八年级数学同步导学案

合集下载

人教版初二数学八年级下册教案导学案

人教版初二数学八年级下册教案导学案

人教版初二数学八年级下册教案导学案一、教学目标1. 知识与技能:- 熟练掌握平行线及其性质;- 掌握平行线与交错线的性质;- 能应用平行线性质解决问题。

2. 过程与方法:- 培养学生观察、发现和解决问题的能力;- 通过引入问题,激发学生学习数学的兴趣。

3. 情感态度价值观:- 培养学生严谨求实的科学态度;- 培养学生合作学习的意识。

二、教学重难点1. 重点:- 平行线及其性质的理解和应用;- 平行线与交错线的性质的理解和应用。

2. 难点:- 平行线与交错线的性质的应用。

三、教学准备- 教师:教案、导学案、课件、学生练习册- 学生:学习用具、练习册四、教学过程1. 导入(5分钟)- 引入平行线的概念:请同学们在笔记本上用直尺和铅笔画一个平行四边形,观察并描述它的特点。

2. 探究(30分钟)- 向学生提出以下问题:如果平行线与交错线相交,有什么特点?请同学们自行探究并记录下来。

3. 总结(10分钟)- 整理学生的探究结果,引出平行线与交错线的性质,并向学生讲解和确认。

4. 练习(15分钟)- 请同学们打开练习册,完成相关练习题。

5. 拓展(10分钟)- 提出一些与平行线性质相关的拓展问题,鼓励学生进行讨论和解答。

6. 小结(5分钟)- 对本节课所学内容进行小结,强调学习重点和难点。

五、作业- 完成练习册中相关练习题。

六、教学反思本节课通过提出问题和引导学生自主探究的方式,激发了学生的学习兴趣和主动性。

学生在观察和记录中逐渐理解了平行线与交错线的性质,并能够灵活应用于解决问题。

通过小组合作,培养了学生的合作学习和相互帮助的意识。

然而,在练习环节,部分学生存在理解上的困惑,需要进一步强化巩固。

在今后的教学中,我将更加注重练习环节的设计,以加深学生对知识的理解和熟练应用。

八年级数学上册全册导学案(XX新版人教版)

八年级数学上册全册导学案(XX新版人教版)

八年级数学上册全册导学案(XX新版人教版)分式方程一、学教目标:1.了解分式方程的概念,和产生增根的原因..掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.二、学教重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.三、学教难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.四、自主探究:前面我们已经学习了哪些方程?是怎样的方程?如何求解?前面我们已经学过了方程。

一元一次方程是方程。

—兀一次方程解法步骤是:①去;②去_________ ;③移项;④合并______ :⑤______ 化为1。

如解方程:探究新知:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程:像这样分母中含未知数的方程叫做分式方程。

分式方程与整式方程的区别在哪里?通过观察发现得到这两种方程的区别在于未知数是否在分母上。

未知数在_____ 的方程是分式方程。

未知数不在分母的方程是________ 方程。

前面我们学过一元一次方程的解法,但是分式方程中分母含有未知数,我们又将如何解?解分式方程的基本思路是将分式方程转化为方程,具体的方法是去分母,即方程两边同乘以最简公分母。

如解方程:= ................ ①去分母:方程两边同乘以最简公分母_________________ , 得00=60 ............... ②解得V_________ .观察方程①、②中的v的取值范围相同吗?①由于是分式方程v工________ ,②而②是整式方程v可取 ______ 实数。

这说明,对于方程①来说,必须要求使方程中各分式的分母的值均不为0.但变形后得到的整式方程②则没有这个要求。

(北师大版)数学八年级下册同步导学案汇总(全书完整版)

(北师大版)数学八年级下册同步导学案汇总(全书完整版)
3.(1)如果等腰三角形的一条边长为3,另一边长为5,则它的周长为.
(2)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的腰长为.
4.△ABC中, AB=AC, 且BD=BC=AD,求∠A的度数.
5.如图,已知D.E在△ABC的边BC上,AB=AC,AD=A E,求证:BD=CE
中考真题:已 知:如图,△ABC中,AD是高,CE是中线,DC=BE, DG⊥CE,G是垂足,求证:
2.D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别为E.F,且DE=DF,
求证BF=CE[解析]本题解决的关键是利用“HL”证明△BFD≌△CED
三、例题展示:
1.下列各选项中的两个直角三角形不一定全等的是()
A.两条直角边对应相等的两个直角三角形.
B.两条锐角边对应相等的两个直角三角形.
二、基础训练:
观察勾股定理及上述定理,它们的条件和结论之间有怎样的关系?然后观察下列每组命题,是否也在类似关系
(1)如果两个角是对顶角,那么它们相等.
如果两个角相等,那么它们 是对顶角.
(2)如果小明患了肺炎,那么他一定会发烧.
如果小明发烧,那么他一定患了肺炎.
(3)三角形中相等的边所对的角相等.
三角形中相等的角所对的边相等.
已知:
求证:
证明:
得出定理: .
问题:等腰三角形两条腰上的中线相等吗?高呢?还有其他的结论吗?请你证明它们,并与同 伴交流.
二、基 础训练;
1. 请同学们阅读P6的问题(1).(2),由此得到什么结论?
2. 我们知道等腰三角形的两个底角相等,反过来此命题成立吗?并与同伴交流,由此得到什么结论?
得出定理:;简称:.

初中数学八年级上册全套导学案全册有答案

初中数学八年级上册全套导学案全册有答案

初二八年级数学上册全册导学案第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。

2021—2022学年人教版数学八年级上册 全册导学案

2021—2022学年人教版数学八年级上册 全册导学案

2021—2022学年人教版数学八年级上册全册导学案一、总体信息•课本名称:人教版数学八年级上册•出版社:人民教育出版社•学年:2021-2022二、教材概览数学八年级上册共包括以下八个单元:1.复习与认识2.整式的基本概念和性质3.一元二次方程的解法4.平面直角坐标系5.一次函数的初步研究6.相交线与平行线7.图形的对称性8.统计图及其应用每个单元的内容涵盖整合知识、概念解释、例题讲解、习题练习等方面。

三、导学教学目标及重点1.科学思考:培养学生的科学思维和解决实际问题的能力。

2.知识传授:掌握数学的基本概念、基础方法和技能,积累精选数学例题,掌握数学学科知识,并联合生活与实际中的问题进行深入探究。

3.技能训练:培养学生的做题方法、技巧,掌握常用的运算技能,提高计算的准确性。

4.交际拓展:在交际中形成良好的合作意识和集体协作能力,增强探究问题、解决问题的信心和自信。

四、单元内容介绍1. 复习与认识本单元主要是对七年级的复习和一些知识的介绍。

重点包括:整数、分数、小数及有理数的概念、化简带有多项式的复合分数、坐标系的概念与使用、正负数在图形中的应用、小数转分数、小数的意义等。

2. 整式的基本概念和性质本单元主要介绍整式的基本概念、常见整式的运算法则及其基本性质。

包括多项式的概念、同类项与合并同类项、多项式的加减法、多项式的乘法、因式分解、差的平方公式和完全平方公式等。

3. 一元二次方程的解法本单元主要介绍一元二次方程,包括方程的概念、一元二次方程的一般形式及求解方法,特别是通过因式分解法和配方法解一元二次方程,以及求解实际问题中的一元二次方程。

4. 平面直角坐标系本单元主要介绍平面直角坐标系,包括平面直角坐标系及其要素、点的坐标、直线的斜率、不等式和坐标系等知识,强调掌握直线的斜率与性质、直线方程的求法等。

5. 一次函数的初步研究本单元主要介绍一次函数的初步研究,包括一次函数的概念、函数图象、方程及其特点、斜率及其意义和应用等知识,重点突出函数的斜率和函数图象之间的关系。

八年级数学上册导学案全册g(配套教案/导学案).docx

八年级数学上册导学案全册g(配套教案/导学案).docx

13. 1平方根(34课时)学习目标:1、理解数的算术平方根的概念,并会用符号表示。

2、理解平方与开平方是互为逆运算。

3、会求一些非负数的算术平方根。

自学指导:认真学习课本68—71页的内容,完成下列要求:1、循中被开方数a的范围怎样。

0的算术平方根的意义。

2、完成例1,注意例1的书写格式。

3、学习例3的内容,注意屈与7是怎样比较的。

4、自学后完成展示内容,20分钟后进行展示。

展示內容:4的算术平方根是—即—9—的算术平方根是—即16 2、•••止数a的算术平方根是需,•••2的算术平方根是____V4的算术平方根是2,3、求下列各数的算术平方根:⑷(—3)2 (5) 7(1) 0.0025 (2) 121 (3) 324、求下列各式的值:(1)7i (3) J(-2)5、计算下列各式:(2)6、求下列各等式中的正数x(1) x2= 169 (2) 4x2— 121 =07、比较下列各组数的大小。

(1) V140 与12 (2) 与0.513.3 平方根(35课时)一、学习目标1、 理解平方根的概念2、 了解开平方的定义3、 掌握平方根的性质二、自学指导认真阅读72-74页内容,完成下列要求:1、说明:一个正数a 的算术平方根有—个,平方根有—个,并且互为 ______________0的平方根是 _____ 2、负数有没有平方根,为什么? 3、 注意根号前的符号4、 自学20分钟后,进行展示活动三、展示内容填表:X8-835—X 2121 0.36 0计算下列各式的值:3、平方根起源于正方形的面积,若一个正方形的面积为A,那么这个正方形的边长为多少?1、2、(1)VI69(2) -V0.0049(3)2(-3)(4)-4、判断下列说法是否止确(1)5是25的算术平方根( )525(2)"是三的一个平方根( )636(3)(-4j 的平方根是一4 ( )(4)0的平方根与算术平方根都是0 ( )5、下列各式是否有意义,为什么?(1) — V3 (2) J_36、求下列各式的x的值:(1) %2 =25 4(3) 25 %2 =364 2.? -18 = 013.2立方根(36课时)学习目标:1、 理解并掌握立方根的概念,会用符号表示一个数的立方根。

2022-2023新人教版八年级数学下册导学案全册

2022-2023新人教版八年级数学下册导学案全册

2022-2023新人教版八年级数学下册导学案全册第一单元:有理数的加减第一课时:有理数的加法- 研究目标:掌握有理数的加法运算- 研究内容:正数加正数、负数加负数、正数加负数、有理数加零的运算法则- 研究重点:灵活运用有理数的加法规则解决实际问题- 研究方法:理解规则,多做练题第二课时:有理数的减法- 研究目标:掌握有理数的减法运算- 研究内容:正数减正数、负数减负数、正数减负数、有理数减零的运算法则- 研究重点:理解减法的本质,解决实际问题- 研究方法:理解规则,多做练题第三课时:加减混合运算- 研究目标:运用有理数加减法解决实际问题- 研究内容:有理数的混合运算,包括正数、负数的加减混合运算- 研究重点:分析问题,运用加减法的规则解决问题- 研究方法:多做实际问题练,加强思维训练第二单元:比例与相似第一课时:比例- 研究目标:了解比例的概念,掌握比例的基本性质- 研究内容:比例的定义、比例的基本性质- 研究重点:掌握比例的性质,能够应用到实际问题中- 研究方法:理解概念,多做练题第二课时:比例的应用- 研究目标:学会应用比例解决实际问题- 研究内容:比例的应用,包括物体的放大缩小、图形的相似等- 研究重点:分析问题,应用比例的知识解决实际问题- 研究方法:多做应用题,强化实际操作能力第三课时:相似图形- 研究目标:了解相似图形的性质和判定条件- 研究内容:相似图形的定义、相似图形的性质- 研究重点:掌握相似图形的性质和确定相似关系的条件- 研究方法:理解概念,多做练题......(继续给出下一单元的导学案)。

人教版八年级数学上册全册导学案

人教版八年级数学上册全册导学案

人教版八年级数学上册全册导学案第一单元有理数导学目标- 掌握有理数的概念和表示方法;- 理解有理数的大小比较规则;- 能够进行有理数的加法和减法运算。

导学内容1. 有理数的概念:有理数是一种可以表示为分数形式的数,包括整数和分数。

2. 有理数的表示方法:- 整数可以用正负号和数字表示,如正整数用"+"表示,负整数用"-"表示;- 分数可以用分子和分母表示,分子表示分数的数值,分母表示分数的单位。

3. 有理数的大小比较规则:- 两个有理数大小比较时,可以先化为相同分母的分数,然后比较分子的大小;- 同号的有理数比较大小,绝对值大的数更大;异号的有理数比较大小,正数更大。

4. 有理数的加法和减法运算:- 加法:同号有理数相加,先相加后保持原符号;异号有理数相加,先相减后取绝对值较大的符号;- 减法:减去一个有理数等于加上它的相反数。

导学步骤1. 引入话题:通过举例子和学生互动引入有理数的概念。

2. 讲解表示方法:介绍整数和分数的表示方法,结合练让学生掌握如何表示有理数。

3. 比较大小规则:通过例题引导学生理解有理数的大小比较规则。

4. 运算操练:设计一些加法和减法的练题,让学生运用所学的规则进行计算。

5. 总结归纳:请学生总结有理数的概念、表示方法和运算规则,并进行相互讨论。

导学评价本节导学案主要介绍了有理数的概念、表示方法以及大小比较规则和运算规则。

通过学生的活动参与和练习题的操练,可以评价学生是否掌握了有关内容。

可以在课堂上进行小组讨论和个别辅导,帮助学生消化和理解所学内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学同步导学案——正比例函数导学案
知识与技能
1、理解正比例函数的概念,能在用描点法画正比例函数图象过程中发现正比例函数图象性质
2、能用正比例函数图象的性质简便地画出正比例函数图像
3、能够利用正比例函数解决简单的数学问题
过程与方法学生通过探究实际问题中函数关系归纳得出正比例函数的概念,再通过动手操作画图象观察概括出正比例函数图象的性质。

学生在探究合作中交流,体验知识的形成过程。

情感态度与价值观通过教师的主导作用,提高学生的合作学习效率,让学生体会合作学习的好处。

导学过程:
一、准备知识
完成下列思考问题:(先独立完成,再小组交流)
请写出下列问题中的函数关系式
(1)圆的周长l随半径r的大小变化而变化;
(2)一只燕欧每天飞行的路程为200千米,那么它的行程y(单位:千米)就是飞行时间x(单位:天)的函数。

(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化;
(4)冷冻一个0℃的物体,使它每分下降2℃,物体的温度T(单位:℃)随冷冻时间t(单位:分)的变化而变化。

二、探究新知
1、观察上面四个函数,讨论如下问题:
(1)他们有什么共同特点?
(2)四个函数解析式用一个一般形式如何表达呢?
(3)一般地,形如()函数,叫做正比例函数,其中
叫做。

2、练一练
(1)下列函数哪些是正比例函数?
① y=
② y=
③ y=-
④ y=2x⑤y=x
+1
⑥ y=5x+2
(2)若y=5x
是正比例函数,则m=___________.
(3)若函数
是关于
的正比例函数,则
3、1)用描点法画出下列函数的图像
(1) y=2x (2) y=-2x
2)观察上面两个函数的图像
(1)它们有什么相同点与不同点?
(2)试归纳正比例函数的性质。

①正比例函数是一条,它一定经
过。

②因为过点有且只有一条直线,我们在画正比例函数图象时,只需确定两点,通常是(,)和(,)
③当k > 0时,直线经过象限,从左到右呈趋势,即

的增大而
当k〈0时,直线经过象限,从左到右呈趋势,即

的减小而
4、试一试:用最简单的方法画出下列函数的图像
(1) y=-3x (2) y=
x
三、巩固提升
已知函数
是关于
的正比例函数
(1)求正比例函数的解析式
(2)画出它的图象
(3)若它的图象有两点
,当
时,试比较
的大小
四、课堂小结
本节课你有哪些收获?请在小组内交流。

五、课堂检测(先独立完成,再小组内评价)
1.汽车以40千米/时的速度行驶,行驶路程y(千米)与行驶时间x(小时)之间的函数解析式为___________________.y是x的_______函数。

2.函数y=kx(k≠0)的图象过P(-3,3),则k=____,图象过_____象限。

3.y=
, y=
, y=3x+9, y=2x
中,正比例函数是____________.
4.在函数y=2x的自变量中任意取两个点x
,x
,若x
<x
,则对应的函数值y
与y
的大小关系是y
___y
.
5、若y与x-1成正比例,x=8时,y=6。

写出x与y之间的函数关系式,并分别求出x=4和x=-3时的值
六、布置作业
120页1、2题。

相关文档
最新文档