初中人教版数学勾股定理经典题型分析

合集下载

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题一、经典例题精讲题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度例题1如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?解析:这是一道大家熟知的典型的“知二求一”的题。

把实物模型转化为数学模型后,.已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2=144,所以AC=12.例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC.解析:同例题1一样,先将实物模型转化为数学模型,如图2. 由题意可知△ACD 中,∠ACD=90°,在Rt △ACD 中,只知道CD=1.5,这是典型的利用勾股定理“知二求一”的类型。

标准解题步骤如下(仅供参考):解:如图2,根据勾股定理,AC 2+CD 2=AD 2设水深AC= x 米,那么AD=AB=AC+CB=x +0.5x 2+1.52=( x +0.5)2 解之得x =2. 故水深为2米.题型三:勾股定理和逆定理并用——例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41=那么△DEF 是直角三角形吗?为什么? CB D A解析:这道题把很多条件都隐藏了,乍一看有点摸不着头脑。

仔细读题会意可以发现规律,没有任何条件,我们也可以开创条件,由AB FB 41 可以设AB=4a ,那么BE=CE=2 a ,AF=3 a ,BF= a ,那么在Rt △AFD 、Rt △BEF 和 Rt △CDE 中,分别利用勾股定理求出DF,EF 和DE 的长,反过来再利用勾股定理逆定理去判断△DEF 是否是直角三角形。

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题一、经典例题精讲题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度例题1如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?解析:这是一道大家熟知的典型的“知二求一”的题。

把实物模型转化为数学模型后,.已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理!根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2=144,所以AC=12.例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC.解析:同例题1一样,先将实物模型转化为数学模型,如图2. 由题意可知△ACD 中,∠ACD=90°,在Rt △ACD 中,只知道CD=1.5,这是典型的利用勾股定理“知二求一”的类型。

标准解题步骤如下(仅供参考):解:如图2,根据勾股定理,AC 2+CD 2=AD 2设水深AC= x 米,那么AD=AB=AC+CB=x +0.5x 2+1.52=( x +0.5)2 解之得x =2. 故水深为2米.题型三:勾股定理和逆定理并用——例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41=那么△DEF 是直角三角形吗?为什么? CB D A解析:这道题把很多条件都隐藏了,乍一看有点摸不着头脑。

仔细读题会意可以发现规律,没有任何条件,我们也可以开创条件,由AB FB 41 可以设AB=4a ,那么BE=CE=2 a ,AF=3 a ,BF= a ,那么在Rt △AFD 、Rt △BEF 和 Rt △CDE 中,分别利用勾股定理求出DF,EF 和DE 的长,反过来再利用勾股定理逆定理去判断△DEF 是否是直角三角形。

初中数学解题模型专题讲解29---勾股定理知识点与常见题型总结

初中数学解题模型专题讲解29---勾股定理知识点与常见题型总结

例 5.如图有两棵树,一棵高 8 cm ,另一棵高 2 cm ,两树相距 8 cm ,一只小鸟从一棵树
的树梢飞到另一棵数的树梢,至少飞了
m
A
E
D
B
C
分析:根据题意建立数学模型,如图 AB = 8 m ,CD = 2 m ,BC = 8 m ,过点 D 作 DE ⊥ AB , 垂足为 E ,则 AE = 6 m , DE = 8 m 在 Rt∆ADE 中,由勾股定理得 AD = AE2 + DE2 = 10 答案:10 m
8/8
一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是
①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变
②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理
常见方法如下:
方法一: 4S∆
初中数学解题模型专题讲解
一.知识归纳
专题 29 勾股定理复习
1.勾股定理
内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为 a , b ,斜边为 c ,那么 a2 + b2 = c2
勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代
把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千 多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进
+ S正方形EFGH
=
S正方形ABCD

4
×
1 2
ab
+
(b

勾股定理 知识归纳与题型突破(十一类题型清单) (学生版)-2024-2025学年八年级数学上册单元

勾股定理 知识归纳与题型突破(十一类题型清单) (学生版)-2024-2025学年八年级数学上册单元

第一章 勾股定理 知识归纳与题型突破(十一类题型清单)一、勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.(即:)二、勾股定理的逆定理a b 、c 222a b c +=01 思维导图02 知识速记1.勾股定理的逆定理 如果三角形的三边长,满足,那么这个三角形是直角三角形.要点:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为;(2)验证:与是否具有相等关系: 若,则△ABC 是以∠C 为90°的直角三角形; 若时,△ABC 是锐角三角形; 若时,△ABC 是钝角三角形.2.勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.要点:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果()是勾股数,当t 为正整数时,以为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为,且,那么存在成立.(例如④中存在=24+25、=40+41等)三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.四、勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算;(4)勾股定理在实际生活中的应用.题型一 用勾股定理解三角形例题1.若一个直角三角形的两条直角边长分别是6和8,则斜边长是( )A .6B .7C .8D .10巩固训练a b c 、、222a b c +=c 22a b +2c 222a b c +=222a b c +>222a b c +<222x y z +=x y z 、、a b c 、、at bt ct 、、a b c 、、a b c <<2a b c =+272903 题型归纳2.在直角ABC V 中,∠B=90°,3AB =,4AC =,则BC 的长为( )A .5BC .5D .53.如图,在Rt ABC △中,90A Ð=°,2BC =,则222AC AB BC ++的值为( )A .8B .2C .4D .4.如图所示,已知ABC V 中,6AB =,9AC =,AD BC ^于D ,M 为AD 上任一点,则22MC MB -等于 .题型二 勾股定理逆定理 勾股数例题5.下列给出的四组数中,能构成直角三角形三边的一组是( )A .5,12,14B .6,8,9C .7,24,25D .8,13,15巩固训练6.由下列条件不能判定ABC V 为直角三角形的是( )A .A C BÐ+Ð=ÐB .13a =,14b =,15c =C .()()2b a b a c +-=D .5:::3:2A B C ÐÐÐ=7.在下列四组数中,属于勾股数的是( )A .0.3,0.4,0.5B .3,4,5C .2,8,10D .18.下列各组数中,是勾股数的是( ).A .1,2,3BCD .9,12,15题型三 勾股定理及其逆定理解三角形 解答题例题9.(1)如图,在ABC V 中,AD BC ^,求证:2222AB AC BD CD -=-;(2)在ABC V 中,8AB =,5AC =,BC 边上的高4AD =,求边BC 的值.巩固训练10.如图,已知等腰ABC V 的底边25cm BC =,D 是腰AB 上一点,连接CD ,且24cm 7cm CD BD ==,.(1)求证:BDC V 是直角三角形;(2)求AB 的长.11.如图,已知在ABC V 中,CD AB ^于点D ,20AC =,15BC =,9DB =,(1)求DC 、AB 的长;(2)求证:ABC V 是直角三角形.12.已知在Rt ABC V 中,90ACB Ð=°,9AC =,15AB =,5BD =,过点D 作DH AB ^于点H .(1)求CD 的长;(2)求DH 的长.题型四 勾股定理逆定理拓展性质例题13.下列由三条线段a 、b 、c 构成的三角形:①2a mn =,22b m n =-,()220c m n m n =+>>,②21a n =+,2221b n n =++,()2220c n n n =+>,③3a k =,4b k =,()50c k k =>,2=,其中能构成直角三角形的有( )A .1个B .2个C .3个D .4个巩固训练14.以下四组代数式作为ABC V 的三边:①345n n n ,,(n 为正整数);②12n n n ++,,(n 为正整数);③22121n n n +-,,(2n ³,n 为正整数);④22222m n mn m n -+,,(m n >,m ,n 为正整数).其中能使ABC V 为直角三角形的有( )A .0组B .1组C .2组D .3组15.下列命题①如果a b c 、、为一组勾股数,那么444a b c 、、仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12、25、7,那么此三角形必是直角三角形;④一个等腰直角三角形的三边a b c 、、,(ab c >=),那么222::2:1:1a b c =,其中正确的是( )A .①②B .①③C .①④D .②④题型五 勾股定理与数轴上的实数例题16.如图,在数轴上点A 表示的实数是( )A B C D 巩固训练17.如图,OA OB =,(1)写出数轴上点A 表示的数;(2)比较点A 表示的数与 1.5-的大小;(3)18.如图,在数轴上以1个单位长度画一个正方形,以原点为圆心,以正方形的对角线长为半径画弧,与正半轴的交点为B ,且点B 表示的是一个无理数,因此我们得出一个结论.(1)点B 表示的数为_________;得出的结论是:_________与数轴上的点是一一对应的.(2)若将图中数轴上标的A ,C ,D 3和p -对应起来,则点A 表示的实数为_________,点C 表示的实数为_________,点D 表示的实数为_________.题型六 网格问题例题19.如图,ABC V 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD AC ^于点D ,则BD 的长为( )A B C D .45巩固训练20.如图,在以下四个正方形网格中,各有一个三角形,不是直角三角形的是( )A .B .C .D .21.如图所示,在44´的正方形网格中,ABC V 的顶点都在格点上,下列结论错误的是( )A .60CBA Ð=°B .5AB =C .90ACB Ð=°D .BC =题型七 以直角三角形三边为边长的面积问题例题22.如图,图中的三角形为直角三角形,已知正方形A 和正方形B 的面积分别为25和9,则正方形C 的面积为 .巩固训练23.如图,1S 、2S 、3S 分别是以Rt ABC △的三边为直径所画半圆的面积,其中110S p =,26S p =,则3S = .24.如图,五个正方形放在直线MN 上,正方形A 、C 、E 的面积依次为3、5、4,则正方形B 、D 的面积之和为( )A .11B .14C .17D .2025.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、4、1、3,则最大的正方形E 的面积是( )A .11B .47C .26D .3526.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外正方形②和D ¢,…,依次类推,若正方形①的面积为64,则正方形⑤的面积为( )A .2B .4C .8D .16题型八 求线段的平方和或差例题27.已知a ,b ,c 是ABC V 中A Ð,B Ð,C Ð的对边,下列说法正确的有( )个①若90C Ð=°,则2a +22b c =;②若90B Ð=°,则222a c b +=;③若90A Ð=°,则2b +22c a =;④总有2a +22b c =.A .1B .2C .3D .4巩固训练28.在Rt ABC △中,斜边2BC =,则222AB AC BC ++的值为( )A .4B .6C .8D .无法计算29.如图,ABC V 中,90BAC Ð=°,点A 向上平移后到A ¢,得到A BC ¢V .下面说法错误的是( )A .ABC V 的内角和仍为180°B .BAC BAC ¢Ð<ÐB .C .222AB AC BC +=D .222A B A C BC ¢¢+<30.如图,在ABC V 中,AB AC >,AH BC ^于H ,M 为AH 上异于A 的一点,比较AB AC -与MB MC -的大小,则AB AC -( )MB MC -.A .大于B .等于C .小于D .大小关系不确定题型九 勾股定理的证明方法例题31.我国是最早了解勾股定理的国家之一,下面四幅图中,不能证明勾股定理的是()A.B.C.D.巩固训练32.我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称之为“赵爽弦图”.现在勾股定理的证明已经有400多种方法,下面的两个图形就是验证勾股定理的两种方法,在验证著名的勾股定理过程,这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.在验证过程中它体现的数学思想是()A.函数思想B.数形结合思想C.分类思想D.方程思想33.勾股定理又称毕达哥拉斯定理、商高定理、新娘座椅定理、百牛定理等,是人类早期发现并证明的重要数学定理之一,大约有五百多种证明方法,我国古代数学家赵爽和刘徽也分别利用《赵爽弦图》和《青朱出入图》证明了勾股定理,以下四个图形,哪一个是赵爽弦图()A .B .C .D .34.如图,在四边形ABDE 中,AB DE ∥,AB BD ^,点C 是边BD 上一点,BC DE a ==,CD AB b ==,AC CE c ==.下列结论:①ABC CDE ≌△△;②A C C E ^;③四边形ABDE 的面积是222121b ab a ++;④()2221112222a b c ab +-=´;⑤222+=a b c .其中正确的结论个数是( )A .2B .3C .4D .5题型十 勾股定理的应用例题35.如图,一木杆在离地某处断裂,木杆顶部落在离木杆底部8米处,断落的木杆与地面形成45°角,则木杆原来的长度是( )A .8米B .(8+米C .16米D .24米巩固训练36.如图,AC BC ^,一架云梯AB 长为25米,顶端A 靠在墙AC 上,此时云梯底端B 与墙角C 距离为7米,云梯滑动后停在DE 的位置上,测得AE 长为4米,则云梯底端B 在水平方向滑动的距离BD 为( )A .4米B .6米C .8米D .10米37.如图所示是一个圆柱形饮料罐底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a 的长度x (罐壁厚度和小圆孔大小忽略不计)范围是( )A .1213x ≤≤B .1215x ££C .512x ££D .513x ££38.如图所示,ABCD 是长方形地面,长20AB =,宽10AD =,中间整有一堵砖墙高2MN =,一只蚂蚁从A 点爬到C 点,它必须翻过中间那堵墙,则它至少要走( )A .20B .24C .25D .2639.某会展中心在会展期间准备将高5m 、长13m 、宽2m 的楼道铺上地毯,已知地毯每平方米30元,请你帮助计算一下,铺完这个楼道至少需要 元.40.在甲村至乙村的公路旁有一块山地正在开发,现有一处需要爆破,已知点C 与公路上的停靠站A 的距离为300米,与公路上另一停靠站B 的距离为400米,且CA CB ^,如图,为了安全起见,爆破点C 周围250米范围内不得进入,问在进行爆破时,公路AB 段是否有危险?是否需要暂时封锁?请通过计算进行说明.41.某条道路限速80km /h ,如图,一辆小汽车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪A 处的正前方30m 的C 处,过了2s ,小汽车到达B 处,此时测得小汽车与车速检测仪间的距离为50m .(1)求BC 的长;(2)这辆小汽车超速了吗?题型十一 折叠问题例题42.如图,有一块直角三角形纸片,两直角边9cm AC =,12cm BC =,现将直角边AC 沿直线AD 折叠,使它恰好落在斜边AB 上,且与AE 重合.(1)求EB 的长;(2)求CD 的长.巩固训练43.如图,在长方形ABCD 中,将长方形沿EF 折叠,使点C 的对应点与点A 重合,点D 的对应点为点G .(1)求证:AE AF =;(2)若48AB BC ==,,求ABE V 的面积.44.如图,在ABC V 中,9068ACB AC BC Ð=°==,,.(1)如图(1),把ABC V 沿直线DE 折叠,使点A 与点B 重合,求BE 的长;(2)如图(2),把ABC V 沿直线AF 折叠,使点C 落在AB 边上G 点处,请直接写出BF 的长.45.如图,在矩形ABCD 中,8AB =,10BC =,点P 在矩形的边CD 上由点D 向点C 运动.沿直线AP 翻折ADP D ,形成如下四种情形,设DP x =,ADP D 和矩形重叠部分(阴影)的面积为y .(1)如图4,当点P 运动到与点C 重合时,求重叠部分的面积y ;(2)如图2,当点P 运动到何处时,翻折ADP D 后,点D 恰好落在BC 边上?这时重叠部分的面积y 等于多少?46.如图,在ABC V 中,90BAC Ð=°,AB AC =,点D 为线段BC 延长线上一点,以AD 为腰作等腰直角DAF △,使90DAF Ð=°,连接CF .(1)请判断CF与BC的位置关系,并说明理由;=,求线段AD的长;(2)若8BC=,4CD BC(3)如图2,在(2)的条件下,将DAF△沿线段DF翻折,使点A与点E重合,连接CE,求线段CE的长.。

人教数学八年级下册《勾股定理》典型例题分析.docx

人教数学八年级下册《勾股定理》典型例题分析.docx

初中数学试卷马鸣风萧萧《勾股定理》典型例题分析一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为 a、 b,斜边为 c ,那么 a 2 + b 2= c 2。

公式的变形: a2 = c 2- b 2, b 2= c 2-a 2。

2、勾股定理的逆定理如果三角形 ABC的三边长分别是a, b, c,且满足 a2 + b2= c2,那么三角形 ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方 +中间边的平方 .③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。

3、勾股数满足 a2 + b2= c2的三个正整数,称为勾股数。

注意:①勾股数必须是正整数,不能是分数或小数。

②一组勾股数扩大相同的正整数倍后,仍是勾股数。

常见勾股数有:(3,4,5)(5,12,13) (6,8,10 ) ( 7,24,25 ) ( 8,15,17 )(9 ,12,15 )4、最短距离问题:主要运用的依据是两点之间线段最短。

二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;( 2)阴影部分是长方形;( 3)阴影部分是半圆.2.如图,以 Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.S 3S 1S 23、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、 S3,则它们之间的关系是()A. S1- S2= S3B. S1+ S2= S3C. S2+S3< S1D. S2- S3=S14、四边形 ABCD中,∠ B=90°, AB=3,BC=4,CD=12, AD=13,求四边形 ABCD的面积。

人教版八年级下册数学-专题:第18章.勾股定理知识点与常见题型总结

人教版八年级下册数学-专题:第18章.勾股定理知识点与常见题型总结

, 4 ⨯ ab + (b - a )2 = c 2 ,化简可证.四个直角三角形的面积与小正方形面积的和为 S = 4 ⨯ ab + c 2 = 2ab + c 2= (a + b ) ⋅ (a + b ) , S = 2 ⋅ ab + c 2 ,化简得证 2 2 2八年级下册 .勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为 a , b ,斜边为 c ,那么 a 2 + b 2 = c 2勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较 短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了 “勾 三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的 平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一: 4S + S ∆DHEF bAc方法二:b正方形EFGH= SCGaBa正方形ABCD 1 2accbbccaab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.12大正方形面积为 S = (a + b )2 = a 2 + 2ab + b 2所以 a 2 + b 2 = c 2方法三: S 梯形1 1 1 = 2S + S梯形 ∆ADE ∆ABEA accB bD bE a C3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在∆ABC中,∠C=90︒,则c=a2+b2,b=c2-a2,a=c2-b2②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和a2+b2与较长边的平方c2作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若a2+b2<c2,时,以a,b,c为三边的三角形是钝角三角形;若a2+b2>c2,时,以a,b,c为三边的三角形是锐角三角形;②定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c 满足a2+c2=b2,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2+b2=c2中,a,b,c为正整数时,称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n组勾股数:n2-1,2n,n2+1(n≥2,n为正整数);2n+1,2n2+2n,2n2+2n+1(n为正整数)m2-n2,2mn,m2+n2(m>n,m,n为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:CC C30°A B A D B B DACB DA题型一:直接考查勾股定理例1.在∆ABC中,∠C=90︒.⑴已知AC=6,BC=8.求AB的长⑵已知AB=17,AC=15,求BC的长分析:直接应用勾股定理a2+b2=c2解:⑴AB=AC2+BC2=10⑵BC=AB2-AC2=8题型二:应用勾股定理建立方程例2.⑴在∆ABC中,∠ACB=90︒,AB=5cm,BC=3cm,CD⊥AB于D,CD=⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm,斜边长为13cm,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴AC=AB2-BC2=4,CD=ADB C AC⋅BCAB=2.4⑶设两直角边分别为a,b,则a+b=17,a2+b2=289,可得ab=60∴S=ab=30⑵设两直角边的长分别为3k,4k∴(3k)2+(4k)2=152,∴k=3,S=5412例3.如图∆ABC中,∠C=90︒,∠1=∠2,CD=1.5,BD=2.5,求AC的长CD1cm2A2E B分析:此题将勾股定理与全等三角形的知识结合起来解:作DE⊥AB于E,∠1=∠2,∠C=90︒∴DE=CD=1.5在∆BDE中∠BED=90︒,BE=BD2-DE2=2Rt∆ACD≅Rt∆AED∴AC=AE在Rt∆ABC中,∠C=90︒∴AB2=AC2+BC2,(A E+EB)2=AC2+42∴AC=3例4.(2014安徽省,第8题4分)如图,△Rt ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在△Rt ABC中,根据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在△Rt ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点△E,将ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。

新人教版八年级数学下册勾股定理知识点和典型例习题1

新人教版八年级数学下册勾股定理知识点和典型例习题1

新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2。

勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5。

勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,c b a H G FE DC B A b ac b a c c a b c a b a b c c b aE D C B A时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6。

中考数学复习指导:勾股定理中的常见题型例析.doc

中考数学复习指导:勾股定理中的常见题型例析.doc

中考数学复习指导:勾股定理中的常见题型
例析
中考数学勾股定理中的常见题型例析勾股定理是几何计算中运用最多的一个知识点.考查的主要方式是将其综合到几何应用的解答题中,常见的题型有以下几种:
一、探究开放题
例1如图1,设四边形ABCD是边长为1的
正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…….
点拨:本题的关键是运用勾股定理和它的逆定理构造新图形,用构造法解题的思想,有助于提高运用数学知识解决实际问题的能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 10 页 勾股定理经典题型分析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a. 思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° ∴AC2 =AD2 AD=13, CD=12 -CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4.

类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长.

思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余)

∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定

理,在中,

. 根据勾股定理,在中,

. ∴ . 第 2 页 共 10 页

举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵ (已知), ∴. 在中,根据勾股定理有 , ∴.

【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4,

∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。

∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE= 类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°

方向走了到达B点,然后再沿北偏西30°方向走了500m到达 目的地C点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 解析:(1)过B点作BE//AD ∴∠DAB=∠ABE=60° ∵30°+∠CBA+∠ABE=180° 第 3 页 共 10 页

∴∠CBA=90° 即△ABC为直角三角形

由已知可得:BC=500m,AB= 由勾股定理可得: 所以 (2)在Rt△ABC中, ∵BC=500m,AC=1000m ∴∠CAB=30° ∵∠DAB=60° ∴∠DAC=30° 即点C在点A的北偏东30°的方向 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?

【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图所示,点D在离厂门中线0.8米处,且CD⊥AB, 与地面交于H. 解:OC=1米 (大门宽度一半), OD=0.8米 (卡车宽度一半) 在Rt△OCD中,由勾

CD=股定理得: ==0.6米, CH=0.6+2.3=2.9(米)>2.5(米). 因此高度上有0.4米的余量,所以卡车能通过厂门.

(二)用勾股定理求最短问题 4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线. 第 4 页 共 10 页

思路点拨:解答本题的思路是:最省电线就是线路长最短,通过利用勾股定理计算线路长,然后进行比较,得出结论. 解析:设正方形的边长为1,则图(1)、图(2)中的总线路长分别为 AB+BC+CD=3,AB+BC+CD=3 图(3)中,在Rt△ABC中

同理 ∴图(3)中的路线长为 图(4)中,延长EF交BC于H,则FH⊥BC,BH=CH

由∠FBH= 及勾股定理得: EA=ED=FB=FC= ∴EF=1-2FH=1- ∴此图中总线路的长为4EA+EF= 3>2.828>2.732 ∴图(4)的连接线路最短,即图(4)的架设方案最省电线. 举一反三 【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.

解:

如图,在Rt△ABC中,BC=底面周长的一半=10cm, 根据勾股定理得 (提问:勾股定理) 第 5 页 共 10 页

∴ AC== =≈10.77(cm)(勾股定理). 答:最短路程约为10.77cm.

类型四:利用勾股定理作长为的线段

5、作长为、、的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。 作法:如图所示

(1)作直角边为1(单位长)的等腰直角△ACB,使AB为斜边; (2)以AB为一条直角边,作另一直角边为1的直角。斜边为; (3)顺次这样做下去,最后做到直角三角形,这样斜边、、、的长度就是 、、、。 举一反三 【变式】在数轴上表示的点。 解析:可以把看作是直角三角形的斜边,, 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

作法:如图所示在数轴上找到A点,使OA=3,作AC⊥OA且截取AC=1,以OC为半径, 以O为圆心做弧,弧与数轴的交点B即为。 类型五:逆命题与勾股定理逆定理 6、写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚.(正确) 2.原命题:对顶角相等(正确) 3.原命题:线段垂直平分线上的点,到这条线段两端距离相等.(正确) 4.原命题:角平分线上的点,到这个角的两边距离相等.(正确) 思路点拨:掌握原命题与逆命题的关系。 解析:1. 逆命题:有四只脚的是猫(不正确) 2. 逆命题:相等的角是对顶角(不正确) 3. 逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上.•(正确) 4. 逆命题:到角两边距离相等的点,在这个角的平分线上.(正确) 第 6 页 共 10 页

总结升华:本题是为了学习勾股定理的逆命题做准备。 7、如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。 思路点拨:要判断ΔABC的形状,需要找到a、b、c的关系,而题目中只有条件a2+b2+c2+50=6a+8b+10c,故只有从该条件入手,解决问题。 解析:由a2+b2+c2+50=6a+8b+10c,得 : a2-6a+9+b2-8b+16+c2-10c+25=0, ∴ (a-3)2+(b-4)2+(c-5)2=0。 ∵ (a-3)2≥0, (b-4)2≥0, (c-5)2≥0。 ∴ a=3,b=4,c=5。 ∵ 32+42=52, ∴ a2+b2=c2。 由勾股定理的逆定理,得ΔABC是直角三角形。 总结升华:勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中也常要用到。

举一反三【变式1】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。 【答案】:连结AC ∵∠B=90°,AB=3,BC=4 ∴AC2=AB2+BC2=25(勾股定理) ∴AC=5 ∵AC2+CD2=169,AD2=169 ∴AC2+CD2=AD2 ∴∠ACD=90°(勾股定理逆定理)

【变式2】已知:△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),判断△ABC是否为直角三角形. 分析:本题是利用勾股定理的的逆定理, 只要证明:a2+b2=c2即可

证明:

所以△ABC是直角三角形. 【变式3】如图正方形ABCD,E为BC中点,F为AB上一点,且BF=AB。 请问FE与DE是否垂直?请说明。 【答案】答:DE⊥EF。 证明:设BF=a,则BE=EC=2a, AF=3a,AB=4a, ∴ EF2=BF2+BE2=a2+4a2=5a2; DE2=CE2+CD2=4a2+16a2=20a2。 连接DF(如图) DF2=AF2+AD2=9a2+16a2=25a2。 ∴ DF2=EF2+DE2, ∴ FE⊥DE。 经典例题精析 类型一:勾股定理及其逆定理的基本用法

相关文档
最新文档