电池的发展

合集下载

电池的发展趋势

电池的发展趋势

电池的发展趋势随着科学技术的不断进步,电池作为能源转换和储存的重要装置,也在不断地发展和创新。

未来电池的发展趋势主要集中在以下几个方面:1. 高能量密度:高能量密度是电池发展的重要方向。

目前锂离子电池已经成为大规模商业化应用的主流电池技术,但其能量密度仍有待提高。

未来电池很可能采用新的材料和结构设计,以实现更高能量密度。

例如,固态电池、金属空气电池、锌空气电池等技术都有望实现更高能量密度。

2. 长循环寿命:电池的寿命对于用户和应用来说是非常重要的考虑因素。

目前的锂离子电池在循环寿命上还有一定的局限性,尤其是高功率输出和快速充电的应用中。

未来电池发展的重点将放在提高循环寿命和耐久性上,通过材料改进、电解质优化和电池管理系统等手段,延长电池的使用寿命。

3. 快速充电:随着移动设备和电动汽车的普及,对电池的充电速度要求越来越高。

同时,快速充电还能提高用户的便利性和体验。

因此,未来电池的发展方向之一是实现更快的充电速度。

目前已经出现了一些快速充电技术,如快充、闪充等,但仍需进一步改进和完善。

4. 环境友好:环境友好的电池技术也是电池发展的重要趋势之一。

传统的锂离子电池中使用的材料如钴、镍等对环境和人体都有一定的影响。

因此,未来电池的发展将重点关注材料的可持续性和环保性,探索新的材料和技术,以减少对环境的影响。

5. 多功能性:未来电池还可能发展出更多的多功能性,可以同时满足不同应用的需求。

例如,兼具能量存储和传感功能的可穿戴式器件,或者集成太阳能光伏板和储能单元的智能建筑材料等。

这样的多功能电池有望在能源转换和储存领域发挥更广泛的作用。

总之,未来电池的发展趋势是高能量密度、长循环寿命、快速充电、环境友好和多功能性。

这些趋势将推动电池技术的进一步创新,带来更高效、更可靠、更环保的电池产品。

电池的发展也将在能源储存领域发挥重要作用,促进可再生能源的更广泛应用和推广。

电池发展历程

电池发展历程

电池发展历程电池是一种将化学能转化为电能的装置,它是现代社会不可或缺的能源供应设备。

电池的发展历程可以追溯到18世纪的伏打电池,之后经历了许多重要的里程碑。

本文将介绍电池的发展历程。

伏打电池是电池的起源,由意大利科学家亚历山德罗·伏打于1800年发明。

伏打电池是由由铜和锌制成的金属片以及硫酸溶液组成的。

当两种金属片通过导线相连时,会产生电流。

这一发现引发了人们对电学的研究,也为后来的电池发展奠定了基础。

1866年,法国科学家乔治·勒克莱吉提出了蓄电池的概念。

蓄电池是一种可通过电化学反应来储存电能的装置。

勒克莱吉的蓄电池是由铅和铅二氧化物的板放置在硫酸溶液中构成的。

蓄电池不仅能储存电能,还能反复充放电,因此被广泛应用于电信和汽车行业。

1888年, 塔伦特公司的科学家威廉姆·格罗夫斯·威廉姆斯(William Grove Williams)发明了一种新型的蓄电池,被称为燃料电池。

燃料电池通过将氢气和氧气反应产生水和电能。

然而,当时的燃料电池技术尚不成熟,直到20世纪中叶,燃料电池才开始得到广泛的研究和应用。

20世纪初,尼古拉·特斯拉发明了射线电零件。

这种电池通过放射性材料产生电能。

然而,由于其放射性物质的危险性,射线电池并未得到广泛应用。

20世纪60年代,锂电池被发明。

锂电池能够以更高的能量密度储存电能,并且有较长的使用寿命,因此成为许多便携式电子设备的首选电池。

20世纪90年代,镍氢电池开始得到商业化应用。

镍氢电池具有更高的电能密度和更长的使用寿命,被广泛应用于移动通信设备。

2000年代以来,锂离子电池逐渐成为最为常见的电池类型,应用于智能手机、电动汽车等领域。

锂离子电池具有高能量密度、低自放电率和较长使用寿命等优点,成为便携式电子设备和电动交通工具的主要能源装置。

未来,随着科学技术的不断发展,我们可以期待更先进的电池技术的出现。

例如固态电池、钠离子电池和氢燃料电池等。

电池的发展史

电池的发展史

电池的发展史随着科技的不断进步,电池作为一种重要的能源储存装置,对人类的生活产生了极大的影响。

电池的发展历史可以追溯到古代,但直到18世纪末期才有了真正可实用的电池。

本文将从古代电池的起源开始,一直到现代电池的发展,展示电池这一科技产品的进步与创新。

一、古代电池的起源古代电池的起源可以追溯到公元前250年左右,当时的巴比伦人发现了一种称为巴格达电池的装置。

这种电池由一个陶罐、铜棒和铁棒组成,通过将铜棒插入陶罐中,再将铁棒插入铜棒中,便能产生微弱的电流。

虽然巴格达电池的电流非常微弱,但它标志着人类对电流的认识和开启了电池的历史。

二、伏打电池的发明18世纪末期,意大利物理学家伏打发明了第一种可实用的电池,也被称为伏打电池。

伏打电池由多个铅板和锌板交替叠放组成,中间隔以浸泡在硫酸中的布,通过化学反应产生电流。

这种电池相比于巴格达电池具有更高的电压和电流,可以用于一些实际应用,比如照明和电化学实验。

三、干电池的问世19世纪末期,法国工程师加斯东·普拉能发明了第一种干电池,也被称为普拉能电池。

与伏打电池不同,普拉能电池使用了干燥的电解质,使得电池更加方便携带和使用。

这种电池的发明极大地推动了电池的应用,广泛用于电报、电话和照相机等设备中。

四、碱性电池的诞生20世纪初,美国化学家切尔尼科夫发明了第一种碱性电池,也被称为切尔尼科夫电池。

这种电池使用碱性电解质代替了普拉能电池中的酸性电解质,使得电池更加稳定和高效。

切尔尼科夫电池成为了现代碱性电池的基础,广泛应用于手电筒、收音机和探测器等设备中。

五、锂离子电池的革命20世纪70年代,美国物理学家麦克米伦发明了第一种锂离子电池,也被称为麦克米伦电池。

锂离子电池采用了锂离子在正负极之间的往复运动来储存和释放能量,具有更高的能量密度和更长的使用寿命。

这种电池的问世不仅极大地改善了便携设备的性能,如手机和笔记本电脑,还推动了电动汽车的发展。

六、燃料电池的应用21世纪初,燃料电池作为一种新型的电池技术开始被广泛研究和应用。

电池的发展

电池的发展
03
电池的应用领域
电子产品领域
手机、笔记本电脑等便携式电子产品
电动车、电动汽车等交通工具
电力存储和备用电源
航空航天、军事等领域
电动汽车领域
电池作为能源提供者,为电动汽车提供动力。
电池的能量密度和功率密度直接影响了电动汽车的续航里程和充电时间。
目前市场上,电动汽车的电池主要以锂离子电池为主,具有高能量密度、长寿命、环保等优点。
未来随着技术的不断发展,电池将会在电动汽车领域发挥更加重要的作用。
储能领域
家庭储能:作为家庭备用电源,提供电力
电力公司:为电力公司提供辅助服务,稳定电网
工业领域:为工业生产提供可靠的电力支持
交通领域:为电动汽车、无人机等提供能源
其他领域应用
航空航天
移动设备
军事领域
电力存储
04
电池技术的发展趋势
添加标题
添加标题
添加标题
添加标题
1859年:法国物理学家普朗特发明了铅酸电池,是最早的电池类型之一
1800年代初期:伏打电堆,将化学能转化为电能
20世纪初:镍镉电池问世,具有更高的能量密度和更长的寿命
1990年代:锂离子电池的发明,具有高能量密度、长寿命、环保等优点,成为目前最常用的电池类型之一
电池行业的快速发展
更广泛的应用领域和市场规模
电动汽车的普及将推动电池市场的增长
储能领域的应用将扩大市场规模
电池技术的进步将拓展应用领域
政府政策支持将促进电池产业的发展
大数据在医疗保健中的应用
低脂饮食的益处
地热能源的勘探和采集技术
电池储能技术的历史沿革与发展
地热能源的发展
低碳生活方式
地热能源:一种可再生能源

电池技术的发展

电池技术的发展

电池技术的发展
电池技术的发展经历了多个阶段,其中一些重要的里程碑包括:1.1799年,世界上第一款电池在意大利诞生,这是由伏打(Luigi Galvani)
发明的伏打电堆。

2.1860年,法国的雷克兰士(George Leclanche)发明了碳锌电池,这
种电池更容易制造,且最初潮湿水性的电解液逐渐用黏浊状类似糨糊的方式取代,于是装在容器内时,“干”性的电池出现了。

3.1887年,英国人赫勒森(Wilhelm Hellesen)发明了最早的干电池。

相对于液体电池而言,干电池的电解液为糊状,不会溢漏,便于携带,因此获得了广泛应用。

4.20世纪70年代,人们开始研究能够反复充电的电池,即蓄电池。


初人们发现蓄电池虽然使用方便、价格低廉,但用完即废,无法重新利用。

同时以金属为原料容易造成原材料浪费,废弃电池还会造成环境污染。

5.随着科技的发展,现在我们已经有了多种类型的蓄电池,比如锂离子
电池等。

锂离子电池具有高能量密度、长寿命、环保等优点,在智能手机、电动汽车等领域得到了广泛应用。

未来,随着可再生能源的发展和环保意识的提高,电池技术还将继续得到发展和改进。

比如目前已经有人在研究如何将太阳能转化为电能并存储在电池中,以及如何提高电池的充电速度和寿命等。

电池的发展历史

电池的发展历史

电池的发展历史
电池的发展历史
一、早期电池
电池的历史可以追溯到古代。

在公元七世纪,古罗马人就已经开始使用铅酸电池。

然而,由于早期电池的寿命较短,并且无法储存较大的电量,因此它们的用途主要局限于小型电器和实验中。

二、碱性电池的诞生
在20世纪初,随着电化学学科的发展,碱性电池开始出现。

1937年,德国工程师古德曼发明了碱性锌锰电池,这种电池具有较高的能量密度和更长的寿命,逐渐取代了早期的酸性电池。

碱性电池具有更高的安全性和可靠性,并且能够提供更大的电量,因此在许多领域得到了广泛应用。

三、现代电池
随着科技的不断进步,现代电池技术也得到了迅速发展。

在20世纪末,锂离子电池开始出现并逐渐普及。

锂离子电池具有高能量密度、长寿命、环保等优点,被广泛应用于手机、笔记本电脑、电动车等领域。

此外,现代电池技术还不断发展,出现了许多新型电池,如固态电池等。

四、锂电池的发展
锂电池是一种使用锂金属或锂合金为负极材料的高能电池。

它是现代电池中最重要的发明之一,具有高能量密度、长寿命、环保等优点。

自20世纪70年代首次提出以来,锂电池经历了多次改进和创新,不断提高其能量密度和安全性。

目前,锂电池已经成为电动汽车和智能手机等高端产品的主流电源之一。

总之,电池技术的发展历程是一个不断探索和创新的过程。

从早期的铅酸电池到现代的锂离子电池,人们不断尝试提高电池的能量密度、寿命和安全性。

随着科技的不断发展,未来还会有更多的新型电池出现,为人们的生产和生活带来更多的便利和效益。

电池的发展演变过程

电池的发展演变过程

电池的发展演变过程电池的发展演变过程可以分为以下几个阶段:1. 伏塔电堆(Voltaic Pile):意大利科学家亚历山大·伏特于1800年发明了伏塔电堆,这是第一种真正意义上的电池。

它由一系列的铁和锌片以及湿纸层叠组成,中间隔着盐水浸泡的海绵。

伏塔电堆可以产生稳定的电流,被广泛用于实验研究。

2. 隔膜电堆(Daniell Cell):英国化学家约翰·弗雷德里克·丹尼尔于1836年发明了隔膜电池。

隔膜电池使用了一对分离的阳极和阴极,中间隔着硫酸铜溶液,而隔膜则用石蜡处理过的纸浆代替。

丹尼尔电池在电流稳定性和电化学反应效率上有了很大的提升。

3. 干电池(Dry Cell):法国化学家格奥尔格·莱克兰创造了干电池的原型,1866年,Carl Gassner首次将干电池大规模商业化。

干电池不需要液体电解质,使用的是湿润的膏状电解质。

这使得干电池更加便携、易于使用,并且可以在不同位置和姿势下运行。

4. 碱性电池(Alkaline Battery):碱性电池是20世纪50年代发明的,凭借其高能量密度、较长的使用寿命和低价格,成为最为普遍的电池类型之一。

碱性电池使用碱性电解质如氢氧化钾,极大地提高了电池的性能。

5. 镍镉电池(Nickel Cadmium Battery):镍镉电池在1899年被瑞典化学家瓦尔特·尤斯丁于发明。

这种电池具有高放电率、较长的使用寿命和可重复充电的特性,使其成为许多应用领域的首选电源。

然而,镍镉电池存在对环境有害的镉元素,因此在现代逐渐被其他类型的电池所取代。

6. 锂离子电池(Lithium Ion Battery):锂离子电池于1970年代开始研发,并于1991年成功商业化。

锂离子电池使用锂离子在正负极之间的迁移来储存和释放电能,具有高能量密度、轻量化、无记忆效应和较长的使用寿命等优点。

锂离子电池广泛应用于移动设备、电动汽车和可再生能源储存等领域。

电池技术的发展历程和未来趋势

电池技术的发展历程和未来趋势

电池技术的发展历程和未来趋势电池是一种能够将化学能转化为电能的装置。

从最早的传统干电池到现在的锂离子电池,电池技术已经历经了多年的发展。

本文将为您详细介绍电池技术的发展历程和未来趋势。

一、电池技术的发展历程1、传统干电池传统干电池是我们最熟悉的一种电池,其原理是将不同金属的化学性质变化转化为电能。

虽然干电池低成本、工作时间长,但是输出电流小、容易泄漏等缺陷也让它的应用局限。

2、镍电池镍电池是第一种被商业化应用的可充电电池,其电池容量比干电池大,重复使用次数也比干电池多。

但是,使用过程中,镍电池会出现记忆效应(充电之前必须完全放电),这会降低电池的使用寿命,同时,镍电池的自放电率也很高,存放时间长会造成能量损失。

3、镍氢电池镍氢电池是镍电池的进一步发展,将镍电池的钠和锌更换成氢气,在电池充电的时候,氢气会与氧气反应,反应产生的水再次被分解成氢气和氧气,从而将电能转化成化学能。

镍氢电池的能量密度比镍电池更高,充电时间更短。

但镍氢电池的发热和安全性能存在问题,最终未能成为主流。

4、锂离子电池锂离子电池是目前应用广泛的一种电池,其能量密度高、寿命长、自放电率低、无记忆效应、电化学性能稳定等优点,使之成为智能手机、平板电脑、笔记本电脑和电动汽车等设备的首选电源。

锂离子电池的发展也经历了不同步骤:第一阶段是钴酸锂电池,第二阶段是镍-钴-锰锂电池,第三阶段是三元锂电池。

三元锂电池是目前应用最广泛的锂离子电池,不仅具有高的充放电效率和长的使用寿命,而且具有优异的安全性能,是现代电子设备和电动工具的主力电源。

5、固态电池最新的电池技术则是固态电池,其利用同样含有锂离子的离子导体代替液体电解质,具有超高的安全性和能量密度,可应用在各种电子设备和汽车领域。

由于固态电池的制造工艺、材料等方面存在技术问题和成本问题,尚处于研发阶段,但在未来不久的时间里必将会成为电池技术的主流。

二、电池技术的未来趋势1、高性能锂离子电池随着大数据、物联网、人工智能、移动互联网等新兴产业的迅速发展,对电池的能量密度、寿命、快速充电等方面提出了更高的要求,不断推动着锂离子电池技术的改进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1780年的一天,意大利解剖学家伽伐尼在做青蛙解剖时,两手分别拿着不同的金属器械,无意中同时碰在青蛙的大腿上,青蛙腿部的肌肉立刻抽搐了一下,仿佛受到电流的刺激,而只用一种金属器械去触动青蛙,却并无此种反就。

伽伐尼认为,出现这种现象是因为动物躯体内部产生的一种电,他称之为“生物电”。

伽伐尼的发现引起了物理学家们极大兴趣,他们竞相重复枷伐尼的实验,企图找到一种产生电流的方法,意大利物理学家伏特在多次实验后认为:伽伐尼的“生物电”之说并不正确,青蛙的肌肉之所以能产生电流,大概是肌肉中某种液体在起作用。

为了论证自己的观点,伏特把两种不同的金属片浸在各种溶液中进行试验。

结果发现,这两种金属片中,只要有一种与溶液发生了化学反应,金属片之间就能够产生电流。

1799年,伏特把一块锌板和一块银板浸在盐水里,发现连接两块金属的导线中有电流通过。

于是,他就把许多锌片与银片之间垫上浸透盐水的绒布或纸片,平叠起来。

用手触摸两端时,会感到强烈的电流刺激。

伏特用这种方法成功的制成了世界上第一个电池──“伏特电堆”。

这个“伏特电堆”实际上就是串联的电池组。

它成为早期电学实验,电报机的电力来源。

意大利物理学家伏打就多次重复了伽伐尼的实验。

实验证明,只要在两种金属片中间隔以用盐水或碱水浸过的硬纸、麻布、皮革或其它海绵状的东西,并用金属线把两个金属片连接起来,不管有没有青蛙的肌肉,都会有电流通过。

这就说明电并不是从蛙的组织中产生的,蛙腿的作用只不过相当于一个非常灵敏的验电器而已。

1836年,英国的丹尼尔对“伏打电堆”进行了改良。

他使用稀硫酸作电解液,解决了电池极化问题,制造出第一个不极化,能保持平衡电流的锌─铜电池,1860年,法国的普朗泰发明出用铅做电极的电池。

然而,无论哪种电池都需在两个金属板之间灌装液体,因此搬运很不方便,特别是蓄电池所用液体是硫酸,在挪动时很危险。

在1860年,法国的雷克兰士(GeorgeLeclanche)还发明了世界广受使用的电池(碳锌电池)的前身。

1887年,英国人赫勒森发明了最早的干电池。

干电池的电解液为糊状,不会溢漏,便于携带,因此获得了广泛应用。

1890年Thomas Edison 发明可充电的铁镍电池1896年在美国批量生产干电池1896年发明D型电池.1899年Waldmar Jungner 发明镍镉电池.(1902年5月28日,爱迪生今天宣布发明了一种新式蓄电池。

这种电池比以前的铅酸电池重量轻,但使用寿命长。

这位多产的发明家说,这种电池是用镍、铁和碱溶液制成的。

它能使电力汽车与汽油发动机汽车相媲美。

)1910年可充电的铁镍电池商业化生产1911年我国建厂生产干电池和铅酸蓄电池(上海交通部电池厂),1914年Thomas Edison 发明碱性电池.1934年Schlecht and Akermann 发明镍镉电池烧结极板.1947年Neumann 开发出密封镍镉电池.1949年Lew Urry (Energizer) 开发出小型碱性电池.1954年Gerald Pearson, Calvin Fuller and Daryl Chapin 开发出太阳能电池.1956年Energizer.制造第一个9伏电池1956年我国建设第一个镍镉电池工厂(风云器材厂(厂))1960前后Union Carbide.商业化生产碱性电池,我国开始研究碱性电池(西安庆华厂等三家合作研发),1970前后出现免维护铅酸电池.1970前后一次锂电池实用化.1976年Philips Research的科学家发明镍氢电池.1980前后开发出稳定的用于镍氢电池的合金.1983年我国开始研究镍氢电池(南开大学)1987年我国改进镍镉电池工艺,采用发泡镍,电池容量提升40%1987前我国商业化生产一次锂电池1989年我国镍氢电池研究列入国家计划1990前出现角型(口香糖型)电池,1990前后镍氢电池商业化生产.1991年Sony.可充电锂离子电池商业化生产1992年Karl Kordesch, Josef Gsellmann and Klaus Tomantschger 取得碱性充电电池专利1992年Sony成功开发锂离子电池。

它的实用化,使人们的移动电话、笔记本电脑等便携式电子设备重量和体积大大减小。

使用时间大大延长。

由于锂离子电池中不含有重金属铬,与镍铬电池相比,大大减少了对环境的污染。

1992年Battery Technologies, Inc.生产碱性充电电池1995年我国镍氢电池商业化生产初具规模1999年可充电锂聚合物电池商业化生产2000年我国锂离子电池商业化生产2000后燃料电池,太阳能电池成为全世界瞩目的新能源发展问题的焦点电池的发展史由1836年丹尼尔电池的诞生到1859年铅酸电池的发明,至1883年发明了氧化银电池,1888年实现了电池的商品化,1899年发明了镍-镉电池,1901年发明了镍-铁电池,进入20世纪后,电池理论和技术处于一度停滞时期。

但在第二次世界大战之后,电池技术又进入快速发展时期。

首先是为了适应重负荷用途的需要,发展了碱性锌锰电池,1951年实现了镍-镉电池的密封化。

1958年Harris提出了采用有机电解液作为锂一次电池的电解质,20世纪70年代初期便实现了军用和民用。

随后基于环保考虑,研究重点转向蓄电池。

镍-镉电池在20世纪初实现商品化以后,在20世纪80年代得到迅速发展。

随着人们环保意识的日益增加,铅、镉等有毒金属的使用日益受到限制,因此需要寻找新的可代替传统铅酸电池和镍-镉电池的可充电电池。

锂离子电池自然成为有力的候选者之一。

1990年前后发明了锂离子电池。

1991年锂离子电池实现商品化。

1995年发明了聚合物锂离子电池,(采用凝胶聚合物电解质为隔膜和电解质)1999年开始商品化。

现代社会电池的使用范围已经由40年代的手电筒、收音机、汽车、和摩托车的启动电源发展到现在的40-50种用途。

小到从电子表手表、CD唱机、移动电话、MP3、MP4、照相机、摄影机、各种遥控器、剔须刀、手枪钻、儿童玩具等。

大到从医院、宾馆、超市、电话交换机等场合的应急电源,电动工具、拖船、拖车、铲车、轮椅车、高尔夫球运动车、电动自行车、电动汽车、风力发电站用电池、导弹、潜艇和鱼雷等军用电池。

还有可以满足各种特殊要求的专用电池等。

电池已经成为人类社会必不可少的便捷能源。

我国电池发展的历程我国第一家电池厂于1911年诞生于上海。

1921年第一家专业铅蓄电池厂-上海蓄电池厂也建于上海。

1941年在延安中央军委三局所属电信材料厂开始生产锌锰干电池和修理铅酸蓄电池。

1957年组建机电部电材局化学电源研究室,1958年成为我国第一个专业研究所,既原一机部化学电源研究所(原电子工业部天津电源研究所)。

1960年我国第一家碱性蓄电池厂“风云器材厂”在河南新乡正式验收投产。

20世纪90年代初,国家开始了“863”重点攻关,使Ni-MH电池的生产化得到了迅速发展。

以后国家又开始了锂离子电池“863”重点攻关,希望能借此推动锂离子电池及其材料的国产化。

我国发展锂离子电池生产的必要性对于我国目前的电池工业而言,存在的主要问题是环境污染和资源浪费严重。

对于环境污染而言,由于我国电池工业的自动化、机械化程度不高,很多企业多为手工操作,导致生产过程中污染很大,对工人身体危害大。

干电池行业曾被人戏称为“污染企业”,“黑工业”。

这些污染物主要有MnO2粉、HgO、沥青烟、烟雾、石蜡烟气等。

其中汞是最受关注的、有剧毒的重金属,极微量的汞对人体有很大毒性。

目前发达国家已宣布自1994年起禁止有汞电池的生产和进口。

目前我国多数厂家仍然生产有汞电池。

铅酸电池行业的主要污染物有Pb、Pbo粉尘、酸雾及废酸等。

铅也是毒性较大的重金属,慢性铅中毒主要表现在神经系统受损、肾功能障碍和贫血等。

Cd-Ni电池所用原料多为粉状,也存在粉尘污染问题;而且Cd 的毒性较大,可以积累在肾脏和骨骼中,引起肾功能失调。

另外,骨骼中钙被镉取代,使骨骼软化,疼痛难忍。

此外,碱雾、废酸也是重要的污染物。

锌锰干电池经常会出现铜绿、冒浆现象,总有一些MH-Ni电池在使用中会出现喷碱或爆裂现象。

铅酸蓄电池仍有较大比例为老式开口电池,使用中仍有冒气冒酸现象。

废旧电池的大量弃用浪费了大量的有用材料。

例如对于干电池的银电池而言,我国基本上未加以回收利用,至于价值低的锌锰干电池利用效果更差。

为了减少污染,保护环境,维护生态平衡以及保护地球上的有限资源,应当尽可能扩大资源种类,选用储量丰富的资源以及利用有利于环保的资源。

因此,锂离子电池成为我国必须发展的电池品种。

碱性锌锰电池的发展史锌锰电池发展至今经历了漫长的演变,早在1868年法国工程师乔治-勒克兰社采用二氧化锰和炭粉作正极粉料,将它压入多孔陶瓷的圆筒体中,并插上一根炭棒集流器作正极,用一根锌棒部分插入溶液中作负极,电解液是用20%的氯化铵水溶液,电池的容器是用玻璃瓶,做成第一个锌锰湿电池。

1886年盖斯将氯化铵水溶液改用氯化铵,氯化锌,石膏和水合成的糊状物,并将锌片作成圆筒形作电池的容器,同时用石蜡封口,从而做成原电池的雏形。

此后不久,又将面粉和淀粉作为电解质溶液的凝胶剂,是锌锰电池的便携性大大提高,为这种电池的工业化生产和广泛地使用打下了良好的基础。

1890年前后这种电池在全世界范围内投入工业化生产。

1870年前后采用了汞齐化锌阳极,以减轻锌的自放电。

1877年对碳棒采用浸蜡处理,以防止炭棒爬液,减轻对金属集流体的腐蚀。

1923年采用乙炔黑代替石墨粉,使容量提高40%-50%,1945年电解二氧化锰在电池中的应用使锌锰电池的放电性能进一步有大的提高。

然而,随着时代的发展,普通碱性锌锰电池不能满足市场的需求。

早在100多年前就有人提出过用锌做负极,MnO2做正极,KOH或NaOH做电解液,在漫长的研究过程中主要围绕四个问题进行:一是用粉状多孔锌电极代替片状电极,降低放电电流密度和解决锌片在碱液中易于钝化的缺点;二是采用反极结构,提高MnO2的填充量,使正负极容量相匹配;三是对锌粉汞齐化处理和碱液中加ZnO,解决锌在碱液中的腐蚀;四是密封结构和密封材料的改进,解决爬碱现象。

直到1950代前后在锌锰干电池的基础上成功研制出碱性锌锰电池,。

它以锌粉为负极,电解二氧化锰为正极,电解液采用NaOH或KOH,使电池性能成倍的提高。

它不仅容量高,还适合于大电流连续放电。

还具有优良的低温性能,储存性能和防漏性能。

但在前期的碱锰电池中要控制负极锌粉在碱液中的气量,当时电池的用汞量非常大,用汞量在2%-6%,八十年代末随着人们环保意识的加强,掀起了无汞碱锰电池的研究热潮,寻找有机或无机代汞缓蚀剂和锌粉中合金元素(主要是Al,Bi,In,Pb)成为主要的研究方向。

相关文档
最新文档