第一章 质点运动学

合集下载

01 力学:第一章 质点运动学-课堂练习及部分习题解答

01 力学:第一章 质点运动学-课堂练习及部分习题解答
h1 O
xM h2 = x h1 − h2 dxM h1 dx vM = = dt h1 − h2 dt
h2
x
· x
M
M
x
《学习指导》第1章·典型例题3
Zhang Shihui
题. 距河岸(看成直线)500m处有一艘静止的船,船上的探 照灯以转速为n=1r/min转动。当光束与岸边成60°角时, 光束沿岸边移动的速度的大小是多少? 解:首先建立 p 的运动方程 x(t)
Zhang Shihui
题. 一艘正在沿直线行驶的电艇,在发动机关闭后,其 加速度方向与速度方向相反,大小与速度平方成正比, 即 dv dt = − kv 2。式中k为常数,试求电艇在关闭发动 机后行驶x距离时的速度。 dv dv dx 2 解:已知 = − kv ⇒ = − kv 2 dt dx dt
《学习指导》第1章·典型例题7
Zhang Shihui
题. 物体悬挂在弹簧上作竖直振动,加速度为a=-ky,k为 常数,y是以平衡位置为原点测得的坐标,假定振动的物 体在坐标y0处的速度为v0,求速度v和坐标y的函数关系。
dv dv dy dv 解: 由 a = = −ky ⇒ = − ky ⇒ v = − ky dt dy dt dy
《学习指导》第1章·典型例题2
Zhang Shihui
题. 灯距地面高度为h1,一只鸵鸟身高为h2,在灯下以匀 速率v沿水平直线行走,如图所示,则它的头顶在地上的 影子M点沿地面移动的速度为多少? 解:建立如图所示的坐 标系,鸵鸟坐标为x, M点的坐标为xM
dx dxM = v, vM = =? dt dt
α h
O
vp
x
θ P
《学习指导》第1章·习作题1

第一章 质点运动学

第一章 质点运动学
第一章
1—1
质点运动学
一质点在平面 xOy 内运动,运动方程为 x=2t, y = 19 − 2t 2 (SI)。(1)求质点的运动轨
道;(2)求 t=1s 和 t=2s 时刻质点的位置矢量;(3)求 t=1s 和 t=2s 时刻质点的瞬时速度和瞬时 加速度;(4)在什么时刻,质点的位置矢量和速度矢量垂直?这时 x、y 分量各为多少?(5)在什 么时刻,质点离原点最近?最近距离为多大? [解] 质点的运动方程: x = 2t , y = 19 − 2t 2 (1)消去参数 t,得轨道方程为:
所以
u 2 − v 2 = sa
即 a = (u 2 − v 2 ) / s = h 2 v 2 / s 3
1—8 质点沿 x 轴运动,已知 v = 8 + 2t 2 ,当 t = 8 s 时,质点在原点左边 52m 处(向右为 x 轴正向)。试求:(1)质点的加速度和运动学方程;(2)初速度和初位置;(3)分析质点的运动性 质。 [解] (1) 质点的加速度 a=dv/dt=4t 又 v=dx/dt 所以 dx=vdt 对上式两边积分,得
由 t=0 时 v=0 得 c=g 所以,物体的速率随时间变化的关系为:
g (1 − e − Bt ) B (2) 当 a=0 时 有 a=g-Bv=0 由此得收尾速率 v=g/B v=
1—12 一质点由静止开始作直线运动,初始加速度为 a,此后随 t 均匀增加,经时间 τ 后, 加速度变为 2a,经 2τ 后,加速度变为 3a,……。求经时间 nτ 后,该质点的加速度和所走 过的距离。 [解] 由题意可设质点的加速度与时间 t 的关系为 at = a + kt 又 (k 为常数)
vx =
dx = − rω sin ωt dt dy vy = = rω cos ωt dt dz vz = =c dt

1章 质点运动学

1章 质点运动学

r
r
r
cos2 cos2 cos2 1
12/23
3)运动方程和轨道方程
a、质点在运动过程中,空间位置随时间变化的函数式称为
运动方程。
rv

rv(t)

r x(t)i

y(t)
r j

r z(t)k
表示为: x x(t) , y y(t) , z z(t).
运动方程是时间t 的显函数。 b、质点在空间所经过的路径称为轨道(轨迹)。
为定量地描述物体位置而引入,常用的有直角坐标系、极坐 标系、自然坐标系、球面坐标系或柱面坐标系等。
y
y
px, y, z
r
*

z o
x
z
x
直角坐标系
rˆ rrˆ
r p r,
o
x
极轴
极坐标系
7/23
s 0 B
nB nA B
A
A
•s0
s0
自然坐标系
z
p
r

从上式中消去t 即可得到轨道方程。 轨道方程不是时间t 的显函数。
13/23
1.2.2 位移
1)位移 rr 由起始位置指向终了位置的有向线段
rv rvB rvA
在直角坐标系中为
rvA

v xAi
yA
vj,
rvB

v xBi
yB
vj,
rv rvB rvA
y
rvA A
yB yA
第一篇 力学
前言 第一章 质点运动学 第二章 质点动力学 第三章 刚体力学基础
1/23
力学的研究对象:机械运动。 机械运动:是指宏观物体之间(或物体内部各部分之间)

第1章 质点运动学

第1章 质点运动学

100t
4
t3
0
3
x x0
t
t0 vx (t)dt 0
t
(100t
4
t3 )dt
50t 2
1
t4
0
3
3
第一章 质点运动学
1-5 曲线运动
一、匀速圆周运动
1、匀速圆周运动的加速度
A v B
vA B vB
设质△|量=圆点 t|时vvv周处|存'刻。的在在,质半圆。v质点径周根点从为上据在PR点的加Q,运P处速处圆动,度,心到速的速为Q度定度O点为义,为有vv可v在,速;' 得t其度时在瞬中增刻t+时|,v
解:由
a
ann a
v2 R
n
dv dt
v
ds dt
20
0.6t 2 (m
/
s)
当t=1s时
an
v2 r
(20 0.6)2 200
m / s2
1.88m / s2
a
dv dt
1.2t
1.2m / s2
a a2 an2 2.23m / s2
dt
v0 v
0
v
v e(1.0s1 )t 0
由速度的定义: v
dy dt
v e(1.0s1 )t 0
y
t
dy v0 e dt (1.0s1 )t
y 10 1 e( 1.0s1 )t
0
0
由以上结果, t 时, v 0,此时y 10m。
但实际情况是:t 9.2s时, v 0,此时y 10m。
加速度分量
加速度大小 加速度余弦方向
a | a| a2x a2y a2z

质点运动学习题 (修复的)

质点运动学习题 (修复的)

第一章质点运动学一.选择题:1.某质点的运动方程为,则该点作[ ](A )匀加速直线运动,加速度沿X 轴正方向。

(B )匀加速直线运动,加速度沿X 轴负方向。

(C )变加速直线运动,加速度沿X 轴正方向。

(D )变加速直线运动,加速度沿X 轴负方向。

2.一运动质点在某瞬间时位于矢径(X 、Y )的端点处,其速度大小为[ ](A )(B )(C )(D )3.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。

设人以匀速率收绳,绳不伸长、湖水静止,则小般的运动是[ ](A )匀加速运动。

(B )匀减速运动。

(C )变加速运动。

(D )变减速运动。

(E )匀速直线运动。

4.一个质点在做匀速率圆周运动时[ ](A )切向加速度改变,法向加速度也改变。

(B )切向加速度不变,法向加速度改变。

(C )切向加速度不变,法向加速度也不变。

(D )切向加速度改变,法向加速度不变。

5.对于沿曲线运动的物体,以下几种说法中哪一种是正确的: [ ](A )切向加速度必不为零。

(B )法向加速度必不为零(拐点处除外)。

(C )由于速度沿切线方向,法向分速度必为零。

因此法向加速度必为零。

(D )若物体作匀速率运动,其总加速度必为零。

(E )若物体的加速度为恒矢量,它一定作匀变速率运动。

6.某人骑自行车以速率向西行驶,今有风以相同速率从北偏东方向吹来,试问人感到风从哪个方向吹来?[ ](A )北偏东(B )南偏东(C )北偏西(D )西偏南 7、质点的运动方程是j bt i at r (a 、b 都是常数),则质点的运动是( )(A )变速直线运动 (B )匀速直线运动(C )园周运动; (D )一般曲线运动。

8. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处 ( )(A) (B) (C) (D)9. 某人以4km/h 的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。

大学物理第一章质点运动学

大学物理第一章质点运动学

∫ d x = ∫ (2t −t )dt
2 0 0
t
质点的运动方程
13 x = t − t (m) ) 3
2
(3) 质点在前三秒内经历的路程
s = ∫ vdt = ∫ 2t − t 2 dt
0 0
3
3
令 v =2t-t 2 =0 ,得 t =2
8 s = ∫ (2t − t )dt + ∫ (t − 2t)dt = m 0 2 3
初始条件为x 初始条件为 0=0, v0=0 质点在第一秒末的速度;(2)运动方程;(3)质点在前三秒内 运动方程; 质点在前三秒内 运动方程 求 (1) 质点在第一秒末的速度 运动的路程。 运动的路程。 解 (1) 求质点在任意时刻的速度 dv dv a= = 2 − 2t 由 dt dv = (2 − 2t) dt 分离变量 两边积分
y
P点在 系和 '系的空间坐标 、 点在K系和 系的空间坐标、 点在 系和K 时间坐标的对应关系为: 时间坐标的对应关系为:
y'
r v
P
}
r r
o z
r r′
o' x x'
r R
z'
伽利略坐标变换式
2. 速度变换 r r vK、vK′ 分别表示质点在两个坐标系中的速度 r r r d r ′ d(r − vt) r r r vK′ = = = vK − v dr′ r dt t r 即 vK′ = vK − v r r r vK = vK′ + v 伽利略速度变换
dv = g − Bv dt 分离变量并两边积分
t dv ∫0 g - Bv = ∫0 dt v
g v = (1− e−Bt ) B

第一章质点运动学习题课

dv at c 1 2 ds dt s bt ct v b ct 2 2 ( b ct ) v 2 dt an R R R b 当at=an求得 t c c
质点运动学
30
物理学
第五版
第一章习题课
9 一质点在半径为0.10m的圆周上运动,设t=0时 质点位于x轴上,其角速度为ω=12t2。试求
质点运动学
23
物理学
第五版
第一章习题课 5 一小轿车作直线运动,刹车时速度为v0,刹车 后其加速度与速度成正比而反向,即a=-kv,k 为正常量。
试求
(1)刹车后轿车的速度与时间的函数关系
(2)刹车后轿车最多能行多远?
解:
dv 1 kt 由 a kv kv dv kdt v Ce (1) dt v
(3) v R 25 1 25m s
1
a R m s 2
质点运动学
29
物理学
第五版
第一章习题课 8 一质点沿半径为R的圆周运动,质点所经过的弧 长与时间的关系为s=bt+ct2/2,其中b,c为常量, 且Rc>b2。 求切向加速度与法向加速度大小相等之前所经历的 时间 解:
答案:B
质点运动学
4
物理学
第五版
第一章习题课
4 如图所示,湖中有一小船,有人用绳绕过岸上一 定高度处的定滑轮拉湖中的船向岸边运动.设该人 以匀速率v0 收绳,绳不伸长且湖水静止,小船的速率 为v,则小船作( )
质点运动学
5
物理学
第五版
第一章习题课
v0 (A) 匀加速运动, v cos
(B) 匀减速运动,
第一章习题课

大学物理第一章质点运动学习题

n
1 2 间的关系为= v0t − bt ( SI)。 s 2,质点加速度的大小和方向。 求:(1) 任意时刻t,质点加速度的大小和方向。 任意时刻
求:
a
α
r aτ
R
R
τ
dt
r an
4
a = an + aτ =
2 2
(v0 − bt )4 + (− b )2
R2
r (v 0 − bt ) an a 与切向轴的夹角为 α = arctg = arctg (− Rb ) aτ
v v v v dr 解:v = = 2i − 2tj dt v v v v v t = 2 v2 = 2i − 4 j t = 0 v0 = 2i
v2 = 22 + 42 = 4.47m/ s 大小: 大小:
−4 方向: 方向: θ = arctan = −63o26′ 2
θ为 2与 轴的夹角 v x
x = −t 2 (SI)
例5:一质点运动轨迹为抛物线 : 求:x= -4m时(t>0)粒子的 时 粒子的 速度、速率、加速度。 速度、速率、加速度。 解: x= -4m时 t=2s 时
x t =2 dx vx = −4m s vx = = −2t dt t =2 dy 3 vy = −24m s vy = = −4t + 4t dt v v v 2 v = vx + v2 = 4 37 m s v = −4i − 24 j m/ s y 2 dvx d x −2 ax = s = = −2m ay = −12t 2 + 4 = −44(m −2 ) s 2 dt dt v v r a = −2i − 44 j m⋅ s−2
y = −t 4 + 2t 2(SI)

第一章质点运动学_习题及答案

第1章 质点运动学 习题及答案一、填空题1.一质点沿Ox 轴运动,其运动方程为335x t t =-+,则质点在任一时刻的速度为 ,加速度为 。

2.一质点沿Ox 轴运动,其运动方程为335x t t =+-,则质点在2t s =时的加速度大小为 ,方向为 。

3. 一质点沿Ox 轴运动,其速度为22t υ=,初始时刻位于原点,则质点在2t s =时的位置坐标x = ,加速度大小为 。

4.一质点做直线运动,其瞬时加速度的变化规律为t A a ωωcos 2-=,在t=0 时,,,0A x x ==υ其中ω,A 均为正常数,则此质点的运动方程是 。

5.一质点的运动学方程为cos sin R t R t =+r i j ,在任意时刻,切向加速度和法向加速度的大小分别为 , 。

6.质点作圆周运动的法向加速度反映了 的变化快慢,切线加速度反映了 的变化快慢。

7.一质点沿半径为R 的圆周按规律221bt t s o -=υ而运动, o υ,b 都是常数. t 时刻质点的总加速度为 ; t 为 时总加速度在数值上等于b ,当加速度达到b 时,质点已沿圆周运行了 圈。

二、回答问题1.|r ∆|与r ∆ 有无不同?t d d r 和dr dt 有无不同? td d v 和dv dt 有无不同?其不同在哪里?试举例说明. 解: |r ∆|与r ∆ 不同. |r ∆|表示质点运动位移的大小,而r ∆则表示质点运动时其径向长度的增量;t d d r 和dr dt 不同. td d r 表示质点运动速度的大小,而dr dt 则表示质点运动速度的径向分量;t d d v 和dv dt 不同. td d v 表示质点运动加速度的大小, 而dv dt 则表示质点运动加速度的切向分量. 2.质点沿直线运动,其位置矢量是否一定方向不变?质点位置矢量方向不变,质点是否一定做直线运动?解: 质点沿直线运动,其位置矢量方向可以改变;质点位置矢量方向不变,质点一定做直线运动.3.匀速圆周运动的速度和加速度是否都恒定不变?圆周运动的加速度是否总是指向圆心,为什么? 解: 由于匀速圆周运动的速度和加速度的方向总是随时间发生变化的,因此,其速度和加速度不是恒定不变的;只有匀速圆周运动的加速度总是指向圆心,故一般来讲,圆周运动的加速度不一定指向圆心.三、计算题1.一物体做直线运动,运动方程为2362x t t =-,式中各量均采用国际单位制,求:(1)第二秒内的平均速度(2)第三秒末的速度;(3)第一秒末的加速度;(4)物体运动的类型。

第一章 质点运动学 习题

质点运动学1. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6,则该质点作( )(A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向.2. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作 ( )(A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运动.3. 一运动质点在某瞬时位于矢径()y x r ,的端点处, 其速度大小为( )(A) t r d d (B) t r d d(C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x4. 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为( )(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T (C) 0 , 0. (D) 2πR /T , 0. 5. 一个质点在做匀速率圆周运动时( )(A) 切向加速度改变,法向加速度也改变. (B) 切向加速度不变,法向加速度改变. (C) 切向加速度不变,法向加速度也不变. (D) 切向加速度改变,法向加速度不变.6. 某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来? ( )(A) 北偏东30°. (B) 南偏东30°. (C) 北偏西30°. (D) 西偏南30°. 7. 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是( )(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt 8.一质点从静止出发,沿半径为1m 的圆周运动,角位移θ=3+92t ,当切向加速度与合加速度的夹角为︒45时,角位移θ=( )rad :(A) 9 (B) 12 (C) 18 (D) 3.59.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是( ) (A) 匀加速运动. (B) 匀减速运动. (C) 变加速运动. (D) 变减速运动.10.一质点沿x 方向运动,其加速度随时间的变化关系为a = 3+2 t (SI) ,如果初始时质点的速度v 0为5m/s ,则当t为3s 时,质点的速度 v = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 质点运动学 一、教材系统的安排和教学目的 本章从如何描写质点的运动谈起引入描写平动的四个基本物理量:位置矢量、位移、速度和加速度,进而讨论常见的几种运动情况。关于直线运动,分别用数学公式和图线加以表示,着重阐明已知运动方程,可用微分法求出各时间内的位移、各个时刻的位置、速度和加速度;已知速度(或加速度)与时间的关系和初始条件,可用积分法求出位移公式和运动方程;以及研究质点运动问题的基本思路和步骤。关于平面曲线运动,着重阐明对曲线运动问题的处理方法,主要讲述直角坐标分析法和圆周运动自然坐标分析法。本章的教学目的是:使学生明确如何描写物体(质点)的运动,确切理解位置矢量、位移、速度和加速度概念,掌握匀变速直线运动和圆周运动的规律,以及研究运动学问题的思路和方法,为学习动力学打下良好的基础。 二、教学要求 1、理解描写质点运动的四个基本物理量。 (1)位置矢量是描写质点在空间中位置的物理量,是描写质点状态的一个参量。位置矢量是一个矢量,它具有矢量性;选取不同的参照系,以及在同一参照系中建立不同的坐标系,它的数值和方向是不同的,它的描述具有相对性;在质点运动过程中,位置矢量是随时间改变的,在各个时刻的大小和方向一般是不同的,它具有瞬时性。 (2)位移是描写质点在给定时间内位置变动的大小和方向的物理量,是个过程量。要明确它的矢量性和相对性,并明确位移与路程的区别。 (3)速度是描写质点位置变动的快慢和方向的物理量,是个状态量。要明确速度的瞬时性、矢量性和相对性的性质。 (4)加速度是描写质点运动速度变化快慢的物理量。要明确它的物理意义及其瞬时性、矢量性和相对性。 2、关于运动的图象(x-t图,v-t图)表示,要求学生明确图上每一点和每一条线都表示什么物理内容,并学会用x-t图,v-t图表示每种直线运动及位移、速度和加速度。 3、明确运动方程的物理内容,会由运动方程求位移、速度和加速度;由速度(或加速度)和初始条件求运动方程。 4、牢固掌握匀变速直线运动的速度公式和位移公式:v=v0+at和x-x0=v0t+(1/2)at2。利用这两个公式的解题思路和步骤是: (1)根据题意,确定研究对象。同时,要明确研究对象的物理过程(即做什么运动),必要时,最好做一个草图; (2)选定坐标原点,建立坐标系(如果研究直线运动,就要规定正方向); (3)根据运动过程的特征,列方程。有几个未知量,就是应列几个方程; (4)求解。必要时可进行分析、讨论 5、明确研究质点曲线运动的处理方法,并学会计算抛体运动和圆周运动的有关问题。平面曲线运动比直线运动要复杂些。作曲线运动的质点,不能用一个坐标的数值来描写它在空间中的位置,必须用两个坐标x,y来描写。也可用另一种方法:从原点向质点所在位置引有向线段r,如图1—1所示。r叫做位置矢量,简称为矢径。x,y分别是位矢r在x,y 4

轴上的投影。因此, 

rxiyj

运动方程也应写两个分量形式: x=f(t) , y=f(t) 从而,研究平面曲线运动的处理方法,往往是把它看做两个相互垂直的直线运动的合成运动。例如,把平抛运动看做是水平匀速直线运动与竖直自由落体运动的合成运动;把斜上抛运动看做是水平匀速直线运动与竖直上抛运动的合成运动等。 三、内容提要 1、位置矢量:由坐标原点引向质点所在位置的有向线段,它表示了质点在空间中的位置。在三维直角坐标系中,它的矢量表达式为 

rxiyjzk

其大小为; rxyz222

其方向可由它与x,y,z三个坐标轴所夹三个角,,的余弦来表示: cos,cos,cosxryrzr

2、位移矢量:由运动起点A引向运动终点B的有向线段,它表示了质点在给定时间内位置的总变化。 在二维直角坐标系中,位移矢量可表示为 rrrxxiyyjBABABA()()

其大小为: rxxyyBABA()()22

方向为: tgyyxxBABA

 其中角为位移矢量与x轴正方向所夹的角,应按逆时针算起。 3、速度矢量:定义为vdrdt,即速度矢量定义为位置矢量对时间的一阶导数,在直

线运动中,vdxdt。或者,也可将速度理解为元位移dr与元时间dt的比。 在二维直角坐标系中,速度可表示为 vdxdtidydtj

y

r

0 x图1—1 第一章 大学物理辅导 质点运动学

~5~ 式中dxdtvx,dydtvy; 速度大小: vvvxy22

方向:tgvvyx1(见图1—2) 速度矢量表示了质点位置变动的快慢和方向。 4、加速度矢量:加速度矢量被定义为速度对时间的一阶导数,或位置矢量对时间的二阶导数: 

advdtdrdt2

2

在二维直角坐标系中,advdtidvdtjxy或adxdtidydtj2222

上式中dvdtaxx,dvdtayy;dxdtax22,dydtay22; 加速度大小和方向可分别表示为: aaaxy22,tgaayx1

用自然坐标法表示为: 

aanan

式中avadvdtn2, 加速度的物理意义是:它表示了质点速度变化的快慢与方向,或者说,法向加速度avn2

,表示了质点运动方向变化的快慢程度,而切向加速度advdt,则表示了质点

速度变化大小的快慢程度。在这里要特别注意,全加速度advdt,即全部加速度等于速度矢量对时间的一阶导数,而作为全加速度a的一部分的切向加速度advdt,即切向加速度大小等于速度大小对时间的一阶导数。还要注意一般情况下advdtdvdt。 5、匀变速直线运动的一组公式 vvat0

xxvtat00

2

1

2

y vy v

 vx

0 x图1—2 6 vvaxx20202() 6、抛体运动公式

矢量式:rvtgt0212

分量式:xvtyvtgt00212cossin匀速直线运动匀变速直线运动 轨迹方程:yxtggxv20222cos为抛物线 全部飞行时间:Tvg20sin 上升的最大高度:Hvg0222sin 水平最大射程:Rvg022sin 式中为初速度v0与x轴正方向所夹之角。 7、运动方程:质点的位置随时间变化的关系 矢量表达式为:rrt() 分量表达式为:xxtyyt(),() 上式也可称做参数方程,时间t为参数。 8、运动轨迹:从运动方程中消去参数t而得到的两个坐标间的关系式,即y=f(x)或f(x,y)=0 四、典型例题 例题1一个人在平台边上,以v0=10米/秒的速度,铅直向上抛一小球,求t1=1秒及t2=2.5秒(学员作)时小球的位置。 解:选取图1—3所示的坐标,小球抛出处选为坐标原点,向上为x轴正方向,则初速度v0=10米/秒,向上为正,重力加速度g=9.8米/秒2,向下为负。 在t=1秒时,小球的位移为

x1=v0t1-12gt2=10×1-12×9.8×12=5.1(米) 所以,在t1=1秒时,小球离抛出点的高度,即位移为5.1米。 例题2一气球以5米/秒的速度由地面匀速上升,经过30秒后从气球上自行脱落一重物,此物自脱落到落回地面所需时间为多少? 解:以重物脱落处为坐标原点,取向上为正,如图1—4所示,则重物脱落时距地面高度为x0=5米/秒×30秒=150米,v0=5米/秒。 重物自脱落到落回到地面所需时间为t,而此时位移x=-150米,H为重物所能上升的最大

x x1 v0

0 x2 g图1—3 第一章 大学物理辅导 质点运动学

~7~ 高度。注意位移是指从运动起点O引向运动终点P的有向线段OP。

列出运动方程为:

-150=v0t-12gt2→4.9gt2-5t-150=0 解之t=6.06秒。 例题3质点的运动方程为x=-10t+30t2和y=15t-20t2,式中x,y以米计,t以秒计,试求(1)初速度的大小和方向;(2)加速度的大小和方向。

解:vdxdttx1060(米/秒);vdydtty1540(米/秒)。

故:vvvxy002022210151803().(米/秒)。 方向:tgvvtgyx10010151012341()

同理:advdtxx60(米/秒2);advdtyy40(米/秒2)。 所以:aaaxy222260407211().(米/秒2) 方向:tgaatgyx11040603341() 例题4一球以30米/秒的速率水平抛出,试求5秒后加速度的切向和法向分量。 解:小球作抛体运动它在任一时刻的加速度均为g,此

题的关键就在于找出5秒后该点的切向方向与x轴的夹角,此角也是g与gn的夹角。而夹角可由5秒后速度的y轴分量与x轴分量之比求得。 因为:vvxx030(米/秒);vvgtyy0059849.(米/秒)。

故:tgvvyx105852.见图1—5 所以:ggtsin.sin..9858528360(米/秒2) ggncos.cos..9858525120(米/秒2)

五、课堂练习题 1、判断题 (1)有大小,有方向的物理量就可称作矢量( ) (2)只要物体作曲线运动,它的加速度就不可能为零( )

x v0

O H x0 位移

P图1—4

Y O X P vx

αgt vy 

v

gn

g

图1—5

相关文档
最新文档