分数函数的值域

合集下载

分式函数值域的求法

分式函数值域的求法
1 7 0
( 海 县 岔路 镇 初 级 中 学 . 江 宁 海 3 5 0 ) 宁 浙 1 6 6

要 : 数 的值 域 是 中学 数 学 的重 要 内容 。 域 的 求 法 很 多 , 文基 于 数 学 思 想 : 程 思想 及 数 形 结合 思想 给 出 函 值 本 方
了分 式 函 数值 域 的 两 种求 法 . 关键 词 : 函数 :值 域 :数 学 思 想
而 函数 的值域 问题 却是联 系各种 知识 点 的纽带. 函数 值域 方法很 多 , 求 下面 基于 数学 思想 给 出求 形 如
F : ( ) 分 式 函数值域 的两 种方法 .
1用 方 程 思 想 求 值 域
例 1 求 函数 y 2 6 c 。 : : + 斛 ( ≠0) 的值 域

解: 变形得 似 6 +( )0 此二 次方 程有 实数解 , A= ‘ 4 (_ > , 4 (— ≤6 . + c =, 则 b 一 0c y) 10 即 a c Y) ‘
当。, c ,y 喾; 。 解 ≥ 或≤ . 。时 得 ≤ 或 当 时 得 , 竽 解 ≥ , y
( ) O 1
收 稿 日期 :0 8 I — 2 2 0 一 10 作 者 简 介 : 晓 阳 ( 9 5 ) 男 , 江 宁 海人 , 海 县 岔路 镇 初 级 中 学一 级 教 师 , 江 省 农 村 中小 学 教 师 “ 雁 工 程 ” 娄 16 一 , 浙 宁 浙 领 省 级 骨 干初 中数 学 教 师班 学 员 ( 宁波 项 目 ) 。
注 : g x) 1时, 当 ( = 函数 F = () 为 F ) ( ) ( ,因而 y a‘ b + = - x+ x c为分式 函数 的特殊 情形.

例析用判别式法求分式函数值域之困惑

例析用判别式法求分式函数值域之困惑

百花园地新课程NEW CURRICULUM判别式法是求形如y =ax 2+bx+c dx 2+ex+f(a 2+d 2≠0)的分式型二次函数值域的常用方法。

但是很多学生在学习和运用判别式法的过程中,发现运用判别式法求值域时,有时候是对的,有时候又是错的,其中的原因究竟为何并不清楚,后来干脆不用判别式法而改用其他方法。

其实只要你掌握了判别式法的理论依据及易错点,一般来说,求形如y =ax 2+bx+c dx 2+ex+f(a 2+d 2≠0)的分式型二次函数值域还是比较方便的。

下面就本人对判别式法的一些理解,来分析一下为什么用判别式法有时是对的,有时候又是错的。

首先,让我们通过一道例题来看一下,判别式法求形如y =ax 2+bx+c dx 2+ex+f (a 2+d 2≠0)的分式型二次函数值域的一般步骤及其理论依据。

例1:求函数y =x 2+x -1x 2+x -6的值域。

解:由y =x 2+x -1x 2+x -6可得(y -1)x 2+(y -1)x -6y +1=0★10当y -1=0即y =1时,★式可化为-5=0显然不成立。

20当y -1≠0即y ≠1时,★式为关于x 的一元二次方程Δ=(y -1)2-4(y -1)(1-6y )≥0得y ≥1或y ≤15由10、20可得y ∈(-∞,15)∪(1,+∞)即所求函数的值域为y ∈(-∞,15)∪(1,+∞)。

例2:求函数y =2x 2-x +1x 2+2x -3的值域。

解:由y =2x 2-x +1x 2+2x -3可得(y -2)x 2+(2y +1)x -3y -1=0★10当y -2=0即y =2时,★式可化为5x -7=0得x =75因为函数y =2x 2-x +1x 2+2x -3的定义域为(-∞,-3)∪(-3,1)(1,+∞)而x =75∈(-∞,-3)∪(-3,1)(1,+∞)所以,y =2符合题意。

20当y -2≠0即y ≠2时,★式为关于x 的一元二次方程Δ=(2y +1)2+4(y -2)(3y+1)≥0得y ≥2+11√4或y ≤2-11√4由10、20可得y ≥2+11√4或y ≤2-11√4即所求函数的值域为(-∞,2-11√4]∪[2+11√4,+∞)注:由上述例1和例2可以看出,用判别式法求值域大致可分为四步:1.将分式形如y =ax 2+bx +c dx 2+ex+f (a 2+d 2≠0)的分式型二次函数转化为关于x 的整式方程(dy-a )x 2+(ye-b )x +yf -c =0★。

二次分式函数值域的求法

二次分式函数值域的求法

二次分式函数值域的求法首先,我们先来了解什么是二次分式函数。

y = f(x) = (ax^2 + bx + c) / (dx^2 + ex + f),其中a、b、c、d、e、f都是实数且d不等于0。

要求二次分式函数的值域,就是要确定函数f(x)的所有可能取值。

我们先来看一般情况下的二次分式函数。

假设二次分式函数的分母dx^2 + ex + f有两个不同的实根x1和x2、那么,显然x可以取任意实数值,因为任何实数值代入到二次分式函数中都能找到对应的x,使得分母不为0。

所以,可以确定二次分式函数的取值范围是整个实数集。

接下来,我们来看一些特殊情况下的二次分式函数。

情况一:分母为常数的情况假设分母dx^2 + ex + f = C(C为常数)。

那么这个二次分式函数的分母恒为C,不会出现分母为0的情况。

所以此时的二次分式函数的值域也是整个实数集。

情况二:分母为一个一次函数的情况假设分母dx^2 + ex + f只有一个实根x0。

那么此时的二次分式函数y = f(x)就有一个由实根x0确定的竖直渐近线,即在x=x0这个点处,函数值可能无限大。

在其他的实数点处,函数值可能有限。

所以此时的值域是整个实数集。

情况三:分母为一个完全平方的情况假设分母dx^2 + ex + f可以因式分解为(dx + g)^2(g为常数)。

那么此时的二次分式函数y = f(x)可以写成分式 (ax^2 + bx + c) /(dx + g)^2、这样,分母为(dx + g)^2,表明了这个二次分式函数有一个由分母的因式(dx + g)确定的零点,即在x=-g这个点处,函数值可能无限大。

其它实数点处函数值可能有限。

所以此时的值域是整个实数集。

综上所述,无论是一般情况还是特殊情况,二次分式函数的值域都是整个实数集。

为了更好地理解二次分式函数值域的求法,我们可以通过绘制函数图象来进行观察。

例如,考虑函数f(x)=(2x^2+3x+1)/(x^2+2x+1)。

分式函数三种值域求法

分式函数三种值域求法

分式函数三种值域求法
在求解分式函数的值域时,通常可以使用以下三种方法:
1. 构造法:通过对分式函数进行构造,确定函数的值域范围。

具体步骤如下:
- 将分式函数表示为一个等式,将等式中的分母进行因式分解,找出分母的零点,得到不可取的值。

- 根据分式函数的定义域限制和函数的性质,确定分子函数和分母函数的值域范围。

- 根据值域范围的限制,求解分式函数的值域。

2. 导数法:对分式函数求导,利用导数的性质来确定值域范围。

具体步骤如下:
- 首先找到分式函数的定义域,并求出其导数。

- 根据导数的增减性分析函数的单调性,并确定函数的极值点。

- 根据函数的单调性和极值点,确定值域范围。

3. 图像法:通过绘制函数的图像,观察其图像特征来确定函数的值域范围。

具体步骤如下:
- 绘制分式函数的图像,可以使用计算机软件、图
形计算器等工具。

- 观察图像的函数曲线,确定函数的最大值、最小值和区间。

- 根据图像的特征,确定函数的值域范围。

这三种方法可以根据具体情况选择使用,有时也可以结合使用以求得更准确和全面的值域范围。

在实际应用中,可以根据具体的分式函数和问题的要求来选择适合的方法。

分式函数求值域

分式函数求值域

分式型函数供值域的要领探讨之阳早格格创做正在教教中,笔者时常逢到一类函数供值域问题,此类函数是以分式函数形式出现,有一次式比一次式,两次式比一次式,一次式比两次式,两次式比两次,当前对付那类问题举止探讨.一、形如d cx bax x f ++=)((0,≠≠b o a )(一次式比一次式)正在定义域内供值域. 例1:供2312)(++=x x x f ()32-≠x 的值域. 解:23134)32(3)32(2)(+--++=x x x x f =233132+-x 32233132,02331≠+-∴≠+-x x ∴其值域为}⎩⎨⎧≠32/y y普遍性论断,d cx bax x f ++=)((0,≠≠b o a )如果定义域为{/x c d x -≠},则值域}⎩⎨⎧≠c a y y /例2:供2312)(++=x x x f ,()2,1∈x 的值域.分解:由于此类函数图像不妨通过反比列函数图像仄移得出,所以办理正在给定区间内的值域问题,咱们不妨绘出函数图像,供出其值域.解:2312)(++=x x x f =233132+-x ,是由xy 31-=背左仄移32,进与仄移32得出,通过图像瞅察,其值域为⎪⎭⎫ ⎝⎛85,53小结:函数闭系式是一次式比一次式的时间,咱们收当前此类函数的真量是反比率函数通过通常得出的,果此咱们不妨做出其图像,去供函数的值域.二、形如供xa x x f +=)(()0≠a 的值域.分解:此类函数中,当0<a ,函数为单调函数,较简朴,正在此咱们没有干计划,当0>a 时, 对付函数供导,,1)(2'xa x f -=0)('>x f 时,),(a x -∞∈⋃+∞,a ),0)('<x f 时,),0()0,(a a x ⋃-∈,根据函数单调性,咱们不妨干出此类函数的大概图像,其咱们常道的单勾函数,通过图像供出其值域.例3)上递三、用),nmx c bx ax x f +++=2)((0,0≠≠a m )正在定义内供值域的问题.例3:(2010沉庆文数)已知0t >,则则函数241t t y t-+=的最小值为_______.解:41142-+=+-=t t t t t y ,∴>o t 由基原没有等式天2-≥y例4:供)1(21)(2>++-=x x x x x f 的值域.解:令,1,1+==-t x t x 则则2)1()1()(2++++=t t tx f =341432++=++t t t t t,其中t .0>则由基原没有等式得71)(≤x f例5:供)21(12224)(2->+++=x x x x x f 的值域.解:令,12+=x t 则21-=t x ,t t t x f 2)21(2214)(2+-+⎪⎭⎫⎝⎛-==t t t 22+-=12-+t t,其中0>t ,由基原式得122)(-≥x f小结:对付于此类问题,咱们普遍换元整治后,将函数形成)0()(>+=a x ax x f 那典型的函数,办理此类函数注意应用基原没有等式,当基原没有等式没有成的时间,注意应用单勾函数的思维去办理此类问题三、形如)0,0()(22≠≠++++=m a c bx mx c bx ax x f 正在定义域内供值域.例5:供11222++++=x x x x y 的值域. 分解:当定义域为R 时,咱们采与判别式法供此类函数的值域.当定义域没有为R 时,没有该采与此法,可则有大概堕落.此时,咱们要根据函数闭系的特性,采与其余要领. 解:012>++x x恒恒创造,所以此函数的定义域为R x ∈,将函数整治成闭于x 的圆程,1222++=++x x y yx yx ,,0)1()1()2(2=-+-+-y x y x y 当,02≠-y 闭于x的圆程恒有解,则)1)(2(4)1(2----=∆y y y ,0≥即371≤≤y ,隐然,2=y 也创造,所以其值域为{}371/≤≤y y以上是供此类函数的罕睹要领,但是共教们正在解题历程中.没有要拘泥以上要领,咱们要根据简直函数的特性采与相对付应的要领,多思索,闻一知十,那以去办理此类问题便很简单了.。

函数详解之分式函数

函数详解之分式函数

函数详解之分式函数30.函数xa x x f -=2)(的定义域为(0,1](a 为实数).⑴当1-=a 时,求函数)(x f y =的值域;⑵若函数)(x f y =在定义域上是减函数,求a 的取值范围;⑶求函数)(x f y =在x ∈(0,1]上的最大值及最小值,并求出函数取最值时x 的值.解:(1)显然函数)(x f y =的值域为),22[∞+;(2)若函数)(x f y =在定义域上是减函数,则任取∈21,x x ]1.0(且21x x <都有)()(21x f x f > 成立, 即0)2)((2121>+-xx ax x 只要212x x a -<即可,由∈21,x x ]1.0(,故)0,2(221-∈-x x ,所以2-≤a , 故a 的取值范围是]2,(--∞; (3)当0≥a 时,函数)(x f y =在]1.0(上单调增,无最小值, 当1=x 时取得最大值a -2;由(2)得当2-≤a 时,函数)(x f y =在]1.0(上单调减,无最大值, 当x =1时取得最小值2-a ;当02<<-a 时,函数)(x f y =在].0(22a-上单调减,在]1,[22a -上单调增,无最大值,当22a x-=时取得最小值a22-.31.已知函数21()(0,0,)ax f x a b c R bx c+=>>∈+是奇函数,当0x >时,有()f x 最小值2,其中b N ∈,且5(1)2f =.(Ⅰ)试求函数()f x 的解析式;(Ⅱ)问函数()f x 的图像上是否存在关于点(1,0)对称的两点?若存在,求出点的坐标;若不存在,请说明理由. 解 (Ⅰ)由2211()()ax ax f x f x bx cbx c++-=-⇒=--++,即bx c bx c -+=--,0c ∴= ……………………………………………2分0,0,0a b c >>= ,21()ax f x bx+∴=b a∴= ……………………4分又515(1)22a f b+<∴<,即221525202b b b b+<⇒-+<12()1,2b b N b⇒<<∈⇒=∴11abc=⎧⎪=⎨⎪=⎩……………………………6分(Ⅱ)设00(,)M x y关于点(1,0)的对称点为N,则00(2,)N x y--,………………8分00020000121122y xxx xy xx⎧=+⎪⎪∴⇒--⎨⎪-=-+⎪-⎩⇒01222xy⎧=+⎪⎨=⎪⎩或01222xy⎧=-⎪⎨=-⎪⎩…………11分∴存在两点(12,22)M+与(12,22)N--关于点(1,0)对称.………12分32.已知函数2211()af xa a x+=-,常数0>a.(1)设0m n⋅>,证明:函数()f x在[]m n,上单调递增;(2)设0m n<<且()f x的定义域和值域都是[]m n,,求常数a的取值范围.解:(1)任取1x,],[2nmx∈,且12x x<,12122121()()x xf x f xa x x--=⋅,因为12x x<,1x,],[2nmx∈,所以12x x>,即12()()f x f x<,故)(xf在],[nm上单调递增.或求导方法.(2)因为)(xf在],[nm上单调递增,)(xf的定义域、值域都是⇔],[nm(),()f m m f n n==,即nm,是方程2211aa a xx+=-的两个不等的正根1)2(222=++-⇔xaaxa有两个不等的正根.所以04)2(222>-+=∆aaa,222a aa+>⇒12a>33.已知定义域为R的函数abxfxx++-=+122)(是奇函数.(1)求a,b的值;(2)若对任意的Rt∈,不等式0)2()2(22<-+-ktfttf恒成立,求k的取值范围.解(1)因为)(xf是R上的奇函数,所以1,021,0)0(==++-=babf解得即从而有.212)(1axfxx++-=+又由aaff++--=++---=1121412)1()1(知,解得2=a(2)解法一:由(1)知,121212212)(1++-=++-=+xx xx f由上式易知)(x f 在R 上为减函数,又因)(x f 是奇函数,从而不等式0)2()2(22<-+-k t f t t f 等价于).2()2()2(222k t f k t f t t f +-=--<-因)(x f 是R 上的减函数,由上式推得.2222k t t t +->- 即对一切,0232>--∈k t t R t 有从而31,0124-<<+=∆k k 解得解法二:由(1)知,2212)(1++-=+x xx f又由题设条件得0221222121221222222<++-+++-+--+--k t kt t t tt即0)12)(22()12)(22(2222212212<+-+++-+-+--+-kt t t tt k t整理得12232>--kt t,因底数2>1,故0232>--k t t上式对一切R t ∈均成立,从而判别式.31,0124-<<+=∆k k 解得34.已知函数()a f x x x =-.(1)若13log [8()]y f x =-在[1,)+∞上是单调减函数,求实数a 的取值范围;(2)设1,a x y k =+=,若不等式22()()()2k f x f y k≥-对一切,(0,)x y k ∈恒成立,求实数k的取值范围.解: (1)令8a t x x=-+,则要使13log [8()]y f x =-在[1,)+∞上是单调减函数,则/21080a t xa t x x ⎧=-≥⎪⎪⎨⎪=-+>⎪⎩在[1,)+∞上恒成立,则21180a x a ⎧≥-≥-⎨-+>⎩所以, 19a -≤< (7)分 (2) 2222111()()()()()x y x yf x f y x y x y xy-++=--=222221212(0)4k xy x yk kxy xy xyxy-++-==++<≤. (10)分 令u xy=,则221()()2,(0,]4k kf x f y u u u-=++∈当2214kk -≥即0252k <≤-时,21()()2k f x f y u u -=++在2(0,]4ku ∈上为减函数,所以 2222min22142[()()]22()4424kk kk f x f y kkk-=++=+-=-即当0252k <≤-时,22()()()2k f x f y k≥-……………………………12分 当2214kk -<,222min 242[()()]2122()42kk f x f y k kk=-+<+-=-与题意不合.所以,所求的k 的取值范围为 : 0252k <≤-. ………………………14分35.(本小题满分14分)设关于x 的方程2x 2-ax -2=0的两根为α、β(α<β),函数14)(2+-=x a x x f .(Ⅰ)求f (α)·f (β)的值;(Ⅱ)证明f (x )是[α,β]上的增函数;(Ⅲ)当a 为何值时,f (x )在区间[α,β]上的最大值与最小值之差最小? 解:(Ⅰ)由题意知α+β=2a ,α·β=-1,∴α2+β2=242+a,∴f (α)·f (β)=1)(41614142222222+++++-=+-⋅+-ββαβααβββααa aa a a41241216222-=++++--=aa a .……………………………………………………… 4分(Ⅱ)证明:当α≤x ≤β时,22\22\\)1()1)(4()1()4()(++--+-=xx a x xa x x f222222)1()22(2)1(2)4()1(4+---=+⋅--+=x ax x x xa x x ………… 6分∵α、β是方程2x 2-ax -2=0的两根, ∴当α≤x ≤β时,恒有2x 2-ax -2≤0, ∴)(\x f ≥0,又)(x f 不是常函数,∴)(x f 是[α,β]上的增函数.……………………………………………… 9分 (Ⅲ)f (x )在区间[α,β]上的最大值f (β)>0,最小值f (α)<0,又∵| f (α)·f (β) |=4, ……………………………………………………… 10分 ∴f (β)-f (α)=| f (β)|+| f (α)|≥4)()(2=⋅βαf f当且仅当| f (β)|=| f (α)|=2时取“=”号,此时f (β)=2,f (α)=-2 …… 11分∴⎪⎩⎪⎨⎧=--=+-)2(022)1(21422 ββββa a……………………………………… 13分由(1)、(2)得0)16(2=+a a ,∴a =0为所求.…………………………………………………… 14分 36.已知函数)0()(>+=t xt x x f 和点)0 , 1(P ,过点P 作曲线)(x f y =的两条切线PM 、PN ,切点分别为M 、N .(Ⅰ)设)(t g MN =,试求函数)(t g 的表达式;(Ⅱ)是否存在t ,使得M 、N 与)1 , 0(A 三点共线.若存在,求出t 的值;若不存在,请说明理由.(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数n ,在区间]64 , 2[nn +内总存在1+m 个实数m a a a ,,,21 ,1+m a ,使得不等式)()()()(121+<+++m m a g a g a g a g 成立,求m 的最大值.解:(Ⅰ)设M 、N 两点的横坐标分别为1x 、2x ,21)(xt x f -=', ∴切线PM 的方程为:))(1()(12111x x x t x t x y --=+-,又 切线PM 过点)0,1(P , ∴有)1)(1()(012111x x t x t x --=+-,即02121=-+t tx x , ………………………………………………(1) …… 2分同理,由切线PN 也过点)0,1(P ,得02222=-+t tx x .…………(2) 由(1)、(2),可得21,x x 是方程022=-+t tx x 的两根,⎩⎨⎧-=⋅-=+∴. ,22121t x x t x x ………………( * ) ……………………… 4分22211221)()(x t x x t x x x MN --++-=])1(1[)(221221x x t x x -+-=])1(1][4)[(22121221x x t x x x x -+-+=,把( * )式代入,得t t MN 20202+=,因此,函数)(t g 的表达式为)0( 2020)(2>+=t t t t g . ……………………5分(Ⅱ)当点M 、N 与A 共线时,NA MA k k =,∴1111--+x x t x =1222--+x x t x ,即21121x x t x -+=22222x x t x -+,化简,得0])()[(211212=-+-x x x x t x x ,21x x ≠ ,1212)(x x x x t =+∴. ………………(3) …………… 7分把(*)式代入(3),解得21=t .∴存在t ,使得点M 、N 与A 三点共线,且 21=t . ……………………9分(Ⅲ)解法1:易知)(t g 在区间]64,2[nn +上为增函数,∴)64()()2(nn g a g g i +≤≤)1,,2,1(+=m i ,则)64()()()()2(21n n g m a g a g a g g m m +⋅≤+++≤⋅ .依题意,不等式)64()2(nn g g m +<⋅对一切的正整数n 恒成立, …………11分)64(20)n6420(n 22022022nn m +++<⋅+⋅,即)]64()n64[(n 612nn m +++<对一切的正整数n 恒成立,.1664≥+nn , 3136]1616[61)]64()n64[(n 6122=+≥+++∴nn ,3136<∴m .由于m 为正整数,6≤∴m . ……………………………13分 又当6=m 时,存在221====m a a a ,161=+m a ,对所有的n 满足条件. 因此,m 的最大值为6. ……………………………14分 解法2:依题意,当区间]64,2[nn +的长度最小时,得到的m 最大值,即是所求值.1664≥+nn ,∴长度最小的区间为]16,2[, …………………11分当]16,2[∈i a )1,,2,1(+=m i 时,与解法1相同分析,得)16()2(g g m <⋅,解得3136<m .37.已知函数xa x y +=有如下性质:如果常数a >0,那么该函数在(0,a ]上是减函数,在[a ,+∞)上是增函数.(1)如果函数y =x +x b2(x >0)的值域为[6,+∞),求b 的值; (2)研究函数y =2x +2xc(常数c >0)在定义域内的单调性,并说明理由;(3)对函数y =x +xa 和y =2x +2xa (常数a >0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数)(x F =nx x )1(2++nx x)1(2+(n 是正整数)在区间[21,2]上的最大值和最小值(可利用你的研究结论).(理)解:(1)函数2(0)by x x x=+>的最小值是2b2,则226b=,∴2log 9b =(2)设120x x <<,222221212122222112()(1)c c c y y x x x x xxx x-=+--=--⋅.当412c x x <<时,21y y >,函数22c y x x=+在[4c ,+∞)上是增函数;当4120x x c <<<时,21y y <,函数22c y x x=+在(0,4c ]上是减函数.又22c y x x=+是偶函数,于是,该函数在(-∞,-4c ]上是减函数, 在[-4c ,0)上是增函数;(3)可以把函数推广为(0)n na y x a x=+>,其中n 是正整数.当n 是奇数时,函数n na y x x=+在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数,在(-∞,-na 2]上是增函数, 在[-n a 2,0)上是减函数;当n 是偶数时,函数n na y x x=+在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数, 在(-∞,-na 2]上是减函数, 在[-n a 2,0)上是增函数;21()()nF x x x=++nx x)1(2+=)1()1()1()1(323232321220nnn n rn rn r n n n n nnn xx C xx C xxC xxC ++++++++----因此()F x 在 [21,1]上是减函数,在[1,2]上是增函数.所以,当12x =或2x =时,()F x 取得最大值9924nn⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;当1x =时,()F x 取得最小值12n +.38已知函数()()2211xf x x R x x-=∈++.(Ⅰ)求函数()f x 的单调区间和极值; (Ⅱ)若()2220t t t e x e x e +++-≥对满足1x ≤的任意实数x恒成立,求实数t 的取值范围(这里e 是自然对数的底数);(Ⅲ)求证:对任意正数a 、b 、λ、μ,恒有2222a b a b a b f f λμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫+++-⎢⎥ ⎪ ⎪ ⎪+++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥22a b λμλμ+-+.【解】(Ⅰ)()()()()()()()()22222223232121111x x x x xx x f x x x x x ⎡⎤⎡⎤---+⋅----++-+-⎣⎦⎣⎦'==++++∴()f x 的增区间为()23,23---+,()f x 减区间为(),23-∞--和()23,-++∞.极大值为()23233f -+=,极小值为()23233f --=-.…………4′(Ⅱ)原不等式可化为()22211t x e x x-++≥由(Ⅰ)知,1x ≤时,)(x f 的最大值为332.∴()22211xx x-++的最大值为433,由恒成立的意义知道433t e ≥,从而433t ln≥…8′(Ⅲ)设()()()22101xg x f x x x x x x-=-=->++则()()()()()243222224124621111x x x x x x g x f x x x x x -++++++''=-=-=-++++.∴当0x >时,()0g x '<,故()g x 在()0,+∞上是减函数,又当a 、b 、λ、μ是正实数时,()()222220a b a b a bλμλμλμλμλμλμ-⎛⎫++-=- ⎪+++⎝⎭≤ ∴222a b a bλμλμλμλμ⎛⎫++ ⎪++⎝⎭≤. 由()g x 的单调性有:222222a b a b a b a b f f λμλμλμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫++++--⎢⎥⎪ ⎪ ⎪++++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥, 即222222a b a b a b a bf f λμλμλμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫++++--⎢⎥ ⎪ ⎪ ⎪++++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥.…………12′ 39.(本题12分) 已知函数()1bx c f x x +=+的图象过原点,且关于点(-1,1)成中心对称.(Ⅰ)求函数()f x 的解析式;(Ⅱ)若数列{}n a (*)n N ∈满足:()2110,1,()n n n a a a f a +>==,求数列{}n a 的通项n a ; (Ⅲ)若数列{}n a 的前n 项和为n S ,判断n S 与2的大小关系,并证明你的结论. 解 (Ⅰ) 因为函数()1bx c f x x +=+ 的图象过原点,所以c =0,即()1bx f x x =+.又函数()11bx bf x b x x ==-++的图象关于点(-1,1)成中心对称,所以1,()1xb f x x ==+。

分式函数值域

分式函数值域

分式函数值域
分式函数定义为由两个或多个分数组成的表达式。

其中一个分数叫称分子,另一个叫分母,将它们用符号“/”表示,就叫做分式函数。

分式函数的值域,是指分式函数定义的所有可能解的集合。

分式函数的值域要看其分母,当其分母不为零时,该函数为可除函数,函数的值域是实数集合。

而当其分母为零时,该函数不可除,函数的值域为空集合。

首先,要正确判断一个分式函数的分母是否为零,而不是仅仅把所有分数都另为0来判断。

正确判断方法是:先把分式函数化简,化简得到原分数之后,才能正确判断它的分母是否为零。

其次,若分式函数的分母不为零,则函数的值域就是实数集合。

但是,若分子存在负数的话,由定义可知,分式函数值域只包含正数、负数和零而不包括分子的值,所以由此可得分式函数的值域为:
$$
\lbrace x \mid x \in \mathbb{R}, x \geq 0 \lor x \leq 0\rbrace
$$
再次,在计算分式函数的值域的过程中,要注意函数的取值范围,以及x的可能取值范围。

有时,可能会有一定的条件限制x的取值范围,这样就要根据函数定义及其特性作出相应的修正来计算分式函数的值域。

如何求两类分式三角函数的值域

如何求两类分式三角函数的值域

分式三角函数值域问题的难度一般较大.解答此类问题,不仅要将函数式进行合理的变形,还需关注分母不为0的隐含条件,由此根据函数的定义域来求解.本文主要探讨两类分式三角函数值域问题及其解法,以期帮助同学们更加透彻地了解这两类问题的解法.类型一:y =a 1sin x +b 1a 2sin x +b 2或y =a 1sin x +b 1a 2cos x +b 2型分式三角函数形如y =a 1sin x +b 1a 2sin x +b 2或y =a 1sin x +b 1a 2cos x +b 2的分式三角函数值域问题比较常见,解答此类问题,通常有两种思路:(1)先根据函数式明确分母不为0时函数的定义域,然后将函数式变形为sin x =f ()y ,cos x =f ()y ,tan x =f ()y 的形式,再利用三角函数的有界性求得函数的值域;(2)将y 视为参数,把函数式变形为关于y 的方程,利用一次方程的性质或者二次方程的判别式来建立关于y 的不等式,解不等式即可求得值域.例1.求函数y =sin x +1sin x +2的值域.解:由y =sin x +1sin x +2可得sin x =2y -11-y ,因为||sin x ≤1,所以||||||2y -11-y ≤1,即()2y -12≤()1-y 2,解得0≤y ≤23,所以函数y =sin x +1sin x +2的值域为éëùû0,23.解答本题,要先通过恒等变换将函数式变形,再利用三角函数的有界性||sin x ≤1建立关于y 的不等式,解该不等式求就能求出函数的值域.例2.求函数f ()x =sin x +1cos x +2的值域.解:令t =tan x2,由万能公式可得sin x =2t 1+t 2,cos x =1-t 21+t 2,将其代入y =sin x +1cos x +2可得:y =t 2+2t +1t 2+3,整理得:()y -1t 2-2t +()3y -1=0,因为tan x2∈R ,所以t ∈R ,当y -1=0时,t =1;当y -1≠0时,根据∆≥0得0≤y ≤43,且y ≠1,因此函数f ()x 的值域为éëùû0,43.我们根据万能公式将tan x2用t 替换,通过换元将问题转化为关于t 的一元二次方程()y -1t 2-2t +()3y -1=0有解的问题,由一元二次方程的根的判别式建立不等式,进而求得函数的值域.类型二:y =a 1sin x cos x()sin x +a 2()cos x +a 3型分式三角函数解答形如y =a 1sin x cos x()sin x +a 2()cos x +a 3的分式三角函数值域问题,要先根据同角的三角函数关系式sin 2x +cos 2x =1以及完全平方公式,将sin x cos x 用sin x +cos x 表示出来,以便把函数式转化为只含有sin x +cos x 的式子,这样根据辅助角公式和正余弦函数的性质就能顺利求得函数的值域.例3.已知θ∈æèöø0,π2,则2sin θcos θ()sin θ+1()cos θ+1的值域为_____.解:令t =sin θ+cos θ,∴t =2sin æèöøθ+π4,∵θ∈æèöø0,π2,θ+π4∈æèöøπ4,3π4,∴t ∈(]1,2,∴t 2=1+2sin θcos θ,∴sin θcos θ=t 2-12,∴2sin θcos θ()sin θ+1()cos θ+1=2()t -1t +1=2-4t +1,而在(]1,2上g ()t =2-4t +1单调递增,∴0<2-4t +1≤6-42,∴函数2sin θcos θ()sin θ+1()cos θ+1的值域为(]0,6-42.本题较为复杂,解答时需先根据重要三角函数不等式将函数式进行变形,然后设t =sin θ+cos θ,通过换元将问题转化为求g ()t 在(]1,2上的最值,根据反比例函数的性质即可解出.在求值域的过程中,需注意自变量的取值范围,若自变量的取值范围错误,则所求的值域也必定是错误的.总的来说,求解分式三角函数值域问题的关键是要明确函数式的特征,据此将函数式进行适当的变形,如变形为sin x =f ()y 、cos x =f ()y 、tan x =f ()y 的形式、一元二次方程、反比例函数等,再根据三角函数的有界性和方程的性质就能求得最值.(作者单位:安徽省蚌埠市怀远县包集中学)方法集锦45。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数函数的值域
这里说的是二次即二次以下分式函数的值域,由于高二学了一阶导数,笔者见到不少学生学了导数之后,看到分式函数想都不想就直接求导做,毫无疑问是可以做出来的,但是,对于分式的导数,比原函数还要麻烦,如果函数很简单,用导数似乎有些大材小用,如果函数很复杂,求导之后就更加复杂,做起来也比较麻烦,因此,对于此类分式函数题目求最值,轻易莫求导!!!
下面进入正题,这里说的分式函数大致以下几种形式:y=,
y=,y=,y=其中y=与y=
基本一致
对于这个问题,一般来说可能会用到三个方法:分离常数、均值不等式、几何法(构造斜率)、反函数法、判别式法。

反函数法和判别式法这里不再赘述,以下我们分别讨论
首先,对于最简单的分式线性函数y=,反函数法在此不再赘述,即是反解出x,利用定义域求值域,这里说下分离常数法,这个方法很重要,要谨记
例1:若x∈[-1,2)求函数y=的值域
解一(分离常数法):y=
=
=2+
由x∈[-1,2)则y∈(-∞,1]
分离常数的目的是为了将自变量“挤”到分母或分子,则函数单调性、值域显而易见
解二(构造斜率法):原式可看作点A(2,1)到点P(x,2x)的斜率,其中P在直线y=2x(x∈[-1,2))上,作出图像即可得到答案构造斜率法运用时要注意,若定点与动点连线中有x轴的垂线,则垂线应画成虚线,它是正、负无穷的分界线(斜率k=tanθ)
反函数法略
然后是分子或分母中出现二次,无论是在分子还是在分母,处理方法基本一致。

同样用到类似分离常数的配凑方法,对于功底不好的同学,可以对一次式换元,
例2求函数y==,x∈[0,2]
解一:令t=x+2(t∈[2,4]),则x=t-2
则y==
分子分母同除以t后得,y=t+-6≥2-6(当且仅当t=时“=”成立)
这里注意,由于均值不等式存在一正、二定、三相等的限制条件,如果符号和相等不能满足,那么就要另求他法了。

解二:同上面构造斜率,只不过动点却是在开口向上的抛物线y=x²-2x上,这里的处理办法是,连接定点使与抛物线相切、及定点与给定区间端点,切点可用联立抛物线与直线方程,由判别式△=0可求,比较三点斜率定出值域
若分子为二次,处理与上相似,只是注意构造斜率时,动点在开口向左或右的抛物线上。

最后一种是分子分母均为二次,要先分离常数,转化为第二种类型
例3:求函数y=(x∈[-2,1])的值域
解一:y=
=2+
以下处理与第二种类型相同
特别注意到,这里分子只有二次项的特殊情况,直接分子分母同除以x²,则分母转化为关于1/x的二次三项式,问题轻松解决。

由于做得比较匆忙,过程不怎么到位,其他还有碰到三角函数,则可利用三角恒等变换以及三角的正余弦相互关系利用构造斜率求解等等方法,请读者自行探讨。

原创:房周泉(风之天炼)
2010年9月11日星期六23:43。

相关文档
最新文档