偏振模色散
PMD原理和测试方法

偏振模色散的原理和测试方法分析摘要偏振模色散将引起高速光脉冲畸变制约传输距离是40Gb/s高速光纤通信的主要技术难点之一本文研究了偏振模色散的产生原理对传输光脉冲的影响等问题分析了偏振模色散的三种主要测试方法的测量配置和各自优缺点讨论了每种方法的最佳应用场合一引言光纤的色散引起传输信号的畸变使通信质量下降从而限制了通信容量和通信距离在光纤的损耗已大为降低的今天色散对高速光纤通信的影响就显得更为突出40Gb/s系统和10Gb/s系统相比在光纤传输上的色散效应对系统性能的影响有新的差异特别是偏振模色散Polarization Mode Dispersion,简称PMD的影响难以克服所以在40Gb/s系统技术中必须考虑和研究光纤的色散PMD和非线性的影响等同时由于偏振模色散的测试是比较复杂的问题如何根据其特点比较迅速和准确地测出偏振模色散值从而进行色散补偿将是本文讨论的重点本文作者主要从事高速光传输收发模块的研究开发于2002年11月参加了在上海举行的Tektronix 2002亚太区大型巡回讲座和研讨会针对偏振模色散的最新测试技术这一问题作者与Tektronix公司的偏振模色散测试技术人员工程师作了沟通和交流并在本文中作了比较详细的分析和探讨二色散的原理和分类色散是光纤的一个重要参数降低光纤的色散对增加通信容量延长通信距离发展高速40Gb/s光纤通信和其它新型光纤通信技术都是至关重要的光纤的色散主要由两方面引起一是光源发出的并不是单色光二是调制信号有一定的带宽实际光源发出的光不是单色的而是有一定的波长范围这个范围就是光源的线宽在对光源进行调制时可以认为信号是按照同样的方式对光源谱线中的每一分量进行调制的一般调制带宽比光源窄得多因而可以认为光源的线宽就是已调信号带宽但对高速和线宽极窄的光源情况不一样进入光纤中去的是一个调制了的光谱如果是单模光纤它将激发出基模如果是多模光纤则激发出大量模式由此可以看出光纤中的信号能量是由不同的频率成分和模式成分构成的它们有不同的传播速度从而引起比较复杂的色散现象光纤的色散可以分为下列三类模间色散在多模光纤中即使是同一波长不同模式的光由于传播速度的不同而引起的色散称为模式色散色度色散是指光源光谱中不同波长在光纤中的群延时差所引起的光脉冲展宽现象偏振模色散单模光纤中实际存在偏振方向相互正交的两个基模当光纤存在双折射时这两个模式的传输速度不同而引起的色散称为偏振模色散图1是这三种色散的示意图图1 光纤色散示意图三偏振模色散的原理和特点(1) 偏振模色散的概念双折射与偏振是单模光纤特有的问题单模光纤实际上传输的是两个正交的基模它们的电场各沿x,y方向偏振在理想的光纤中这两个模式有着相同的相位常数它们是互相简并的但实际上光纤总有某种程度的不完善如光纤纤芯的椭圆变形光纤内部的残余应力等将使得两个模式之间的简并被破坏两个模式的相位常数不相等这种现象称为模式双折射由于存在双折射将引起一系列复杂的效应例如由于双折射两模式的群速度不同因而引起偏振色散由于双折射偏振态沿光纤轴向变化外界条件的变化将引起光纤输出偏振态的不稳定这对某些应用场合影响严重光纤的固有偏振模色散是由非圆形纤芯引起构成双折射现象导致的色散而对双折射引起的偏振模色散是由外部因素如机械压力热压力等导致的色散图2是引起偏振模色散的光纤示意图图2 光纤示意图偏振模色散不能避免只能最小化由于光纤存在PMD已经给10Gb/s链路带来了严重限制而在40Gb/s速率上任何器件也有少量的PMD2偏振模色散对于光脉冲的影响偏振模色散具有随机性这与具有确定性的波长色散不同其值与光纤制作工艺材料传输线路长度和应用环境等因素密切相关由于受工艺水平的制约传输链路上使用的每一段光纤结构上存在差异即使同一段光纤也必然存在纵向不均匀性因而PMD 的值也会因光纤而异从工程安装和链路环境看影响因素不仅多而且具有不定性比如环境温度夏冬温差可能达3080昼夜温差也有可能达1030PMD 的大小由这些因素的综合影响决定也具有不确定性是一个随机变量通常所说的PMD 是多少指的是统计平均值在光纤链路上两个正交的偏振模产生的时延差遵守一定的概率密度分布PMD 的值与光纤长度的平方根成反比例的变化因而其单位记作ps km 1/2PMD 和色度色散对系统性能具有相同的影响即引起脉冲展宽从而限制传输速率如图3所示然而PMD 比波长色散小得多对低速率光传输的影响可忽略不计甚至没有列入早先的光纤性能指标之中但是随着系统传输速率的提升偏振模色散的影响逐渐显现出来成为继衰减波长色散之后限制传输速度和距离的又一个重要因素如何减少PMD 的影响是目前国际上研究的热点之一PMD 是一个随机变量其瞬时值随波长时间温度移动和安装条件的变化而变化导致光脉冲展宽量不确定其影响相当于随机的色散它与波长色散发生的机制虽然不同但是对系统性能具有同样的影响因此也有人将偏振模色散称作单模光纤中的多模色散图3 正交偏振模之间产生群时延差 3偏振模色散对于光传输距离的影响 不同时期敷设的光纤PMD 值差别很大10年前应用的光缆受当时光纤工艺水平所限PMD 通常大于2ps/km 1/2有的高达67 ps/km 1/2后来布设的光缆PMD 不大于0.5ps/km 1/2不会对10Gbit/s 速率系统造成限制近年来敷设的光缆多为0.2ps/km 1/2甚至更小最优秀的光纤PMD 已经控制到0.001ps/km 1/2的水平 当两个正交的偏振模之间的时延差δτ达到系统速率一个脉冲时隙的三分之一时将会付出1dB 的信号功率代价由于PMD 的随机统计特性PMD 的瞬时值有可能达到平均值的3倍为了保证信号功率代价低于1dB PMD 的平均值必须小于系统速率一个脉冲时隙的十分之一因为PMD δτ/L 1/2 ps/km 1/2公式1 现在要求δτ1/(10B)设速率为B 的系统受PMD 限制的最大传输距离为L km,则Lδτ/PMD21/(10*B*PMD)2km 公式2早期布设光纤中有一部分对STM16信道速率的系统也产生限制当PMD0.5ps/km1/2时,STM-64系统受PMD限制的传输距离(1dB代价)大约为400km对于40Gbit/s 系统却只有25km如果容许两个正交偏振模之间的时延差达到一个脉冲时隙的三分之一40Gbit/s传输的PMD容限约8.3ps若要保证在任何情况下系统功率代价都不超过1dB 即限定两个偏振模的传输时延差不超过一个脉冲时隙的十分之一则PMD容限只有2.5ps要实现600km以上的长途传输PMD系数就要不高于0.1ps/km1/2根据上述分析可知PMD是重要的限制因素不同速率系统受PMD限制的传输距离可以计算出来利用公式2计算不同速率系统受偏振模色散限制的最大传输距离其结果列于下表1中表1 不同速率系统受PMD限制的最大传输距离受 限 距 离 kmPMDPs/km1/210 Gb/s 20 Gb/s 40 Gb/s 80 Gb/s 160 Gb/s 320 Gb/s 640 Gb/s0.001 100000000 25000000 6250000 1562500 390625 97656.25 24414.060.005 4000000 1000000 250000 62500 15625 3906.25 976.56250.01 1000000 250000 62500 15625 3906.25 976.5625 244.14060.03 111111.11 27777.78 6944.444 1736.111 434.0278 108.5069 27.126749.76562539.06250.05 40000 10000 2500 625 156.250.06 27777.778 6944.444 1736.111 434.0278 108.5069 27.12674 6.7816840.07 20408.163 5102.041 1275.51 318.8776 79.71939 19.92985 4.9824620.08 15625 3906.25 976.5625 244.1406 61.03516 15.25879 3.8146970.09 12345.679 3086.42 771.6049 192.9012 48.22531 12.05633 3.0140829.7656252.44140639.06250.1 10000 2500 625 156.250.2 2500 625 156.25 39.0625 9.765625 2.441406 0.6103520.3 1111.1111 277.7778 69.44444 17.36111 4.340278 1.085069 0.2712670.4 625 156.25 39.0625 9.765625 2.441406 0.610352 0.1525880.3906250.0976560.5 400 100 25 6.251.56250.6 277.77778 69.44444 17.36111 4.340278 1.085069 0.271267 0.0678170.7 204.08163 51.02041 12.7551 3.188776 0.797194 0.199298 0.0498250.8 156.25 39.0625 9.765625 2.441406 0.610352 0.152588 0.0381470.9 123.45679 30.8642 7.716049 1.929012 0.482253 0.120563 0.0301411 100 25 6.25 1.5625 0.390625 0.097656 0.0244142 25 6.25 1.5625 0.390625 0.097656 0.024414 0.0061043 11.111111 2.777778 0.694444 0.173611 0.043403 0.010851 0.0027134 6.25 1.5625 0.390625 0.097656 0.024414 0.006104 0.0015265 4 1 0.25 0.0625 0.015625 0.003906 0.0009776 2.7777778 0.694444 0.173611 0.043403 0.010851 0.002713 0.0006787 2.0408163 0.510204 0.127551 0.031888 0.007972 0.001993 0.000498四偏振模色散的测试方法偏振模色散具有随机性在DWDM系统中造成偏振和引起偏振模色散的因素很多示意图如图4所示图4 引起偏振和偏振模色散的因素下面是偏振模色散PMD 和偏振相关损耗(Polarization Dependent Loss 简称PDL)的测试方法偏振模色散PMD 是指在一定时间内一定波长范围内或在指定波长上某时间窗口上的平均时延与时间相对无关具有确定性PMD 的测试方法主要有琼斯矩阵特征分析法干涉测量方法和波长扫描法等 1琼斯矩阵特征分析法的测试原理和步骤如下 测试的配置包括可调谐光源Tunable Laser Source,简称TLS 被测器件DeviceUnder Test 简称DUT 偏振器和偏振计等如图5所示图5 琼斯矩阵分析法的测量配置和步骤从琼斯矩阵Jc 数据中可以提取PMD 和PDL 等参数由于一般运营商关注的PMD λ 是指在特定波长λn 上一段时间内的平均微分群时延Differential Group Delay,简称DGD 而测量值PMDλ是在某个波长范围内特定时间t 0的平均DGD 理论计算如下理论计算和实验测试的结果表明时间平均值PMDt 与波长平均值PMD λ相等这也是PMD 测量方法的基础所有测试都是基于能够快速测试PMD λ从而确定PMD 值的琼斯矩阵特征分析法的特点是测量精度较高最小可测量的PMD 可达0.005ps 但测试速度较慢且与波长相关测试过程中光纤必须固定不许移动该测试方法在实验室测试器件的PMD 将是首选同时也适合工程上光纤PMD 测试的现场应用2干涉测量方法的原理和步骤如下如图6所示图6 干涉测量的配置图干涉测量方法的特点是测量精度较低最小可测量PMD 达0.03ps 但测试速度较快且与波长无关测试过程中光纤允许移动由于测试精度较低该测试方法不适合实验室使用但由于设备简便易用体积成本和信息内容小适合作为现场仪器使用在工程现场测试光纤的PMD 将是首选 3PMD 测试的其他方法还有邦加半球方法该测试方法的特点是能够直观地反映偏振态和测试PMD 参数可以用于科学研究分析由于偏振光的电场强度可分解为E x E y 两个分量其瞬时值为E x =E x0Cos(ωt+φx )E y =E y0Cos(ωt+φy )两分量的幅度比R E y0/E x0相位差φ=φy -φx 根据R φ的不同可得到线偏振光圆偏振光椭圆偏振光偏振光偏振态的全部信息包含在R φ中R 有时用另一参数δ表示δarctanR 椭圆偏振是最一般的形式它说明电场强度矢量端点描绘出一个椭圆如图7所示图7 光的偏振状态图解可以采用邦加球法Poincare来直观地动态适时地显示偏振态跟踪和计算偏振模色散变化值由于邦加球采用了归一化测量方法因此可以用两个参数来描述偏振椭圆方位角θ和椭率角ε如图8所示图8 邦加球法Poincare表示的偏振状态邦加球法的配置与琼斯矩阵特征分析法的测量配置相同采用调谐波长作为光源偏振状态将在邦加半球上描出一个弧形角偏振模色散值与这个角成正比五结论偏振模色散具有随机性和不确定性其原理和补偿方法正在不断的研究之中我们可以根据应用场合的不同选取不同的偏振模测试方法灵活快速地测试和评估以便有效地补偿偏振模色散例如在研发和实验时如果测试精度较高可采用琼斯矩阵特征分析法如果要求动态地跟踪偏振模色散可以采用邦加球法而工程现场中可以采用干涉法快速测试等。
偏振模色散

偏振模色散
偏振模色散(PMD)是光纤中的一个重要的参量,它表示光纤在传输过程中由于折射率和吸收率的不均匀性,以及多模态干扰而引起的信号波长的分散。
当光纤的横截面失去对称性时,其引起的回波由方位偏振和斜向偏振组成。
而斜向偏振回波(称为PMD)通常随着路径长度的增加而增加,这种效应被称为偏振模色散(PMD)。
PMD会影响光纤的发射和接收能力,特别是当光路径中存在大量反射和散射时,PMD会降低光纤的传输性能。
因此,准确测量PMD是使用光纤进行数据传输的关键。
偏振模色散原理和测试方法分析

偏振模色散的原理和测试方法分析摘要:偏振模色散将引起高速光脉冲畸变,制约传输距离,是40Gb/s高速光纤通信的主要技术难点之一。
本文研究了偏振模色散的产生原理、对传输光脉冲的影响等问题;分析了偏振模色散的三种主要测试方法的测量配置和各自优缺点;讨论了每种方法的最佳应用场合。
一、 引言光纤的色散引起传输信号的畸变,使通信质量下降,从而限制了通信容量和通信距离。
在光纤的损耗已大为降低的今天,色散对高速光纤通信的影响就显得更为突出。
40Gb/s系统和10Gb/s系统相比,在光纤传输上的色散效应对系统性能的影响有新的差异。
特别是偏振模色散(Polarization Mode Dispersion,简称PMD)的影响难以克服。
所以,在40Gb/s系统技术中,必须考虑和研究光纤的色散,PMD和非线性的影响等。
同时,由于偏振模色散的测试是比较复杂的问题,如何根据其特点,比较迅速和准确地测出偏振模色散值,从而进行色散补偿,将是本文讨论的重点。
本文作者主要从事高速光传输收发模块的研究开发,于2002年11月参加了在上海举行的Tektronix 2002亚太区大型巡回讲座和研讨会,针对偏振模色散的最新测试技术这一问题,作者与Tektronix公司的偏振模色散测试技术人员、工程师作了沟通和交流,并在本文中作了比较详细的分析和探讨。
二、 色散的原理和分类色散是光纤的一个重要参数。
降低光纤的色散,对增加通信容量,延长通信距离,发展高速40Gb/s光纤通信和其它新型光纤通信技术都是至关重要的。
光纤的色散主要由两方面引起:一是光源发出的并不是单色光;二是调制信号有一定的带宽。
实际光源发出的光不是单色的,而是有一定的波长范围。
这个范围就是光源的线宽。
在对光源进行调制时,可以认为信号是按照同样的方式对光源谱线中的每一分量进行调制的。
一般调制带宽比光源窄得多,因而可以认为光源的线宽就是已调信号带宽,但对高速和线宽极窄的光源,情况不一样。
概念解释07、偏振模色散(PMD)

2偏振模色散的影响与其它色散一样,偏振模色散也要使脉冲展宽,从而提高数字通信系统的误码率,限制系统的传输带宽。
长距离数字通信系统通常工作于1550nm附近的第三窗口,因为在此窗口光纤衰减最小。
对标准单模光纤来说,在这一窗口,由于色散较大,偏振模色散的影响可以忽略不计。
但是,如果应用了高质量的DFB激光器或色散补偿技术,则要考虑偏振模色散的影响。
DFB激光器的线性带宽很窄,相应地降低色散的影响。
在通信系统中接入一色散补偿器(DCM)可以得到实际的色散补偿。
通过专门设计色散补偿光纤的折射率分布可以使光纤在第3窗口具有较大的负色散系数,这一负色散系数可以补偿标准单模光纤的色散。
总之,在长距离、高比特率数字通信系统中,如果应用了色散补偿技术降低了色散值,则偏振模色散的影响相应突出了。
此外,由于偏振模色散的统计特性,迄今为止,还没有任何方法可以补偿它。
如果激光器的线性带宽不是很窄,色散的影响将较大,偏振模色散的影响可以忽略不计。
但是,如果降低激光器的线性带宽,则偏振模色散的影响就增大了。
在图8中,取偏振模色散值为0.5ps/km,因为这一值可能被接受为国际标准规范值(至少对陆地网络是如此)。
按照某些国际标准技术规范小组的观点,当时延差达到1比特周期的0.3倍时,将引起1dB的功率损失。
偏振模色散的瞬时值有可能达到平均值的3倍,这样,为了保证功率损失在1dB以下,偏振模色散的平均值必须要小于1比特周期的十分之一。
偏振模色散与通信系统比特率及传输距离的关系,当偏振模色散值为0.5ps/km时,在1dB的功率损失时,比特率为10Gb/s 系统的传输距离可达400km。
与对长距离、高比特率数字通信系统的影响不同,偏振模色散对短距离模拟通信系统的影响要复杂得多。
这种影响是多种因素的综合,在这里,我们仅仅作一简单介绍,更详细的讨论可见参考文献。
模拟通信系统性能的下降可能是由于偏振模色散、激光器啁啾(chirp)和元器件的与偏振相关的衰耗(PDL)之间的相互作用。
最新偏振模色散测试仪是用来测试偏振模色散的

单模光纤偏振模色散 PMD 测试技术4.1、托克斯参数测定法斯托克斯参数测定法是测量单模光纤 PMD 值的基准试验方法,它的测试原理是在一波 长范围内以一定的波长间隔测量出输出偏振态随波长的变化, 通过琼斯矩阵本征分析和计算,得到PMD 的系数值。
斯托克斯参数测定法多用于实验室测试,其测量试验设备及装置如图 2所示。
学网 V.W .xUbSxur-i4.2、偏振态法偏振态法是测量单模光纤 PMD 的第1替代试验方法,其测量原理是: 对于固定的输入偏振态,当注入光波长(频率)变化时,在斯托克斯参数空间里邦加球上被测光纤输出偏振 态(SOP )也会发生演变,它们环绕与主偏振态(PSP )方向重合的轴旋转,旋转速度取决于PMD 时延:时延越大,旋转越快。
通过测量相应角频率变化" 3和邦加球上代表偏振态(SOP )点的旋转角度" 0,就可以计算出 PMD 时延3舌"9 0 3。
偏振态法直接给出了被测试样 PSP 间差分群时延(DGD )与波长或时间的函数关系, 通过在时间或波长范围内取平均值得到PMD 。
可调光阳I 00存谄序斂嵌护卜涉[.倚竺LICD 丨学网wAM/图s as扳状态法分析测重P・D试验设备简图清冈httpy/ifvwwvipc n co m4.3、干涉法由于干涉法测量速度快,目前市面上很多仪器生产厂家都以干涉法为测试原理生产测试设备,它们共同点就是设备体积小,动态范围宽,重复性较好,很适合在现场使用。
由于干涉法与偏振模耦合无关,适用于单盘短光纤和长光纤。
干涉法就是介绍一种测量单模光纤和光缆的平均偏振模色散的方法。
其测试原理为:当光纤一端用宽带光源照明时,在输出端测量电磁场的自相关函数或互相关函数,从而确定PMD。
在自相关型干涉仪表中,干涉图具有一个相应于光源自相关的中心相干峰。
测量值代表了在测量波长范围内的平均值。
在1310nm或1550nm窗口不同仪器都有一定的波长范围。
单模光纤的色散

光纤色散在光纤中传输的光信号(脉冲)的不同频率成份或不同的模式分量以不同的速度传播,到达一定距离后必然产生信号失真(脉冲展宽),这种现象称为光纤的色散或弥散。
光纤中传输的光信号具有一定的频谱宽度,也就是说光信号具有许多不同的频率成分。
同时,在多模光纤中,光信号还可能由若干个模式叠加而成,也就是说上述每一个频率成份还可能由若干个模式分量来构成。
光纤的色散主要有材料色散、波导色散、偏振模色散和模间色散四种。
其中,模间色散是多模光纤所特有的。
这四种色散作用还相互影响,由于材料折射率n是波长λ(或频率w)的非线性函数,d2n/d2λ≠0,于是不同频率的光波传输的群速度不同,所导致的色散成为材料色散。
由于导引模的传播常数β是波长λ(或频率w)的非线性函数,使得该导引模的群速度随着光波长的变化而变化,所产生的色散成为波导色散(或结构色散)。
偏振模色散指光纤中偏振色散,简称PMD(polarization modedispersion),它是由于实际的光纤中基模含有两个相互垂直的偏振模,沿光纤传播过程中,由于光纤难免受到外部的作用,如温度和压力等因素变化或扰动,使得两模式发生耦合,并且它们的传播速度也不尽相同,从而导致光脉冲展宽,引起信号失真。
不同的导引模的群速度不同引起的色散成为模间色散,模间色散只存在与多模光纤中。
色散限制了光纤的带宽—距离乘积值。
色散越大,光纤中的带宽—距离乘积越小,在传输距离一定(距离由光纤衰减确定)时,带宽就越小,带宽的大小决定传输信息容量的大小。
光纤色散可以使脉冲展宽,而导致误码。
这是在通信网中必须避免的一个问题,也是长距离传输系统中需要解决的一个课题。
一般来说,光纤色散包括材料色散和波导结构色散两部分,材料色散取决于制造光纤的二氧化硅母料和掺杂剂的分散性,而波导色散通常是一种模式的有效折射率随波长而改变的倾向。
材料色散与波导色散都与波长有关,所以又统称为波长色散。
材料色散:是由光纤材料自身特性造成的。
光纤的基本特性衰耗、色散

光纤的基本特性衰耗、色散1、光纤的损耗光纤的衰减或损耗是一个非常重要的、对光信号的传播产生制约作用的特性。
光纤的损耗限制了没有光放大的光信号的传播距离。
光纤的损耗主要取决于吸收损耗、散射损耗、弯曲损耗三种损耗。
1)吸收损耗光纤吸收损耗是制造光纤的材料本身造成的,包括紫外吸收、红外吸收和杂质吸收。
a:红外和紫外吸收损耗光纤材料组成的原子系统中,一些处于{氐能的电子会吸收光波能量而跃迁到高能级状态,这种吸收的中心波长在紫外的0.16μm处,吸收峰很强,其尾巴延伸到光纤通信波段,在短波长区,吸收峰值达ldB/km,在长波长区则小得多,约O.O5dB∕km.在红外波段光纤基质材料石英玻璃的Si-O键因振动吸收能量,这种吸收带损耗在9.1μm,12.5μm及21μm处峰值可达IOdB∕km以上,因此构成了石英光纤工作波长的上限。
红外吸收带的带尾也向光纤通信波段延伸。
但影响小于紫外吸收带。
在λ=L55μm时,由红外吸收引起的损耗小于0.01dB∕kmβb:氢氧根离子(OH-)吸收损耗在石英光纤中,O-H键的基本谐振波长为2.73μm,与Si-O键的谐振波长相互影响,在光纤的传输频带内产生一系列的吸收峰,影响较大的是在1.39、1.24及0.95μm波长上,在峰之间的低损耗区构成了光纤通信的三个传输窗口。
目前,由于工艺的改进,降低了氢氧根离子(OH-)浓度,这些吸收峰的影响已很小。
c:金属离子吸收损耗光纤材料中的金属杂质,如:金属离子铁(Fe3+)、铜(Cu2+)、镒(Mn3+)、镇(Ni3+)、钻(Co3+)、铭(Cr3+)等,它们的电子结构产生边带吸收峰(0.5~Llμm),造成损耗。
现在由于工艺的改进,使这些杂质的含量低于10-9以下,因此它们的影响已很小。
在光纤材料中的杂质如氢氧根离子(OH・)、过渡金属离子(铜、铁、铭等)对光的吸收能力极强,它们是产生光纤损耗的主要因素。
因此要想获得低损耗光纤,必须对制造光纤用的原材料二氧化硅等进行十分严格的化学提纯,使其纯度达99.9999%以上。
偏振模色散

DCF补偿的缺点是插损较大,会影响系统的传输距离。
其解决方法是把DCF放在光发送机与功率放大器之间,或放在予放大器和光接收机之间,用光放大器的增益来补偿DCF的插损。
②.光纤光栅补偿利用光纤光栅的干涉与衍射效应进行色散补偿。
总之,系统的色度色散受限主要表现在高传输速率即2.5Gb/s以上的系统,采取的措施一是采用外调制方式,它可以降低光源的啁啾声与增加系统的色散容限(如2.5Gb/s系统的色散容限可达12800ps/nm以上),二是可以采取色散补偿手段如DCF 等。
3.偏振模色散受限(PMD)偏振模色散受限仅对传输速率10Gb/s以上的系统有效。
(1).偏振模色散受限机理所谓偏振模色散PMD(Polar Mode Dispersion),是指由于光纤的随机性双折射所引起的、对不同相位状态的光呈现不同群速度的特性。
如果单模光纤结构是理想的圆柱形而且材料是各向同性的,则二个正交方向偏振态的模式不会发生相互耦合,单模光纤可以保证单模传输,即能维持二个偏振态正交的简并模(LP01)传输。
但实际上在制造光纤过程中,由于工艺方面原因会使光纤的实际结构偏离理想的圆柱形,光纤的芯径与包层的几何尺寸也存在着差异;而且光纤的折射率分布也难以保证理想化(沿径向分布完全对称),从而使光纤存在着各向异性。
此外,在实际应用中,光缆中的光纤也不可避免地要受侧压力、扭曲力、弯曲力等外部应力的作用,它的随机性非常大。
所有这一切都破坏了模式的简并,导致了两偏振态模的耦合;也导致两个偏振方向光的传播常数不相同,这就是所谓双折射现象。
双折射使不同偏振态的光信号不能同时到达接收端,即出现延时。
如图2.8.4所示。
图2.8.4:PMD引起的光信号差分群延时DGD 偏振模色散是客观存在的,但对不同的传输速率有着不同的影响。
因为由PMD 产生的延时值,其大小仅取决于光纤的PMD 系数及系统的传输距离;所以当这二者确定之后,由其产生的延时值也就确定了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(7.1.2)
有起伏的体积
一般而言,折射率的起伏是未知的,所以因之而产生的损耗 (或散射)是不能计算的。反过来,倒是可以利用散射损耗去 得出折射率的起伏。 对于典型的高硅玻璃,浓度不均匀的散射损耗约占总散射 损耗的25%。
7.1.3
波导散射损耗
1.由于拉制纤维时的不良性,造成纤维尺寸沿轴线起伏,如 粗细不匀,截面形状变化等,这种不均匀性同样将引起光的 散射。另外,纤芯和包层界面的不光滑、污染等,也将造成 严重的散射损耗。 2.模式变换而产生了附加的损耗,这种附加的损耗就是波 导散射损耗。
的体积压缩;k是波尔兹曼常数;T是跃迁温度(K);n是折 射率
掺杂不均匀引起的散射:也属于物质的本征散射。 浓度的不均匀性的散射:所用的玻璃中有些含有几种氧化 物,以改变折射率。而氧化物浓度的不均匀性或起伏,也会 引起散射,产生损耗。 衰减的计算公式为: 浓度起伏的均方值
16 3n dn 2 2 at ( ) c V 4 3 dc
瑞利散射:密度不均匀或者内应力不均匀就引起折射率不均 匀,从而产生散射。这种不均匀度与波长相比是小尺寸的。 瑞利散射与波长λ的四次方成反比。计算公式:
8 2 2 at 4 (n 1)kT co (7.1.1) 3 这里 at 代表衰减系数, co代表可压缩度,每单位力所产生
光纤物理参数: 1.损耗 2.色散 3.偏振、双折射
光学几何参量测量: 1.数值孔径:
2.折射率分布: (一)反射法:
N. A. n0 sin m
P消除杂散光
(二)干涉法:
n 1 2 R( ) n 1 2 n 1 R n 4 R
n N
t
n(r ) n0 N
7.1.5
外套损耗
串话:纤芯里的波导和辐射波的电磁场都要进入到包 层。在包层外圈,电磁场并没有消失,还要伸展到 外面去,这就要与临近的光纤耦合。 为了避免串话,包层外面需要再套一层衰减大的 套子,把进入套子的电磁场消灭掉。 这样,物质吸收损耗就有三部分,即纤芯里、 包层里和外套里的损耗,它们各不相等。对每一个 模式又不相同,这是由于功率分配不同的缘故。
第七章 光纤的基本特性及测试
内容提要
前言
7.1光纤的传输损耗 7.2光纤的损耗的测量 7.3光纤的色散和脉冲展宽 7.4光纤脉冲展宽的测量 7.5光纤的偏振和双折射 7.6光纤的拍长和偏振模色散测量
前言
光纤的基本特性
光纤几何参数: 1.纤芯、包层直径、不园度、偏芯率 2.数值孔径 3.折射率分布
(1)材料的吸收损耗,包括纤芯和包层的物质吸收 (2)材料(或物质)散射,也包括纤芯和包层。 (3)波导散射,即交界面随机的畸变或粗糙所产生的散射。 (4)波导弯曲所产生的辐射损耗。 (5)外套损耗。 下面将逐项介绍
加热过程 原子缺陷吸收 强烈辐射 过渡族金属离子 吸收损耗 杂质离子的吸收 - OH 离子 紫外吸收 本征吸收 红外吸收 损耗 折射率分布不均匀 制作缺陷 芯-涂层界面不理想 气泡、条文、结石 散射损耗 瑞利散射 本征散射及其他 布里渊散射 喇曼散射
r C1 exp(C2 R)
(7.1.3)
式中 r 为弯曲产生的衰减系数C1, C2是常数,与曲率半径无关。衰减与 曲率半径R的关系表现在指数函里。 途中x>R+xr的区域为阴影区,代表 相速超过光速,成为辐射的区域。
图7.1.1 弯曲波导
仍以薄膜波导为例,假设厚度为1.18μm, 波长为0.63μm,折射率之差0.001时(它用 作单模传输,第二个模式在厚度4×1.18μm 时产生),xr≈16,C1为104,C2为100;在 R=18cm时,衰减为8.68dB/m。如果R增大 一倍,则衰减将减exp(200)≈1/6.5×107, 使 r 完全可以忽略。 上面举的是薄膜波导的例子,不是光纤的, 而只是把它定性地解释为光纤的弯曲。对于光 纤,一般认为曲率半径超过10cm,弯曲损耗 可以忽略。Δ 大于0.001,容许的曲率半径可 以减小,甚至可以小到1cm。
过渡族金属离子吸收
吸收 OH-离子吸收
在熔融石英玻璃里OH-的吸收 带在0.72,,0.95,1.4um. 0.5~1.0μm范围里
原子缺陷吸收
由于加热过程:4价Ti-3价 由于强烈的辐射,玻璃材料会受激 而产生原子的缺陷,产生损耗
7.1.2
物质的散射损耗
物质内部的散射,会减小传输功率,产生损耗。 本征散射:(物质散射中最重要的)它是使波导衰减不能 太小的基本限制之一。 非线性散射:物质在强场作用下,也会诱发出对入射波的 散射。(拉曼散射、布里渊散射)
t
t:样品厚度。N:干涉条文数。
光纤的损耗和色散是宽带通信传输介质的 两个十分重要的特征参量。 损耗:限制传输距离。
色散:限制传输带宽、中继距离。
偏振、双折射:对于光纤在宽带通信、传 感技术上的应用,以及光纤中非线性的研究具 有重要的意义。
§7.1
光纤的传输损耗
产生损耗的原因主要是:
7.1.1
材料的吸收损耗
材料吸收所产生的损耗是重要的损耗。早期的水平是 1000~4000dB/km ,发现几乎所有的损耗都是来源于材料吸 收。材料吸收又有多种原因: 由原子跃迁(电子吸带)所
物质本征吸收
产生:红外8-12um,紫外 拖尾0.7-1.1um
铁,钻,铜,铬等吸收峰和吸收带 也随它们的价状态不同而不同
很多人曾经推导了薄膜波导和圆柱波导的这种模式耦合效应, 并举例作了计算。例如对薄膜波导,如果厚度为5μm,折射 率差Δ=1%,交界面的偏离均方根值为0.9nm,每千 米将产生10dB的辐射损耗
7.1.4
光纤弯曲产生的辐射
光纤弯曲是一个复杂的理论问题,电 磁波在弯曲部分传输时,越靠外面的 速度越大。