《大学物理学》习题解答
大学物理学孙厚谦答案

大学物理学孙厚谦答案【篇一:普通物理12章习题解】t>12.1 如图所示,ab长度为0.1m,位于a电子具有大小为v0?10?107m/s的初速度。
试问:(1)磁感应强度的大小和方向应如何才能使电子从a运动到b;(2)电子从a运动到b需要多长时间????解:右。
根据f??e??b?的右手方向规则b的方向应该内(在纸平面)。
?为了电子向右偏转电子上作用的落论磁力的方向在a点应向结果电子在这种磁场中圆周运动根据牛顿第二定律(落仑磁力提供向心力)即e?ob?m?o212.1习题rb?m?oe?1.6?10?19c er1r?ab?0.05m2?m?9.1?10?31kg9.1?10?31?10?107?b??1.14?10?2t ?191.6?10?0.05(2) tab1?t t是周期 212.1习题?b?t?2?r?o?tab??r3.14?0.05??1.57?10?19s 7?o10?10?2答:(1)b?1.14?10t 方向 ?(2)tab?1.57?10s12.2 有一质子,质量是0.5g,带电荷为2.5?10c。
此质子有6?10m/s的水平初速,要使它维持在水平方向运动,问应加最小磁场的大小与方向如何?解:?84?9先分析该质点上所受力的情况该质点没有其他场的作用下只有重力作用,质点平抛运动,所以质点上方向向上的大小为mg的一个力作用才能保证该质点作水平方向运动。
此题中我们用加一磁场来产生落论兹力提供该需要的的力。
???f?q??b?考虑f的方向向上,的方向必须纸平面上向内?如图所示mg0.5?10?3?9.8q?b?mg?b???q?2.5?10?8?6?10?4习题12.212.3 如图所示,实线为载有电流i的导线。
导线由三部分组成,ab 部分为1/4圆周,圆心为o,半径为a,导线其余部分为伸向无限远的直线,求o点的磁感应.强度b。
解:设直导线部分ca和bd产生的磁感应强度b1和b2,而1圆周导线ab产生的磁感应强度为 4?(方向纸平?oib1?4?a面上向上)b2??(方向纸平面上向上) 4?a圆周导线产生的磁感应强度为b??oi2r1圆周导线产生的磁感应强度为 4习题12.4b3b3?1?oi?oi?? ?(方向纸平面上向上) 42a8a????b0?b1?b2?b3b0?b1?b2?b3??oi?oi?oi?oi???(4??) ?(向纸平面上向上)4?a4?a8a8?a12.4 三根平行长直导线处在一个平面内,1,2和2,3之间距离都是3cm,其上电流i1?i2及i3??(i1?i2),方向如图所示。
大学物理学(第3版)下册课后练习答案

大学物理学课后习题答案(下册)习题99.1选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[答案:A](2)下面说法正确的是:()(A)若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B)若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。
[答案:D](3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0[答案:C](4)在电场中的导体内部的()(A)电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。
[答案:C]9.2填空题(1)在静电场中,电势不变的区域,场强必定为。
[答案:相同](2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。
[答案:q/6ε0, 将为零](3)电介质在电容器中作用(a)——(b)——。
[答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。
[答案:5:6]9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题9.3图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题9.3图 题9.4图9.4 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ2,如题9.4图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 9.5 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.9.7 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题9.7图所示(1) 在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε222)(d π4d x a xE E l l P P -==⎰⎰-ελ题9.7图]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题9.7图所示 由于对称性⎰=l Qx E 0d ,即Q E只有y 分量,∵ 22222220d d d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向9.8 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如9.8图在圆上取ϕRd dl =题9.8图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d RR E εϕλ=方向沿半径向外 则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.9.9 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如9.9图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题9.9图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵lq 4=λ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿9.10 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题9.10图所示. 题9.10 图9.11 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外.12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 9.12 半径为1R和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题9.13图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题9.13图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-=2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.9.14 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题9.14图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题9.14图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场d π4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题9.14图(a) 题9.14图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=',∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.9.15 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C-1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p在外场E 中受力矩E p M⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅9.16 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功? 解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题9.17图9.17 如题9.17图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题9.17图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-=∴ Rqq U U q A o C O 00π6)(ε=-=9.18 如题9.18图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题9.18图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O9.19 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅9.20 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压. 解: 平行板电容器内部近似为均匀电场 4105.1d ⨯==E U V9.21 证明:对于两个无限大的平行平面带电导体板(题9.21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题9.21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题9.21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题9.22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题9.22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题9.22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV9.23两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε题9.23图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=9.24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题9.24图所示,设金属球感应电荷为q ',则球接地时电势0=O U题9.24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q9.25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力0022018348342F r πqr π"q 'q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r q q F ==ε9.26 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4r rQ E r Qr D ε ==外(2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r-+=εεε9.27 如题9.27图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题9.27图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内d21U E E == ∴r r E E εεεεσσ==102012题9.27图 题9.28图9.28 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==题9.29图9.29 如题9.29 图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 9.30 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.9.31半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题9.31图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε =3R r >时 302π4rrQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R Q W C -==ε 121049.4-⨯=F习题1010.1选择题(1) 对于安培环路定理的理解,正确的是:(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。
大学物理作业(解答)

《大学物理III 》课后作业(解答)第一部分:力学简答题:1. 用文字描述牛顿第一定律。
它的另一个名称是什么?解答:任何物体在不受外力作用时,将保持静止或匀速直线运动状态。
另一个名称是“惯性定律”。
2.用文字描述牛顿第三定律。
作用力和反作用力有什么特点?解答:当物体A 以力1作用在物体B 上时,B 同时也有力2作用在A 上,这两个力大小相等,方向相反,在同一条直线上,即12-=。
作用力和反作用力有如下三个特点:(1)它们成对出现,关系一一对应;(2)它们分别作用在两个不同物体上,因而不是一对平衡力;(3)它们的性质相同,比如同为引力、摩擦力、弹力,等等。
3.假设雨滴从1000米的高空云层中落到地面。
请问可否用自由落体运动描述雨滴的运动?并简述理由。
解答:不能。
如果我们用自由落体运动来描述雨滴运动(即忽略空气阻力),那么雨滴从1000米高空落到地面时,它的速度将达到m/s 1402==gH v !这个速度已经达到普通手枪的子弹出射速度,足以对地面上的人畜造成致命伤害。
而生活经验告诉我们,雨滴落到我们头上并不会造成严重伤害,所以它落到地面的速度远远小于140m/s 。
事实上,因为空气阻力的存在(通常跟雨滴的速度大小成正比),雨滴将有一个收尾速度,它落到地面时做匀速直线运动,速度约为10-20m/s ,不会对地面生物造成致命伤害。
4.用文字描述质点系的动量守恒定律。
解答:当一个质点系所受合外力为零时,系统内各质点间动量可以交换,但系统的总动量保持不变。
5. 如图,一根质量为m 、长l 的刚性杆子竖直悬挂,顶点固定在天花板O 点,杆子可绕O 点自由转动。
一个质量也为m 的物块(质点)以水平速度0v跟杆子的下端碰撞,并粘在一起。
在这个碰撞过程中,物体和杆子组成系统的动量是否守恒?角动量是否守恒?并简述理由。
解答:动量不守恒,因为在碰撞瞬间物体和杆子系统在O 点受到很大外力,其产生的冲量不可忽略;角动量守恒,因为系统所受一切力的对O 点力矩为零,包括上述的巨大外力。
大学物理学第版修订版北京邮电大学出版社上册习题答案.docx

习题3 3.1 选择题(1)有一半径为 R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为 J,开始时转台以匀角速度ω0转动,此时有一质量为 m的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A)J0(B)J0mR2m) R 2J(J(C)J0(D) 0 mR2[ 答案: (A)](2)如题3.1(2)图所示,一光滑的内表面半径为10cm的半球形碗,以匀角速度ω 绕其对称轴OC旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm,则由此可推知碗旋转的角速度约为(A)13rad/s(B)17rad/s(C)10rad/s(D)18rad/s(a)(b)题3.1 ( 2)图[ 答案: (A)](3)如 3.1(3) 图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度?在距孔为 R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体(A)动能不变,动量改变。
(B)动量不变,动能改变。
(C)角动量不变,动量不变。
(D)角动量改变,动量改变。
(E)角动量不变,动能、动量都改变。
[ 答案: (E)]3.2 填空题(1)半径为 30cm的飞轮,从静止开始以 0.5rad ·s-2的匀角加速转动,则飞轮边缘上一点在飞轮转过240?时的切向加速度aτ =,法向加速度a n=。
[ 答案:0.15; 1.256 ](2)如题3.2 (2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴 O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的原因是。
木球被击中后棒和球升高的过程中,弹、细棒、地球系统的守恒。
守恒,对木球、子题3.2 (2)图[ 答案:对 o 轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对 o 轴的合外力矩为零,机械能守恒](3)两个质量分布均匀的圆盘 A 和 B 的密度分别为ρA和ρB ( ρA>ρB) ,且两圆盘的总质量和厚度均相同。
《大学物理学》机械波练习题

《大学物理学》机械波部分自主学习材料(解答)一、选择题10-1.图(a )表示0t =时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线,则图(a )中所表示的0x =处质点振动的初相位与图(b )所表示的振动的初相位分别为( C ) (A )均为2π; (B )均为π-; (C )π与π-; (D )2π-与2π。
【提示:图(b )为振动曲线,用旋转矢量考虑初相角为2π-,图(a )为波形图,可画出过一点时间的辅助波形,可见0x =处质点的振动为由平衡位置跑向负方向,则初相角为2π】10-2.机械波的表达式为0.05cos(60.06)y t x ππ=+,式中使用国际单位制,则( C ) (A )波长为5m ; (B )波速为110m s -⋅;(C )周期为13秒; (D )波沿x 正方向传播。
【提示:利用2k πλ=知波长为1003λ=m ,利用u k ω=知波速为1100u m s -=⋅,利用2T πω=知周期为13T =秒,机械波的表达式中的“+”号知波沿x 负方向传播】10-3.一平面简谐波沿x 轴负方向传播,角频率为ω,波速为u ,设4Tt =时刻的波形如图所示,则该波的表达式为( D )(A )cos[()]xy A t u ωπ=-+; (B )cos[()]2x y A t u πω=--;(C )cos[()]2x y A t u πω=+-;(D )cos[()]xy A t uωπ=++。
【提示:可画出过一点时间的辅助波形,可见在4Tt =时刻,0x =处质点的振动为由平衡位置向正方向振动,相位为2π-,那么回溯在0t=的时刻,相位应为π】10-4.如图所示,波长为λ的两相干平面简谐波在P 点相遇,波在点1S 振动的初相是1ϕ,到P 点的距离是1r 。
波在点2S 振动的初相是2ϕ,到P 点的距离是2r 。
以k 代表零或正、负整数,则点P 是干涉极大的条件为( D )OO1S 2S r(A )21r r k π-=; (B )212k ϕϕπ-=; (C )212122r r k ϕϕππλ--+=;(D )122122r r k ϕϕππλ--+=。
(完整版)大学物理学上下册习题与答案

习题九一、选择题9.1 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[A(本章中不涉及导体)、 D ] 9.2有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03 q . (B) 04 q (C) 03 q . (D) 06 q [D ]q题图9.19.3面积为S 的空气平行板电容器,极板上分别带电量q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02(B)S q 022 (C) 2022S q (D) 202Sq [B ]9.4 如题图9.2所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷q ,M 点有负电荷q .今将一试验电荷0q 从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 , 且为有限常量.(C) A =∞. (D) A =0. [D ,0O V ]-题图9.29.5静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)[C ]9.6已知某电场的电场线分布情况如题图9.3所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度M N E E . (B) 电势M N U U .(C) 电势能M N W W . (D) 电场力的功A >0.[C ] 二、计算题9.7 电荷为q 和2q 的两个点电荷分别置于1x m 和1x m 处.一试验电荷置于x 轴上何处,它受到的合力等于零? x2q q 0解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x 即:22221(2)0121011x x x x22212210x x x x2610(322)x x x m 。
大学物理学(北邮第四版)第一章习题答案

(3)质点作变速直线运动时,其法向加速度为零,切向加速度和加速度均不为零;
(4)质点作变速曲线运动时,其切向加速度、法向加速度及加速度均不为零。
1.6| |与 有无不同? 和 有无不同? 和 有无不同?其不同在哪里?试举例说明.
[答案:23m·s-1]
(3)轮船在水上以相对于水的速度 航行,水流速度为 ,一人相对于甲板以速度 行走。如人相对于岸静止,则 、 和 的关系是。
[答案: ]
1.3一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:
(1)物体的大小和形状;
(2)物体的内部结构;
(3)所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
习题1
1.1选择题
(1)一运动质点在某瞬时位于矢径 的端点处,其速度大小为
(A) (B)
(C) (D)
[答案:D]
(2)一质点作直线运动,某时刻的瞬时速度 ,瞬时加速度 ,则一秒钟后质点的速度
(A)等于零(B)等于-2m/s
(C)等于2m/s (D)不能确定。
[答案:D]
(3)一质点沿半径为R的圆周作匀速率运动,每t秒转一圈,在2t时间间隔中,其平均速度大小和平均速率大小分别为
解:
(1) 时,
(2)当加速度方向与半径成 角时,有
即
亦即
则解得
于是角位移为
1.12质点沿半径为 的圆周按 = 的规律运动,式中 为质点离圆周上某点的弧长, , 都是常量,求:(1) 时刻质点的加速度;(2) 为何值时,加速度在数值上等于 .
解:(1)
《大学物理》习题训练及详细解答二

练习三 质点动力学(一)
1.质量分别为mA和mB的两滑块A和B 通过一轻弹簧 水平连结后置于水平桌面上,滑块与桌面间的摩擦系
数均为μ,系统后瞬间,二者的加速
度aA和aB分别为: (A) aA=0, aB=0 ; (C) aA<0, aB>0;
这个问题有两个物理过程:
第一过程为木块M沿光滑的固定斜面下滑,到达B点时
速度的大小为
练习四 质点动力学(二)
1. 一块很长的木板,下面装有活动轮子,静止地置于 光滑的水平面上,如图1。质量分别为mA和mB的两个人 A和B站在板的两头,他们由静止开始相向而行,若 mB>mA,A和B对地的速度大小相同,则木板将: [ C ]
(A)向左运动; (B)静止不动; (C)向右运动; (D)不能确定;
地加速度为a0取向下为正,m1对地
的加速度为a1向上为正。
T
mT2gm1Tg
m1a1 m2a0
解得:
a1
m1
m2 g
m1 m2
m2a2
T 2g a2 m1m2
a0 a1 a2
m1 m2
a0
m1
m2 g
m1 m2
m1a2
则在2s末物体速度的大小等于______2_4_m. / s
dI Fdt (30 40t)dt
I 30t 20t 2
I mv mv0
4.如图2两块并排的木块A和B,质量分别为m1和m2,静 止地放置在光滑的水平面上,一子弹水平地穿过两木块, 设子弹穿过两木块所用的时间分别为△t1和△t2,木块 对 小子 为弹__的__阻__力_m_F1恒__为,tm1 2F木,块则B子的弹速穿度出大后小,为木__块__A__的_mF1_速_tm1_2度_F.m大2t2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大 学 物 理 学 习 题 解 答
陕西师范大学物理学与信息技术学院 基础物理教学组 2006-5-8 2
说 明: 该习题解答与范中和主编的《大学物理学》各章习题完全对应。每题基本上只给出了一种解答,可作为教师备课时的参考。 题解完成后尚未核对,难免有错误和疏漏之处。望使用者谅解。
编 者 2006-5-8 3
第2章 运动学 2-1 一质点作直线运动,其运动方程为222ttx , x以m计,t以s计。试求:(1)质点从t = 0到t = 3 s时间内的位移;(2)质点在t = 0到t = 3 s时间内所通过的路程 解 (1)t = 0时,x0 = 2 ;t =3时,x3 = -1;所以, m3)0()3(txtxx (2)本题需注意在题设时间内运动方向发生了变化。对x求极值,并令 022ddtt
x
可得t = 1s ,即质点在t = 0到t = 1s内沿x正向运动,然后反向运动。 分段计算 m1011ttxxx, m4)1()3(2txtxx
路程为 m521xxs 2-2 已知质点沿x轴作直线运动,其运动方程为32262ttx。试求:(1)质点在最初4s内位移;(2)质点在最初4s时间内所通过的路程 解 (1)t = 0时,x0 = 2 ;t = 4时,x4 = -30
所以,质点在最初4s内位移的大小 m3204xxx
(2)由 0612dd2tttx 可求得在运动中质点改变运动方向的时刻为 t1 = 2 s , t2 = 0 (舍去) 则 m0.8021xxx,m40242xxx
所以,质点在最初4 s时间间隔内的路程为 m4821xxs 2-3 在星际空间飞行的一枚火箭,当它以恒定速率燃烧它的燃料时,其运动方程可
表示为 )1ln(1bttbuutx,其中m/s100.33u是喷出气流相对于火箭体的喷
射速度, s/105.73b 是与燃烧速率成正比的一个常量。试求:(1)t = 0时刻,此火箭的速度和加速度;(2)t = 120 s时,此火箭的速度和加速度 解 )1ln(ddbtutxv;btubtva1dd
(1)t = 0时, v = 0 ,233s.m5.221105.7103a (2)t = 120s时, )120105.71ln(10333v13s.m91.6 2333s.m225120105.71105.7103
a 4
2-4 如图所示,湖中有一只小船,岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,t = 0时,船与滑轮间的绳长为l0 。试求:当人以匀速v0拉绳时,船在距岸边x处的速度和加速度。
解 (1) 设任意时刻 t ,绳长为l,由题意
tlv
d
d
0;船到岸边的水平距离为x ,则
22hlx
小船的运动速度为 tlhllhlttxvdddddd2222022vxhx 负号表示小船在水面上向岸靠近。 小船的运动速度为 )(dddd022vhllttva
2202
022dd)(d
dxvh
tlvhlll
负号表示加速度的方向指向岸边,小船在水面上加速靠岸。 2-5 一升降机以加速度2sm22.1上升,当上升速度为1sm44.2时,有一螺丝从升降机的天花板上松脱,天花板与升降机的底面相距2.74 m 。计算:(1)螺丝从升降机的天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离 . 解 (1)以地面为参考系,取Oy坐标轴向上 ,升降机的运动方程为
2012
1attvy
螺丝的运动方程为 2022
1gttvhy
当螺丝落至底面时,有 y1 = y2 ,即 2020212
1gttvhatty
所以 s705.02aght (2)螺丝相对升降机外固定柱子下降的距离为 m716.021202gttvyhd 2-6 已知一质点的运动方程为 jir)2(22tt (SI)。试求:(1)质点的运动轨迹;(2)t = 1s和t = 2 s时刻,质点的位置矢量;(3)1s末和2 s末质点的速度;(4)质点的加速度。 解 (1)质点在x 、y方向运动方程的分量形式为 x = 2t , y = 2-t 2
消去时间t , 可得 2412xy 其运动轨迹为一抛物线 (2)s1t时 jir21;s2t时 jir242
v x l v0
h 5 (3)质点运动的速度 vjirtt22dd
s1t时 v1ji22
即 m/s221v,o145(1为v1与x 轴的夹角) s2t时 v2ji42
即 m/s522v,6263o2(2为v2与x 轴的夹角) (4)质点运动的加速度 jva2ddt 2-7 一质点在Oxy平面上运动,其运动方程为 jir222)310(tt 试求:(1)质点的轨迹方程;(2)质点的速度、加速度。 解 (1) 质点运动方程的分量式为2310tx,22ty
消去时间参数t,可得运动的轨迹方程 2023xy (2)速度 vjitt46 加速度 jia46 2-8 一质点在Oxy平面上运动,其运动方程为jir)]1.0cos(1[3)1.0sin(3tt 试求质点在5s时的速度和加速度 。 解 速度 vjir)1.0sin(3.0)1.0cos(3.0ddttt
加速度 jira)1.0cos(1.03)1.0sin(1.03dd2222ttt t = 5 s时的速度为 jv)sm3.0(1 加速度 ia)sm03.0(22 2-9 一质点从坐标原点开始沿抛物线 y = 0.5 x2 运动,它在Ox轴上分速度1sm0.4
xv
为一恒量,试求:(1)质点的运动方程;(2)质点位于x = 2 m处的速度和
加速度 。 解 (1)因1sm0.4xv为常数,故ax = 0 。当t = 0时,x = 0 ,可得质点在x方向的运动方程为 tx4 又由质点的抛物线方程,有 28ty 6
所以 jir284tt (2)任意时刻 jirvtt164dd; jt16ddva
由tx4和x = 2,可得 t = 0.5 s 所以,当质点位于x = 2.0 m时,其速度 jiv84 ,加速度 ja16
2-10 一汽艇以速率0
v沿直线行驶。发动机关闭后,汽艇因受到阻力而具有与速度
v 成正比且方向相反的加速度kva,其中k为常数。试求发动机关闭后,(1)任意时刻t汽艇的速度;(2)汽艇能滑行的距离。 解 本题注意根据已知条件在计算过程中进行适当的变量变换。
(1)由 kvtvadd , tkvvtvv00dd
得 ktvve0 (2)因为 kvsvvtssvtvdddddddd, skvsv00dd0 所以 ksv0 发动机关闭后汽艇能滑行的距离为 kvs/0 2-11 一物体沿x轴作直线运动,其加速度为2kva
,k是常数。在t = 0时,0vv,
0x。试求(1)速率随坐标变化的规律;(2)坐标和速率随时间变化的规律。
解 本题注意变量变换。
(1)因为 2ddddddddkvxvvtxxvtva; xkvvxvv0dd0
所以 kxvve0 (2)因为 2ddkvtva , tkvvtvv02dd0
可得 100
ktv
vv
又因为 txvdd, tktvvtvxttxd1dd00000 所以 )1ln(10ktvkx
2-12 一质点沿 x 轴作直线运动,其速度大小238tv,(SI制)。质点的初始位置在 x 轴正方向10 m处,试求:(1)s2t时,质点的加速度;(2)质点的运动方程; (3)第二秒内的平均速度。 7
解 根据题意可知,0t时,10ms8v ,m100x (1)质点的加速度 ttva6dd s2t时, 2ms12a
(2) 由 tttvxd)38(dd2 两边积分 ttxtxd)38(d0210 因此,质点的运动方程为 3810ttx (3)第二秒内的平均速度为 11212s.m15ttxxtxv 2-13 质点作圆周运动,轨道半径r = 0.2 m,以角量表示的运动方程为22
110tt (SI)。试求:(1)第3s末的角速度和角加速度;(2)第3s 末的切向加
速度和法向加速度的大小。 解 (1)因为 22110tt
故 tt10d/d , td/d 以t = 3s代入,1sadr13 ,2srad (2) 2sm2.0rat, 222sm8.33ran 2-14 一质点在半径为r = 0.10m的圆周上运动,其角位置为342t。(1)在 t = 2.0s时,质点的法向加速度和切向加速度各为多少?(2)t为多少时,法向加速度和切向加速度的量值相等?
解 (1)由于342t,则 212ddtt,tt24dd
法向加速度 42n4.14tra 切向加速度 trat4.2 t = 2.0s时,2222nsm1030.2rast, 22sm8.4ddtrastt
(2)要使taan,则有 trtr24)12(22 所以 t = 0.55 s 2-15 一汽车发动机曲轴的转速,在12 s内由20 r/s均匀地增加到45 r/s 。试求: (1)发动机曲轴转动的角加速度;