第三章《三角形》知识要点分梳理及单元测试题(含答案)
三角形单元测试题含答案

三角形单元测试姓名:时间:90分钟满分:100分评分:一、选择题(本大题共10小题,每小题3分,共30分.•在每小题所给出的四个选项中,只有一项是符合题目要求的)1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm2.等腰三角形的一边长等于4,一边长等于9,则它的周长是()A.17 B.22 C.17或22 D.133.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形4.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105°D.30°或75°5.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.86.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定7.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半8.能构成如图所示的基本图形是()(A) (B) (C) (D)9.已知等腰△ABC的底边BC=8cm,│AC-BC│=2cm,则腰AC的长为()A.10cm或6cm B.10cm C.6cm D.8cm或6cm10.如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是(• )A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)(1) (2) (3)二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.三角形的三边长分别为5,1+2x,8,则x的取值范围是________.12.四条线段的长分别为5cm、6cm、8cm、13cm,•以其中任意三条线段为边可以构成________个三角形.13.如下图2:∠A+∠B+∠C+∠D+∠E+∠F等于________.14.如果一个正多边形的内角和是900°,则这个正多边形是正______边形.15.n边形的每个外角都等于45°,则n=________.16.乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要安排______种不同的车票.17.将一个正六边形纸片对折,并完全重合,那么,得到的图形是________边形,•它的内角和(按一层计算)是_______度.18.如图3,已知∠1=20°,∠2=25°,∠A=55°,则∠BOC的度数是_____.三、解答题(本大题共6小题,共46分,解答应写出文字说明,•证明过程或演算步骤)19.(6分)如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.20.(8分)如图:(1)画△ABC的外角∠BCD,再画∠BCD的平分线CE.(2)若∠A=∠B,请完成下面的证明:已知:△ABC中,∠A=∠B,CE是外角∠BCD的平分线.求证:CE∥AB.21.(8分)(1)如图4,有一块直角三角形XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_______,∠XBC+∠XCB=_______.(4) (5)(2)如图5,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ•仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.22.(8分)引人入胜的火柴问题,成年人和少年儿童都很熟悉.如图是由火柴搭成的图形,拿去其中的4根火柴,使之留下5个正方形,•且留下的每根火柴都是正方形的边或边的一部分,请你给出两种方案,并将它们分别画在图(1)、(2)中.23.(8分)在平面内,分别用3根、5根、6根……火柴首尾..依次相接,•能搭成什么形状的三角形呢?通过尝试,列表如下所示:问:(1)4根火柴能拾成三角形吗?(2)8根、12根火柴能搭成几种不同形状的三角形?并画出它们的示意图.24.(8分)如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)∠5的度数是多少?(3)求四边形ABCD各内角的度数.答案:1.B2.B 点拨:由题意知,三角形的三边长可能为4,4,9或4,9,9.但4+4<9,说明以4,4,9为边长构不成三角形.所以,这个等腰三角形的周长为22.故选B.3.B 点拨:设∠A=x°,则∠B=2x°,∠C=3x°,由三角形内角和定理,•得x+•2x+3x=180.解得x=30.∴3x=3×30=90.故选B.4.D 点拨:分顶角为75°和底角为75°两种情况讨论.5.C 点拨:据题意,得(n-2)·180=2×360+180.解得n=7.故选C.6.B7.B 点拨:若三角形中三个内角都小于60°,则三个内角的和小于180°,•与内角和定理矛盾.所以,三角形中至少有一个内角不小于60°.8.B9.A 点拨:∵BC=8cm,│AC-BC│=2cm,∴AC=10cm或6cm.•经检验以10cm,•10cm,8cm,或6cm,6cm,8cm为边长均能构成三角形.故选A.10.B 点拨:可根据三角形、四边形内角和定理推证.11.1<x<6 点拨:8-5<1+2x<8+5,解得1<x<6.12.2 点拨:以5cm、6cm、8cm或6cm、8cm、13cm为边长均可构成三角形.13.360°点拨:∵图中正好有两个三角形:△AEC,△BDF,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.14.七15.8 点拨:n=36045︒︒=8.16.1017.四;36018.100°点拨:连接AO并延长,易知∠BOC=∠BAC+∠1+∠2=55°+20°+25•°=100°.19.解:在△ABD中,∵∠A=90°,∠1=60°,∴∠ABD=90°-∠1=30°.∵BD平分∠ABC,∴∠CBD=∠ABD=30°.在△BDC中,∠C=180°-(∠BDC+∠CBD)=180°-(80°+30°)=70°.20.(1)如答图(2)证明:∵∠A=∠B,∠BCD是△ABC的外角,∴∠BCD=∠A+•∠B=2∠B,∵CE是外角∠BCD的平分线,∴∠BCE=12∠BCD=12×2∠B=∠B,∴CE∥AB(•内错角相等,两直线平行)点拨:如答图所示,要证明两直线平行,只需证内错角∠B=∠BCE即可.21.(1)150°;90°(2)不变化.∵∠A=30°,∴∠ABC+∠ACB=150°,∵∠X=•90°,∴∠XBC+∠XCB=90°,∴∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+•∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.点拨:此题注意运用整体法计算.22.如答图7-2.23.解:(1)4根火柴不能搭成三角形;(2)8根火柴能搭成一种三角形(3,3,2);12根火柴能搭成三种不同的三角形(4,4,4;5,5,2;3,4,5).图略.24.解:(1)CO是△BCD的高.理由:在△BDC中,∵∠BCD=90°,∠1=∠2,∴∠1=∠2=90°÷2=45°.又∵∠1=∠3,∴∠3=45°.∴∠DOC=180°-(∠1+∠3)=180°-2×45°=90°,∴CO⊥DB.∴CO是△BCD的高.(2)∠5=90°-∠4=90°-60°=30°.(3)∠CDA=∠1+∠4=45°+60°=105°,∠DCB=90°,∠DAB=∠5+∠6=30°+30°=60°,∠ABC=105°.。
新版精编2019年七年级下册数学单元测试题《三角形的初步认识》完整题(含答案)

2019年七年级下册数学单元测试题第一单元 三角形的初步认识一、选择题1.如图,CD 是△ABC 的中线,DE 是△ACD 的中线,BF 是△ADE 的中线,若△AEF 的面积是 1cm 2,则△ABC 的面积是( )A . 4cm 2B .5 cm 2C . 6 cm 2D .8 cm 2答案:D2.如图,AD ,BE 都是△ABC 的高,则与∠CBE 一定相等的角是( )A .∠ABEB .∠BADC .∠DACD .以上都不是答案:C3.如图,直线123,,l l l 表示三条相互交叉的公路,现要建造一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .两处C .三处D .四处答案:D4.如图所示,由∠ABC=∠DCB ,∠ACB=∠DBC ,直接能判定全等的三角形是 ( )A .△AB0≌△DODB .△ABC ≌△DCB C .△ABD ≌△DCA D .△OAD ≌△0BC答案:B5.如图所示,在Rt △ABC 中,∠BAC=90°,AD 是高,则图中互余的角有( )A . 2对B .3对C .4对D .5对答案:C6.将矩形ABCD 沿AE 折叠.得到如图所示的图形,已知∠CED ′=60°.那么∠AED 的大小是( )A .50°B .55°C .60°D .75°答案:C7.以下列各组线段的长为边,能构成三角形的是( )A .4 cm ,5 cm ,6 cmB .2 cm ,3 cm ,5 cmC .4 cm ,4 cm 。
9 cmD .12 cm ,5 cm ,6 cm答案:A8.一个三角形的两边长分别是3和6,第三边长为奇数,那么第三边长是( )A 5或7B .7或9C .3或5D .9答案:A二、填空题9.在△ABC 和△DEF 中,AB=4,,∠A=35°,∠B =70°, DE=4 ,∠D = ,∠E=70°,根据 判定△ABC ≌△DEF.解析:35°, ASA10.如图,AB =AC ,要使ACD ABE ∆∆≌,应添加的条件是____________ (添加一个条件即可)解析:B C ∠=∠(答案不唯一)11.在ABC △中,BC 边不动,点A 竖直向上运动,A ∠越来越小,BC ∠∠,越来越大.若A ∠减少α度,B ∠增加β度,C ∠增加γ度,则αβγ,,三者之间的等量关系是 .解析:αβγ=+12.已知BD 是ΔABC 的一条中线, 如果ΔABD 和ΔBCD 的周长分别是21,12,则BC AB -的长是 .解析:913.在下列条件中:①∠A+∠B=∠C ;②∠A ∶∠B ∶∠C=1∶2∶3;③∠A=900-∠B ;④∠A=∠B=12∠C 中,能确定△ABC 是直角三角形的条件有 个. 解析:414.如图所示:(1)若△ABD ≌△ACE ,AB=AC ,则对应边还有 ,对应角有 .(2)若△BOE ≌△COD ,则0E 的对应边是 ,∠EB0的对应角是 ;(3)若△BEC ≌△CDB ,则相等的边有 .解析: (3)BE=CD ,CE=BD ,BC=CB (1)AD 与AE ,BD 与CE ;∠A 与∠A ,∠ABD 与∠ACE ,∠ADB 与∠AEC ;(2)OD ,∠DCO ;15.如图所示,已知点D ,E ,F 分别是BC ,AC ,DC 的中点,△EFC 的面积为6 cm 2,则△ABC 的面积为 .解析:48cm 216.已知△ABC 三边为a,b ,c ,且a ,b 满足21(3)0a b -+-=,c 为整数,则c 的取值为 .解析:3三、解答题17.如图,DB 是△ABC 的高,AE 是∠BAC 的角平分线,∠BAE=26°,求∠BFE 的度数.解析:64°18.如图所示,已知∠α,线段a,b,求作一个三角形,使其两边长分别为a,a+b,两边的夹角等于∠α.解析:略19.如图所示,已知线段a,b和∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.解析:略20.如图所示,已知∠E=∠F=90°,∠B=∠C,AE=AF,则以下结论有哪些是成立的?并挑选一个将理由补充完整.①∠1=∠2;②BE=CF;③CD=FN;④△AEM≌△AFN.成立的有:.我选,理由如下:解析:①②④,以下略21.如图所示,已知AD=AE,∠l=∠2.请说明OB=OC成立的理由.解析:略22.如图所示,以Rt△ABC的两直角边AB,BC为边向外作正△ABE和正△BCF,连结EF,EC,请说明EF=EC.解析:略23.如图所示,四边形ABCD 中,AB=CD,BC=AD,请你添一条辅助线,把它分成两个全等的三角形.你有几种添法?分别说明理由.解析:连结AC或连结BD,都是根据SSS说明三角形全等24.请你在如图所示的方格纸中,画一个与左上角已有图形全等的图形.解析:略25.如图所示,把△ACB沿着AB翻转,点C与点D重合,请用符号表示图中所有的全等三角形.解析:△ACE≌△ADE,△BCE≌△BDE,△ACB≌△ADB26.如图所示为由6个面积为1的小正方形组成的矩形,点A,B,C,D,E,F,G是小正方形的顶点,以这7个点中的任意三个点为顶点,可组成多少个面积为1的三角形?请写出所有满足条件的三角形.解析:共l4个三角形,具体表示略27.A,B是平面上的两个固定点,它们之间的距离为5 cm,请你在平面上找一点C(1)要使点C到A,B两点的距离之和等于5 cm ,则C点在什么位置?(2)要使点C到A,B两点的距离之和大于5 cm ,则点C在什么位置?(3)能使点C到A,B两点的距离之和小于5 cm吗?为什么?解析:(1)点C在线段AB上;(2)点C在线段AB外;(3)不能,因为两点之间线段最短(为5 cm)28.如图所示,已知△ABC.画出AC边上的中线BM和∠BAC的平分线AD.解析:略29.已知△ABC中,以点A为顶点的外角为120°,∠B=30°,求∠C的度数.解析:∠C=90°30.如图所示,在Rt △ABC中,∠ACB为直角,∠CAD的平分线交BC的延长线于点E,若∠B=35°,求∠BAE和∠E的度数.解析:∠E=27.5°,∠BAF=117.5°。
全等三角形单元测试题(含答案)

全等三角形单元测试题一、填空题(每小题4分,共32分).1.已知:///≌,/ABC A B C∆∆∠=∠,70B B∠=∠,/A A=,则AB cmC∠=︒,15 /∠=_________,//CA B=__________.∆中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角2.如图1,在ABC形_______对.图1 图2 图33.已知△AB C≌△A′B′C′,若△ABC的面积为10 cm2,则△A′B′C′的面积为______ cm2,若△A′B′C′的周长为16 cm,则△AB C的周长为________cm.4.如图2所示,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部.7.如图4,两平面镜α、β的夹角θ,入射光线AO平行于β,入射到α上,经两次反射后的出射光线CB平行于α,则角θ等于________.图4 图5 图68.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分)9.如图6,AE =AF ,AB =AC ,EC 与B F 交于点O ,∠A =600,∠B =250,则∠EOB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( )A .35 cmB .30 cmC .45 cmD .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =•BC ,再定出BF的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC ,•得到ED =AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )A .边角边公理B .角边角公理;C .边边边公理D .斜边直角边公理13.如图9,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:414.如图10,P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD _____P 点到∠AOB N A M C B 图7 图8 图9 图10两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.参考答案。
八年级数学上册《全等三角形》单元测试题(含答案解析)

八年级数学上册《全等三角形》单元测试题(含答案解析)一、选择题(每题4分,共40分)1. 在三角形ABC中,AB=AC,点D是边BC上的一个点,且BD=DC。
以下结论正确的是()A. AD平分∠BACB. AD垂直平分BCC. AD平分∠BD. AD平分∠C【答案】B【解析】因为AB=AC,所以三角形ABC是等腰三角形,∠B=∠C。
又因为BD=DC,所以AD垂直平分BC。
2. 如果两个三角形的两边和它们夹角分别相等,那么这两个三角形()A. 相似B. 全等C. 不一定全等D. 以上都对【答案】B【解析】根据SAS全等定理,如果两个三角形的两边和它们夹角分别相等,那么这两个三角形全等。
3. 在全等三角形ABC和DEF中,如果∠A=40°,∠B=50°,那么∠E的度数是()A. 40°B. 50°C. 60°D. 90°【答案】C【解析】因为三角形ABC和DEF全等,所以∠A=∠D,∠B=∠E。
所以∠E=∠B=50°。
又因为三角形内角和为180°,所以∠E=180°-∠A-∠D=60°。
4. 如果两个三角形的两边及其中一边的对角分别相等,那么这两个三角形()A. 相似B. 全等C. 不一定全等D. 以上都对【答案】C【解析】这种情况不能确定两个三角形全等,因为可能存在两种情况:一种是两个三角形全等,另一种是两个三角形不全等但相似。
5. 在全等三角形ABC和DEF中,如果AB=5cm,BC=8cm,AC=10cm,那么DE的长度是()A. 5cmB. 8cmC. 10cmD. 13cm【答案】C【解析】因为三角形ABC和DEF全等,所以对应边相等,即AB=DE,所以DE=5cm。
6. 如果两个三角形的三个角分别相等,那么这两个三角形()A. 相似B. 全等C. 不一定全等D. 以上都对【答案】C【解析】如果两个三角形的三个角分别相等,那么这两个三角形不一定全等,但一定相似。
解三角形单元测试题(附答案)(很好用)

解三角形单元测试题(附答案)(很好用)解三角形单元测试题含有答案班级:____________ 姓名_______________ 成一、选择题:1、在厶ABC 中,a= 3, b= 7, c= 2,那么B 等于()A. 30°B. 45°C.D. 120°2、在厶ABC中, a= 10,B=60°,C=45°,则c等于( )A . 10 .3 B. 10 3 —i C . 3 1 D . 10.33、在厶ABC 中,a= 2 3 , b = 2 2, B= 45°, 则A等于()A. 30°B. 60°C . 30° 或120° D. 30° 或150°4、在厶ABC 中,a= 12, b= 13, C = 60°,此三角形的解的情况是()A .无解B. 一解C .二解D .不能确定5、在厶ABC中,已知a-b2 c2 be,则角A为(B・6D.[或三3 36、在厶ABC 中,若acosA 二bcosB,则△ ABC 的形状是()A •等腰三角形B.直角三角形C •等腰直角三角形D.等腰或直角三角形7、已知锐角三角形的边长分别为1, 3, a,则a 的范围是()A ・8,10 B・8, .10 C ・8,10 D・10,8 &在△ ABC 中,已知2sinAcosB =sinC,那么△ ABC —定是()A •直角三角形B.等腰三角形C •等腰直角三角形D.正三角形9、A ABC 中,已知a=x,b = 2,B 二60 ,如果△ABC两组解,则x的取值范围()A・x 2 B・X 2 C・••• 3D・2 vx兰羊亦310、在厶ABC 中,周长为7.5cm,且sinA:sinB: sinC = 4 : 5: 6,下列结论:① a:b:c = 4:5:6 ②a :b :c = 2 : . 5 : . 6 ^③ a = 2cm, b = 2.5cm, c = 3cm ^④A:B:C =4:5:6 其中成立的个数是()A. 0个B. 1个C . 2个D. 3个11、在厶ABC 中,AB =、3,AC=I, Z A= 30°,则△ ABC面积为()A. 乎B.子C . 乎或 32 4 2D .子或子12、已知△ ABC的面积为3,且b,,c「3,则ZA等于()A. 30°B. 30° 或150° C .60°D. 60° 或120°13、已知△ ABC的三边长a~b=5,c = 6,则△ ABC的面积为()A . 14 B・ 2 14 C . 15150D ・2 1514、某市在“旧城改造”中计划内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A. 450a 元B. 225a 元C. 150a 元D.300a 元15、甲船在岛B的正南方A处,AB = 10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B出发以每小时6千米的速度向北偏东60°的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是()A.号分钟B.字分钟C・21.5分钟D. 2.15分钟16、飞机沿水平方向飞行,在A处测得正前下方地面目标C得俯角为30°,向前飞行10000 米,到达B处,此时测得目标C的俯角为75°,这时飞机与地面目标的水平距离为()A. 5000米B. 5000 2 米C . 4000米 D .4000、、2 米仃、在△ ABC 中,a =sin10 , b =sin50,/ C = 70°,那么△ ABC 的面积为()18、 若厶ABC 的周长等于20,面积是i0.3, A=60°,则BC 边的长是()A . 5B . 6C . 7D . 819、 已知锐角三角形的边长分别为 2、3、x ,则x 的取值范围是()A . ix5B . 、5 ■- x :: ,13C ・ 0 : : x : .. 5D . <13 vx v520、在厶ABC 中,若皿二竽二泄,则△ ABC1a b c 7是( )A •有一内角为30°的直角三角形B .等腰直角三角形C .有一内角为30°的等腰三角形D .等边三角形二、 填空题64B .3211621、在厶ABC 中,若/ A: / B: / C=1:2:3,则a: b : c 二 _____22、在厶ABC 中,a 亠3"2,B= 150°,贝y b = _23、在厶ABC 中,A = 60°, B= 45° , a ^12, 贝H a= ______ ; b= _______24、已知△ ABC 中,a =181“ 209,A = 121 °,则此三角形解的情况是____________25、已知三角形两边长分别为1和3,第三边上的中线长为1,则三角形的外接圆半径为26、在厶ABC 中,b c: ca : a b =4:5:6,则△ ABC的最大内角的度数是___________三、解答题27、在厶ABC 中,已知ABW•一2 , A= 45°,在BC边的长分别为20,号山,5的情况下,求相3应角Co28、在厶ABC 中,BC = a, AC = b, a, b 是方程x2—2.3x 2=0的两个根,且2cosA B =1。
三角形单元测试及答案

七年级下册三角形单元测试卷(满分100)一、选择题(每题3分,共30分)1.图中三角形的个数是()A.8 B.9 C.10 D.112.下面四个图形中,线段BE是⊿ABC的高的图是()A B C D3.以下各组线段为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.2cm,3cm,6cm4.三角形一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.属于哪一类不能确定5.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A、3个B、4个C、5个D、6个6.下面说法正确的个数有()①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=21∠C,那么△ABC是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在∆ABC中,若∠A+∠B=∠C,则此三角形是直角三角形。
A、3个B、4个C、5个D、6个7.在∆ABC中,CB∠∠,的平分线相交于点P,设,︒=∠xA用x的代数式表示BPC∠的度数,正确的是()A、x2190+B、x2190-C、x290+D、x+908.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A、900B、1200C、1600D、18009.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三第8题图12BA ECDMI 19题图角形的个数是( )A 、1个B 、2个C 、3个D 、4个 10.给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角; ③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外; ⑤任何一个三角形都有三条高、三条中线、三条角平分线; ⑥三角形的三条角平分线交于一点,且这点在三角形内。
【教育资料】2017-2018学年第二学期初二数学《全等三角形》单元测试题(含答案)【苏科版】学习专用

2019-2019学年初二数学第二学期单元测试题命题汤志良;知识涵盖:苏科版:全等三角形;试卷分值:130分;一、选择题:(本题共10小题,每小题3分,共30分)1.下列说法正确的是…………………………………………………………………( )A .全等三角形是指形状相同的三角形;B .全等三角形是指面积相等的两个三角形;C .全等三角形的周长和面积相等;D .所有等边三角形是全等三角形;2.如图,用尺规作出∠AOB 的角平分线OE ,在作角平分线过程中,用到的三角形全等的判定方法是……………………………………………………………………………………( )A .ASA ;B . SSS ;C . SAS ;D . AAS ;3.如图,已知∠ABC=∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是……………( )A .AC=BD ;B .∠CAB=∠DBA ;C .∠C=∠D ; D .BC=AD ;4.如图,在△ABC 中,∠C=90°,DE ⊥AB 于D ,BC=BD ,已知AC=3㎝,那么AE+DE 等于…( )A.2㎝;B.3㎝;C.4㎝;D.5㎝; 5.如图,已知△ABC为等边三角形,点D 、E 分别在边BC 、AC 上,且AE=CD ,AD 与BE 相交于点F .则∠BFD 的度数为……………………………………………………………( )A . 45°B . 90°C . 60°D . 30°6.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从1P ,2P ,3P ,4P 四个点中找出符合条件的点P ,则点P 有…………………………………………( )A .1个B .2个C .3个D .4个7.如图,BD=CF ,FD ⊥BC 于点D ,DE ⊥AB 于点E ,BE=CD ,若∠AFD=145°,则∠EDF 的度数为……( )A .45°B .55°C .35°D .65°8. 如图,AC 与BD 相交于O ,∠1=∠4,∠2=∠3,△ABC 的周长为25cm ,△AOD 的周长为17cm ,则AB=( )A .4cm ;B .8cm ;C .12cm ;D .无法确定;9.如图,AB ∥CD ,CE ∥BF ,A 、E 、F 、D 在一直线上,BC 与AD 交于点O ,且OE=OF ,则图中有全等三角形的对数为……………………………………………………………( ) 第2题图 第4题图 第5题图 第6题图第3题图 第7题图A .2 B .3 C .4 D . 510.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF .给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有( )A .4个B .3个C .2个D .1个 二、填空题:(本题共8小题,每小题3分,共24分)11.如图,AC=DC ,BC=EC ,请你添加一个适当的条件: ,使得△ABC ≌△DEC .12.如图,AB ∥FC ,DE=EF ,AB=15,CF=8,则BD= .13.如图,已知:∠B=∠DEF ,AB=DE ,要说明△ABC ≌△DEF.(1)若以“ASA ”为依据,还缺条件 ;(2)若以“AAS ”为依据,还缺条件 ;(3)若以“SAS ”为依据,还缺条件 ;14. 如图,在Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B ,C 作过点A 的直线的垂线BD ,CE ,若BD=4cm ,CE=3cm ,则DE= ㎝.15.已知△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x ﹣2,2x ﹣1,若这两个三角形全等,则x 为_________.16.(2019•无锡) 如图,△ABC 中,∠C=30°.将△ABC 绕点A 顺时针旋转60°得到△ADE ,AE 与BC 交于F ,则∠AFB= °.17.如图,在△ACD 和△BCE 中,AC=BC ,AD=BE ,CD=CE ,∠ACE=55°,∠BCD=155°,AD 与BE 相交于点P ,则∠BPD 的度数为 .18.在△ABC 和△DEF 中,已知AB=DE ,∠A=∠D ,若要得到△ABC ≌△DEF ,则还要补充一个条件,在下列补充方法:①AC=DF ;②∠B=∠E ;③∠B=∠F ;④∠C=∠F ⑤BC=EF 中,则错误结论的序号是 .三、解答题:(本题共8大题,满分共76分)19. (6分)如图,方格纸中的△ABC 的三个顶点分别在小正方形的顶点(格点)上,请在方格纸上按下列要求画图.(1)在图①中画出与△ABC 全等且有一个公共顶点的△A ′B ′C ′;(2)在图②中画出与△ABC 全等且有一条公共边的△A ″B ″C ″.第14题图 第9题图 第12题图 第13题图 第16题图 第8题图 第10题第11题第17题20.(本题满分6分)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.21. (本题满分8分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.22. (本题满分8分)(2019.连云港)四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.23.(本题满分8分)(2019.镇江)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)若∠ABC=35°,求∠CAO的度数;(2)求证:CO=DO24.(本题满分8分)(2019.常州)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若∠AEC=∠ACE,求∠DEC的度数.25.(本题满分8分)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.26. (本题满分8分)如图,已知△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一点且BP=AC,Q是CF 延长线上一点且CQ=AB,连接AP、AQ、QP,求证:(1)AP=AQ;(2)AP⊥AQ.27.(本题满分7分)在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 度;(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明)28. (本题满分9分)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?2019-2019学年第二学期《全等三角形》单元测试题参考答案一、选择题:1.C;2.B;3.A;4.B;5.C;6.C;7.B;8.B;9.B;10.A;二、填空题:11.ED=BA;12.7; 13. ∠A=∠D;∠ACB=∠F;BC=EF;14.7;15.3;16.90;17.130;18.③⑤;三、解答题:19.20. 略;21.(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,AB=BC ∠ABE=∠CBF BE=BF ,∴△AEB≌△CFB(SAS),∴AE=CF.(2)解:∵BE⊥BF,∴∠FBE=90°,又∵BE=BF,∴∠BEF=∠EFB=45°,∵四边形ABCD是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°-55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.22.略;23.(1)20°;(2)略;24.(1)略;(2)112.5°;25. (1)证明:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+CAD,即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.26.证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF .∵∠ACB=∠F ,∴B DEF BC EF ACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA )22. 证明:(1)∵DE ⊥AC ,BF ⊥AC ,在△ABF 和△CDE 中,AB CD DE BF =⎧⎨=⎩,∴△ABF ≌△CDE (HL ). ∴AF=CE .(2)由(1)知∠ACD=∠CAB ,∴AB ∥CD .∴BD 、CE 特殊位置关系为BD ⊥CE .26. 证明:(1)∵BE 、CF 都是△ABC 的高,∴∠AFC=∠AFQ=∠AEB=90°. ∴∠BAC+∠ABE=90°,∠BAC+∠ACF=90°,∴∠ABE=∠ACF .在△ABP 和△QCA 中AB QC ABE ACF BP CA =⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△QCA (ASA ),∴AP=QA ; (2)∵△ABP ≌△QCA ,∴∠BAP=∠CQA .∵∠CQA+∠FAQ=90°,∴∠BAP+∠FAQ=90°,即∠APQ=90°,∴AQ ⊥AQ .(1)证明:在△AOB 和△COD 中∵B C AOB DOC AB DC ∠=∠⎧⎪∠=⎨⎪=⎩,∴△AOB ≌△COD (AAS )(2)∵△AOB ≌△COD (已证),∴AO=DO, ∵E 是AD 的中点, ∴AE=DE ; 在△AOE 和△DOE 中∵AO OD AE DE OE OE =⎧⎪=⎨⎪=⎩,∴△AOE ≌△DOE (SSS ), ∴90AEO DEO ∠=∠=︒;26.解:(1)①证明:∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABC=45°,∴AD=BD ;∵∠BEC=90°,∴∠CBE+∠C=90°又∵∠DAC+∠C=90°,∴∠CBE=∠DAC ;∵∠FDB=∠CDA=90°,∴△FDB ≌△CDA (ASA )②∵△FDB ≌△CDA ,∴DF=DC ;∵GF ∥BC ,∴∠AGF=∠ABC=45°,∴∠AGF=∠BAD ,∴FA=FG ;∴FG+DC=FA+DF=AD .(2)FG 、DC 、AD 之间的数量关系为:FG=DC+AD .理由:∵∠ABC=135°,∴∠ABD=45°,△ABD 、△AGF 皆为等腰直角三角形, ∴BD=AD ,FG=AF=AD+DF ;∵∠FAE+∠DFB=∠FAE+∠DCA=90°,∴∠DFB=∠DCA ;又∵∠FDB=∠CDA=90°,BD=AD ,∴△BDF≌△ADC(AAS);∴DF=DC,∴FG、DC、AD之间的数量关系为:FG=DC+AD.27.解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC ∠BAD=∠CAE AD=AE ,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC ∠BAD=∠CAE AD=AE ;∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;②当点D在射线BC上时,α+β=180°;理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵在△ABD和△ACE中AB=AC ∠BAD=∠CAE AD=AE∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;当点D在射线BC的反向延长线上时,α=β.理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB和△AEC中,AD=AE ∠DAB=∠EAC AB=AC ,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,∴∠BAC=∠BCE,即α=β.28.解:(1)①∵t=1秒,∴BP=CQ=3×1=3厘米,∵AB=10厘米,点D为AB的中点,∴BD=5厘米.又∵PC=BC-BP,BC=8厘米,∴PC=8-3=5厘米,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP .(SAS )②∵P v ≠Q v ,∴BP ≠CQ ,又∵△BPD ≌△CPQ ,∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t =433BP =秒,∴Q v =515443CQ t==厘米/秒;(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯解得803x =.∴点P 共运动了803×3=80厘米.∵80=56+24=2×28+24,∴点P 、点Q 在AB 边上相遇,∴经过803秒点P 与点Q 第一次在边AB 上相遇.。
精选新版2019年七年级下册数学单元测试题《三角形的初步认识》完整考题(含答案)

2019年七年级下册数学单元测试题第一单元三角形的初步认识一、选择题1.如图,在△ABC中,DE是边AB的垂直平分线,BC=8cm,AC=5cm 则△ADC的周长为()A.14 cm B.13 cm C.11 cm D.9 cm答案:B2.下列6组长度的线段中,可以首尾相接组成三角形的是()①3,4,5;②1,1,3;③1,2,3;④5,5,5;⑤2,2,5;⑥3,7,4A.①②③④⑤⑥B.①④⑤C.①③④D.①②③④答案:D3.下列条件中,不能作出唯一..三角形的是()A.已知两边和夹角B.已知两边和其中一边的对角C.已知两角和夹边D.已知两角和其中一角的对边答案:B4.如图所示,已知∠1=∠2,AD=CB,AC,BD相交于点0,MN经过点O,则图中全等三角形的对数为()A.4对B.5对C.6对D.7对答案:C5.如图所示,若根据“SAS”来说明△ABC≌△DBC,已知BC是公共边,需要补充的条件是()A.AB=DB,∠l=∠2 B.AB=DB,∠3=∠4C.AB=DB,∠A=∠D D.∠l=∠2,∠3=∠4答案:B6.如图所示,在Rt△ADB中,∠D=90°,C为AD上一点,则x可能是()A 10° B.20° C.30° D.40°答案:B7.如图所示是跷跷板的示意图,支柱0C与地面垂直,点0是横板AB的中点,AB可以绕着点0上下转动,当A端落地时,∠0AC=20°.跷跷板上下可转动的最大角度(即∠A′OA)是()A.800 B.60°C.40°D.20°答案:C8.三角形的三边长都是整数,并且唯一的最长边是5,则这样的三角形共有()A 1个 B.2个 C.3个 D.4个答案:D二、填空题9.如图,AF、AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAF = .解析:20010.若一个三角形的两条高在这个三角形的外部,那么这个三角形的形状是___________三角形.解析:钝角11.已知:△ABC 中,∠A=100°,∠B -∠C =60°,则∠C=__________.解析:10°12.如图,在△ABC 中,AD 是BC 边上的中线,若△ABC 的周长为20,BC=11,且△ABD 的周长比△ACD 的周长大3,则AB= ,AC= . 6,313.,AC=CD ,∠ACD=60°, 则∠ACB= .解析:30°14.已知△ABC ≌△A ′B ′C ′,AB+AC=18 cm ,BC=7 cm ,则△A ′B ′C ′的周长是 .解析:25 cm15.如图所示,将两块相同的直角三角板的直角顶点重合放在一起,若∠AOD=110°,则∠BOC= .请你用符号表示图中的全等三角形: .解析:70°,△AOB ≌△COD16.如图所示,△ABC 中,∠B=∠C ,FD ⊥BC 于D ,DE ⊥AB 于E ,∠AFD=155°,则∠EDF= .解析:65°17.直角三角形的两个锐角的平分线AD ,BE 交于点0,则∠AOB= .解析:135°三、解答题18. 如图,把4×4的正方形方格图形分割成两个全等图形,请在下图中,沿虚线画出四 D B种不同的分法,把4×4的正方形分割成两个全等图形.解析:19.如图,AB⊥BD于B,DE⊥BD于D,已知AB=CD,BC=ED,求∠ACE的度数.解析:△ABC≌△CDE(SAS),则∠ACB=∠E,由于∠ACB+∠ACE =∠E+∠D, 则∠ACE=∠D=90°.20.如图,在△ABC和△DEF中,AC=DF,AE=BD,BC=EF,则∠C=∠F,请说明理由(填空).解:∵ AE=BD(已知)∴ =∴ =在△ABC和△DEF中===∴△ABC≌△DEF ( )∴∠C=∠F ( )解析:AE-BE,BD-BE,AB,DE,AC,DF,AB,DE,BC,EF,SSS,全等三角形的角相等.21.画一个三角形,使两个内角分别为45°和60°,它们的夹边为2.5cm.解析:略22.如图所示,已知AB=CD,BE=CF,E、F在直线AD上,并且AF=DE,说明△ABE≌△DCF的理由.解析:略23.如图所示,已知△ABE≌△ACE,D是BC的中点,你能说明△BDE≌△CDE吗?解析:略24.把大小为4×4的正方形方格图形分割成两个全等图形,如右图所示,请在下图中,沿着虚线再画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形解析:略25.如图所示,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34°,求∠DAE的大小.解析:18°26.如图所示,在△ABC中,∠ABC=∠ACB,且∠ACB=2∠A,BD⊥AC于D,求∠DBC的度数.解析:18°27.如下表,“谢氏三角”是波兰著名数学家谢尔宾斯基在1915年~l916年期间提出的,它的作法是:第一步:取一个等边三角形(记为P 1),连结各边的中点,得到完全相同的小正三角形,挖掉中间的一个;第二步:将剩下的三个小正三角形(记为P 2),按上述办法各自取中点,各自分成4个小三角形,去掉各自中间的一个小正三角形;依次类推,不断划分出小的正三角形,同时去掉中间的一个小正三角形.试求P 4的“黑”三角形的个数,“黑”三角形的总边数,边长,周长和面积,并将结果填入下表中.解析:27,81,118a ,1818a ,12764S 28.如图所示,已知△ABC 的边AB 和BC 边上的中线AD ,请把△ABC 补画完整.解析:连结BD,并延长BD到C,使DC=BD,连结AC29.在△ABC中,∠A+∠C=120°,∠B+∠C=110°,求三角形各内角的度数.解析:∠A=70°,∠B=60°,∠C=50°30.如图,从建筑物顶端A处拉一条宣传标语条幅到地面C处,为了测量条幅AC的长,在地面另一处选一点D,使D、C、B(B为建筑物的底部)三点在同一直线上,并测得∠D=40°,∠ACB=80°,求∠DAC的度数.解析:40°AB CD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 - “三角形”知识要点梳理 三角形三边关系 三角形 三角形内角和定理 角平分线 三条重要线段 中线 高线 全等图形的概念 全等三角形的性质 三角形 全等三角形 SSS SAS 全等三角形的判定 ASA AAS HL(适用于RtΔ) 全等三角形的应用 利用全等三角形测距离 作三角形
一、三角形概念 1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。 2、顶点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”。 3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示; 4、∠A、∠B、∠C为ΔABC的三个内角。 二、三角形中三边的关系 1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。 用字母可表示为a+b>c,a+c>b,b+c>a;a-b2、判断三条线段a,b,c能否组成三角形: (1)当a+b>c,a+c>b,b+c>a同时成立时,能组成三角形; (2)当两条较短线段之和大于最长线段时,则可以组成三角形。 - 2 -
3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即abcab. 三、三角形中三角的关系 1、三角形内角和定理:三角形的三个内角的和等于1800。 2、三角形按内角的大小可分为三类: (1)锐角三角形,即三角形的三个内角都是锐角的三角形; (2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。 注:直角三角形的性质:直角三角形的两个锐角互余。 (3)钝角三角形,即有一个内角是钝角的三角形。 3、判定一个三角形的形状主要看三角形中最大角的度数。 4、直角三角形的面积等于两直角边乘积的一半。 5、任意一个三角形都具备六个元素,即三条边和三个内角。都具有三边关系和三内角之和为1800的性质。 6、三角形内角和定理包含一个等式,它是我们列出有关角的方程的重要等量关系。 四、三角形的三条重要线段 1、三角形的三条重要线段是指三角形的角平分线、中线和高线。 2、三角形的角平分线: (1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 (2)任意三角形都有三条角平分线,并且它们相交于三角形内一点。 3、三角形的中线: (1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。 (2)三角形有三条中线,它们相交于三角形内一点。 4、三角形的高线: (1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。 (2)任意三角形都有三条高线,它们所在的直线相交于一点。
区 别 相 同 - 3 -
五、全等图形 1、两个能够重合的图形称为全等图形。 2、全等图形的性质:全等图形的形状和大小都相同。 3、全等图形的面积或周长均相等。 4、判断两个图形是否全等时,形状相同与大小相等两者缺一不可。 5、全等图形在平移、旋转、折叠过程中仍然全等。 6、全等图形中的对应角和对应线段都分别相等。 六、全等分割 1、把一个图形分割成两个或几个全等图形叫做把一个图形全等分割。 2、对一个图形全等分割: (1)首先要观察分析该图形,发现图形的构成特点; (2)其次要大胆尝试,敢于动手,必要时可采用计算、交流、讨论等方法完成。 七、全等三角形 1、能够重合的两个三角形是全等三角形,用符号 “≌”连接,读作“全等于”。 2、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。 3、全等三角形的性质:全等三角形的对应边、对应角相等。这是今后证明边、角相等的重要依据。 4、两个全等三角形,准确判定对应边、对应角,即找准对应顶点是关键。
中 线 平分对边 三条中线交于三角形内部
(1)都是线段 (2)都从顶点画出 (3)所在直线相交于一点
角平分线 平分内角 三条角平分线交于三角表内部
高 线 垂直于对边(或其延长线) 锐角三角形:三条高线都在三角形内部 直角三角形:其中两条恰好是直角边 钝角三角形:其中两条在三角表外部 - 4 -
八、全等三角形的判定 1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。 2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。 3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。 4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。 5、注意以下内容 (1)三角形全等的判定条件中必须是三个元素,并且一定有一组边对应相等。 (2)三边对应相等,两边及夹角对应相等,一边及任意两角对应相等,这样的两个三角形全等。 (3)两边及其中一边的对角对应相等不能判定两三角形全等。 6、熟练运用以下内容 (1)熟练运用三角形判定条件,是解决此类题的关键。 (2)已知“SS”,可考虑A:第三边,即“SSS”;B:夹角,即“SAS”。 (3)已知“SA”,可考虑A:另一角,即“AAS”或“ASA”;B:夹角的另一边,即“SAS”。 (4)已知“AA”,可考虑A:任意一边,即“AAS”或“ASA”。 7、三角形的稳定性:根据三角形全等的判定方法(SSS)可知,只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了,三角形的这个性质叫做三角形的稳定性。 九、作三角形 1、作图题的一般步骤: (1)已知,即将条件具体化; (2)求作,即具体叙述所作图形应满足的条件; (3)分析,即寻找作图方法的途径(通常是画出草图); (4)作法,即根据分析所得的作图方法,作出正式图形,并依次叙述作图过程; (5)证明,即验证所作图形的正确性(通常省略不写)。 2、熟练以下三种三角形的作法及依据。 (1)已知三角形的两边及其夹角,作三角形。 (2)已知三角形的两角及其夹边,作三角形。 (3)已知三角形的三边,作三角形。 十、利用三角形全等测距离 1、利用三角形全等测距离,实际上是利用已有的全等三角形,或构造出全等三角形,运用 - 5 -
全等三角形的性质(对应边相等),把较难测量或无法测量的距离转化成已知线段或较容易测量的线段的长度,从而得到被测距离。 2、运用全等三角形解决实际问题的步骤: (1)先明确实际问题应该用哪些几何知道解决; (2)根据实际问题抽象出几何图形; (3)结合图形和题意分析已知条件; (4)找到解决问题的途径。 十一、直角三角形全等的条件 1、在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。 2、“HL”是直角三角形特有的判定条件,对非直角三角形是不成立的; 3、书写时要规范,即在三角形前面必须加上“Rt”字样。 十二、分析-综合法 1、我们在平时解几何题时,采用的解题方法通常有两种,综合法与分析法。 2、综合法:从问题的条件出发,通过分析条件,依据所学知识,逐步探索,直到得出问题的结论。 3、分析法:从问题的结论出发,不断寻找使结论成立的条件,直至已知条件。 4、在具体解题中,通常是两种方法结合起来使用,既运用综合法,又运用分析法。 - 6 -
“三角形”单元测试 一、选择题 1.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6㎝,则△DEB的周长是( ) A.6㎝ B.4㎝ C.10㎝ D.以上都不对
(第1题) (第6题) (第7题) 2.一个多边形的内角和是720,则这个多边形的边数为( ) A.4 B.5 C.6 D.7 3.等腰三角形中的一个内角为50°,则另两个内角的度数分别是( ) A、65°,65° B、50°,80° C、50°,50° D.65°,65°或50°,80° 4.以下各组数为边长的三角形中,能组成直角三角形的是( ) A.1,2,3 B.2,3,4 C.4,5,6 D.5,12,13 5.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②一个底角为60°的等腰三角形是等边三角形;③顶角为60°的等腰三角形是等边三角形;④有两个角都是60°的三角形是等边三角形.上述结论中正确的有 ( ) A.1个 B.2个 C.3个 D.4个 6.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确的结论的个数是( ) A.1 B.2 C.3 D.4
7.如图,△ABC中,AB=AC,∠A=040,则B=( ) A、060 B、070 C、075 D、080 8.满足下列条件的ABC,不是直角三角形的是( ) A.25A, 65B B. 5:4:3::CBA