蒸汽凝结水管径计算
蒸汽管道压降及管径计算3

蒸汽管道压降及管径计算一、现场条件1、从公用部的分汽缸预留口一次阀后法兰起至汽电部除氧器连排进汽管接入口止。
2、分汽缸蒸汽参数:温度150℃,压力0.5MPa(表压),流量0-10t/h,管道引出口为DN100的阀后法兰。
3、除氧器参数:设计值:温度230℃,压力1.25MPa(表压);实际运行工况值:发电50MW时,温度140℃,压力0.25-0.3MPa,管道接入口为DN400无缝钢管开孔。
二、计算条件1、起点分汽缸蒸汽参数取:温度150℃,压力0.5MPa(表压),流量10t/h。
2、终点除氧器参数取:温度140℃,压力0.3MPa。
3、管道压力取平均值:P1=0.5Mpa; P2=0.3Mpa.P= (P1+ P2)/2=(0.5+0.3)/2=0.4 Mpa.4、平均密度:查表0.5Mpa时ρ1=1/v=1/0.3746=2.669kg/m3 ;查表0.3Mpa时ρ2=1/v=1/0.6056=1.651kg/m3ρ= (ρ1+ρ2)/2=(2.669+1.651)/2=2.16kg/m35、管道直径计算,流速取w=35m/s。
d=594.5√q m/wρ=594.5√10/(35*2.16)= 216.21 mm取d=219mm6、流量10t/h,管径DN200,计算流速w,压力降R。
查图(5-9c动力管道设计手册)计算得:W=82 m/s ,R=320Pa/m实际流速w’=W/ρ=82/2.669=31.09m/s.实际压力降R’=R/ρ=320/2.669=119.Pa/m7、管径DN219,压力0.4Mpa计算流速w,压力降R, 流量q m查表(5-9c动力管道设计手册)得:w’=35m/s,R’=172Pa/m, q m=11250Kg/h=11.25t/h.8、管道压力总阻力计算按K=0.2时DN200 无缝钢管20g λ=0.0222(表5-119动力管道设计手册) 直管L=213m截止阀L d=66m*5个=330mR=4d 90度弯头L d=6.4m*21个=134.4mΔP=1.15*2.16*35*35/2*1000*0.0222/219*(213+330+134)+10*0.0222(21.5-1) =104413+4.55=104417 Pa8、允许单位压力降R=(P1- P2)106/1.15(L+L d)=(0.5-0.3)*1000000/1.15(213+464) =256.8Pa/m。
蒸汽管道管径计算

蒸汽管道管径计算之杨若古兰创作
Dn--------管道内径mm;
G---------介质质量流量t/h;
-------介质比容m3/kg;(查蒸汽表)
ω-------介质流速m/s,惯例30m/s:
流速选用;
过热蒸汽 Dg>200 40~60m/s
Dg>200~100 30~50m/s
Dg<100 20~30m/s
饱和蒸汽 Dg>200 30~40m/s
Dg>200~100 25~35m/s
Dg<100 15~30m/s
蒸汽供热管和凝结水管路的水力计算

供热蒸汽管路和凝结水管路水力计算(一)供热管网水力计算的基本原理蒸汽供热系统的管网由供汽管网和凝结水回收管网组成。
蒸汽供热系统管网水力计算的主要任务主要有以下三类:(1)按已知的热媒(蒸汽或凝结水)流量和压力损失,确定管道的直径。
(2)按已知热媒流量和管道直径,计算管道的压力损失,确定管路各进出口处的压力。
当供汽管路输送过热蒸汽时,还应计算用户入口处的蒸汽温度。
(3)按已知管道直径和允许压力损失,计算或校核管道中的流量。
根据水力计算的结果,不仅能分别确定蒸汽供热系统的管径、流量、压力以及温度,还可进一步确定汽源的压力和温度、凝结水回收系统的型式以及凝结水泵的扬程等。
本指导书主要阐述水力计算的基本原理、凝结水管网的水力工况、上述第一类计算的基本方法、基本步骤及典型计算示例。
至于上述第二类和第三类计算,由于与第一类计算原理相同、方法相似,因此未作详细说明。
1. 供热管网水力计算的基本公式在管路的水力计算中,通常把管路中流体流量和管径都没有改变的一段管子称为一个计算管段。
任何一个供热系统的管路都是由许多串联或并联的计算管段组成的。
当流体沿管道流动时,由于流体分子间及其与管壁间存在摩擦,因而造成能量损失,使压力降低,这种能量损失称为沿程损失,以符号“Δp y ”表示;而当流体流过管道的一些附件(如阀门、弯头、三通、散热器等)时,由于流动方向或速度的改变,产生局部旋涡和撞击,也要损失能量使压力降低,这种能量损失称为局部损失,以符号“Δp j ”表示。
因此,管路中每一计算管段的压力损失,都可用下式表示:Δp = Δp y +Δp j = Rl + Δp j Pa (2—1)式中:Δp —— 计算管段的压力损失,Pa ;Δp y —— 计算管段的沿程损失,Pa ;Δp j —— 计算管段的局部损失,Pa ;R —— 每米管长的沿程损失,又称为比摩阻,Pa/m ;L —— 管段长度,m 。
比摩阻可用流体力学的达西·维斯巴赫公式进行计算:22v d R ρλ= Pa/m (2—2)式中:λ —— 管段的摩擦阻力系数;d —— 管子内径,m ;v —— 热媒在管道内的流速,m/s ;ρ—— 热媒的密度,kg/m 3。
蒸汽管路计算公式

9.1蒸汽网路系统一、蒸汽网路水力计算的基本公式计算蒸汽管道的沿程压力损失时,流量、管径与比摩阻三者的关系式如下R = 6.88×10-3×K0.25×(G t2/ρd5.25),Pa/m (9-1)d = 0.387×[K0.0476G t0.381/ (ρR)0.19],m (9-2)Gt = 12.06×[(ρR)0.5×d2.625 / K0.125],t/h (9-3)式中 R ——每米管长的沿程压力损失(比摩阻),Pa/m ;G t ——管段的蒸汽质量流量,t/h;d ——管道的内径,m;K ——蒸汽管道的当量绝对粗糙度,m,取K=0.2mm=2×10-4 m;ρ ——管段中蒸汽的密度,Kg/m3。
为了简化蒸汽管道水力计算过程,通常也是利用计算图或表格进行计算。
附录9-1给出了蒸汽管道水力计算表。
二、蒸汽网路水力计算特点1、热媒参数沿途变化较大蒸汽供热过程中沿途蒸汽压力P下降,蒸汽温度T下降,导致蒸汽密度变化较大。
2、ρ值改变时,对V、R值进行的修正在蒸汽网路水力计算中,由于网路长,蒸汽在管道流动过程中的密度变化大,因此必须对密度ρ的变化予以修正计算。
如计算管段的蒸汽密度ρsh与计算采用的水力计算表中的密度ρbi 不相同,则应按下式对附表中查出的流速和比摩阻进行修正。
v sh = ( ρbi / ρsh) · v bi m/s (9-4)R sh= ( ρbi / ρsh) · R bi Pa/m (9-5)式中符号代表的意义同热水网路的水力计算。
3、K值改变时,对R、L d值进行的修正(1)对比摩阻的修正、当蒸汽管道的当量绝对粗糙度K sh与计算采用的蒸汽水力计算表中的K bi=0.2mm不符时,同样按下式进行修正:R sh=(K sh / K bi)0.25 · R bi Pa/m (9-6)式中符号代表意义同热水网路的水力计算。
主要蒸汽管管径计算

主要蒸汽管管径计算在工业领域中,蒸汽是一种非常重要的能源。
蒸汽可以被用于加热、发电和其他各种工艺过程中。
然而,为了确保蒸汽的有效输送,需要对蒸汽管的管径进行正确的计算和选择。
蒸汽管的管径计算一般需要考虑以下几个因素:1.蒸汽流量:蒸汽管的管径选择首先需要考虑的是蒸汽流量,即单位时间内通过管道的蒸汽量。
蒸汽流量的大小会直接影响蒸汽管的管径选择。
蒸汽流量的单位通常是千克/小时或吨/小时。
2.蒸汽压力:蒸汽的压力也是确定管径的重要因素之一、蒸汽管的管径选择需要根据工作压力来确定,一般有低压蒸汽、中压蒸汽和高压蒸汽。
不同压力等级的蒸汽对管径的要求不同。
3.蒸汽速度:蒸汽的速度也是确定管径的关键因素之一、蒸汽在管道中的流速过高会导致能量损失和蒸汽水锤等问题,而流速过低则可能导致堵塞和起沉积物。
蒸汽管的设计应根据蒸汽流速应力进行选择。
4.管道长度和阻力:管道的长度和内部的阻力也会对蒸汽管径的选择产生影响。
长管道和高阻力会增加蒸汽的损失和能源消耗。
因此,在计算管径时需要考虑这些因素。
在进行蒸汽管径计算时,一种常用的方法是使用流体力学公式和实验数据,如达西公式和蒸汽手册等。
这些公式和数据可以帮助工程师准确地选择蒸汽管径。
举例来说,假设有一个工艺需要输送50吨/小时的高压蒸汽。
首先,需要根据蒸汽的压力确定管径的可选范围。
然后,可以根据蒸汽的流量和速度来选择合适的管径。
在进行计算时,还需要考虑管道的长度和内部阻力。
为了更好地理解蒸汽管径计算,以下是一个简单的实例:假设需要输送50吨/小时的高压蒸汽,蒸汽压力为10MPa,管道长度为100米。
通过查询相关的流体力学公式和数据,可以得到合适的管径范围,假设为DN150-DN200。
接下来,需要根据流体力学公式计算出蒸汽的流速。
设定蒸汽的流速为12m/s,根据流速和管径选择,可以计算出最适合的管径为DN200。
最后,需要检查所选择的管径是否满足管道长度和内部阻力的要求。
根据实际情况,可能需要对管道进行分段计算,以确保整个管道的蒸汽流动性能。
蒸汽管路计算公式

9.1蒸汽网路系统一、蒸汽网路水力计算的基本公式计算蒸汽管道的沿程压力损失时,流量、管径与比摩阻三者的关系式如下R = 6.88×10-3×K0.25×(G t2/ρd5.25),Pa/m (9-1)d = 0.387×[K0.0476G t0.381/ (ρR)0.19],m (9-2)Gt = 12.06×[(ρR)0.5×d2.625 / K0.125],t/h (9-3)式中 R ——每米管长的沿程压力损失(比摩阻),Pa/m ;G t ——管段的蒸汽质量流量,t/h;d ——管道的内径,m;K ——蒸汽管道的当量绝对粗糙度,m,取K=0.2mm=2×10-4 m;ρ ——管段中蒸汽的密度,Kg/m3。
为了简化蒸汽管道水力计算过程,通常也是利用计算图或表格进行计算。
附录9-1给出了蒸汽管道水力计算表。
二、蒸汽网路水力计算特点1、热媒参数沿途变化较大蒸汽供热过程中沿途蒸汽压力P下降,蒸汽温度T下降,导致蒸汽密度变化较大。
2、ρ值改变时,对V、R值进行的修正在蒸汽网路水力计算中,由于网路长,蒸汽在管道流动过程中的密度变化大,因此必须对密度ρ的变化予以修正计算。
如计算管段的蒸汽密度ρsh与计算采用的水力计算表中的密度ρbi 不相同,则应按下式对附表中查出的流速和比摩阻进行修正。
v sh = ( ρbi / ρsh) · v bi m/s (9-4)R sh= ( ρbi / ρsh) · R bi Pa/m (9-5)式中符号代表的意义同热水网路的水力计算。
3、K值改变时,对R、L d值进行的修正(1)对比摩阻的修正、当蒸汽管道的当量绝对粗糙度K sh与计算采用的蒸汽水力计算表中的K bi=0.2mm不符时,同样按下式进行修正:R sh=(K sh / K bi)0.25 · R bi Pa/m (9-6)式中符号代表意义同热水网路的水力计算。
蒸汽和凝结水管道设计

蒸汽和凝结水管道设计国外石油工厂蒸汽系统的压力大致分为10Mpa、6.0MPa、4.0 MPa、2.0 MPa、1.0 MPa、0.6 MPa、和0.35 MPa,凝结水系统压力大致分为0.35~0.07 MPa.国内石油化工厂蒸汽系统的压力大致分为10Mpa、4.0MPa、1 MPa、0.3 MPa, 凝结水系统压力大致分为0.3 MPa.表1是国内常用的蒸汽和凝结水系统压力用、稀释用、事故用。
(一)蒸汽管道1.蒸汽管道的布置一般装置的蒸汽管道,大多是架空铺设,很少有管沟铺设,不埋地铺设。
其主要原因是不易解决保温层的防潮和吸收管道热胀变形。
由工厂系统进入装置的主蒸汽管道,一般布置在管廊的上层。
(1)各种用途的蒸汽支管均应自蒸汽主管的顶部接出,支管上的切断阀应安装在靠近主管的水平管线上,以避免存液。
(2)在动力、加热及工艺等重要用途的蒸汽支管上,不得再引出灭火/消防,吹扫等其他用途的蒸汽支管。
(3)一般从蒸汽主管上引出的蒸汽支管均应采用二阀组。
而从蒸汽主管或支管引出接至工艺设备或工艺管道的蒸汽管上,必须设三阀组,即两切断阀之间设一常开的DN20检查阀,以便随时发现泄漏。
(4)凡饱和蒸汽主管进入装置,在装置侧的边界附近应设蒸汽疏水器,在分水器下部设经常疏水措施。
过热蒸汽主管进入装置,一般可不设分水器。
(5)成组布置的蒸汽拌热管,应由蒸汽分管道(或称集合管Manifold)接出,分管道是由拌热蒸汽供汽管供汽,拌热蒸汽供汽管是由装置内的蒸汽主管上部引出或从各设备区专用拌热蒸汽支管上部引出。
当蒸汽分管道的位置比蒸汽主管高时,可按图1上部的图形设计。
当蒸汽分管道的位置比蒸汽主管低时,可按图1下部的图形设计。
(6)在蒸汽管道的U形补偿器上,不得引出支管。
在靠近U形补偿器两侧的直管上引出支管时,支管不应妨碍主管的变形或位移。
因主管热胀而产生的支管引出点的位移,不应使支管承受过大的应力或过多的位移。
(7)直接排至大气的蒸汽放空管,应在该管下端的弯头附近开一个φ6mm的排液孔,并接DN15的管子引至边沟、漏斗等合适的地方,如图2(a)所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈蒸汽凝结水管径计算
摘要:本文根据蒸汽凝结水管道中流体流动的不同状态,将工程中凝结水回收系统的管路分为不同的阶段,结合其常见的工程算法,分别对不同类型的蒸汽凝结水管道,介绍了不同的管径确定方法,并总结和提出了在设计及计算过程中需要注意的一些常见问题。
关键词:蒸汽凝结水管径计算
引言
蒸汽作为集中供热系统的热媒 ,可以同时解决采暖、洗浴、医院、工业等不同用户的用热问题,应用极为普遍[1]。
蒸汽在供热系统内流动过程中由于传热、压降发生相态变化,变成凝结水[2]。
在现有的工业、民用甚至市政项目中,蒸汽在用汽设备中被使用的实际上仅仅是其潜热,蒸汽的显热—蒸汽凝结水所具有的热量价值及未被污染的蒸汽凝结水本身所具有的洁净软水的价值被全
部排入下水道,导致环境热污染和能源浪费。
在蒸汽作为热媒被利用的过程中,未被污染的蒸汽凝结水可以直接作为锅炉给水。
一般来说,饱和凝结水平均含有蒸汽热能的20%~50%左右[3、4],如不回收,不但损失热能,也将增加锅炉给水处理费用,增加锅炉排污量及由此带走的热损失。
因此,蒸汽凝结水回收系统的设计无疑将带来可观的经济效益、环境效益及社会效益。
而在蒸汽凝结水回收系统的设计过程中,蒸汽凝结水管道的管径计算是其中一个必要又有难度的环节。
一、常用管径确定方法
蒸汽凝结水通常情况下为汽水混合物,其管径计算方法比较复杂,详细而精确的算法并不适合工程设计。
因此,在工程设计时,设计人员通常采取将蒸汽凝结水管道的水力计算条件作出不同的
简化,进而衍生出不同的确定凝结水管径的方法。
其一是根据多年的工作经验,采取将凝结水管径确定为比相应的蒸汽管道管径小1~2号;或者将蒸汽凝结水管道视为纯高温热水,忽略其含汽部分,近而采用计算高温热水管径的方法来计算凝结水管道;还有将查表与水力计算相结合的方法,这种方法在相关书籍中有一定的介绍,但有些介绍并不完善,这种方法在本文第三部分余压凝结水管径计算方法的介绍中将加以完善。
二、管径分类计算方法
其实,上文介绍的这几种蒸汽凝结水管径确定方法都有失片面。
准确来讲,不同类型的凝结水管道,有不同的管径确定方法。
下面根据蒸汽凝结水管道中流体流动的状态分类来分别介绍其管径确
定方法。
理论上来讲,蒸汽凝结水管道中流体的流动状况常表现为满管流动、非满管流动及两相满管流动三种情况[5]。
1.满管流动是指单相的纯凝结水的满管流动,其流动规律与流动状态与热水管道基本一致,可视为热水管道。
满管流动的凝结水管道管径计算方法按照热水管道的管径计算公式或查热水管道管
径选择图表即可。
热水管道管径计算公式如下:
其中,qm为工作状态下的质量流量,w为工作状态下的流速,ρ为工作状态下的密度。
据此,选取合适的流速,即可算出满管流动凝结水管道的管径。
工程设计当中,此种类型的凝结水管道常位于凝结水回收装置之后,如厂区的凝结水管道。
其管径计算可按热水管道管径计算方法确定,只是凝结水管道由于加压后饱和水成分部分汽化,仍为汽水混合物,又凝结水输送通常非连续进行,故应适当考虑凝结水回收的最大流量,如设蒸汽流量为10t/h,凝结水最大流量可考虑增大50%,即15t/h。
此种估算方法非绝对,仅为经验值。
当管道压力高时,可适当放大压损,取较小管径;当管道压力低时,应减小压损,取较大管径。
另,站房内部凝结水回收装置最大处理水量也应取凝结水量的
1.5倍。
2.非满管流动是指凝结水管道中的流体由汽水两相组成,汽与水分层,或汽与水分段两相非满管流动。
整个管道的横断面,不完全充满水或不完全充满均匀分布的汽水混合物。
非满管流动的凝结水管道流体流动状况极为复杂。
工程设计当中,此类凝结水管道常位于汽水换热设备与疏水装置之间。
在工程设计当中,多数情况下此段凝结水管道只需概略计算即可,故选取管径常常查相关图表确定。
3.两相满管流动是指凝结水管道中的流体是乳状的汽水混合
物,满管两相流动。
其流动规律可认为与热水管道相似,但管内流体的密度其实是汽水混合物的密度。
此种凝结水管道亦称余压凝结水管道。
工程设计当中,此种凝结水管道常位于疏水装置之后,凝结水加压装置之前。
计算方法简述如下:
1.1根据凝结水管道介质流向,确定凝结水起始点压力p1,假定凝结水管道终点压力p2;
1.2由得出起点和终点的压差,由此压差查汽水混合物平均密度;
1.3根据凝结水流量qm查余压凝结水管道计算图,根据压力损失r及流速w取适当的管径dn;
1.4再经密度修正:,;
1.5最后,也是最关键的一步,即根据密度修正后的压力损失,即实际压力损失,计算终点的实际压力p2’,若p2≈p2’,则说明此管径可取,否则,须重新假定凝结水管道终点压力,重新按照上述步骤计算,如此反复,直到得出使假定终点压力与实际终点压力大致相等的管径方可。
上述计算步骤中,最后一步校验尤为重要,不可省略。
三、小结
工程设计当中,有些时候并不过度精确要求蒸汽凝结水的管径计算,所以很多情况下并不会详细的计算各种流动状态下的凝结水管道的管径,而是将整个凝结水系统都简化视为汽水混合物满管流
动或高温热水管道满管流动,这需要视具体情况而定。
但无疑凝结水管道管径确定不可过大也不可过小,管径过大则增大了散热面积,造成不必要的热量损失,同时造成管材的浪费,成本的提高;管径过小无疑会增加系统阻力,造成不必要的压力损失,甚至致使凝结水回收困难。
因此,合理分析,配合计算,确定合适的凝结水管径,对于做好蒸汽凝结水回收系统设计非常重要。
参考文献:
[1] 高鲁锋,蒸汽供热管网凝结水损失的影响因素及其分析[j].能源工程,2008(1):50-54.
[2] su s p, cundyv a. heat loss in insulated pipe-the influence of thermal contact resistance: a case study [j]. composites partb: engineering, 1996,27(1):85 - 93.
[3] 徐荣军,炼油厂凝结水回收技术,河南化工,2003,32(7):32~33
[4] 蔡文海,蒸汽凝结水回收技术的几个问题,能源与环境,2005,23(2):34~35
[5] 实用供热空调设计手册[m].北京:中国建筑工业出版社,2008:639-644.。