三年级 初步认识容斥原理

合集下载

容斥原理公式及运用

容斥原理公式及运用

容斥原理公式及运用在计数时,必须注意无一重复,无一遗漏。

为了使重叠部分不被重复计算,研究出一种新的计数方法。

这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

一、容斥原理1:两个集合的容斥原理如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。

如下图所示。

【示例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。

A∪B=15+12-4=23,共有23人至少有一门得满分。

二、容斥原理2:三个集合的容斥原理如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。

如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。

即得到:【示例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B ∩C。

小学奥数教程之容斥原理

小学奥数教程之容斥原理

学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。

可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

容斥原理学生姓名授课日期教师姓名授课时长知识定位容斥原理中的知识点比较简单,是计数问题中比较浅的一支。

这个知识点经常和数论知识结合出综合型题目。

这个原理本身并不是很难理解,不过经常和数论知识结合出题,所以对学生的理解层次要求较高,学生必须充分理解、吃透。

1.充分理解和掌握容斥原理的基本概念2.利用图形分析解决容斥原理问题知识梳理授课批注:本讲的知识点必须让学生充分理解、吃透,这个原理本身并不是很难理解,不过经常和数论知识结合出题所以对学生的理解层次要求较高。

一. 容斥原理的概念定义在一些计数问题中,经常遇到有关集合元素个数的计算。

我们用|A|表示有限集A 的元素个数。

求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:|A∪B| = |A| + |B| - |A∩B|,我们称这一公式为包含与排除原理,简称容斥原理。

图示如右:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A∩B,即阴影面积。

用法:包含与排除原理告诉我们,要计算两个集合A、B的并集A∪B的元素的个数,可分以下两步进行:第一步:分别计算集合A、B的元素个数,然后加起来,即先求|A|+|B|(意思是把A、B的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C=|A∩B|(意思是“排除”了重复计算的元素个数)二.竞赛考点1.容斥原理的基本概念2.与数论相结合的综合型题目例题精讲【试题来源】【题目】在一个炎热的夏日,10个小学生去冷饮店每人都买了冷饮。

人教版 三年级数学上册章节复习 第九单元《数学广角集合》 (含答案)

人教版 三年级数学上册章节复习 第九单元《数学广角集合》 (含答案)

章节复习讲义(人教版)人教版数学三年级上册章节复习第九单元《数学广角—集合》知识互联解决重叠问题,可以从条件入手进行分析,画出示意图,借助示意图进行思考。

为了不重复计数,应从它们的和中减去重复部分。

方法1:只参加A+只参加B+A、B都参加=总人数方法2:参加A+参加B-A、B都参加=总人数知识导航知识点一:容斥原理1.解决重叠问题,可以从条件入手进行分析,画出示意图,借助示意图进行思考。

为了不重复计数,应从它们的和中减去重复部分,也可以先用其中一部分减去重叠部分,再加上另一部分。

2.在日常生活中,人们常常需要统计一些数量,在统计的过程中,往往会发现有些数量重复出现,为了使重复出现的部分不致被重复计算,人们研究出一种新的计数方法,既先不考虑重复的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排除出去,使计算的结果既无遗漏又无重复.这种计数方法称为包含排除法,也叫做容斥原理或重叠问题.一般方法:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.容斥原理1:两量重叠问题A类与B类元素个数的总和=A类元素的个数+B类元素个数-既是A类又是B类的元素个数用符号可表示成:A∪B=A+B-A∩B (其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思,符号“∩”读作“交”,相当于中文“且”的意思).容斥原理2:三量重叠问题A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数-既是A类又是B类的元素个数-既是B类又是C类的元素个数-既是A类又是C类的元素个数+同时是A类、B 类、C类的元素个数.用符号表示为:A∪B∪C=A+B+C-A∩B-B∩C-A∩C+A∩B∩C夯实基础一、精挑细选(共5题;每题3分,共15分)1.(江西·定南县教学研究室三年级单元测试)用1张长10厘米,宽6厘米的长方形纸,折一个最大的正方形,正方形的边长是()厘米。

三年级思维 容斥原理

三年级思维 容斥原理

• 1、在计数时,必须注意无一重复,无一遗漏 。为了使重叠部分不被重复计算,人们研究 出一种新的计数方法,这种方法的基本思想 是:先不考虑重叠的情况,把包含于某内容 中的所有对象的数目先计算出来,然后再把 计数时重复计算的数目排斥出去,使得计算 的结果既无遗漏又无重复,这种计数的方法 称为容斥原理。
2、A类B类元素个数总和 = 属于类元素个数 + 属于B类元
素个数 — 既是A类又是B类元素个数
3、解决容斥原理,一般采用文氏图。
文氏图指用于显示元素集合重叠区域的图示
【例3】四(2)班有56只小老虎,参加语 文竞赛的有28只小老虎,参加数学竞赛的 有27只小老虎,如果两科都没参加的有25 只小老虎,那么参加语文、数学两科竞赛 的有多少人?
【练习】一个俱乐部有103人,其中会下 中国象棋的有69人,会下国际象棋的有52 人,这两种棋都不会下的有12人。问这个 俱乐部里两种棋都会下的有多少人?
容斥原理
【例1】森林里有58只小老虎,每只老虎 都至少喜欢游泳和爬树中的一项,已知喜 欢游泳的有38只小老虎,喜欢爬树的有24 只小老虎,那么既喜欢游泳又喜欢爬树的 小老虎有多少只?
【练习1】某班有48人,班主任问:“做 完语文作业的请举手?”有42人举手。又 问:“做完数学作业的请举手?”有37人 举手。“有没有哪个同学一门作业也没完 成呀?”结果无人举手。问:这个班语文 、数学作业都做完的人数是多少?
【例4】阳光喔举办学生书法展览。学校 的橱窗里展出了每个年级学生的书法作品 ,其中有24幅不是五年级的,有22幅不是 六年级的,五、六年级参展的书法作品共 有10幅,其他年级参展的书法作品共有多 少幅?
• 【练习4】南明小学举行小学田径运动会,其 中24名运动员不是六年级的,28名运动员不 是五年级的,已知五、六年级运动员共有32 名,五、六年级和中低年级运动员各有多少 名?

容斥原理三个公式小学

容斥原理三个公式小学

容斥原理三个公式小学
三集合容斥问题公式:
(1)A+B+C-A∩B-A∩C-B∩C+A∩B∩C=总数-三者都不满足的个数
解释:把ABC想象成三个圆形纸片,ABC叠加在一起的面积等于ABC 面积之和减去两两重叠的部分,但是中间三者重叠的部分减去了三次,相当于被挖空了,所以还得加上它。

(2)A+B+C-只满足两个条件的个数-2倍满足三个条件的个数=总数-三者都不满足的个数
解释:把ABC想象成三个圆形纸片,ABC叠加在一起的面积等于ABC 面积之和减去重叠两层的面积,再减去重叠三层的面积的两倍。

重叠2层,只用减去1层,重叠3层,得减掉2层。

(3)只满足一个条件的个数+只满足两个条件的个数+满足三个条件的个数=总数-三者都不满足的个数。

解释:把ABC想象成三个圆形纸片,ABC叠加在一起的面积等于只有一层的面积+重叠两层的面积+重叠三层的面积。

三年级上册数学奥数课件-容斥原理 人教版(共22张PPT)

三年级上册数学奥数课件-容斥原理 人教版(共22张PPT)
答:参加跳舞的有40人。
部分=总体-另一部分+重复的部分
拓展3、参加舞蹈演出的有32人,参加歌唱演出的 有27人,两种都参加的有11人,两种都未参加的有 31人,一共有多少人?
舞蹈 32人
歌唱 27人
11人
都未参 加31人
?人
参加:32+27-11=48(人) 全部:48+31=79(人) 答:一共79人。
例3、某班有56人,参加语文竞赛的有28人, 参加数学竞赛的有27人,如果两科都没有 参加的有25人,那么同时参加语文、数学 两科竞赛的有多少人?
练习三
1,一个旅行社有36人,其中会英语的有24人,会法 语的有18人,两样都不会的有4人。两样都会的有多 少人?
2,一个俱乐部有103人,其中会下中国象棋的有69人, 会下国际象棋的有52人,这两种棋都不会下的有12人。 问这两种棋都会下的有多少人?
包含与排除
当两个计数部分有重复时,为 了不重复计数,应从它们的和 中减去重复部分,这一原理, 我们称为包含排除原理,也称 容斥原理。
脑筋急转弯:
有2个爸爸、2个儿子在家看电视, 但是家里只有3个人,这是怎么回事呢?
2个爸爸
2个儿子
既是爸爸又是儿子
2 + 2-1=3(人) 总体=各部分之和—重复的部分
例1、三年级一班有23人喜欢音乐,25人 喜欢美术,音乐和美术有喜欢的有8人, 全班喜欢音乐美术的共有多少人?
23+25-8=40(人) 答:全班喜欢音乐美术的有40人。
拓展1、一共有79人参加节目,参加小品类节目的 有46人,参加曲艺类节目的有39人,并且每人至少 参加一种节目,问两项节目都参加的有多少人?
共79人
小品类 46人

什么是容斥原理

什么是容斥原理

什么是容斥原理容斥原理是组合数学中一种重要的计数方法,它常常被用来解决包含排列组合、集合运算等问题。

容斥原理的应用范围非常广泛,它可以帮助我们解决各种复杂的计数问题,因此对于学习组合数学的同学来说,掌握容斥原理是非常重要的。

首先,容斥原理是什么呢?简单来说,容斥原理是一种通过排除重复计数来得到准确计数结果的方法。

在解决问题时,我们常常会遇到需要计算某个集合的元素个数的情况,而有时候直接计算会非常复杂甚至不可行。

这时,我们就可以利用容斥原理来简化计数过程,从而得到准确的结果。

容斥原理的核心思想是利用集合的互斥性质,通过排除重复计数来得到准确的计数结果。

具体来说,对于给定的若干个集合,我们可以利用容斥原理来计算它们的并集的元素个数。

容斥原理的表达式可以用一个简单的公式来表示:|A ∪ B ∪ C| = |A| + |B| + |C| |A ∩ B| |A ∩ C| |B ∩ C| + |A ∩ B ∩ C|。

其中,|A| 表示集合 A 的元素个数,A ∪ B 表示集合 A 和集合 B 的并集,A ∩B 表示集合 A 和集合 B 的交集。

通过这个公式,我们可以利用容斥原理来计算任意若干个集合的并集的元素个数,从而解决各种复杂的计数问题。

容斥原理的应用非常灵活,我们可以将其应用于各种不同类型的问题中。

例如,在排列组合问题中,容斥原理可以帮助我们计算满足某些条件的排列或组合的个数;在集合运算问题中,容斥原理可以帮助我们计算多个集合的并集的元素个数;在概率统计问题中,容斥原理可以帮助我们计算多个事件的概率之和等等。

总之,容斥原理是组合数学中一种非常重要的计数方法,它通过排除重复计数来得到准确的计数结果。

掌握容斥原理可以帮助我们解决各种复杂的计数问题,因此对于学习组合数学的同学来说,深入理解和灵活运用容斥原理是非常重要的。

希望本文对你有所帮助,谢谢阅读!。

小学数学三年级难点问题——容斥原理

小学数学三年级难点问题——容斥原理

小学数学三年级难点问题——容斥原理容斥原理是小学数学的难点之一,对于三年级的同学来说,这个知识点比较新,会有一些不适应,今天我们就用一道例题来介绍一下容斥原理及其计算方法。

文氏图三(2)班共有60人,其中,喜欢足球的23人,喜欢跑步的30人,既喜欢足球又喜欢跑步的有6人,问既不喜欢足球,也不喜欢跑步的有几人?首先,我们把喜欢足球的23人列出来。

喜欢踢球的23人再将喜欢跑步的30人列出来。

喜欢踢球的23人和喜欢跑步的30人注意,有6个同学既喜欢踢球又喜欢跑步,我们用红色标记出来。

6个人既喜欢踢球又喜欢跑步这样的话,我们可以看得出来,喜欢踢球,喜欢跑步的同学就是上图中所有的圆点,其中包括蓝色圆点、棕色圆点和红色圆点,它们一共有23+30-6=47个,也就是有47人喜欢踢球或者喜欢跑步,那么既不喜欢踢球,又不喜欢跑步的同学就是总数减去这47人,即60-47=13人,他们是不是在教室里当学霸呢?实际上,容斥原理问题我们可以用画图的方法很快的计算出来,具体地说,就是画一个文氏图,对于此题,我们先画一个椭圆,表示喜欢踢球的人,如下图所示。

用一个椭圆表示喜欢踢球的人(抽象画法)然后再画一个与刚才的椭圆有重叠的椭圆,表示喜欢跑步的同学。

喜欢踢球和喜欢跑步的同学两个椭圆重叠的部分就是既喜欢踢球又喜欢跑步的同学。

题目问的是既不喜欢踢球又不喜欢跑步的人数,从图中可以看出,蓝色部分就是要求的既不喜欢踢球又不喜欢跑步的人。

显然,我们通过图形可以看出,蓝色部分等于整个长方形减去两个椭圆遮住的部分,而两个椭圆遮住的部分等于黄色区域+绿色区域-重叠区域,这样看是不是一目了然啊。

因此,列出算式就是60-(23+30-6)=13人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初步认识简单容斥原理问题
一、学习目标
1、初步理解容斥原理的具体含义。

2、能运用容斥原理解决一些简单的实际问题。

二、内容提要与方法点拨
1. 在数学学习中,我们常常碰到一些有关重叠的问题,如小朋友排成一行,从左边数小红排在第8个,从右边数排在第5个,求这一行共有多少人?如果简单地用8+5求出有13人,这样就重复把小红计算进去了。

2 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

三、例题选讲
例1、有两块同样长的木板,长68厘米,如果把两块木板重叠后钉成一块木板(如图),重叠部分是20厘米,求钉成后的这一块木板长多少厘米?
例2、庆祝国庆,同学们排成方形的彩旗队,无论从前数、从后数,还是从左数从右数,小静都在第6个,参加彩旗的同学共有多少个?
例3、一次大扫除,全班42人中,扫地的有21人,擦窗户的有23人,每人至少参加一项劳动,那么既扫地又擦窗户的有几人?
例4、三(2)班都参加了音乐、美术这两个课外兴趣小组。

参加音乐组的有34人,参加美术组的有28人,两个小组都参加的有8人,三(2)班共有学生多少人?
例5、苗圃小学有500名学生参加作文和数学竞赛,参加数学竞赛的有365人,参加作文竞赛的有356人,其中两科都参加的有380人,那么两科都没参加的有多少人?
四、巩固练习
1、学校组织看电影,明明的座位从左数和从右数都是第15个,这一行座位
有多少个?
2、三(1)班排成每行人数相同的队伍入场参加校运会,红红的位置从前是
第6个,从后数是第5个;从左数、从右数都是第3个。

三(1)班共有
学生多少人?
3、把两段一样长的纸条粘合在一起,形成一段更长的纸条,这段更长的纸
条长40厘米,中间重叠部分是10厘米,原来两段纸条各长多少厘米?
4、两块木板各长85厘米,像下面这样钉成一块长140厘米的木板,中间重
合部分是多少厘米?
5、三(2)班做完语文作业的有36人,做完数学作业的有41人,两种作业都完成的有38人,两种作业都没完成的有1人。

三(2)班共有学生多少人?。

相关文档
最新文档