3 热力学第三章——工程热力学课件PPT

合集下载

工程热力学 第三章 理想气体的性质

工程热力学 第三章 理想气体的性质
11
比热容的概念
比热容是单位物量的物质升高1K或1℃所需 的热量。 根据物质的数量和经历的过程不同,可分为:
(1)比热容(质量热容) : 1kg物质的热容,c ,J/(kg·K)。 c q q dT dt
12
比热容的概念
(2)摩尔热容
1 mol物质的热容,Cm,J/(kmol· K)。 Cm Mc
s isi
❖1kg混合气体的比熵变为
d s
c i p,i
dT T
R i g,i
dip pi
❖1mol混合气体的熵变为
dmpp
49
课后思考题
❖理想气体的热力学能和焓是温度的单值函 数,理想气体的熵也是温度的单值函数吗?
❖气体的比热容cp、cv究竟是过程量还是状态 量
pp1p2 pK pi i1
41
道尔顿分压力定律
pi p
ni n
xi
pi xi p
即分压力与总压力之比等于摩尔分数(即气 体组分的摩尔数与总摩尔数之比)
42
亚美格分体积定律
❖混合气体中第 i 种组元处于与混合气体压力 和温度时所单独占据的体积称为该组元的 分体积,用 Vi 表示。
❖亚美格分体积定律:理想混合气体的总体 积等于各组元的分体积之和(仅适用于理 想气体)
的关系式
17
cv和cp的关系式
比热容比: c p cV
得 cp 1 Rg
联立式 cp cV Rg
cV
1
1
Rg
18
比热容和温度的关系
❖理想气体的 u 和 h 是温度的单值函数,所 以理想气体的 cV 和 cp 也是温度的单值函 数。
c ft a b t d t2 e t3

工程热力学第三章

工程热力学第三章
A B
作业题、 作业题、例题
q = dw + du q = vdp + ∆u
Q = ∫ pdv + ∆H
1 2 Q = ∆h + ∆c + gdz + w 2 1 2 q = ∆h + (c2 − c1 ) + g ∆z + wt 2
Байду номын сангаас
2.说明下列公式的适用条件 2.说明下列公式的适用条件
δ q = du + pdv δ q = dh − vdp
1 2 1 2 δ Q = (h2 + c2 + gz2 )δ m2 − (h1 + c1 + gz1 )δ m1 + δ Ws + dEcV 2 2
五、开口系统稳态稳流能量方程
Q = Wt + ∆H q = wt + ∆h
δ Q = δ Wt + dH δ q = δ wt + dh
各方程的适用条件 1 2 技术功 wt = ∆c + g ∆z + ws
第三章 热力学第一定律 一、热力学能和总能 1.热力学能 1.热力学能 掌握热力学能是状态参数、单位、符号、 掌握热力学能是状态参数、单位、符号、 2.总能 2.总能 1
E = U + mc 2 + mgz 2 1 2 e = u + c + gz 2
二、系统与外界传递的能量 1.热量 1.热量 2.功量 2.功量
• •
5.流体的混合 5.流体的混合 m1 h1 + m2 h2 = (m1 + m2 )h3 6.绝热节流 6.绝热节流
h1 = h2

(精品)工程热力学(全套467页PPT课件)

(精品)工程热力学(全套467页PPT课件)
从能源结构来看,2004年一次能源消费中,煤炭占 67.7%,石油占22.7%,天然气占2.6%,水电等占 7.0%;一次能源生产总量中,煤炭占75.6%,石油 占13.5%,天然气占3.0%,水电等占7.9%。
我国能源现状
据预测,目前中国主要能源煤炭、石油和天然气的储 采比分别为约80、15和50,大致为全球平均水平的 50%、40%和70%左右,均早于全球化石能源枯竭 速度。
工程热力学
Engineering Thermodynamics
绪论
工程热力学属于应用科学(工程科学) 的范畴,是工程科学的重要领域之一。
工程热力学 是一门研究热能有效利用及 热能和其 它形式能量转换规律的科学
工程热力学所属学科

工程热力学

传热学 Heat Transfer

流体力学 Hydrodynamics
工程热力学是节能的理论基础
能量转化的一般模式

次 能
热能

电能 机械能
问题:下面哪些是热机,哪些不是?
燃气轮机、蒸气机、汽车发动机、燃料电池、制冷机、 发电机、电动机
能量转化的一般模式
风 能

水 能
化 学 能
料 电 池
风 车
水 轮 机
水 车
燃 烧
核 能
聚裂 变变

生物质
地太 热阳 能能
利 光转 用 热换
大气压(at),毫米汞柱(mmHg),毫米水柱(mmH2O)
1 kPa = 103 Pa
1bar = 105 Pa
换 1 MPa = 106 Pa
算 关
1 atm = 760 mmHg = 1.013105 Pa

工程热力学第三章气体和蒸汽的性质ppt课件

工程热力学第三章气体和蒸汽的性质ppt课件

标准状态下的体积流量:
qV 0 Vm0qn 22.4103 288876 6474.98m3 / h
☆注意:不同状态下的体积不同。
3-2 理想气体的比热容
1、比热容的定义 ■比热容 c(质量热容)(specific heat)
1kg物质温度升高1K所需的热量, c q / dT J / (kg K)
(T 1000
)2
C3
(T 1000
)3
见附表4(温度单位为K)。
qp
T2 T1
cpdT
qV
T2 T1
cV
dT
说明:此种方法结果比较精确。
(2)平均比热容表
c
t2 t1
q t2 t1
q
t2 cdt
t1
t2 cdt
0℃
t1 cdt
0℃
c
t2 0℃
t2
c
t t1
0℃ 1
平均比热容 c t0℃的起始温度为0℃,见附表5(温
3-1 理想气体的概念
1、理想气体模型(perfect gas, ideal gas) ■理想气体的两点假设
理想气体是实际上并不存在的假想气体。 假设: (1)分子是弹性的、不占体积的质点(与空间相比) (2)分子间没有作用力。(分子间的距离很大) ■作为理想气体的条件
气体 p 0 ,v ,即要沸点较低、远离液态。
■比定压热容c p 和比定容热容 cV 比定压热容(specific heat at constant pressure):定压
过程的比热容。
比定容热容(specific heat at constant volume):定容过
程的比热容。
●可逆过程

工程热力学第三章lm——工程热力学课件PPT

工程热力学第三章lm——工程热力学课件PPT

a c
Q w
Q w 0
2
V
状态参数的积 分特征
积分是否与路径无关
热力学能是状态参数
对循环1-a-2-c-1,有:
( Q W ) ( Q W ) 0
1a 2
2 c1
对循环1-b-2-c-1,有:
( Q W ) ( Q W ) 0
1b 2
2 c1
( Q W ) ( Q W )
理想气体热力学能变化计算
定容过程 理想气体
qv
u
duv
f T
cv dTv
cv
du dT
cv
uu cvdT 或 u 1 cvdT
Cv 平均比热 真实比热
混合气体
n
U Ui i 1
n
mu miui i 1
n
u giui i 1
例题
门窗紧闭的房间内有一台运行的电冰 箱,若敞开冰箱门就有一股凉气扑面, 有人就想通过敞开冰箱大门达到降低 室温的目的,请用热力学第一定律分 析此方法是否可行?
Wf = p A dl = pV wf= pv
流动功是一种特殊的功,大小取 决于控制体进出口界面的热力状 态,与热力过程无关。
对流动功的理解
1.与宏观流动有关,流动停止,流动功不存在 2.作用过程中,工质仅发生位置变化,无状态变化
3.Wf=pv与所处状态有关,是状态量
4.并非工质本身的能量(动能、位能)变化引起,而 由外界(泵与风机)做出,流动工质所携带的能量
1.宏观动能
Ek
1 mc2 2
2.重力位能
Ep mgz
外部存储能 机械能
系统的总能
系统的总能=内部储存能+外部储存能
E U Ek E p

工程热力学 第三章 气体和蒸汽的性质.

工程热力学 第三章 气体和蒸汽的性质.
第三章 气体和蒸汽的性质
3-1 理想气体的概念 3-2 理想气体的比热容 3-3 理想气体的热力学能、焓和熵 3-4 水蒸汽的饱和状态和相图 3-5 水的汽化过程和临界点 3-6 水和水蒸汽的状态参数 3-7 水蒸汽表和图
3-1 理想气体的概念
1、理想气体模型(perfect gas, ideal gas) ■理想气体的两点假设
dT
p


dh vdp dT
p


h T
p
cV


q
dT
V


du
pdv dT
V


u T
V
☆注意:上式适用于任何工质,表明 c p、cV为状态参数
●理想气体
热力学能只包括内动能,只与温度有关,u f (T )
cp,423K 1.01622kJ /(kg K) cp,623K 1.05652kJ /(kg K)
623K
cp 423K (1.01622 1.05652) / 2 1.0364kJ /(kg K)
623K
qp cp 423K (T2 T1) 1.0364 (623 423) 207.27kJ / kg
5、不同形式的理想气体状态方程式
1kg的气体: pv RgT mkg的气体: pV mRgT 1mol的气体:pVm RT nmol的气体:pV nRT 流量形式: pqV qm RgT qn RT
例3-2:某台压缩机每小时输出 3200m3、表压力 pe 0.22MPa 温度t 156℃的压缩空气。设当地大气压pb 765mmHg ,求 压缩空气的质量流量qm及标准状态下的体积流量qV 0 。

《工程热力学》第三章-工质的热力性质(分析“温度”文档)共131张PPT

《工程热力学》第三章-工质的热力性质(分析“温度”文档)共131张PPT

3.3.2 理想气体的比热容
一般工质:
cv
u T
v
cp
h T
p
理想气体: ducvdT dhcpdT
cv
du dT
cp
dh dT
c p d d T h d u d T p v d u d T R T c v R
所以 cp cv R
相应 cp,mcv,mRm
——迈耶公式
所以
各组分分容积Vi与总容积V的比值称为该组分的容积成分ri ,即
R——气体常数 ● Z-(pr,Tr)图
★ 湿蒸汽区——等温线 汽-液共存区的湿蒸汽实际上是饱和液体和干饱和蒸汽的混合物。
◆ 摩尔成分(摩尔分数)yi 从纯物质的热力学面可以看出,纯物质有:
RR kJ/kg K 以第二个式子为例,取基准温度mT0
热容见224、225页的附表4和5。
若已知 c p
、c t 1
0
p
t2 0
而 t t1,t2
,则用插入法
cp
t 0
cp
t1 0
cp
t2 0
cp
t2t1
t1 0

tt1
◆ 利用气体热力性质表中的h,u计算
若已知气体在各温度下的内能和焓值,即可方 便地算出△u、△h 。
uu(T 2)u(T 1) hh(T 2)h(T 1)
223页附表3常用气体的临界状态参数值372临界状态是各物质的共性每种物质的临界参数不同以临界点作为描述物质热力状态的一个基准点从而构造出无因次状态参数对比参数对比压力对比温度对比比体积以对比参数表示状态方程对比态方程凡是遵循同一对比态方程的任何物质如果其中有两个对应相等则另一个也对应相等这些物质也就处于相同的对应状态这就是对比态定律

工程热力学第三章课件

工程热力学第三章课件

四、焓( Enthalpy )及其物理意义
1 2 流动工质传递的总能量为:U mc mgz pV ( J ) 2 1 2 或 u c gz pv (J/kg) 2
焓的定义:h = u + pv H = U + pV
对理想气体:
( J/kg ) (J)
h = u + pv = u + RT=f(T)
表面张力功、膨胀功和轴功等。 1.膨胀功(容积功)
无论是开口系统还是闭口系统,都有膨胀功;
闭口系统膨胀功通过系统界面传递,开口系统的膨胀 功是技术功的一部分,可通过其它形式(如轴)传递。 系统容积变化是做膨胀功的必要条件,但容积变化不 一定有膨胀功的输出。
2.轴功
系统通过机械轴与外界传递的机械功称为轴功。
第三节 闭口系统能量方程
一、闭口系统能量方程表达式 Q = dU + W (J)
Q = U + W (J)
Q W
q = du + w (J/kg)
q = u + w (J/kg)
对闭口系统而言,系统储存 能中的宏观动能和宏观位能 均不发生变化,因此系统总 储存能的变化就等于系统内 能的变化。即 ΔE= ΔU=U2-U1
p
3 4
2
1
v
对整个循环:∑∆u=0 或
du 0
因而q12 + q23 + q34 + q41 = w12 + w23 + w34 + w41

q w
三、理想气体热力学能变化计算
对于定容过程, w = 0,于是能量方程为:
q v = duv=cvdTv
u cV ( )V T
1 2 1 2 Q (h2 c2 gz 2 )m2 (h1 c1 gz1 )m1 Ws dECV 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

e u 1 c2 gz 2
2.流动功(推动功)
A
为推动流体通过控制体界面而传
p
递的机械功,是维持流体正常流动 p V
所必须传递的能量。 dl
Wf = p A dl = pV wf= pv
流动功是一种特殊的功,大小取 决于控制体进出口界面的热力状 态,与热力过程无关。
2)焓及其物理意义
流动工质传递的能量:
ቤተ መጻሕፍቲ ባይዱ
wt
基本概念
气体热力性质
单组分:
理想气体 实际气体:水蒸气
热一定律
混合气体:
Q=△U+W,
Q= △H+Wt
理想混合气体 湿空气
热力过程
定T,定P,定V,定S,多变n 过程方程,QW
热二定律 S,Ex
热机
热力循环 η
制冷机
第三章 热力学第一定律
§3.1 热力学第一定律的实质 §3.2 热力学能与总能 §3.3 系统与外界传递的能量 §3.4 闭口系统能量方程 §3.5 开口系统能量方程 §3.6 开口系统稳态稳流能量方程 §3.7 稳态稳流能量方程的应用
e u 1 c2 gz 2
§3.3系统与外界传递的能量
传热
1.热量:在温差作用下与外界传 递的能量。
2.功量:除温差外的其它不平衡 势差所引起的系统与外界 之间传递的能量。
系 传功 外


传质
3.随物质流传递的能量——开口系统
包括储存能和推动功 两部分
1)随物质流传递的能量
1.储存能 工质储存的能量依附于工质,随工质的流动而传递
Q
dU
W
从下述两点说明功和热是相当量,而不是相等。 ✓ ① U发生同样变化,既可通过做功来完成,也可通过传递热
量来完成。两者之间只是在作用于系统这一效果上是等效的, 决不能等同起来。 ✓ ② 功和热之间的转换只有通过系统内能的变化才能完成。 脱离系统去谈功和热之间的直接转换是不恰当的。 ✓ ③尽管U没有变化,也不能得出热可变功或功可变热这样简 单的结论。只能:在转换中,外界供给系统热量,使系统的 内能增加,同时系统对外做功,消耗了从外界获得的能量。
闭口系统,没有物质交换,能量 Q
dU
W
传递只有热量和功两种形式。
系统总能变化=传入的热量-输出的功
E Q W
E U E k E p 动能与位能不发生变化
dU Q W
Q dU W
适用于任何工质、任何过程 q d u w
§3.4闭口系统能量方程
Q dU W
热一律的理论基础与实质
热能的本质:热能是组成物质的分子、原子等 微粒的杂乱运动的能量,微粒的 杂乱运动叫做热运动。
T1 Q1
W Q2
T2
既然热能(无序)和机械能(有序)都是物质的运动,那么热 能和机械能的相互转化实质上是物质由一种运动形态转变为另 一种运动形态,转化时总能量守恒则是理所当然的。
但是:功和热之间的转换只有通过系统内能的变化才能
e u 1 c2 gz pv u pv 1 c2 gz
2
2
定义为焓h h=u+pv H=U+pV
取决于物质的热 力状态
焓是流动工质传递的总能量中取决于热力状态的部分, 如果动能和位能可以忽略,则焓代表随流动工质传递的总能量
对外作功为正;吸热为正
§3.4闭口系统能量方程 Q W
( Q W ) ( Q W ) 0
1a 2
2 c1
对循环1-b-2-c-1,有:
( Q W ) ( Q W ) 0
1b 2
2 c1
( Q W ) ( Q W )
1a 2
1b 2
与路径无关
用dU表示
是某状态函数的全微分
热力学能的物理意义
dU = Q - W
完成,脱离系统去看热功转化是无意义的!
W
U
Q
热一律的理论基础与实质
W UQ
Q W
T1 Q1
W Q2
T2
热力学第一定律的实质:
热力学第一定律是能量守恒与转化定律在热现象上的应用。
功和热之间的转换只有通过系统内能的变化才能完成。 脱离系统去谈功和热之间的直接转换是不恰当的。
dU = Q - W
m
( h1
1 2
c12
gz1 )
m
Ws
Q
(
h2
h1 )
1 2
(
c
2 2
c12 )
g ( z2
z1
)
m
Ws
单位质量工质
q
dh
1 2
dc2
gdz
ws
4)技术功(Technical work)
Q
mh
1 2
mc2
mgz
Ws
q
h
1 2
c2
gz
ws
动能
位能
轴功
Wt
机械能
Q H Wt
q h wt
工程技术上可以直接利用
q du w
理想气体热力学能变化计算
定容过程 q v d u v cv d Tv
理想气体 u f T
du cv dT
2
du cv dT 或 u 1 cvdT
cv
u T
v
定值比热 Cv 平均比热
真实比热
混合气体
n
U Ui i 1
n
mu miui i 1
n
u giui i 1
恒定流量
流过系统任何断面的质量相等
m1 m2 m
恒定参数
进入的能量与离开的能量相等
dEcv 0
开口系统稳态稳流能量方程
dEcv
Q
( h1
1 2
c12
gz1 )
m1
(h2
1 2
c
2 2
gz2 )
m2
Ws
稳态稳流 m1 m 2 m
dEcv 0
Q
(h2
1 2
c
2 2
gz2 )
1)热力学能的导出(状参两个假设)
考察闭口系热力循环1-a-2-c-1, 循环过程中工质从外界吸收热量, 对外界输出功,完成循环后又回复 到初态,根据热力学第一定律:
Q W
Q W 0
循环积分为0
状态参数的 积分特征
假设:动能与位能 不发生变化
热力学能是状态参数
对循环1-a-2-c-1,有:
Q
W
dU 代表某微元过程中系统通过边界交换的微热量与 微功量两者之差值,也即系统内部能量的变化。
U 代表储存于系统内部的能量 内储存能(内能、热力学能)
• 内能总以变化量出现,内能零点人为定
3)系统的总能
系统的总能=内部储存能+外部储存能
E U
E U
Ek E p
1 mc2 mgz 2
比总能
作业
习题 3-2,3-6,3-7,3-8
注意事项:P55
§3.5开口系统能量方程
开口系统,系统与外界之间 有质量、热量和功的交换。
质量守恒定律 能量守恒定律
3)开口系统稳态稳流能量方程
稳态稳流工况:工质以恒定的流量连续不断地进出系统, 系统内部及界面上各点工质的状态参数和宏观运动参数 都保持一定,不随时间变化。
相关文档
最新文档