新人教版初中数学中考几何知识点大全

合集下载

全新 中考数学几何知识点全总结

全新 中考数学几何知识点全总结

初中几何公式:线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行初中几何公式:角9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补初中几何公式:三角形15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理有两边和它们的夹角对应相等的两个三角形全等23、角边角公理有两角和它们的夹边对应相等的两个三角形全等24、推论有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理有三边对应相等的两个三角形全等26、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合初中几何公式:等腰三角形30、等腰三角形的性质定理等腰三角形的两个底角相等31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式:四边形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形初中几何公式:矩形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、、矩形判定定理2 对角线相等的平行四边形是矩形初中几何公式:菱形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形初中几何公式:正方形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式:等腰梯形74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形初中几何公式:等分78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 、(1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例初中几何:相似三角形90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r ②直线L和⊙O相切d=r ③直线L和⊙O相离d﹥r 122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r ②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长142、正三角形面积√3a/4 a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144、弧长计算公式:L=nπR/180145、扇形面积公式:S扇形=nπR/360=LR/2146、内公切线长= d-(R-r) 外公切线长= d-(R+r)。

中考数学几何题总结知识点

中考数学几何题总结知识点

中考数学几何题总结知识点在中考数学中,几何题是考查学生对几何知识的掌握和运用能力的重要部分。

几何题的考查内容涉及到诸多知识点和技巧,对于学生来说是一个挑战,但也是一个机会。

下面将对中考数学中常见的几何题知识点进行总结,希望对同学们的复习有所帮助。

常见几何题型在中考数学中,几何题型可以分为以下几类:直线与角、三角形、四边形、平行线与相交线、折线与封闭线段以及空间几何等。

这些题型分别涉及到相应的知识点和技巧。

直线与角直线的分类平行线和垂直线是直线中的两种重要分类,平行线是指在同一个平面内永远不相交的两条直线,而垂直线是指两条直线的夹角为90度。

学生需要对平行线和垂直线的特点有清晰的认识,包括平行线的性质、平行线与垂直线之间的关系等。

角的性质角是几何中的一个重要概念,对角的性质的掌握是解题的基础。

对于同学们来说,需要熟练掌握各种夹角之间的关系,包括对顶角、邻补角、余补角等的理解和应用。

三角形三角形的分类在三角形中,根据边的长短和角的大小,可以分为等腰三角形、等边三角形、直角三角形、锐角三角形和钝角三角形等。

同学们需要对不同类型的三角形有清晰的认识,包括它们的性质以及相互之间的关系。

三角形的面积计算三角形的面积是几何题中常见的一种题型,同学们需要掌握计算三角形面积的方法,例如通过底和高、两边和夹角等不同的方法来计算三角形的面积。

四边形四边形的分类四边形是由四条边围成的几何图形,根据其边的性质和角的性质可以分为平行四边形、矩形、正方形、菱形、梯形等。

同学们需要对这些四边形的特点有清晰的认识,包括它们的性质和特殊的关系。

四边形的面积同样地,计算四边形的面积也是几何题中常见的一种题型,同学们需要根据四边形的类型来选择合适的计算方法,例如通过底和高、对角线和夹角等不同的方法来计算四边形的面积。

平行线与相交线平行线与交线在解决与平行线和垂直线有关的问题时,同学们需要掌握利用平行线和垂直线的性质来解题,例如通过平行线的性质来求解各角之间的关系,通过垂直线的性质来求解各边之间的关系等。

数学中考数学平面与空间几何知识点总结

数学中考数学平面与空间几何知识点总结

数学中考数学平面与空间几何知识点总结数学中的几何部分主要包括平面几何和空间几何两个方面。

平面几何是研究平面上的图形性质和几何变换的学科,而空间几何则是研究三维空间中的图形性质和几何变换的学科。

在中考数学中,平面与空间几何的知识点占据了相当重要的位置,下面就对这部分内容进行总结。

一、平面几何知识点总结1. 平面几何基本概念平面是没有厚度的二维图形,平面上的点无限多,并且任意两点可以确定一条直线,三点不共线可以确定一个面积不为零的三角形。

平行线是在同一平面上不相交的直线,垂直线则是两条相交直线互相垂直。

2. 直线和角的性质直线的性质包括相交线、垂线、平分线和角平分线等,角的性质包括相对角、邻补角、余角等。

3. 三角形的性质三角形的性质包括内角和为180度、中线、角平分线、高、中位线等。

4. 四边形的性质四边形的性质包括平行四边形、矩形、菱形、正方形等。

5. 圆和圆的性质圆是由平面上的所有点到圆心距离都相等的图形,圆的性质包括切线、弦、弧等。

二、空间几何知识点总结1. 空间几何基本概念空间几何研究的是具有三个维度的空间图形,其中的基本概念包括点、直线、面、体。

2. 空间图形的投影空间图形在二维平面上的投影分为平行投影和中心投影。

平行投影是指空间图形在平面上的投影线平行,中心投影是指空间图形通过一个点在平面上的投影。

3. 空间图形的旋转、平移和对称空间图形的旋转是指围绕一个轴线进行的图形变换,平移是指将图形沿着某个方向进行移动,对称是指相对于某个中心对图形进行镜像翻转。

4. 空间图形的体积和表面积空间图形的体积是指图形所占据的三维空间的大小,表面积是指图形的外表面积。

5. 空间图形的相交关系和平行关系空间图形的相交关系主要包括共面和共轴等,平行关系则是指不相交但平行的图形。

综上所述,平面与空间几何是数学中重要的一部分。

平面几何主要研究平面上的图形性质和几何变换,而空间几何则研究三维空间中的图形性质和几何变换。

初中数学必背几何知识点总结归纳

初中数学必背几何知识点总结归纳

初中数学必背几何知识点总结归纳对每个初三学生来说,他们都希望自己能够在中考中取得好成绩,从而考上好高中,想要在中考中取得好成绩,自然是要认真学习。

下面是小编为大家整理的关于初中数学必背几何知识点,希望对您有所帮助!初中数学几何的知识点三角形知识点、概念总结1. 三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2. 三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3. 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4. 中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

5. 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6. 高线、中线、角平分线的意义和做法7. 三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

8. 三角形内角和定理:三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角和推论3 三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半9. 三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

10. 三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。

四边形(含多边形)知识点、概念总结一、平行四边形的定义、性质及判定1. 两组对边平行的四边形是平行四边形。

2. 性质:(1)平行四边形的对边相等且平行(2)平行四边形的对角相等,邻角互补(3)平行四边形的对角线互相平分3. 判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形4. 对称性:平行四边形是中心对称图形二、矩形的定义、性质及判定1. 定义:有一个角是直角的平行四边形叫做矩形2. 性质:矩形的四个角都是直角,矩形的对角线相等3. 判定:(1)有一个角是直角的平行四边形叫做矩形(2)有三个角是直角的四边形是矩形(3)两条对角线相等的平行四边形是矩形4. 对称性:矩形是轴对称图形也是中心对称图形。

新人教版初中数学[中考总复习:四边形综合复习--知识点整理及重点题型梳理](基础)

新人教版初中数学[中考总复习:四边形综合复习--知识点整理及重点题型梳理](基础)

新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:四边形综合复习—知识讲解(基础)【考纲要求】1.探索并了解多边形的内角和与外角和公式,了解正多边形的概念.2.掌握平行四边形、矩形、菱形、正方形、梯形、直角梯形、等腰梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性.3.探索并掌握平行四边形的有关性质和四边形是平行四边形的条件.4.探索并掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件.5.探索并了解等腰梯形的有关性质和四边形是等腰梯形的条件.6.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.【知识网络】【考点梳理】考点一、四边形的相关概念1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°;(3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.3.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.4.四边形的性质:(1)定理:四边形的内角和是360°; (2)推论:四边形的外角和是360°.考点二、特殊的四边形1.平行四边形及特殊的平行四边形的性质2. 平行四边形及特殊的平行四边形的判定【要点诠释】面积公式:S 菱形 =21ab=ch (a 、b 为菱形的对角线,c 为菱形的边长,h 为c 边上的高). S 平行四边形 =ah(a 为平行四边形的边,h 为a 上的高).考点三、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底.(2)不平行的两边叫做梯形的腰.(3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等; (2)等腰梯形同一底上的两个底角相等. (3)等腰梯形的对角线相等.5.等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形;(3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式: S=(a+b)h(a、b是梯形的上、下底,h是梯形的高).考点四、平面图形1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件:(1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.(2)n种正多边形组合起来镶嵌成一个平面的条件:①n个正多边形中的一个内角的和的倍数是360°;②n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍.【典型例题】类型一、多边形及其镶嵌1. 一个同学在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现少了一个内角.少了的这个内角是_________度,他求的是_________边形的内角和.【思路点拨】一个多边形的内角和能被180°整除,本题内角和1125°除以180°后有余数,则少的内角应和这个余数互补.【答案】135;九.【解析】设这个多边形边数为n,少算的内角度数为x,由题意得:(n-2)·180°=1125°+ x°,∴n=,∵n为整数,0°<x<180°,∴符合条件的x只有135°,解得n=9.【总结升华】多边形根据内角或外角求边数,或是根据边数求内角或对角线条数等题是重点,只需要记住各公式或之间的联系,并准确计算.举一反三:【变式】(2015•眉山)一个多边形的外角和是内角和的,这个多边形的边数为()A.5 B.6 C.7 D.8【答案】C.【解析】∵一个多边形的外角和是内角和的,且外角和为360°,∴这个多边形的内角和为900°,即(n﹣2)•180°=900°,解得:n=7,则这个多边形的边数是7,故选C.2.(2015•蓬溪县校级模拟)下列每组多边形均有若干块中,其中不能铺满地面(镶嵌)的一组是()A.正三角形和正方形 B.正方形和正六边形C.正三角形和正六边形D.正五边形和正十边形【思路点拨】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【答案】B.【解析】A、正三角形的每个内角是60°,正方形的每个内角是90°,3×60°+2×90°=360°,故能铺满,不合题意;B、正方形和正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满,符合题意;C、正三角形和正六边形内角分别为60°、120°,2×60°+2×120°=360°,故能铺满,不合题意;D、正五边形和正十边形内角分别为108°、144°,2×108°+1×144°=360°,故能铺满,不合题意.故选:B.【总结升华】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.类型二、特殊的四边形【四边形综合复习例1】3.如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)判断四边形EHFG的形状;(2)在什么情况下,四边形EHFG为菱形?【思路点拨】(1)通过证明两组对边分别平行,可得四边形EHFG是平行四边形;(2)当平行四边形ABCD是矩形时,通过证明有一组邻边相等,可得平行四边形EHFG是菱形;【答案与解析】(1)∵四边形ABCD是平行四边形,∴AE∥CF,AB=CD,∵E是AB中点,F是CD中点,∴AE=CF,∴四边形AECF是平行四边形,∴AF∥CE.同理可得DE∥BF,∴四边形FGEH是平行四边形;(2)当平行四边形ABCD是矩形时,平行四边形EHFG是菱形.∵四边形ABCD是矩形∴∠ABC=∠DCB=90°,∵E是AB中点,F是CD中点,∴BE=CF,在△EBC与△FCB中,∵BE CFABC DCB BC BC=⎧⎪∠=∠⎨⎪=⎩,∴△EBC≌△FCB,∴CE=BF,∠ECB=∠FBC,BH=CH,EH=FH,平行四边形EHFG是菱形.【总结升华】本题属于综合题,考查了平行四边形的判定与性质,菱形的判定和正方形的判定,注意找准条件,有一定的难度.举一反三:【变式】已知:如图所示,四边形ABCD中,∠C=90°,∠ABD=∠CBD,AB=CB,P是BD上一点,PE ⊥BC,PF⊥CD,垂足分别为E、F,求证:PA=EF.【答案】连结PC.因为PE⊥BC,PF⊥DC,AB CDEFP所以∠PEC=∠PFC=∠ECF=90°,所以四边形PECF是矩形,所以PC=EF.在△ABP和△CBP中,AB=CB,∠ABP=∠CBP,BP=BP,所以△ABP≌△CBP,所以AP=CP.所以AP=EF.4.(2012•威海)(1)如图①,▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC 于点E,F.求证:AE=CF.(2)如图②,将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.【思路点拨】(1)由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,又由平行线的性质,可得∠1=∠2,继而利用ASA,即可证得△AOE≌△COF,则可证得AE=CF.(2)根据平行四边形的性质与折叠性质,易得A 1E=CF ,∠A 1=∠A=∠C ,∠B 1=∠B=∠D ,继而可证得△A 1IE ≌△CGF ,即可证得EI=FG .【答案与解析】(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,OA=OC ,∴∠1=∠2,在△AOE 和△COF 中,1234OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ),∴AE=CF ;(2)∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D ,由(1)得AE=CF ,由折叠的性质可得:AE=A 1E ,∠A 1=∠A ,∠B 1=∠B ,∴A 1E=CF,∠A 1=∠A=∠C ,∠B 1=∠B=∠D ,又∵∠1=∠2,∴∠3=∠4,∵∠5=∠3,∠4=∠6,∴∠5=∠6,在△A 1IE 与△CGF 中,1156A C A E CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△A 1IE ≌△CGF (AAS ),∴EI=FG .【总结升华】考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.【四边形综合复习 例4】5.如图,在△AOB 中,OA=OB=8,∠AOB=90︒,矩形CDEF 的顶点C 、D 、F 分别在边AO 、OB 、AB 上.(1)若C 、D 恰好是边AO ,OB 的中点,求矩形CDEF 的面积;(2)若tan ∠CDO=34,求矩形CDEF 面积的最大值.BOC【思路点拨】(1)因为当C、D是边AO,OB的中点时,点E、F都在边AB上,且CF⊥AB,所以可求出CD的值,进而求出CF的值,矩形CDEF的面积可求出;(2)设CD=x,CF=y.过F作FH⊥AO于H.在 Rt△COD中,用含x和y的代数式分别表示出CO、AH的长,进而表示出矩形CDEF的面积,再配方可求出面积的最大值.【答案与解析】(1)如图,当C、D是边AO,OB的中点时,点E、F都在边AB上,且CF⊥AB.∵OA=OB=8,∴OC=AC=OD=4.在 Rt△ACF中,(2)设CD=x,CF=y.过F作FH⊥AO于H.在 Rt△COD中,6 .ABC △是等边三角形,点D 是射线BC 上的一个动点(点D 不与点B C 、重合),ADE △ 是以AD 为边的等边三角形,过点E 作BC 的平行线,分别交射线AB AC 、于点F G 、,连接BE .(1)如图(a )所示,当点D 在线段BC 上时.①求证:AEB ADC △≌△;②探究四边形BCGE 是怎样特殊的四边形?并说明理由;(2)如图(b )所示,当点D 在BC 的延长线上时,直接写出(1)中的两个结论是否成立?(3)在(2)的情况下,当点D 运动到什么位置时,四边形BCGE 是菱形?并说明理由.【思路点拨】此题要熟练多方面的知识,特别是全等三角形和平行四边形和菱形的判定.【答案与解析】(1)①∵△ABC 和△ADE 都是等边三角形,∴AE=AD ,AB=AC ,∠EAD=∠BAC=60°.又∵∠EAB=∠EAD-∠BAD ,∠DAC=∠BAC-∠BAD ,∴∠EAB=∠DAC ,∴△AEB ≌△ADC .②方法一:由①得△AEB ≌△ADC ,∴∠ABE=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABE=∠BAC ,∴EB ∥GC .又∵EG ∥BC ,∴四边形BCGE 是平行四边形.方法二:证出△AEG ≌△ADB ,得EG=AB=BC .∵EG ∥BC ,∴四边形BCGE 是平行四边形.(2)①②都成立.(3)当CD=CB (∠CAD=30°或∠BAD=90°或∠ADC=30°)时,四边形BCGE 是菱形.理由:方法一:由①得△AEB ≌△ADC ,∴BE=CD又∵CD=CB ,∴BE=CB .由②得四边形BCGE 是平行四边形,∴四边形BCGE 是菱形.方法二:由①得△AEB ≌△ADC ,∴BE=CD .又∵四边形BCGE 是菱形,∴BE=CB (11分)∴CD=CB .方法三:∵四边形BCGE 是平行四边形,∴BE ∥CG ,EG ∥BC ,∴∠FBE=∠BAC=60°,∠F=∠ABC=60°∴∠F=∠FBE=60°,∴△BEF 是等边三角形.又∵AB=BC ,四边形BCGE 是菱形,∴AB=BE=BF ,∴AE ⊥FG ∴∠EAG=30°,∵∠EAD=60°,∴∠CAD=30度.【总结升华】本题考查三角形的全等以及菱形的判定.举一反三:【变式】如图,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点,试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【答案】(1)如图1∵AE ⊥EF ,∴∠2+∠3=90°,∵四边形ABCD 为正方形,∴∠B=∠C=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△ABE ∽△ECF ,∴AB :CE=BE :CF ,∴EC :CF=AB :BE=5:2(2)如图(二),在AB 上取BM=BE ,连接EM ,∵ABCD 为正方形,∴AB=BC ,∵BE=BM ,∴AM=EC ,∵∠1=∠2,∠AME=∠ECP=135°,A DCB E BC ED A F PF∴△AME ≌△ECP ,∴AE=EP ;(3)存在.顺次连接DMEP .如图2 在AB 取点M ,使AM=BE , ∵AE ⊥EF ,∴∠2+∠3=90°,∵四边形ABCD 为正方形, ∴∠B=∠BCD=90°, ∴∠1+∠3=90°,∴∠1=∠2,∵∠DAM=∠ABE=90°,DA=AB , AD ABDAM ABE AM BE=⎧⎪∠=∠⎨⎪=⎩∴△DAM ≌△ABE (SAS ), ∴DM=AE ,∵AE=EP ,∴DM=PE ,∵∠1=∠5,∠1+∠4=90°, ∴∠4+∠5=90°,∴DM ⊥AE ,∴DM ∥PE∴四边形DMEP 是平行四边形.。

中考几何知识点总结

中考几何知识点总结

中考几何知识点总结几何是数学的一个重要分支,它研究空间形状、大小和位置的关系,是人们日常生活和实际工作中都会接触到的数学分支。

而中考几何知识点是应用数学的重要组成部分,其中包括平面图形的性质、空间图形的性质、相似三角形的性质、圆的性质、三角形的性质等等。

下面我们就来总结一下中考几何知识点的要点。

一、平面图形的性质1、平行四边形和矩形平行四边形是指四边形的对边是平行的四边形,平行四边形的特点是对边相等、对角相等、相邻边互补。

矩形是指四边形的对边是平行且对角相等的四边形,矩形的特点是对边相等、对角相等、相邻边垂直。

2、菱形和正方形菱形是指四边形的对边相等的四边形,菱形的特点是对边相等、对角相等、对角互补。

正方形是指四边形的对边相等且对角相等的四边形,正方形的特点是对边相等、对角相等、对角互补、对边垂直。

3、三角形的性质三角形是平面图形中的基本图形之一,三角形的性质有很多,例如三角形的内角和为180°,三角形的外角和为360°,等腰三角形的两条边相等,等边三角形的三条边相等等等。

二、空间图形的性质1、立体图形的性质立体图形是指具有三维形状的图形,如长方体、圆柱体、球体等,立体图形的性质包括表面积、体积等概念。

2、直角棱柱和直角锥直角棱柱是指底面为矩形且母线垂直于底面的棱柱,直角锥是指底面为矩形且母线垂直于底面的锥体,直角棱柱和直角锥的特点是底面积相等,高相等。

3、棱台和棱锥棱台是指底面为多边形且母线与底面平行的棱台,棱锥是指底面为多边形且母线与底面平行的锥体,棱台和棱锥的特点是底面积相等、母线平行。

三、相似三角形的性质相似三角形是指三角形的对应角相等且对应边成比例的三角形,相似三角形的性质包括对应角相等、对应边成比例、相似三角形的高、中线、角平分线比例等。

四、圆的性质1、圆的相关概念圆是平面图形中一个特殊的图形,它是平面内所有到一个固定点距离相等的点的集合,圆的性质包括圆心、半径、直径、圆周、弧、圆心角等概念。

九年级中考几何知识点汇总

九年级中考几何知识点汇总

九年级中考几何知识点汇总九年级数学学科是初中数学学科的最后一个学习阶段,也是中考备考的重要阶段。

在九年级数学中,几何是一个非常重要的知识点,它涵盖了各种几何形状的性质、运算和应用。

下面将对九年级几何知识点进行汇总。

一、平面几何在平面几何中,我们首先要了解点、线、面的基本概念。

点是几何中最基本的元素,没有大小和形状。

线是由无数个点无限延伸形成,它没有宽度。

面是由无数个相互平行的线构成,它有长度和宽度。

1. 直线和射线直线是由无数个点无限延伸而成,它没有起点和终点。

射线是由一个起点出发,在一个方向上无限延伸。

2. 角和角的分类角是由两条射线的公共端点形成,分为锐角、直角、钝角和平角四种类型。

锐角的度数小于90°,直角等于90°,钝角的度数大于90°,而平角等于180°。

3. 三角形和四边形三角形是由三条线段构成闭合图形,其内角和为180°。

四边形是由四条线段构成闭合图形,其内角和为360°。

常见的三角形有等边三角形、等腰三角形和直角三角形,而四边形有矩形、正方形和菱形等。

4. 圆和圆的性质圆是平面上一组与一个点的距离相同的点的集合。

圆的内部称为圆内部,圆的外部称为圆外部。

圆与直线的关系有相切、相交和相离三种情况。

5. 相似与全等两个图形相似意味着它们的形状相同,但大小不同;而全等表示两个图形既有相同的形状,又有相同的大小。

相似和全等在几何中都有重要的应用。

相似可以帮助我们计算无法直接观测到的长度或角度,而全等可以帮助我们证明两个图形是完全相同的。

二、空间几何空间几何是在平面几何的基础上发展起来的,它涉及了立体图形的性质、体积运算和投影等内容。

1. 立体图形的性质立体图形是由平面图形在空间中延伸而成。

常见的立体图形包括三棱柱、四棱锥、棱台、球体等。

每个立体图形都有它们自己的面、棱和顶点的数量,而这些性质可以用于计算它们的体积和表面积。

2. 体积和表面积的计算体积是立体图形所占据的空间大小,而表面积是立体图形外部的覆盖面积。

最新初中数学几何知识点总结(7篇)

最新初中数学几何知识点总结(7篇)

最新初中数学几何知识点总结(7篇)最新初中数学几何知识点总结(7篇)学会倾听和理解他人的观点和需要,并与他们建立积极的互动关系。

学习如何制定有效的沟通策略和技能,以更好的传达信息和支持成功。

下面就让小编给大家带来最新初中数学几何知识点总结,希望大家喜欢!最新初中数学几何知识点总结篇1诱导公式的本质所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。

常用的诱导公式公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k)=sin kzcos(2k)=cos kztan(2k)=tan kzcot(2k)=cot kz公式二:设为任意角,的三角函数值与的三角函数值之间的关系:sin()=-sincos()=-costan()=tancot()=cot公式三:任意角与 -的三角函数值之间的关系:sin(-)=-sincos(-)=costan(-)=-tancot(-)=-cot公式四:利用公式二和公式三可以得到与的三角函数值之间的关系:sin()=sincos()=-costan()=-tancot()=-cot最新初中数学几何知识点总结篇21、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。

(2)正数和负数表示相反意义的量。

2、有理数的概念及分类3、有关数轴(1)数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

(2)相反数:符号不同、绝对值相等的两个数互为相反数。

若a、b互为相反数,则a+b=0;相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

(3)绝对值最小的数是0;绝对值是本身的数是非负数。

4、任何数的绝对值是非负数。

最小的正整数是1,最大的负整数是-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. ... .. .

. .

.z

初中中考数学几何知识点大全 直线:没有端点,没有长度 射线:一个端点,另一端无限延长,没有长度 线段:两个端点,有长度 一、图形的认知 1、余角 ;补角: 邻补角: 二、平行线知识点 1、对顶角性质:对顶角相等。注意:对顶角的判断 2、垂线、垂足。过一点有 条直线与已知直线垂直 3、垂线段;垂线段长度==点到直线的距离 4、过直线外一点只有一条直线与已知直线平行 5、直线的两种关系:平行与相交(垂直是相交的一种特殊情况) 6、如果a∥b,a∥c,则b∥c 7、同位角、错角、同旁角的定义。注意从文字角度去解读。 8、两直线平行====同位角相等、错角相等、同旁角互补 三、命题、定理 1、真命题;假命题。 4、定理:经过推理证实的,这样得到的真命题叫做定理。 四、平移 1、平移性质:平移之后的图形与原图形相比,对应边相等,对应角相等 五、平面直角坐标系知识点 1、平面直角坐标系: 2、象限:坐标轴上的点不属于任何象限 横坐标上的点坐标:(x,0) 纵坐标上的点坐标:(0,y) 3、距离问题:点(x,y)距x轴的距离为y的绝对值,距y轴的距离为x的绝对值 坐标轴上两点间距离:点A(x1,0)点B(x2,0),则AB距离为 x1-x2的绝对值 点A(0,y1)点B(0,y2),则AB距离为 y1-y2的绝对值 4、角平分线: x=y x+y=0 5、若直线l与x轴平行,则直线l上的点纵坐标值相等 若直线l与y轴平行,则直线l上的点横坐标值相等 6、对称问题: 7、距离问题(选讲):坐标系上点(x,y)距原点距离为 坐标系中任意两点(x1,y1),(x2,y2)之间距离为 8、中点坐标(选讲):点A(x1,0)点B(x2,0),则AB中点坐标为 . ... .. .

. .

.z

六、与三角形有关的线段 1、三角形分类:不等边;等腰;等边三角形 2、三角形两边之和大于第三边,两边之差小于第三边。依据:两点之间,线段最短 3、三角形的高:4三角形的中线: 三角形的中线将三角形分为面积相等的两部分 注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小 4、三角形的角平分线: 七、与三角形有关的角 1、三角形角和定理:三角形三个角的和等于180度。 由此可推出:三角形最多只有一个直角或者钝角,最少有两个锐角 2、三角形的外角: 3、三角形的一个外角等于与它不相邻的两个角的和 4、三角形的外角和为360度 5、等腰三角形两个底角相等 6、A+B=C,或者A-B=C等相似形式,均可推出三角形为直角△ 7、A+BC等相似形式,均可推出三角形为钝角△ 八、多边形及其角和 1角:外角:对角线:、正多边形:多边形的角和(n-2)*180 2、多边形的外角和:360度 3、从n边形的一个顶点出发,可以引n-3条对角线,它们将n边形分成n-2个△ 4、从n边形的一个顶点出发,可以引n-3条对角线,n边形共有对角线n*(n-3)/2 九、镶嵌 1、平面图形能作“平面镶嵌”的必备条件,是图形拼合后同一个顶点的若干个角的和恰好等于360°。用同一种正多边形镶嵌,只要正多边形角的度数整除360°,这种正多边形就能作平面镶嵌。 2、两种正多边形镶嵌,若第一个正多边形的角为M,第二种正多边形的角为N,则 xM+yN=360 必须有正整数解 通常对方程两边同时除以一个M、N、360的最大公约数 再通过列举法去判断此方程是否有正整数解。如有,则可以镶嵌。 同时,可以根据正整数解的对数,判定有几种镶嵌方案。 十、全等三角形知识点 1全等三角形:能够完全重合的两个三角形叫作全等三角形。 2普通全等三角形的判定方法:4种判定 1)三边对应相等的两个三角形全等(边边边、SSS) . ... .. .

. .

.z

2)两边和它们的夹角对应相等的两个三角形全等(边角边、SAS) 3)两角和它们的平边对应相等的两个三角形全等(角边角、ASA) 4)两个角和其中一个角的对边对应相等的两个三角形全等(角角边、AAS) 3、直角三角形全等的特殊判定——斜边直角边、HL 4、角的平分线性质及判定 1)性质:角的平分线上的点到角的两边距离相等 2)判定:角的部到角的两边距离相等的点在角的平分线上。 十一、轴对称 1、轴对称图形。对称轴,对称点。垂直平分线 两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线的垂直平分线 类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线 2、线段的垂直平分线性质及判定 1)性质:线段的垂直平分线上的点到线段两端距离相等 2)判定:到线段两端距离相等的点在线段的垂直平分线上 3、等腰△的性质:1)两个底角相等2)三线合一 4、等边△的性质:三个角都相等,并且每一个角都等于60度 5、等边△的判定:1)三个角都相等的三角形是等边△ 2)有一个角是60度的等腰△是等边△ 6、在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半 十二、勾股定理 勾股定理;原命题;逆命题。 十三、四边形 1、平行四边形:有两组对边分别平行的四边形叫做平行四边形 2、平行四边形性质:1)对边相等 2)对角相等 3)对角线互相平分 3、平行四边形的判定:1)两组对边分别相等的四边形是平行四边形 2)对角线互相平分的四边形是平行四边形 3)一组对边平行且相等的四边形是平行四边形 4)利用平行四边形的定义 4、中位线:三角形的中位线平行于三角形的第三边,且等于第三边的一半 5、平行线间的距离:两平行线间最短的线段(垂直) 6、矩形:有一个角是直角的平行四边形叫做矩形 7、矩形的性质:1)矩形的四个角都是直角 2)矩形的对角线相等 8、直角三角形斜边上的中线等于斜边的一半 . ... .. .

. .

.z

9、矩形的判定:1)对角线相等的平行四边形是矩形 2)有三个角是直角的四边形是矩形 3)利用矩形的定义 10、菱形:有一邻边相等的平等四边形叫做菱形 11、菱形的性质:1)菱形的四条边都相等2)菱形的两条对角线互相垂直 12、菱形的判定:1)对角线互相垂直的平行四边形是菱形 2)四边相等的四边形是菱形 3)利用菱形的定义 13、正方形:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形 它具有矩形的性质,也具备菱形的性质 14、梯形:一组对边平行,另一组对边不平行的四边形叫做梯形 两腰相等的梯形叫做等腰梯形 有一个角是直角的梯形叫做直角梯形 15、等腰梯形的性质:1)等腰梯形同一底边上的两个角相等 2)等腰梯形的两条对角线相等 16、等腰梯形的判定:1)同一个底上的两个角相等的梯形是等腰梯形 2)利用等腰梯形的定义 17、重心:平行四边形的重心是它的两条对角线的交点 三角形的三条中线交于一点,这一点就是三角形的重心 18、各类图形面积计算 1)三角形:底*高/2 2)平行四边形:底*高 3)矩形(正方形):长*宽 4)菱形(正方形):底*高,对角线的乘积/2;5)梯形:(上底+下底)*高/2 十四、旋转 1、把一个图形绕某一点O转动一个角度的图形变换叫做旋转。 点O叫做旋转中心,转动的角叫做旋转角。 如果图形上的P经过旋转变为点P’,那么这两个点叫做这个旋转的对应点 2、把一个图形绕着某一个点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。 十五、圆知识点汇总 1、圆面积公式:圆周长公式: 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧 进一步结论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 特别注意:这两个定理,哪个定律规定弦不是直径。注意选择题陷阱。 . ... .. .

. .

.z

2、弧、弦、圆心角 弧:直径;圆心角:圆是轴对称图形,圆是中心对称图形,圆心O是它的对称中心 三个相等: 在同圆或等圆中,相等的圆心角==弧相等==所对的弦也相等。 3、圆周角4、圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半 推论:半圆(或直径)所对的圆周角是直角,90度的圆周角所对应的弦是直径。 推论:圆的接四边形对角之和为180度 5、不在同一直线上的三个点确定一个圆 经过三角形的三个顶点可以做一个圆,这个圆叫作三角形的外接圆 外接圆的圆心是三角形三条边垂直平分线的交点,叫作这个三角形的外心 特殊的:直角△的外心在斜边上的中点。 一般求△外心的题往往是直角△或者等腰△,等腰△请结合垂径定理和勾股定理 6、直线和圆的位置关系 7、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线 8、切线长定理 经过圆外一点作过圆的切线,这点和切点之间的线段的长,叫作这点到圆的切线长 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。这个定理叫作切线长定理。 9、三角形的的心 与三角形各边都相切的圆叫做三角形的切圆。 切圆的圆心是三角形三条角一部分线的交点,叫作三角形的心。 注意心外心的区别和应用。三角形的心必然在△部,外心则有可能在外部 切圆半径的计算方法:三角形面积=切圆半径*三角形周长/2

10、点和圆的位置关系 11、直线和圆的位置关系 12、圆和圆的位置关系 13、相切的两个圆,不论切外切,显然,切点和两个圆心应该在同一直线上。 14、扇形的弧长及面积 1)扇形: 2)扇形弧长(周长):3)扇形面积4)弧长及面积的关系

15、圆锥的侧面积和全面积 1)圆锥是由一个底面和一个侧面围成的

相关文档
最新文档