC控制具有可靠性高、扩展性强等特点,适用于较大型的自动洗车机;而单片机控制则具有成本低、灵活性高等优点,适用于小型自动洗车机。
2.控制回路的设计:根据自动洗车机的工作步骤,设计相应的控制回路。
一般包括供水、喷水、洗刷、烘干等回路。
每个回路可以单独控制,也可以进行联动控制。
控制回路的设计需要考虑相应的传感器、执行元件以及控制装置等。
3.信号检测与处理:自动洗车机电气控制系统需要对各种信号进行检测和处理。
例如,通过传感器检测水位、温度、压力等信息,并将其转化为电信号进行处理。
处理后的信号能够准确反映洗车机的工作状态,从而进行相应的控制。
4.人机交互界面设计:为了方便用户操作和监测洗车机的状态,需要设计人机交互界面。
一般采用触摸屏或按钮面板的形式,用户可以通过界面选择不同的洗车模式、设置洗车时间、监测洗车进度等。
5.安全保护措施:自动洗车机电气控制系统还需要考虑安全保护措施。
例如,设计急停开关、过载保护装置、漏电保护装置等,确保设备在异常情况下及时停止,并保护设备和用户的安全。
自动洗车机电气控制系统通常由控制器、传感器、执行元件、电力元件和电源组成。
其中,控制器是整个系统的核心部分,负责对洗车机的各项动作进行控制。
传感器用于检测洗车机的工作状态和环境参数,例如水位、温度、压力等。
执行元件则负责根据控制信号进行相应的动作,例如控制电机的启停、控制气缸的伸缩等。
电力元件则用于对洗车机的电气能量进行控制和分配,例如电源、配电盘等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动洗车机电气控制系统
设计
1 系统概述
1.1 应用背景及意义
汽车行业随着科学技术的发展有了质的飞跃。
随着时代发展,人们生活水平提高,人们对汽车的需求逐渐增加,随之而来的便是汽车的保养。
其中汽车清洗便是不可或缺的一项内容。
当今社会,高科技的发展实现了各行业的自动化控制,但是在汽车清洗行业,大部分仍是人工完成。
传统洗车业利用人力,对汽车涂抹泡沫,然后利用水泵对汽车进行冲洗,再在自然光及风等条件下,使清洗后的汽车进行自然风干。
虽然实现汽车清洗,但过分依赖人力,操作时间长,浪费大量水资源,经济性差,不利于洗车业的发展。
目前比较大型的汽车美容公司,虽然实现了汽车的清洗、打蜡、喷漆等的自动化,但成本高,其自动控制系统不适合小型的、专门的汽车清洗行业。
因此,对于中小型城市,汽车清洗业有着巨大的发展潜力。
如何实现高效、高质量并且适用于小型汽车的自动清洗,就成了汽车清洗行业发展的必然要求。
本次设计采用PLC控制,通过线路的通断来实现汽车自动清洗。
它可以节省人力、物力资源,高效、准确的完成洗车任务,为客户提供便利,而且极大的节约水资源,符合建设节约型社会的时代需要。
这套汽车自动清洗系统结构简单,成本低,适合不同场合的需求,尤其是中小型公司。
1.2系统描述及设计要求
自动洗车机由门式框架组成,门式框架有一台三相异步电机拖动,4KW 380V 50HZ ,在车头和车尾处分别设置有一个行程开关,门式框架上安装有3个刷子(上、左、右各1个),分别有1台单相电机拖动,1.5KW 220V 50HZ ,同时门式框架上安装有3组喷水喷头(上、左、右各1个),由一台水泵电机拖动1KW 220V 50HZ ,喷头由电磁阀控制DC24V 5W 。
洗车机外部框架结构示意图如图1.2.1所示。
车头限位置开关
洗车机门式框架
门架前进
门架后退
图
1.1 洗车机外部框架结构图
具体功能实现:
1、按下启动按钮,洗车机框架开始由车头向车尾移动,喷水设备开始喷水。
2、门式框架移动到达车尾限位开关后,开始返回,并保持继续喷水。
3、门式框架移到车头限位置后,保持喷水,同时刷子开始工作,框架开始向车尾移动。
4、门式框架移到车尾限位置后,保持喷水,刷子转动,框架开始向车头移动。
5、重复上面第3、4步,框架向车头移动至限位开关停止。
洗车整个过程完成。
启动灯熄灭
2 方案论证
使用PLC控制洗车机。
自动洗车机有启动、停止、复位功能,设计时需要三个输入口输入信号。
本方案,按下启动按钮,启动指示灯亮,自动洗车机启动;洗车机由车头向车尾移动,喷水设备喷水;当到达车尾限位置时,触动行程开关SQ2,洗车机向车头移动,保持喷水;当到达车头限位置时,行程开关SQ1动作,计数器C0动作,保持喷水,刷子开始工作,洗车机向车尾移动;当到达车尾限位置后,保持喷水,刷子转动,洗车机向车头移动;洗车机到达车头限位置后重复刷子开始工作后的过程一次,洗车机再次回到车头限位置后停止工作,整个洗车过程完成,启动灯熄灭。
若在工作过程中发生停电等突发事情导致洗车机停止工作,可通过复位按钮使洗车机复位,然后启动重新工作。
单片机主要应用于办公自动化设备、机电一体化、实时过程控制、日常生活及家用电器等领域。
在各类仪器仪表中引入单片机,使仪器仪表智能化,提高测试的自动化程度和精度,简化仪器仪表的硬件结构,提高其性能价格比;具有以下特点:
(1)片内存储容量越来越大。
(2)芯片引线齐全,容易扩展。
(3)运行速度高,控制功能强。
(4)单片机内部的数据信息保存时间很长,有的芯片可以达到100年以上。
但其也存在速度慢,功能不强,精度低、易受环境影响等缺点。
也可采用常规低压电器控制的方式实现功能,缺点很明显,对人力消耗较大。
为了达到方案要求,本设计采用PLC控制的模块化设计。
主要模块包括:PLC控制系统、喷水系统、传感器系统、机械系统。
3 硬件设计
3.1系统原理方框图
本次设计思路是通过启动、停止、复位三个按钮来控制洗车机的运作。
依靠PLC控制整个洗车过程的具体实现。
总体设计过程如下图图3.1系统原理方框图所示。
图3.1 系统原理方框图
3.2 系统主电路原理图
主电路中,采用断路器来进行限流,用过热继电器防止过热。
系统主电路原理图如图3.2所示
FU
门式框架
上刷子右刷子
喷水机左刷子
图3.2 系统主电路原理图
3.3 I/O分配
经过对控制过程和要求分析确定具体的控制任务是在汽车进入后,按下启动按钮,则可以进行自动刷洗,洗完自动停止,也可人工停止。
确定了要完成的动作后,再确定动作的顺序。
具体I/O分配表如表3.3.1所示。
表3.1 I/O分配表
3.4 PLC选择
(1)欧姆龙PLC简介略
(2)西门子PLC简介略
(3)三菱FX系列PLC简介略
3.5 PLC控制原理图
根据PLC实际I/O类型及其可实现的功能,确定其与外部设备的连接方案,具体PLC控制原理图如图3.3所示
图3.3 PLC控制原理图
3.6 PLC控制接线图
按照PLC控制原理图的设计方案,根据所选PLC的型号的实物对比,对PLC 控制接线图进行了详细的设计。
PLC控制接线图如图3.4所示。
控制面板
800
图3.4 PLC 控制接线图
3.7 元器件选型
根据具体要求对所需电机及设备的型号进行选择和确定,表中列出了型号、品牌、价格及数量。
具体如表3.2元器件选型所示
表3.2 元器件选型
4 软件设计
4.1 主流程图
图4.1 主流程图4.2 梯形图
设计心得
历时两个星期的课程设计,既是对所学知识的检验,也是对自己能力的提高。
通过此次课程设计,使我在课本外发现了知识运用的乐趣。
将自己所学运用于实际使用中,虽然只是一次简单的设计工作,并没有用于实践,但这已经提醒自己课程的实用性。
在设计过程中,资料的翻阅,查找,一步步深化了知识层次,使自己不再局限于课本、考试之中。
对于效益、成本这些更加职业化的因素加深了印象。
学习最终还是应用于生产工作,效益为王才是最终目的。
可以说,一次课程设计也是一次低层次的对知识本质上的重新正视。
这次设计还有许多的不足,功能上还不尽完善,根据需要还可以添加清洁剂喷洒,吹风机风干车体。
另外还有复位功能的完善,比如在行进和后退的过程中遇到故障以及所采取的措施等等。
该设计还有很大的改进空间以待以后完善。
参考文献
[1] 三菱微型可编程控制器FX1s,FX2N,FX1N,FX2NC编程手册.三菱电子公司. 2001
[2] 电气控制与PLC系统.任胜杰.北京:机械工业出版社.2013.1
[3] 流行PLC实用程序及设计(三菱FX2系列).贺哲荣,石帅军. [M].西安:西安电子科技大学出版社:2006
[4] 可编程控制器应用技术.第二版.田瑞庭主编.北京:机械工业出版社.1994。