第2课时 二次根式的四则运算

合集下载

二次根式的概念与运算

二次根式的概念与运算

二次根式的概念与运算二次根式是高中数学中的重要概念之一,它代表着一个数的平方根。

在本文中,我将详细介绍二次根式的概念以及如何进行运算。

一、二次根式的概念二次根式是指形如√a的数,其中a为一个非负实数。

在二次根式中,根号下的数字被称为被开方数。

它可以是一个正整数、零或者一个正小数。

对于正整数和零,我们可以直接求出它们的平方根;对于正小数,我们可以通过近似值来表示。

例如,√9 = 3,表示9的平方根为3。

同样地,√16 = 4,表示16的平方根为4。

而对于非完全平方数,我们可以将其表示为无理数,如√2、√3等。

二、二次根式的化简在运算中,我们常常需要对二次根式进行化简。

化简的过程就是将二次根式写成最简形式,使得根号下的数字没有约数,且没有分母中有根号的情况。

例如,对于√8,我们可以将其化简为2√2;而对于√18,我们可以化简为3√2。

化简的方法是找出被开方数的所有因数,将其中的平方数提取出来,剩余的非平方数放在根号下。

需要注意的是,我们只能将整数的平方数提取出来,不能将分数的平方数提取出来。

例如,对于√(3/4),我们不能化简为(√3)/2。

三、二次根式的四则运算在数学中,我们常常需要对二次根式进行加、减、乘、除的运算。

下面我将分别介绍这些运算的方法。

1. 加减运算对于二次根式的加减运算,我们首先要保证被开方数相同,然后将它们的系数相加或相减。

例如,√2 + 2√2 = 3√2;√3 - √3 = 0。

2. 乘法运算对于二次根式的乘法运算,我们将它们的系数相乘,同时将根号下的数字相乘。

例如,2√3 * 3√2 = 6√6;(√5 + √3)(√5 - √3) = 5 - 3 = 2。

3. 除法运算对于二次根式的除法运算,我们将被除数和除数的系数相除,同时将根号下的数字相除。

例如,(4√2)/(2√2) = 4/2 = 2;(√6)/(√3) = √2。

需要注意的是,在除法运算中,如果除数有根号,则我们需要乘以其共轭形式,以消去根号。

二次根式的计算和化简

二次根式的计算和化简

二次根式的计算和化简二次根式是指包含平方根的表达式。

在数学中,我们经常需要进行二次根式的计算和化简。

本文将介绍如何进行二次根式的计算和化简,并提供一些相关的例子和方法。

一、二次根式的计算二次根式的计算主要包括加减乘除四则运算和指数运算。

下面将分别介绍这些运算的方法。

1. 加减运算对于两个二次根式的加减运算,首先要确定根号下的数(即被开方数)是否相同。

如果相同,则可以直接对根号下的数进行加减运算,并保持根号不变。

如果根号下的数不同,则需要进行化简,使根号下的数相同,再进行加减运算。

例如,计算√3+ √5。

由于根号下的数不同,我们可以进行化简。

将√3与√5相加,得到√3 + √5。

这就是最简形式的结果,无法再进行化简。

2. 乘法运算对于两个二次根式的乘法运算,可以直接将根号下的数相乘,并保持根号不变。

例如,计算√3 × √5。

将根号下的数相乘,得到√15。

这就是最简形式的结果。

3. 除法运算对于两个二次根式的除法运算,可以将被除数与除数的根号下的数相除,并保持根号不变。

例如,计算√15 ÷ √3。

将根号下的数相除,得到√5。

这就是最简形式的结果。

4. 指数运算对于二次根式的指数运算,可以将指数应用于根号下的数,并保持根号不变。

例如,计算(√2)²。

将指数应用于根号下的数2,得到2。

因此,(√2)² = 2。

二、二次根式的化简化简二次根式的目的是使根号下的数尽量小。

下面将介绍一些常用的化简方法。

1. 提取公因数如果根号下的数可以被某个数整除,可以将其提取出来,并保持根号不变。

这是一种常见的化简方法。

例如,化简√16。

16可以被4整除,所以可以将16写成4×4,即√(4×4)。

继续化简,得到2×√4。

最后,我们得到2×2 = 4。

因此,√16 = 4。

2. 合并同类项如果有多个二次根式相加或相乘,可以合并同类项,使根号下的数相加或相乘。

统编北师大版八年级数学上册优质课件 第2课时 二次根式的四则运算

统编北师大版八年级数学上册优质课件 第2课时 二次根式的四则运算

例4 计算:
1 3 2 2 3 ;
2 12 3 5 ;
3
2
5 1 .
4
13 3
13 3 ;
5
12
1 3
3;
6
8 18 . 2
解:1 3 2 2 3=32 23=6 6 ; .
2 12 3 5= 12 3 5= 36 5=6 5=1;
3
2
5 1 =
2
1. 计算:
1 5 9 ; 2 12 6 ; 3 3 1 2 3 ;
20
3
4
2
2
3 1 ;
5
27
1 3
3.
1 3 ; 2 2 6 ; 3 3 1;
2
4 13 4 3 ; 5 10 .
2. 下列计算是否正确?
1 2 3= 5 ; 2 2 2=2 2 ; 3 8 = 4 .
第2课时 二次根式的 四则运算
北师大版 八年级上册
前面我们学习了二次根式的两个性质: 积的算术平方根和商的算术平方根的两个式子,即
ab a · (b a 0,b 0) a a(a 0,b 0) bb
现在把等号的左边与右边交换,就可得到 二次根式的乘法法则和除法法则:
a · b a(b a 0,b 0) a a(a 0,b 0) bb
2
课后作业
布置作业:习题2.10 1、3题。 完成练习册中本课时的习题。
例3 计算:
1 6 2 ; 2 6 3 ; 3 2 .
3
2
5
解:1 6 2 = 6 2 = 4=2;
3
3
1 6 2 ; 2 6 3 ; 3 2 .
3
2
5
2 6 3 = 6 3 6 3 = 9 = 3 ;

二次根式的混合运算 公开课教学设计

二次根式的混合运算 公开课教学设计

第2课时 二次根式的混合运算1.会熟练地进行二次根式的加减乘除混合运算,进一步提高运算能力;(重点)2.正确地运用二次根式加减乘除法则及运算律进行运算,并把结果化简.(难点)一、情境导入如果梯形的上、下底边长分别为22cm ,43cm ,高为6cm ,那么它的面积是多少?毛毛是这样算的:梯形的面积:12(22+43)×6=(2+23)×6=2×6+23×6=2×6+218=23+62(cm 2).他的做法正确吗? 二、合作探究探究点一:二次根式的混合运算 【类型一】 二次根式的四则运算 计算:(1)12223×9145÷35; (2)⎝⎛⎭⎫312-213+48÷23+⎝⎛⎭⎫132;(3)2-(3+2)÷3.解析:先把各二次根式化为最简二次根式,再把括号内合并后进行二次根式的乘法运算,然后进行加法运算.解:(1)原式=12×9×83×145×53=12×9×229=2;(2)原式=⎝⎛⎭⎫63-233+43÷23+13=2833×123+13=143+13=5; (3)原式=2-(3+2)÷13=2-3+23=2-1-233.方法总结:二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式. 探究点二:利用乘法公式及运算律进行二次根式混合运算计算:(1)(2+3-6)(2-3+6); (2)(2-1)2+22(3-2)(3+2); (3)⎝⎛⎭⎫6-1332-3424×(-26).解析:(1)利用平方差公式展开然后合并即可;(2)先利用完全平方公式和平方差公式展开然后合并即可;(3)利用乘法分配律进行计算即可.解:(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+62;(2)原式=2-22+1+22×(3-2)=2-22+1+22=3;(3)原式=⎝⎛⎭⎫6-66-326×(-26)=-236×(-26)=8. 方法总结:利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.探究点三:二次根式混合运算的综合运用【类型一】 与二次根式的混合运算有关的新定义题型对于任意的正数m 、n 定义运算※为m ※n =⎩⎨⎧m -n (m ≥n ),m +n (m <n ).计算(3※2)×(8※12)的结果为( )A .2-46B .2C .25D .20解析:∵3>2,∴3※2=3- 2.∵8<12,∴8※12=8+12=2(2+3),∴(3※2)×(8※12)=(3-2)×2(2+3)=2.故选B.方法总结:弄清新定义中的运算法则,转化为代数式的运算,正确运用运算律及公式是解题的关键.【类型二】 二次根式运算的拓展应用请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰似斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解析:分别把n =1、2代入式子化简即可.解:第1个数,当n =1时,15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15[1+52-1-52]=15×5=1; 第2个数,当n =2时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n=15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52=15×1×5=1.方法总结:此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.三、板书设计1.二次根式的四则运算先算乘方(开方),再算乘除,最后算加减,有括号的先算括号内的.2.运用乘法公式和运算律进行计算 在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.本节课以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆.同时加强师生交流,以激发学生的学习兴趣.。

冀教版数学八年级上册 二次根式的四则运算

冀教版数学八年级上册  二次根式的四则运算

a2b ab2 4 2 . ,
4.计算下列各式:
1
2
80 6
2 3
2
40 2
;
解:原式 2 80 2 6 2 1 20
32
4 10 2 2 6 5 4 10 4 3 5;
2 5 62 5;
解:原式 5 2
2
5 626 5
2 5 5 12 6 5 7 4 5;
1 2
2
2
5
3
2
2
1 20 18 1.
2
课堂小结
二次根式的混合运算 与数、整式和分式的混合运算一样,二次根式的混合运算,
也应该先算__乘__除___,后算_加__减__;有括号时,先算括__号__内__的.
乘法公式的运用
2
2
2
a b a 2 a b b
2
2
5 2
A
5 3
的结果是
2
A.
B.
C.
4.已知等腰三角形的两边长分别为2 3 5 2
D和.
,则这个等B腰三角形的周长为( )
A. 4 3 5 2
2 3 10 2
B.
C. 4 3 10 2
4 3 10 2 2 3D.10 2

5.计算:
1 2 8 3
4
1 3 27
75;
2
1 2
24
0.5 2
3 20 3 32 5 27 .
解:原式 2 5 3 32 5 3 3
2
2
2 5 3 3 20 27 7.
5.化简下列各式:
1 1 ;
5 2
解:
5 2
5 2 5 2;

《二次根式》第2课时示范课教学设计【数学八年级上册北师大】

《二次根式》第2课时示范课教学设计【数学八年级上册北师大】

《二次根式》教学设计
第2课时
一、教学目标
1.掌握二次根式的乘、除法运算法则,并能够熟练应用乘、除法法则进行计算.
2.会用二次根式的四则运算法则进行简单运算.
3.用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围内正确计算,培养类比学习的能力.
4.增强学生的符号、应用意识,培养学生合作交流、合情推理、表达能力。

二、教学重难点
重点:掌握二次根式的乘、除法运算法则,并能够熟练应用乘、除法法则进行计算.
难点:会用二次根式的四则运算法则进行简单运算.
三、教学用具
电脑、多媒体、课件、教学用具等
四、教学过程设计
a a
(a≥0,b>0)
=
b b
思考长方形的面积是20,它的长是5,宽是多少?
教师追问:该怎么计算呢?
教师提示:这一节我们根据之前学过的二次根式的性质来解决二次根式的四则运算问题吧.
a b=a b(a≥0
a
(a≥0,b>0)
=
b
加法、减法法则:
先化为最简二次根式.
35
思维导图的形式呈现本节课的主要内容:。

二次根式的四则运算

二次根式的四则运算

也可以:
解:原式=
(2 6 5 2) 2
2 2
2 3 5
= 2 6 2 5 = 2 3 5
注意:(1)运算的顺序(2)运算律的应用
典例分析
例2 计算: (3
2 48)( 18 4 3)
解:原式= 3 2 18 3 2 4 3 + 48 18- 48 4 3 方法1:
初中数学 八年级 下册
二次根式的四则运算
潘红裕 南通市通州区实验中学
版权所有:南通市教育局
知识回顾 二次根式四则运算顺序:
与数、整式、分式的混合运算的顺序一样,先算乘
方,再算乘除,最后算加减,有括号时先算括号内
的,最后计算的结果化为最简二次根式。
典例分析

例1 计算下列各式: (1) 3( 6 8) ;(2)(
= 18 12 6+12 6 -48 = 30
注意:多项式的乘法法则在二次根式的运算中仍然适用
典例分析
例2 计算:(3
2 48)( 18 4 3) 4 3 3 2
(3 2 4 3)(3 2 4 3) 3)2
解:原式= 方法2:
= (3 2 )2 (4 = 18-48 = -30
24 50 ) 2
.
典例分析
例1 计算:(1) 3( 6 8)
解:原式= 3 6 3 8 = 18 24
= 3 2 2 6
注意:乘法的运算律在二次根式的运算中都是适用的。
典例分析
(2) ( 例1 计算:
24 50 ) 2
解:原式= = =
24 2 50 2 12 25
注意:整式乘法公式在二次根式的运算中仍然适用

16.3.2二次根式四则混合运算

16.3.2二次根式四则混合运算
16.3.2 二次根式四则混合运算
学习目标
理解二次根式四则混合运 算的运算顺序并会正确运用.
自学指导
认真看课本P14练习前,重点看例3、4 的解题格式和步骤,总结二次根式混合运 算的顺序是什么,思考对结果有什么要求; 注意“书签”中的内容. 6分钟后比谁能熟 背二次根式混合运算的运算顺序,会仿照 例题做对检测题. 如有疑难,可以小声问同学或举手问 老师.
检测
必做题:P14 练习 1、2 1 选做题:计算 12 75 3 3 48 的结果 是( ) 4 3(C) (A)6 (B) 2 3 ( 6 D)12要求:来自1、8分钟内独立完成.
2、仿照例题,书写工整.
(比谁做得又对又快,先做完的举手示意)
课堂作业
必做题:P15 选做题:P15 4、6 7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档